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ITERATING THE BASIC CONSTRUCTION

MIHAI PIMSNER AND SORIN POPA

ABSTRACT. Let N C M be a pair of type II; factors with finite Jones’ index
and NCMCM, CM;C---CMpC -+ C Ma2nt1 be the associated tower
of type II; factors obtained by iterating Jones’ basic construction. We give an
explicit formula of a projection in M2n4+1 which implements the conditional
expectation of M, onto N, thus showing that M2, comes naturally from
the basic construction associated to the pair N C My. From this we deduce
several properties of the relative commutant N’ N Mp,.

Introduction. Let N C M be a pair of finite factors. Jones defined in [1] the
index [M : N] of N in M to be the coupling constant of IV in its representation on
L?(M). If this index is finite, then the trace preserving conditional expectation of
M onto N, regarded as an operator on L?(M), generates together with M a finite
factor M;. This factor is called in Jones’ terminology the extension of M by N and
the construction of M; from M and N, the basic construction. The pair M C M;
has the remarkable property that [M; : M] = [M : N], so this procedure may be
iterated to get an increasing sequence of finite factors N C M C M C M C ---
and together with it a sequence of projections e¢; € M;;1, ¢ > 0, implementing the
conditional expectations at consecutive steps.

We prove in this paper that in this sequence of factors the basic construction
arises periodically from n to n steps, for any n. In fact we give a formula for a
projection f, in Ma,4; that implements the conditional expectation of M, onto
N: fn is a scalar multiple of the word of maximal length in {e;}o<i<2n, namely

fa=[M: N]"("“)/?(enen_l ove0)(ens1en - -€1) - (€zn - €n).

We mention that this result was independently obtained by A. Ocneanu [2]. We
apply this theorem to show that if the logarithm of the index [M : N] equals the
relative entropy H(M|N) considered in [3], then one also has

H(M,|N) =In[M, : N] for every n.

Since this equality characterizes an extremal case for an inclusion of factors, from
the analysis of a similar situation in [3] we deduce several properties of the inclusion
N C M,, and of the relative commutant N’ N M,,.

1. Preliminaries. Throughout this paper M will be a finite factor with nor-
malized trace 7, 7(1) = 1. We denote by ||z||z = 7(z*z)/2, z € M, the Hilbert
norm given by 7 and by L%(M, ) the Hilbert space completion of M in this norm.
The canonical conjugation of L?(M, 1) is denoted by J. It acts on M C L%(M,r)
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128 MIHAI PIMSNER AND SORIN POPA

by Jz = z* and satisfies JMJ = M’'. In fact, if we regard M as acting by left mul-
tiplication on L?(M, ) then for € M, JzJ is the operator of right multiplication
by z*.

N C M will denote a subfactor of M with 15 = 15; and En will be the unique
normal trace preserving conditional expectation of M onto N. Note that Ey is
just the restriction to M C L%(M,7) of the orthogonal projection ey of L?(M,7)
onto L%(N, 1) (the closure of N in L?(M,7)). The conditional expectation Ey, the
projection en and the conjugation J are related by the properties

(i) f ze M then z € N iff eyz = zep.

(ii) enzeny = En(z)en, z € M.

(iii) J commutes with ey.

If the index of N in M is finite then from the pair N C M one can construct a
new pair of finite factors M C M; with the same index [M; : M] = [M : N]. The
construction of M, is called the basic construction and the factor M; is called the
extension of M by N.

We recall from [1] the definition and main properties of M;:

1.1 PROPOSITION. Define My = JN'J. Then we have
1° My = (M U{en})",
2° [My : M] = [M : N] and if 7 denotes the unique normalized trace on M,

and Eps the T preserving conditional expectation of M1 onto M, then Ep(en) =
[M : N|7'1ps or equivalently (enz) = [M : N)~17(z) for every z € M.

