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ITERATING THE BASIC CONSTRUCTION

MIHAI PIMSNER AND SORIN POPA

ABSTRACT. Let JV C M be a pair of type Hi factors with finite Jones' index

and N C M C My C Mi C • • • C M„ C ■ • • C M2n+i be the associated tower

of type Hi factors obtained by iterating Jones' basic construction. We give an

explicit formula of a projection in M2n+i which implements the conditional

expectation of Mn onto AT, thus showing that Min+i comes naturally from

the basic construction associated to the pair N C M„. From this we deduce

several properties of the relative commutant N' D Mn.

Introduction. Let N C M be a pair of finite factors. Jones defined in [1] the

index [M : N] of N in M to be the coupling constant of N in its representation on

L2(M). If this index is finite, then the trace preserving conditional expectation of

M onto N, regarded as an operator on L2(M), generates together with M a finite

factor My. This factor is called in Jones' terminology the extension of M by N and

the construction of My from M and N, the basic construction. The pair M C My

has the remarkable property that [Mi : M] = ]M : N], so this procedure may be

iterated to get an increasing sequence of finite factors N c M C My C M2 C • • •

and together with it a sequence of projections e, E Mi+y, i > 0, implementing the

conditional expectations at consecutive steps.

We prove in this paper that in this sequence of factors the basic construction

arises periodically from n to n steps, for any n. In fact we give a formula for a

projection /„ in M2n+y that implements the conditional expectation of Mn onto

N: fn is a scalar multiple of the word of maximal length in {e;}o<i<2m namely

/„ = [M : iV]"("+1)/2(enen_1 • • • e0)(en+yen ■■■e1)--- (e2n ■ ■ ■ en).

We mention that this result was independently obtained by A. Ocneanu [2]. We

apply this theorem to show that if the logarithm of the index [M : N] equals the

relative entropy H(M\N) considered in [3], then one also has

H(Mn]N) = ln[M„ : N]    for every n.

Since this equality characterizes an extremal case for an inclusion of factors, from

the analysis of a similar situation in [3] we deduce several properties of the inclusion

N C Mn and of the relative commutant N' fl Mn.

1. Preliminaries. Throughout this paper M will be a finite factor with nor-

malized trace r, r(l) = 1. We denote by ||x||2 = r(x*x)ll2, x E M, the Hilbert

norm given by r and by L2(M,r) the Hilbert space completion of M in this norm.

The canonical conjugation of L2(M,r) is denoted by J. It acts on M C L2(M,r)
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128 MIHAI PIMSNER AND SORIN POPA

by Jx = x* and satisfies JMJ = M'. In fact, if we regard M as acting by left mul-

tiplication on L2(M,r) then for x E M, JxJ is the operator of right multiplication

by x*.

N c M will denote a subfactor of M with In = Im and EN will be the unique

normal trace preserving conditional expectation of M onto TV. Note that En is

just the restriction to M C L2(M,r) of the orthogonal projection e^ of L2(M,r)

onto L2(N, r) (the closure of TV in L2(M, r)). The conditional expectation En, the

projection e/v and the conjugation J are related by the properties

(i) If x E M then x E N iff e^i = zejv-

(ii) eNxeN = En(x)cn, x E M.

(iii) J commutes with e/y.

If the index of N in M is finite then from the pair TV c M one can construct a

new pair of finite factors M E My with the same index [Mi : M] = [M : TV]. The

construction of My is called the basic construction and the factor My is called the

extension of M by TV.

We recall from [1] the definition and main properties of My:

1.1 PROPOSITION.   Define My = JN'J.  Then we have

1° My = (M U {eN})",

2 [My : M] = [M : N] and if r denotes the unique normalized trace on My

and Em the r preserving conditional expectation of My onto M, then Em(cn) =

[M : iV]-1ljvz or equivalently t(cnx) = [M : TV]_1r(x) for every x E M.

Part 1 of this proposition can be made more precise: by [3], if n + 1 > [M : N]

then any element in My is a sum of at most (n + l)2 monomials of the form

xeNy, x,y E M. Note that My can also be described abstractly as the unique

(up to isomorphism) finite factor My which contains M and a projection e so that

[My : M] — [M : TV], [e,y] = 0 for y € N, exe = EN(x)e for x E M, and with the

trace r satisfying r(ex) = [My : M]~1r(x), x E M. In fact one of the conditions is

redundant: the next proposition gives two equivalent ways of characterizing My.

