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ITERATION AND THE SOLUTION OF FUNCTIONAL EQUATIONS
FOR FUNCTIONS ANALYTIC IN THE UNIT DISK

BY

CARL C. COWEN

Abstract. This paper considers the classical functional equations of Schroeder
/ ° <f = \f, and Abel / ° <p = / + 1, and related problems of fractional iteration
where q> is an analytic mapping of the open unit disk into itself. The main theorem
states that under very general conditions there is a linear fractional transformation
£> and a function o analytic in the disk such that í> ° o = o ° <p and that, with
suitable normalization, <I> and o are unique. In particular, the hypotheses are
satisfied if m is a probability generating function that does not have a double zero
at 0. This intertwining relates solutions of functional equations for <p to solutions of
the corresponding equations for *. For example, it follows that if <p has no fixed
points in the open disk, then the solution space of / ° <p = \f is infinite dimensional
for every nonzero X. Although the discrete semigroup of iterates of <p usually
cannot be embedded in a continuous semigroup of analytic functions mapping the
disk into itself, we find that for each z in the disk, all sufficiently large fractional
iterates of <p can be defined at z. This enables us to find a function meromorphic in
the disk that deserves to be called the infinitesimal generator of the semigroup of
iterates of <p. If the iterates of <p can be embedded in a continuous semigroup, we
show that the semigroup must come from the corresponding semigroup for 3>, and
thus be real analytic in /. The proof of the main theorem is not based on the well
known limit technique introduced by Koenigs (1884) but rather on the construction
of a Riemann surface on which an extension of <p is a bijection. Much work is
devoted to relating characteristics of <p to the particular linear fractional transfor-
mation constructed in the theorem.

1. Introduction. In this paper we study iteration and solution of functional
equations for analytic functions mapping the open unit disk D into itself. In the
main theorem (Theorem 3.2) we show that, under very general conditions, such a
map can be intertwined with a linear fractional transformation. Thus, problems of
iteration and solution of functional equations for the given function are related to
the analogous problems for linear fractional transformations, which are generally
easier to solve.

Results of this sort are well known and usually depend on the nature of the fixed
points of the given function. Although a mapping tp of D into D need not have a
fixed point, an old theorem due to A. Denjoy [5] and J. Wolff [25] gives a
replacement. Let <p0(z) = z, q>x(z) = qp(z) and <p„(z) = <p(xp„_x(z)) for « =
2, 3, 4, ... ,   that is, <pn is the «th iterate of <p. By a linear fractional (Möbius)
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70 C. C. COWEN

transformation, we mean a nonconstant function of the form
*(z) = (az + ß)(yz + S)'1

where a, ß, y and 8 are complex numbers.

Theorem D-W ([5], [25]). Suppose tp, not a Mobius transformation of D onto D, is
analytic and maps D into D. Then there is a point a, \a\ < 1, so that the sequence tp„,
« = 1, 2, 3, ... , converges to a uniformly on compact subsets of D. Moreover, if
\a\ = 1, then hmr^,- cp(ra) = a and s = lim,.^,- q>'(ra) exists and 0 < s < 1.

Throughout this paper, we will call the point a referred to in this theorem the
Denjoy-Wolff point of <p. If cp is continuous at a, then clearly a is a fixed point of tp.
In the case \a\ = 1, an important step in the proof of this theorem (and a fact we
need later) is that tp maps small disks in D, tangent to the unit circle at a, into
themselves.

The main result of the paper is the following theorem.

Theorem 3.2. Let tp be an analytic mapping of D into D, tp nonconstant and not a
Möbius transformation of D onto D, and let a be the Denjoy-Wolff point of tp. If
<p'(a) ¥= 0, then there is a fundamental set V for tp on D, a domain ß, either the
complex plane or the unit disk, a linear fractional transformation í> mapping ß onto ß,
and an analytic mapping a of D into ß such that <p and o are univalent on V, a( V) is
a fundamental set for 4> on ß, and $ ° a = o ° ip. Moreover, $ is unique up to
conjugation by a linear fractional transformation mapping ß onto ß, and $ and o
depend only on tp, not on the particular fundamental set V.