Part 1° of this proposition can be made more precise: by [3], if n+1 > [M : N|
then any element in M; is a sum of at most (n + 1)? monomials of the form
zeny, ¢,y € M. Note that M; can also be described abstractly as the unique
(up to isomorphism) finite factor M; which contains M and a projection e so that
My : M) =[M:N] [e,y] =0 for y € N, exe = En(z)e for z € M, and with the
trace 7 satisfying 7(ez) = [M; : M|~'7(z), = € M. In fact one of the conditions is
redundant: the next proposition gives two equivalent ways of characterizing M;.

1.2 PROPOSITION. Let N C M be a pair of finite factors with finite index and
M, the extension of M by N. Let M bea finite factor that contains M and with
normalized trace 7, Ep the T-preserving conditional expectation ofM onto M and
e€M an orthogonal projection. Then the following conditions are equivalent:

1° There exists an tsomorphism ¢ of M; onto M such that o(z) =z forzeM
and ¢(en) =e.

2’ [6 y] 0, y€N;
ii) Ep(e) = [M: M]"'1p = [M : N7 1.
i) exe = En(2)e, x € M, and € # 0;
ii) e and M generate M as a von Neumann algebra.

2" (i)
L
3 (

(

PROOF. 1° implies 2° by the known properties of en.

Suppose 2° holds. Then by 1.8 of [3] we get that M is the extension of M by P
where P = {e}' N M. But (i) implies that N C P and since [M : P] = [M : M] =
[M : N] we conclude that N = P. Thus e and M generate M as a von Neumann
algebra and again by 1.8 of [3] we get En(z)e = exe, for every z € M.
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ITERATING THE BASIC CONSTRUCTION 129

Assume that 3° holds. Using the “orthonormal basis” of [3] it is easy to see
that the map ¢: M; — M that sends Y- zienyi to Y zey; is a well-defined *-
homomorphism. Moreover ¢ satisfies m¢(z) = ¢(mz) for every m € M and z € M.
This shows that ¢(1) is a projection that commutes with e and with every m € M.
By (ii) we conclude that ¢(1) is central and since e # 0 and M is a factor ¢(1) = 1.
This implies now that ¢(m) = ¢(ml) = m¢(1) = m and since obviously ¢(en) =e
weget 1°. Q.E.D.

The pair M C M, having finite index one can construct its extension M; C M,
and in fact the whole procedure may be iterated to get an increasing sequence of
finite factors N C M C M; C M, C ---, and orthogonal projections e; € M; 1,
1>0 (N =M_;, M = M) in which M, is the extension of M; by M;_; or
in other words M;; and e; are obtained by the basic construction from the pair
M;_y C M;. Thus if 7 denotes the unique normalized trace on |J, M; and Epy,_,
the 7-preserving conditional expectation of M; onto M;_;, ¢ > 0, then:

a) [ei,y] =0 fory € M;_y;

(b) eize; = En,_, (2)es, € M;;

(¢) [Mi4+1: M;])=[M : N]and Ep,(e;) = [M : N|711.

In particular it follows that the sequence of projections ez satisﬁes les, e5] = 0,
|t — 7] > 2, eie;416; = [M : N]71e; and 7(e;w) = [M : N]~17(w) for every word in
1,60,61,...,61_1.

2. n-step extensions. In this section we prove the main result of the paper:
we show that if N € M C M; C --- is the sequence of finite factors obtained
by iterating the basic construction as in §1, then, for each n > 0, M3, 41 is the
extension of M,, by N. In fact we give an explicit formula for a projection f,, €
M3y 41 which implements the conditional expectation of M,, onto N and generates
with M,, the factor Ms,;: f will be a scalar multiple of the word of maximal
length in eg, ey, ...,e2, where e; € M;,; are as in §1.

We define for each n,k > 0 the element

9% = (en+kntk—1"€k)(€ntkt1€ntk €k+1)  (€2ntk€antk—1"""€ntk)

(there are n+1 products of parentheses and in each parentheses the product of n+1
consecutive projections e; in decreasing order). We put f¥ = [M : 1\’]"("+1)/ 2gk €
Mantk+r and fr, = fO € Mapy1.