1.2 PROPOSITION. Let N C M be a pair of finite factors with finite index and

My the extension of M by N. Let M be a finite factor that contains M and with

normalized trace f, Em the f -preserving conditional expectation of M onto M and

e E M an orthogonal projection.  Then the following conditions are equivalent:

1° There exists an isomorphism <p of My onto M such that <p(x) = x for x E M

and <}>(eN) = e.

2° (i) [e, 2/]=0, ye TV;

(ii) EM(e) = [M : M]-llM = [M : tV]"1^-

3 (i) exe = F/v(x)e, x E M, and e / 0;

(ii) e and M generate M as a von Neumann algebra.

PROOF. 1   implies 2° by the known properties of e/v.

Suppose 2° holds. Then by 1.8 of [3] we get that M is the extension of M by P

where P = {e}' n M. But (i) implies that N C P and since [M : P] = [M : M] =

[M : N] we conclude that N = P. Thus e and M generate M as a von Neumann

algebra and again by 1.8 of [3] we get EN(x)e = exe, for every x E M.
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Assume that 3° holds. Using the "orthonormal basis" of [3] it is easy to see

that the map (p:My —► M that sends Y^xieNy% to Y^xieVi ls a well-defined *-

homomorphism. Moreover <p satisfies mcfj(x) = <p(mx) for every m € M and x E My.

This shows that 0(1) is a projection that commutes with e and with every m E M.

By (ii) we conclude that 0(1) is central and since e ^ 0 and M is a factor 0(1) = 1.

This implies now that <p(m) = <p(ml) = m<p(l) = m and since obviously 0(ejy) = e

we get 1°.    Q.E.D.
The pair M C My having finite index one can construct its extension My C M2

and in fact the whole procedure may be iterated to get an increasing sequence of

finite factors TV c M C My C M2 C ■■■, and orthogonal projections ej E Mi+y,

i > 0 (N = M-y, M = M0) in which Afj+i is the extension of Mi by Mj_i or

in other words Mj+i and ej are obtained by the basic construction from the pair

Mj_i C Mj. Thus if r denotes the unique normalized trace on (Jj-^ and ^Mf-i

the r-preserving conditional expectation of M8 onto Mj_i, i > 0, then:

(a) [ei,y] =0 for y E Mi-y,

(b) eixei = EMi-1(x)ei, x E Mj;

(c) [Ml+l : Mi] = [Af : JV] and £M, (et) = [M : TV]"1!.

In particular it follows that the sequence of projections ej satisfies [ei,ej] = 0,

\i — j] > 2, etei±yei = [M : 7V]-1e,- and r(ejiu) = [M : N]~1r(w) for every word in

l,e0,ey,...,ei-y.

2. n-step extensions. In this section we prove the main result of the paper:

we show that if TV c M C Mi C • • • is the sequence of finite factors obtained

by iterating the basic construction as in §1, then, for each n > 0, M2n+i is the

extension of Mn by TV. In fact we give an explicit formula for a projection /„ E

M2n+1 which implements the conditional expectation of Mn onto TV and generates

with Mn the factor M2n+1: fn will be a scalar multiple of the word of maximal

length in eo, ei,..., e2n where ej E Mi+y are as in §1.

We define for each n, k > 0 the element

9n = (en+fcen+fc-i • ■ • efc)(e„+fc+ie„+fc • • • efc+i) • • • (e2n+k^2n+k-i ■ ■ • en+k)

(there are n + l products of parentheses and in each parentheses the product of n+l

consecutive projections ej in decreasing order). We put fk = [M : /V]n(n+1)/2</£ g

M2„+fc+i and /„ = /° E M2n+1.

To prove that the above defined /„ implements the basic construction in the

extension of Mn by N, we only have to show that fn is an orthogonal projection,

that fnEN'll M2n+1 and that EMn(fn) = [Mn : TV]"1 = [M2n+1 : Mn]~l. (See
Proposition 1.2.) Note that since [Mj+i : Mi] = [M : TV], by the multiplicative

property of the index we do have [Mn : N] = [M : N]n+l = [M2n+i : Mn]. To

prove the other properties, let us first recall some facts about the algebra generated

by {ej}j>0 (cf. [1]).