The idea of "fundamental set" in the theorem is a technical concept introduced
so that we may describe a set of points near the Denjoy-Wolff point small enough
that cp is well behaved, but large enough that tp„(z) is eventually in this set. That
o( V) is a fundamental set for i> gives the uniqueness of 0. We give the definition.

Definition. If xp maps a domain A into itself, we say V is a fundamental set for xp
on A if V is an open, connected, simply connected subset of A such that xp( V) c V
and for every compact set K in A, there is a positive integer N so that xpN(K) c V.

Clearly the Denjoy-Wolff point a is in the closure of V if V is any fundamental
set for tp on D.

We will see (remark following Theorem 3.2) that the O and ß of the conclusion
of Theorem 3.2 fall into four essentially different cases:

(l)ß = C, <D(z) = sz, 0< \s\ < 1,
(2)ß = C, tj>(z) = z + 1,
(3) ß = D, tj>(z) = [(1 + s)z + (1 - s)][(l - s)z + (1 + s)]~x, 0 < s < 1, or
(4) ß = D, tl>(z) = [(1 ± 2/)z - l][z - 1 ± 2/]-'.

(Case (3) may be easier to understand in its equivalent guises as translation by 1 on
a horizontal strip or multiplication by s on the right half-plane. In the same way,
case (4) is equivalent to translation by 1 on the upper ( — ) or lower ( + ) half-plane.)
A major portion of §3 is devoted to determining which of these cases occurs for a
particular <p. Loosely put, we find case (1) occurs when a is in D and cp'(a) = s,
case (3) occurs when \a\ = 1 and <p'(a) ■»*<!, and cases (2) or (4) occur when
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ITERATION AND FUNCTIONAL EQUATIONS 71

\a\ = 1 and <p'(a) = 1. Deciding which of cases (2) or (4) occurs is a fairly subtle
problem. A concept related to this distinction is that of nontangential convergence
for a sequence.

Definition. Suppose {z„}^=1 c D and hmn^x z„ = a, \a\ = 1. We say the
sequence zn, « = 1, 2, 3, ..., converges to a nontangentially if sup„|Arg(a — zn)\ <
m/2.

\f\a\ = 1 and for some z0 in D, the sequence ip„(z0), « = 1, 2, 3, ... , converges
to a nontangentially, then case (2) or case (3) occurs according as tp'(a) = 1 or
<p'(a) < 1.

We should observe that there is a reason why tp'(a) = 1 is a more difficult case.
A fixed point of tp is a zero of the function tp(z) — z; a is a multiple zero of this
function if and only if <p'(a) = 1. (More generally, difficulties arise when |tp'(a)| =
1 because tp'(a)" = 1 means a is a multiple zero of tp„(z) — z, but, except when tp is
a linear fractional transformation, |tp'(fl)| = h <p'(fl) =£ 1 cannot occur for a func-
tion mapping D into itself.)

A motivation for proving Theorem 3.2 is its relation to the solution of functional
equations of the form / ° tp = g ° / where g and tp are given and / is the unknown
function. (Schroeder's equation / ° tp = Xf and Abel's equation / ° tp = / + 1 are
two well-known examples.) If F is a solution of F ° $ = g ° F for the linear
fractional transformation 4», then / = F ° o is a solution of/°tp = g°/ where
4> o a = a o ç,. Since Schroeder's and Abel's equations are easily solved for linear
fractional transformations, we get results for more general functions. For example
(Theorem 4.7) if tp has no fixed points in D then the solution set of the equation
/ » tp = Â/ is infinite dimensional for every A =£ 0.