To prove that the above defined f, implements the basic construction in the
extension of M,, by N, we only have to show that f, is an orthogonal projection,
that f, € N' N Mapy1 and that En, (fn) = [My : N7 = [Map41 : My]~1. (See
Proposition 1.2.) Note that since [M;4+; : M;] = [M : N], by the multiplicative
property of the index we do have [M,, : N| = [M : N|**! = [Map41 : Myp]. To
prove the other properties, let us first recall some facts about the algebra generated
by {ei}i>o (cf. [1]).

A finite product of e;’s is called a word. It is called a reduced word if it is of
minimal length for the grammatical rules e;e;+1€; < e, ef « ¢; and e;e; < eje; for
|¢—7| > 2. Note that any word is a scalar multiple of a reduced word. Jones pointed
out (in [1, 4.1.4]) that reduced words can be uniquely written in the ordered form

(*) w = (€651 "€k, )(€5,€5,—1 " €ky) (€5, €5,—1 " €k,)
where j; > ki, Jiy1 > Ji, kiy1 > k.
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130 MIHAI PIMSNER AND SORIN POPA

From this description of reduced words it follows that if a reduced word w is
written with the letters e,,e,41,...,€s (8 > r) then e,4; and e,_; appear at most
1+ 1 times in w.

To prove the theorem we first show that g0 are selfadjoint elements. This will
be an easy consequence of the next two lemmas.

2.1 LEMMA. gg 18 the unique reduced word of mazimal length in eg,ey,...,ean.

PROOF. Since by definition ¢ is of the form (*) it is a reduced word. As noted
before if w is an arbitrary reduced word in eg,ey,...,e2, then eg, ez, appear at
most once in w, €, €2,—1 at most twice and more generally e, €2, _x at most k+ 1
times. Thus the length of w is at most equal to 1+2+---+n+(n+1)+n+---+2+1
and by inspecting the conditions j; > ki, jit1 > Ji, ki+1 > ki of (%) it follows that
the only reduced word w with this length is obtained when 7, = n +1, k; = 1, i.e.
w=g¢% QE.D.

2.2 LEMMA. Ifw is a reduced word in eqg,ey1,..., e, then the reduced form of
w* has the same length as w.

PROOF. Indeed, w* has length at most equal to that of w and since (w*)* = w,
the statement follows. Q.E.D.

To prove that g2 are scalar multiples of projections we have to compute (g2)2.
To do this we use an induction argument based on the formula

2.3 LEMMA. g?z = (enén+1 "'62n)92—1(62n—1 “en).

PROOF. The equality follows by pushing es, to the left as much as possible in
the formula giving ¢9. Q.E.D.

2.4 REMARK. Two other equalities that can be obtained in a similar fashion and
seem to be of interest are

9% =gn-1(e2n-€nt1)(€0-€n) = (Enen_1 - €0)gh_;(e1e2---€n).
To show that g0 projects on a scalar in M,, we prove

2.5 LEMMA. Ejp, (99) = [M : N|=(n+Ugl = More generally
EMynyi(gh) = [M : ] git]

PROOF. It is enough to prove that Eps, (g9) = A"t1gl_ | where A = [M : N|~1,
because the rest of the statement follows by starting the sequence of factors from
Mp_1 C My, instead of N =M_; C My =M.

We first show that for 7 > p > k + 1 we have
(**) (eJe]_l . .ek)(epep_l P ek+1) = A(ep_2 . 'ek)(e]' PO ek+l)'

Indeed we have
(ej€j—1--€pep—1---ex)ep = A(ejej—1---€p)(€p—26p—3 - - €k)

= g €1 €
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which easily implies (). Applying recursively (xx) we get

EM,,(97) = (enen—1-"-€0) - (€2n—1""*€n—1)Eny, (€2n)(€2n—1 " - €n)
=Aen---€) - (e2n_1-" €n—1)(€2n-1"""€n)
= /\2(€n c-e0) - (e2n—262n—3 " €n—2)(€2n—3 " -€n—1)(€2n—1"""€n)
—_ )\3(en'"60)"'(8211—5"'en—2)(62n—2"’en—l)(e2n—l"'en)
= =A"(en---€)e1(ent1-€2) - (€2n-2 €n—1)(€2n—1"""€n)
=M l(e, - e1)(ent1-€2) - (€an—1---€n) = A"T1gl . QED.
We can now prove the theorem.