A finite product of ej's is called a word. It is called a reduced word if it is of

minimal length for the grammatical rules ejej±iej ♦-> ej, e2 +-» ej and eje^ <-► e^ej for

]i—j\ > 2. Note that any word is a scalar multiple of a reduced word. Jones pointed

out (in [1, 4.1.4]) that reduced words can be uniquely written in the ordered form

(*) w = (ene3l-y ■ ■ ■ ek,)(enej2-y • • ■ efcJ • • ■ (ejpejp-y ■ ■ ■ ekp)

where jt > fcj, ji+1 > j%, kt+1 > ki.
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130 MIHAI PIMSNER AND SORIN POPA

From this description of reduced words it follows that if a reduced word w is

written with the letters er,er+y,... ,es (s > r) then er+j and es_j appear at most

i + 1 times in w.

To prove the theorem we first show that gn are selfadjoint elements. This will

be an easy consequence of the next two lemmas.

2.1 LEMMA,   g® is the unique reduced word of maximal length in eo, ey,..., e2n.

PROOF. Since by definition gn is of the form (*) it is a reduced word. As noted

before if w is an arbitrary reduced word in eo,ey,... ,e2n then eo,e2n appear at

most once in w, ei, e2n_i at most twice and more generally ek,e2n_fc at most fc + 1

times. Thus the length of w is at most equal to 1 + 2-1-hn + (n + l)+n + - ■ +2+1

and by inspecting the conditions ji > ki, ji+y > ji, fcj+i > fcj of (*) it follows that

the only reduced word w with this length is obtained when ji = n + i, ki = i, i.e.

w = g°n.    Q.E.D.

2.2 LEMMA. // w is a reduced word in eo, ey,..., e2n then the reduced form of

w* has the same length as w.

PROOF. Indeed, w* has length at most equal to that of w and since (w*)* = w,

the statement follows.    Q.E.D.

To prove that gn are scalar multiples of projections we have to compute (r/°)2-

To do this we use an induction argument based on the formula

2.3 LEMMA.   gn = (enen+1 ■ ■ ■ e2n)g°_y(e2n-y ■■■en).

PROOF. The equality follows by pushing e2n to the left as much as possible in

the formula giving g®.    Q.E.D.

2.4 REMARK. Two other equalities that can be obtained in a similar fashion and

seem to be of interest are

gn = gn-y(e2n ■ ■ ■ en+y)(e0 ■ ■ ■ en) = (enen-i ■ ■ ■e0)gr\-y(eye2-■-en).

To show that g® projects on a scalar in Mn we prove

2.5 LEMMA.   EM2n(gn) = [M : N]-(n+^gn_y. More generally

EM2n+k(9n) = lM:N]-^+1kkn+-1y.

PROOF. It is enough to prove that EM2n(gn) = Xn+1gn_y, where X = [M : N]'1,

because the rest of the statement follows by starting the sequence of factors from

Mfc_i c Mk, instead of TV = M-y c Mo = M.

We first show that for j > p > k + 1 we have

(**) {ejej-y ■ ■ ■ efc)(epep_i • • • efc+i) = A(ep_2 • ■ ■ ek)(ej ■ ■ ■ ek+i).

Indeed we have

(e^-i • • -epep-i • • -ek)ep = A(eJeJ_i • • •ep)(ep_2ep_3 ■ ■ -e^)

= A(ep_2 • • • ek)(eje3-y ■ ■ ■ ev),License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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which easily implies (**). Applying recursively (**) we get

FM2n(gn) — (ene„-i • • • e0) • • • (e2n-i ■ • ■ en~y)EM2n(e2n)(e2n-i ■••e„)

= A(en • • ■ e0) • • • (e2n_i • • ■ en_i)(e2„-i • ■ • e„)

= A2(en • • • e0) • • • (e2n_2e2n_3 ■ • ■ e„_2)(e2n_3 • ■ ■ en_i)(e2n-i • • • e„)

= A3(en • • • e0) • • • (e2„_5 ■ ■ • e„_2)(e2„-2 • • • en_!)(e2n_i • • • e„)

= • ■ • = An(en • • • e0)ei(en+i •••e2) • • • (e2n_2 • • • en_i)(e2n_i • • -e„)

= A"+1(e„ • • • e1)(en+1 • • • e2) • • • (e2n_! • • • en) = Xn+lgln_y.    Q.E.D.