A second motivation is that we can sometimes use Theorem 3.2 to define
"fractional iterates" of tp, that is, a real semigroup of functions <p, for t > 0, where
<p, = cp and <ps+l = <ps ° cp,. Since fractional iterates can be defined for linear
fractional transformations, we try to define tp, by <I>, o a = a o «p^ But there are
difficulties because, in general, a is not univalent, and even if it were, o ~x need not
be defined on <P,(o-(Z>)) unless a(D) meets some geometric condition. We do find,
though, that for each z in D, <p,(z) can be defined for t sufficiently large. This is
enough that we can find a meromorphic function on the disk that deserves to be
called the infinitesimal generator of the semigroup. If tp is an analytic mapping of
D into itself that is real valued on the interval (—1, 1) and x, and x2 are such that
-1 < x, < a < x2 < 1 and cp'(x) > 0 for xx < x < x2, then cp,(x) can be defined
for x, < x < x2 and t > 0 to be real analytic in both variables (corollary to
Theorem 5.1). On the other hand, we show (Theorem 5.2) that if tp, is a continuous
semigroup, then cp is univalent, the fixed points of cp, (including those on dD) are
the same for all t, and tp, arises as above. A consequence of the latter is that tp, is
real analytic in t.

The history of this circle of ideas is very long. In his paper of 1871 [21],
Schroeder considers the problem of fractional iteration and relates it to the solution
of various functional equations. In 1884, Koenigs [14] constructed a solution of
Schroeder's equation / ° <p = sf near a fixed point a when tp is analytic at a and
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72 C. C. COWEN

tp'(a) = s, \s\ ¥=■ 0, 1. In the years since these classic works, much has been written;
the interested reader might consult the bibliography at the end of this paper or that
of Kuczma [15]. For the most part, the literature has concentrated on cases when tp
is analytic in a neighborhood of the fixed point or dropped analyticity completely
and considered continuous function in R".

These problems are related to the theory of discrete branching processes (Gal-
ton-Watson processes) in probability theory through the probability generating
function. The probability generating function for a Galton-Watson process is the
function cp(z) = 2£>=0/>*z* where pk > 0 and 2/»* = 1. (Harris' book [8] begins
with a very readable discussion of these ideas.) The coefficient pk is to be
interpreted as the probability that an individual will have k offspring and the kth
coefficient of tp„ is interpreted as the probability that there will be k individuals in
the «th generation. Questions concerning the eventual population size are related to
the asymptotic behavior of the iterates of tp. We note that every probability
generating function for a Galton-Watson process is an analytic function mapping
D into D, and if p0 + px ^= 0, tp satisfies the hypotheses of Theorem 3.2. The
bibliographies of Harris [8] and Athreya and Ney [1] are a guide to work on
branching processes.

In view of the extensive literature concerning these problems, it seems reasonable
to inquire what contribution this paper makes. In case the Denjoy-Wolff point a is
in D or when tp is a probability generating function, little has been added to the
statements of the results, merely a slight reduction of hypotheses or a slight
improvement in the conclusions in certain cases. However, the cases for which the
Denjoy-Wolff point a is on the unit circle and tp is not analytic at a seem to have
been considered rarely except when tp is a probability generating function. In part
this is probably due to our specific interest in functions analytic in the unit disk
whereas most of the existing literature deals with functions analytic everywhere,
nowhere, or on some (unspecified) neighborhood of the fixed point.

Perhaps the most important contribution of this paper is the introduction of a
more geometric point of view. In most of the existing literature, the techniques used
are modifications of the limit technique introduced by Koenigs [14], namely,
consideration of limn_00 s~"(<p„(z) — a) where i = tp'(a). This technique works
well when cp is analytic at a and |i| =^ 0, 1, but is harder to apply in other cases. In
particular, this necessitates special consideration of the case tp'(a) = 1.

In the proof of Theorem 3.2 we begin with the more geometric observation that
tp is univalent on a fundamental set V. For each z in V, <pn(z) is a point of V for
« = 0, 1, 2, 3, ... ; we construct a Riemann surface by adjoining to V ideal points
tp„(z), « = -1, -2, -3, . . . , and extend the action of cp to a univalent map of the
surface onto itself. This surface is simply connected and noncompact, so is
equivalent to either the unit disk or the whole plane and this equivalence trans-
forms the extension of cp into a linear fractional transformation. Thus, in this proof,
the case <p'(a) = 1 is treated in the same way as tp'(cz) =£ 1. The distinction comes in
that, if cp is analytic at a and <p'(a) = 1, there is no small disk centered at a that cp
maps into itself, so that a must be on the boundary of a fundamental set for tp on
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ITERATION AND FUNCTIONAL EQUATIONS 73

any region, whereas if 0 < |tp'(a)| < 1, there is a small disk centered at a that is a
fundamental set for cp on some region.