2.6 THEOREM. Let N C M be a pair of finite factors with [M : N] < oo.
Let N C M C M; C --- be the sequence of finite factors obtained by iterating
the basic construction and e; € M;1, the projection implementing the conditional
ezpectation of M; onto M;_, at each step of the basic construction as in §1, for
120 (M_y =N, My=M). Let

fa= [M : N]"("+1)/2(€n6n—1 '”60)(6n+16n e °€1) s (€2n62n-1 : "en) € Many1.

Then May 41 18 the extension of My, by N and f, € May,y, 13 the projection that
implements the conditional ezpectation of M, onto N, i.e. fn € N' N Map41,
fnZfn = EN(Z)fn, T € My, Epn, (fn) = [Mpn : N7 and Many1 = (Mo U{f0n})".

PROOF. We will prove the theorem by induction over n > 0. If n = 0 then
fo = eg and we have nothing to prove. Assume the statement is true up to n — 1.
Let A = [M : N]=! and ¢, = A~™("+1)/2_ Since f, = c,¢2 and g3 is a word in
€0,€1,- .. ,€2n, which all commute with N, it follows that f, € N’ N Ma,,;1. Note
also that since ez, € M},_; N Many1, €2n, commutes with g3_, € Ma,_1. To see
that g2 is selfadjoint we use Lemma 2.2 to obtain that g0* has the same length as
¢2 and thus by Lemma 2.1 g0 = (g2)*. Further, Lemma 2.3 implies that

(92)° = gn'gh
= (enén+41- - e2n—1)92-1(e2ne2n—1 Tt €nt1€nntl
“-€an—1€2n)90_1(€2n—1""€n)
= A™(en€nt1- - €2n—1)gn_1€2n9n—1(€2n—1 - €n)
= A"(en€n+1- 621;)(9?._1)2(627.—1 <€)
= /\"c,_,ll(ene,,_,,l o 'e2n)99.—1(62n—1 “*r€n)

-1.0

—\yn,—1 0 _
=A Cn=19n = Cn Gn-

Thus f, = cng? is a selfadjoint projection in N'NMay, ;. Next we apply recursively
Lemma 2.5 to get

Em,(fn) = cnEn,(93) = cnEm, EM,, (93) = cad" ' En, (95_1)
= cn/\n+lEMn EM2n~l (gfll—l) = an(n+l)+nEMn (gf2l—2)
- = cn/\("+1)+"+"'+2EM,. (96') — Cn/\("+l)+"+"'+2EMn (en)
= cn,\(n+2)(n+l)/21M" ="ty

(we used g¢ = en).
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132 MIHAI PIMSNER AND SORIN POPA

Moreover by [1],

Monsr: Mp]= [ (Mis1: M) =[M: N+
n<i<2n
= [ Mis1:Mi]=[M,:N).

0<in

By Proposition 1.2 the rest of the properties of f, follow automatically. Q.E.D.
2.7 REMARK. We could include the proof of g2 = ¢2* in the induction argument.
Indeed by Lemma 2.3 and using ¢3_, = (¢%_,)* and [e2n,99_,] = 0 we get

O\ __ 0 *
(gn) =é€ntny1 - e2n(gn_1) €2n—-1€2n—2 " " €n
— (0] _ .0
= €nn+1 - €2nfn_1€2n—1"""€n = Gy,

We preferred however the deductive argument of Lemmas 2.1 and 2.2 as it points
out some properties of f,.