We can now prove the theorem.

2.6 THEOREM. Let N C M be a pair of finite factors with [M : N] < oo.

Let TV C M C Mi c • • • be the sequence of finite factors obtained by iterating

the basic construction and ei E Mj+i the projection implementing the conditional

expectation of Mi onto Mj_i at each step of the basic construction as in §1, for

i > 0 (M-y =N, M0 = M). Let

fn = [M : TV]n(n+1)/2(e„en_i • • • e0)(en+ien ■ • • ex) ■ ■ ■ (e2ne2n_i ■ • • e„) € M2„+i.

Then M2n+y is the extension of Mn by N and fn E M2n+y is the projection that

implements the conditional expectation of Mn onto N, i.e. fn E N' fl M2n+i,

fnxfn = EN(x)fn, x E Mn, EMn(fn) = [Mn : N]'1 and M2n+1 = (M„ U {/„})".

PROOF. We will prove the theorem by' induction over n > 0. If n = 0 then

fo = eo and we have nothing to prove. Assume the statement is true up to n — 1.

Let A = [M : TV]"1 and c„ = A-n(n+1>/2. Since /„ = cng° and g° is a word in

eo, ey,..., e2n, which all commute with TV, it follows that fn E N' fl M2n+i. Note

also that since e2n E M'2n_y n M2n+i, e2„ commutes with gn_y E M2n-y. To see

that </° is selfadjoint we use Lemma 2.2 to obtain that gn* has the same length as

(?° and thus by Lemma 2.1 g° = (g„)*. Further, Lemma 2.3 implies that

(^)2 = 9°n9n

= (enen+i ''  e2n-y)gn_y(e2ne2n-y ■ ■ ■ en+1enen+y

■ ■  e2„_ie2n){7°_1(e2„_i ■ ■ ■ en)

= Xn(enen+1 ■■e2n-y)gn'_ye2ng°_y(e2n-y-en)

= Xn(enen+1 ■ ■ ■ e2n)(g°_1)2(e2n_i • • -e„)

= Anc~_1(enen+i •••e2n)g°_1(e2n_i •••e„)

= Xnc-L1g°n = c-19°n.

Thus /„ = cng° is a selfadjoint projection in TV'nM2n+i. Next we apply recursively

Lemma 2.5 to get

EMn(fn) = cnEMn(g0n) = cnEMnEM2n(gn) = cnXn+l EMn (gln_y)

= cnXn+1EMnEM2n^(9n-i) = cnX^+nEMn(92n-2)

= ... = CnA("+1)+"+ ■+2EMn(gZ) = cnX{n+1)+n+-+2EMn(cn)

= CnA(n+2)(n+l)/2lMn=A„+llA/n

(we used g^ = e„).
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Moreover by [1],

[M2n+1 :Mn]=    ]J    [Mi+i : M] = [M : 7V]n+1
n<i<2n

=    f]   [Mi+1 : Mt] = [Mn : TV].
0<i<n

By Proposition 1.2 the rest of the properties of /„ follow automatically.    Q.E.D.

2.7 REMARK. We could include the proof of gn = </°* in the induction argument.

Indeed by Lemma 2.3 and using gn_y = (gn^y)* and [e2n,f/°_,] = 0 we get

(9°)* = enen+i ■ ■ ■ e2„(gn_y)*e2n-ye2n-2 ---en

— enen+i ■ ■ ■ ̂2n9n-ie2n-i • • • en = gn.

We preferred however the deductive argument of Lemmas 2.1 and 2.2 as it points

out some properties of /„.

3. Some applications. In this section we derive some consequences on the

inclusion TV c M„. We consider the case when the relative entropy H(M\N)

considered in [3] satisfies H(M\N) = ln[M : N]. An important case when this

equality occurs is when TV' fl M = C (cf. [3]). First we compute the relative

entropy from n to n steps.