The remainder of the paper is divided into five sections. In §2, we present some
lemmas needed in the later sections. In §3, we prove the main theorem and several
other theorems which explain the conclusion of the main theorem.

In §§4 and 5 we use the results of §3 to give complete solutions (in terms of o) to
Schroeder's and Abel's functional equations and to discuss fractional iteration. In
§6 we point out some problems raised by this work.

I would like to thank David Drasin, Richard Penney and Allen Weitsman of the
Purdue Mathematics Department for many helpful conversations and Gerald T.
Cargo of Syracuse University for the use of the (unpublished) notes of his talk
given in the fall of 1978 [4]. I would also like to express gratitude to Christian
Pommerenke for his help in improving the first version of this work (see [20]), and
to Maurice Heins for pointing out an error.

2. Some lemmas. In this section we will prove some lemmas needed in later
sections. Although the statements are perhaps not well known, their proofs involve
standard techniques. The reader may wish to take these results on faith and
proceed immediately to §3.

We record the following well-known theorem of Julia and Carathéodory. A
proof may be found in Nevanlinna's book [16].

Theorem J-C. Suppose <p is an analytic mapping of D into D and b is a point on
the unit circle such that lim,.^- <p(rb) = b. Then limz^b(b — <p(z))/(b — z) = c
exists and limz^é xp'(z) = c when z tends to b nontangentially. Moreover, 0 < c < oo
and

i - M*)!' > 1 IHfll  forallzinD_
\b~<p(z)\2 C    \b-z\2

The latter inequality says <p maps disks tangent to the unit circle at b into other
disks (smaller if c < 1) tangent to the unit circle at b.

Lemma 2.1. Suppose cp is analytic, maps D into D, and has Denjoy-Wolff point a,
\a\ = 1. // limr_>1- <p'(ra) = s < 1, then for any z in D, the sequence tpn(z), « =
1, 2, 3, ... ,  converges to a nontangentially.

Proof. The transformation w = (a + z)(a — z)~l maps the disk D onto the
right half-plane Re f > 0, and

tp(vv) =[a + tp(a(w - l)(w + \)~l)][a - <p(a(w - l)(w + l)"1)]"'

is the map of the right half-plane into itself that corresponds to tp. We have
lirn^^ cp(x) = oo, c — linv^^ tp'(x) = s~] > 1  and Nevanlinna's proof of the
theorem   of   Julia   and   Carathéodory   [16,   pp.   57-60]   shows   that   c =
infx>0 x ~ ' Re(tp(x + iyj). We give the proof for cp on the right half-plane.

Given z0 in the right half-plane, write zn for cp„(z0) and let z„ = x„ + iyn. Thus we
have x„+1 = Re tp(z„) > cxn for « = 0, 1, 2, ... . Let r = |(z0 — zj)(z0 + z,)_1|.
Since z, is in the half-plane Re f > cx0, we find that c < (I + r)(l — r)~x.
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74 C. C. COWEN

We need the following, but omit the straightforward proof.
Claim. Suppose 0<r<l<c<(l + r)(l — r)~x. If f = x + iy is in the non-

euclidean disk centered at a = u + ft», \(a — f)(cx + f)~'| < r, and the half-plane
Re f > «/, then |>> - u|(x - «)_1 < [r2(c + l)2 - (c - 1)2],/2 (c - 1)_1(1 - r)~x
= M.