3. Some applications. In this section we derive some consequences on the
inclusion N C M,. We consider the case when the relative entropy H(M|N)
considered in [3] satisfies H(M|N) = In[M : N|. An important case when this
equality occurs is when N' N M = C (cf. [3]). First we compute the relative
entropy from n to n steps.

3.1 THEOREM. If H(M|N) =In[M : N] then
H(Mp k| M1) = I0[My o : Mi_y],  for everyn,k > 0.

In particular H(Mp|N) = In[M,, : N] and H(Mg|Mk_1) = In[My : Mk_1], for
every k > 0.

PROOF. Since H(M,N) = In[M : N], En'am(ep) =A1 and the anti-isomorphism
N'NM > 1 — by(2') = Juz'Jmy € M' N M, is trace preserving (cf. 4.5 in
[3]). To show that Enpnar, (€1) = Al it suffices to prove that M' N M; 3 y' —
01(y') = Imy'Im, € M' N M, is also trace preserving (cf. [3]). But 6,60 = o',
where o is the restriction to N’ N M of the isomorphism o defined in [3, 1.3],
o'(z') = ALY, mieperz’eom?, with {m;} an orthonormal basis of M over N.
Indeed if 2’ =}, m;n; € N'N M, with n; € N, then 8y(z') € M, implies bp(z’) =
2i; miEn(mim;z'*)enm; and thus in L?(M,7) we have

*

01(0o(z"))(mpneomy) = Z mpnegm;m; En (z'm;]

LY

m;)eom;

_ l % * __ I *
= E mpneo En (z'mym;)m; = mpneoz'm;
i

= mpepz'nm; = o' (') (mpnegmy),

for all n € N. Thus, since o', 6y are trace preserving, #; is also trace preserving.
Induction now shows that En ., , (ex) = Al, k > —1, and thus H(Mjy1, M) =
ln[Mk.H : Mk].

To prove that H(Mpyk|Mk—1) = In[Mpik : Mg—1] it now suffices to prove
that H(My,|N) = In[My, : M] or, by [3], Ep:amanss (fa) = A"y, Since
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M}, N Mapt1 C M)_y N Mapyy C -+ C M'N Manyy we have Eyrnmy,,, =
EminMansi EM_ 0Manys - EpmiAM,,.,,- Since ey appears only once in g% and
EmaMzn,.(€0) = A1 and e; € M[_,, it follows that

EMinMans: (99) = (€n - €1EM'nMany (€0)) (€nt1 - €1) -+~ (€2n€2n—1 "+ -€n).
Using now the same computations as in the proof of 2.6 it follows that
EM'ﬂM2n+1 (92) = )‘n+lg‘}u—l‘
By induction it follows that

EMiMan (99) = AT EMiMansn (92-1) = AT EMiaMan s EM{nMans1 (90—1)
— )\n‘H/\nEM;'nMg,H.l (912‘_2) _-. = /\(n+1)+n+...11

and thus Er;ny,,, (fn) = A" QED.

3.2 COROLLARY. Let N C M be as in Theorem 3.1. Let J, be the canonical
conjugation on L?(M,,7). Suppose Mz, is represented on L?(My,7) so that to
coincide with the basic construction of N C M,,. Then we have

(i) For every projection f € N' N My, [(My)y : Ng] = [My : Nir(f)2.

(ii) The anti-isomorphism N' N M, > z — JyzJ, € M}, N Man,41 s trace
preserving.

(iii) For every k > O there exists a trace preserving isomorphism N'NM >z —
z' € Mj_, N My so that for every minimal projection f € N'NM, [My : Ny] =
(Mk)s : (Mi—1)5/].

PROOF. By 4.5 in (3] the condition H(My,|N) = In[M,, : N] is equivalent to
the above conditions (i) and (ii). Then (iii) follows by (i), (ii) and by the fact
that given any trace preserving anti-isomorphism between two finite-dimensional
algebras there exists a trace preserving isomorphism between them which acts on
the centers in the same way the anti-isomorphism does. Q.E.D.
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