3.1 THEOREM.   IfH(M\N) = ln[M : N] then

H(Mn+k\Mk-y) = ln[Mn+k : Mk~y],    for every n, fc > 0.

In particular H(Mn]N) = ln[Mn : TV] and H(Mk]Mk-y) = m[Mk : Mk-y], for

every fc > 0.

PROOF. Since H(M,N) = ln[M : V], .E/v'nM(eo) = Al and the anti-isomorphism

N' n M 3 x' >—' Oo(x') = Jmx'Jm E M' fl Mi is trace preserving (cf. 4.5 in

[3]). To show that EmtimA^i) = Al it suffices to prove that M' n My 9 y' i->

8y(y') = JM,y' Jm, E M' Ot My is also trace preserving (cf. [3]). But 6y6o = <?',

where a' is the restriction to JV' n M of the isomorphism a defined in [3, 1.3],

a'(x') = X~lYl,irnieoeyx'eom*, with {mj} an orthonormal basis of M over TV.

Indeed if x' = J2, m^i E N' DM, with ni E N, then 0o(x') 6 My implies 0o(x') =

J2i ■rniEN(m*mjx'*)eNm* and thus in L2(My,r) we have

8y(90(x'))(mpneom*) = y^ mpneom*m.jEN(x'm*mi)eom*

= Y^mpneo£'jv(2;'m*mj)m* = mpneox'm*

i

= mpeox'nm* = a' (x')(mpneom*T),

for all n G TV. Thus, since a',9o are trace preserving, Oy is also trace preserving.

Induction now shows that EM'r\Mk+l(ek) = Al, fc > —1, and thus H(Mk+y,Mk) =

ln[Mk+y : Mk].

To prove that H(Mn+k]Mk-y) = ln[M„_|-fc : Mk-y] it now suffices to prove

that H(Mn\N) = ln[Mn : M] or, by [3], £M;nM2„+,(/„) = An+11M2„+1.   Since
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M'n n M2n+i C M'n_y n M2n+i C ■ • ■ C M' n M2n+i we have EM'nr\M2n+, =

EM^nM2n+,EM'ri_1nM2n+1 ■ • • EM>nM2n+i• Since eo appears only once in g° and

EM'rtM2n+i (eo) — Al and ej E M-_x, it follows that

EM>nM2n+, (9°) = (en ■ ■ ■ eyEM'r\M2n+, (eo))(en+i • • • ei) • • ■ (e2„e2n_i • ■ • e„).

Using now the same computations as in the proof of 2.6 it follows that

EM'nM2n+l(gn) = A"    gn_y.

By induction it follows that

FM'nc\M2n+,(gn) - Xn+lEM'nnM2n+,(gn-i) = A"     FM'nC\M2n+,EM[nM2n+i(gn-l)

_  \n+hnp („2      \ _ _  \(n + l)+n+-lr
-x     x EM'nnM2n+Agn-2) - •■■ - A 2

and thus EM^nM2n+1(fn) = An+1/.    Q.E.D.

3.2 COROLLARY. Let N C M be as in Theorem 3.1. Lei Jn fte £/ie canonical

conjugation on L2(Mn,r). Suppose M2n+y is represented on L2(Mn,r) so that to

coincide with the basic construction of N C Mn.  Then we have

(i) For every projection f E N' n Mn, [(Mn)f : Nf] = [Mn : N]r(f)2.

(ii) The anti-isomorphism N' n Mn 3 x >-► JnxJn E M'n fl M2n+1 is trace

preserving.

(iii) For every fc > 0 £/iere ern'ste o irace preserving isomorphism N' Ci M 3 x i—>

2' € M^_j D Mfc so that for every minimal projection f E N' n M, [My : A7/] =

[(Mfc)/ : (Mk-y)r].

PROOF. By 4.5 in [3] the condition H(Mn]N) = ln[M„ : N] is equivalent to

the above conditions (i) and (ii). Then (iii) follows by (i), (ii) and by the fact

that given any trace preserving anti-isomorphism between two finite-dimensional

algebras there exists a trace preserving isomorphism between them which acts on

the centers in the same way the anti-isomorphism does.    Q.E.D.
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