By the Schwarz-Pick theorem we have

\(Zn  - Zn+\){Zn +  Zn+l)~X\ < \(Zn-l  ~ Zn)(Zn-l  + 0"'| <   '  *  '    < r

for « = 1, 2, 3, ... .
The claim shows that |.y„+1 — y„\(xH+x — x„)_1 < M for « = 0, 1, 2, . . . from

which it follows that

\yN+\ -^oK^+i - xo)~l < ( 2 \yk+¡ _^l)( 2 **ti - xk\

< mpl^+i -yk\(xk+i - xk)~l < M-
k

Thus, the sequence tp„(z0), « = 1, 2, 3, ..., tends to infinity inside the sector
lArgCf - zo)l < arc tan M.    □

Lemma 2.2. Suppose tp is analytic, maps D into D, and has Denjoy- Wolff point a,
\a\ = 1. If, for some z0 in D, the sequence tp„(z0), « = 1, 2, 3, ... , converges to a
nontangentially, then for any compact set K in D, the sequence <pn(K), « =
1, 2, 3, ... ,  converges to a nontangentially.

Proof. As in the proof of Lemma 2.1, we find it more convenient to prove the
corresponding assertion for cp in the right half-plane.

If f = x + iy and a — u + iv satisfy |(f — a)(f + a)~ '| < r < 1, then

x > u(l - r)(l + ryx    and    |v| < \v\ + 2ru(l - r2)~x

so that \y/x\ < (\v/u\ + 2)(1 - r)"2.
Now suppose for some z0 in the right half-plane, the sequence tpn(z0), « =

1, 2, 3, ... , converges nontangentially to oo, that is, letting

<Pn(20) = z„ = x„ + iyn,

that |.yn/xj < M < oo for all positive integers «.
If K is a compact subset of the right half-plane, then there is a positive number r,

r < 1, so that \(z — z0)(z + z0)~'| < r for all z in K. It follows from the Schwarz-
Pick theorem that \(z - zn)(z + zn)~x\ < r for all z in tp„(AT). From the above we
see that if z = x + iy is in cpn(AT) for some «, then \y/x\ < (A/ + 2)(1 — r)~2, so
that <p„(K) converges nontangentially to infinity,    fj

The following lemma is due to Wolff [26], Warschawski [24], and Noshiro [17]
but we include its simple proof.

Lemma 2.3. If U is a convex open subset of the plane, f is analytic on U and
Re f'(z) > 0 for all z in U, then f is univalent on U.
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Proof. Suppose z and w are in U. Then

fiz) - fiw) = f >(f ) ttf = f >(ft + (1 - i)w)(z - w) dt
Jw J0

= (z - w) flf'(tz + (I - t)w) dt.
Jo

But Re[/¿/'(/z + (1 - t)w) dt] > 0 so fiz) = fiw) if and only if z = w.    Q
The following lemma is proved under more restrictive hypotheses in Kamowitz's

Spectra of composition operators on Hp [9, Lemmas 1.1 and 1.2].

Lemma 2.4. Suppose tp, not a Mbbius transformation of D onto D, is analytic, maps
D into D, and has Denjoy-Wolff point a. If b ¥= a, \b\ = 1, and lim,^,- cp(rZ>) = b
then limr_,,- <p'(rb) > 1.

Proof. We note that by the theorem of Julia and Carathéodory, limr_,- tp'(rZ»)
= q exists and 0 < q < oo.

Suppose first that a is in D. Without loss of generality we assume a = 0 and
b = 1. Let xp(z) = z~k(p(z) where k is the order of the zero of cp at 0, so that k > 1,
xp is an analytic mapping of D into D, and limr_,- xp(r) = 1. Thus limr<1- cp'(r) =
lim^,- krk~xxP(r) + rkxp'(r) = k + limr_,- xp'(r) > 1 (since tp íé z).

Now if |a| = 1, we may assume, without loss of generality that a = -1 and
b = 1. Let xp(z) =5(cp(z) - cp( —z)). Then xp is an analytic mapping of D into D,
xp(0) = 0 and limr^.,- xp(r) = 1. (Moreover, xp ̂ z since cp ^z.) By the above,
limf^.,- xp'(r) > 1. The definition of xp yields lim,.,!-, cp'(ra) + limr_,- y'(rb) > 2,
but since a is the Denjoy-Wolff point of tp, limr^,1- <p'(ra) < 1 and our conclusion
follows.    □

Let d be the "noneuclidean distance" function on the disk,

d(a, ß) =\a - ß\ \l - aß\\

The properties of this function are well known, for example there is the "triangle
inequality" d(ax, a2) = rx < 1 and d(a2, a3) = r2 < 1 implies

t/(«1,«3)<(r2-r-r2)1/2(l + r2r2)-1/2<l.

The Schwarz-Pick theorem says that if cp is an analytic mapping of D into itself
then d(<p(a), <p(ß)) < d(a, ß). We will also need the following lemma.

Lemma 2.5. Suppose {z„}^=1 c D and limn_>00 zn = 1. The sequence zn converges
to 1 nontangentially if and only if sup„ d(zn, zj) < 1.

Proof. For k > 0, the set {z\d(z, z) < (1 4- k2)~x/2) is the eye-shaped intersec-
tion of the disks with centers ± ik and radius (1 + &2)1/2.    □

The following result is due to Pommerenke [20, Theorem 2].

Theorem P. Let f be an analytic function mapping the right half-plane into itself
with angular derivative c > 1 at oo. Let S be a Stolz angle at oo, 0 < 8 < 1, and
0 < X < oo, and let fn(l) = x„ 4- iyn. If G = S U U T-iO + '>: 5x„ < x < oo
and \y — yn\ < Ax„} then there is p > 0 so that f is univalent on G O {w: \w\ > p}.
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3. The construction. In this section we will prove the main result of the paper
(Theorem 3.2). Proposition 3.1 constructs a fundamental set needed in the main
theorem and Theorems 3.3-3.8 amplify the conclusions somewhat. Throughout this
section, cp will be a nonconstant analytic mapping of the unit disk D into itself, not
an elliptic Möbius transformation of D onto D, and a will denote the Denjoy-Wolff
point of cp.

Definition. If xp maps a domain A into itself, we say V is a fundamental set for xp
on A if V is an open, connected, simply connected subset of A such that xp( V) c V
and for every compact set K in A, there is a positive integer A' so that xpN(K) c V.

Proposition 3.1. Let tp be an analytic mapping of D into D with Denjoy-Wolff
point a. If <p'(a) ¥= 0 then there is a fundamental set V for cp on D such that cp is
univalent on V. Moreover, if for some point z0 in D, the sequence tp„(z0), « =
1, 2, 3, ... , converges to a nontangentially, then V may be chosen so that it contains
small sectors with vertex at a and opening 6 for all 0 <it.

Proof. If the Denjoy-Wolff point is in D, then 0 < |tp'(f)| < 1 and we can find
e, 0 < e < 1 - \a\, so that if V = {z: \z - a\ < e) then tp(K) c V and cp is
one-to-one on V. By Theorem D-W, V is a fundamental set for cp on D.

Henceforth we assume |a| = 1. By the theorem of Julia and Carathéodory
(Theorem J-C), s = lim,^,- <p'(ra) exists and 0 < s < 1. We give the proof in two
steps: we use Theorem P to show that for every compact set K in D, there is an
integer N so that cp is univalent on U™=N <P„(^) and then use this condition to
construct V.

Let ii(z) = (a + z)(a — z)~x and let/(iv) = p(y(n~x(w))). Then/maps the right
half-plane into itself and has angular derivative s~x > 1 at oo, so Theorem P
applies. Given any compact set K in D, choose r < 1 so that z in K means \z\ < r.
We let 8 = (1 - r)(l + r)"1, X = 2r(l - r)~^2(l + r)~x'2, Dr = p({z: \z\ < r}),
and /„(l) = wn — xn + iyn. Now the Schwarz-Pick inequality shows that fn(Dj) c
{w: \w — wn\ \w + w„\~x < r) and an elementary calculation shows that

{w: \w — wn\ \w + wn\~   < rj c {iv: Re w > 8xn and |Im w — yn\ < 8xn).

Thus for some N,  U™=N p(<pn(K)) G U jj=Nfn(Dj) is contained in the set G n
{w:   \w\ > p)   and,  by  Theorem  P, / univalent  there,  so tp  is  univalent  on

U ?=*?„(*)•
We now use this condition on compact sets to construct V. Let Kk = {z\ \z\ < 1

- l/k) and A^0 = {z\ |z| < 1 - l/k) for k = 2, 3,_Let «t be the smallest
integer so that cp(0) G K°.

Let Nm he a positive integer large enough that cp restricted to U^°_^ tpn(ÄTm) is
one-to-one and let Um = U T=n fni^m)- By me choice of m, Um is connected,
indeed, tp(0) is in K° and tp(A^), so cp2(0) is in tp(A^) and tp2(AT°), etc., and each
fni^m)xs connected.

Suppose that integers Nm < Nm+X < ... < Nk_x and open sets Um c Um+X
G ... C Uk _ ! have been chosen inductively so that Uj is a connected subset of D,
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cp is univalent on Uj, <p(c7,) c Up and U™=N. ÇniKj) G Uj for j = m, m +
1, . . . , k — 1. Let N'k be an integer so that N'k >Nk_x and cp restricted to
U"-*; <Pn(Kk) is one-to-one. Now the set L = Uk_x \ ((J %LNl tp„(A^0)) is a com-
pact subset of Z) so tp(L) is also. Since tpn converges uniformly on Kk to the
constant a (Theorem D-W) and a is not in tp(L), we can find Nk > Nk so that
(U,% <rÄ°)) n tp(L) = 0. Let (7, = l/ft_, u (U„% <P„(^°)). Clearly we have
Uk is a connected subset of D, <p(Uk) c Uk, and U^L^ <P„(K¡<) c ^4- We claim
that <p restricted to Uk is one-to-one. Suppose a, ß are in Uk with a ^ /?. If both a
and ß are in C/Ä_, or both a and ß are in U {¡°_;v <P„(^t°) then clearly cp(a) ^ tp( ß),
so we suppose a is in L and ß is in U"=^t <P„(,K¡j). (The reader should note the
occurrence of Nk and A^.) But if a is in L, cp(a) is in tp(L) which is disjoint from
UT-Nt <P*(*k) so that <p(a) # cp(ß).

Thus we construct the open sets Uk inductively for k = 2, 3, . . . . Let K' =
Ut°Lm i/t, and let V = V u (holes of F'). By the construction, V is a connected
open subset of D, <p( K') C V and cp is univalent on V. By the maximum principle
and the argument principle cp( V) c F and cp is univalent on V as well, so F is a
fundamental set for cp on D such that cp is univalent on V.

We now suppose z0 is in D and cp„(z0) converges to a nontangentially. We sketch
a slightly different proof to establish the special form of V. Without loss of
generality we assume a — 1. Let d he the distance-like function defined in §2,

d(a,ß) =\a - ß\\l - aß\~\

For « = 1, 2, 3, ... , let c„ = 1 — 1/« and zn = cp„(0). By the hypothesis,
Lemma 2.2 and our simplifying assumption that a = 1, the sequence zn converges
to 1 nontangentially, which means (Lemma 2.5) c0 = supn{d(zn, z„)} < 1. For
positive integers « and j, let An¿ = {z\d(z, zn) < Cj). For a fixed integer j, since
d(zn, zn) < c0 and d(z, zn) = d(z, zn) < c- for z in U £°= i AB]/, it follows that there is
c < 1 so that d(z, z) < c for z in U^Li Anj. Therefore, for each j, (J "_, Ani/ is
contained in a sector of opening less than w with vertex at 1, and by Theorem J-C
and Lemma 2.3, we can find an integer N so that cp is univalent on (J "_# \j-

Let «i be the smallest integer such that |cp(0)| < cm (so that z„_,, z„, and z„+1 are
all contained in A • fory > w) and let A^m be large enough that cp is univalent on
Um = U T=n \.m- Thus i^m is connected, open, simply-connected, and by the
Schwarz-Pick theorem, <p(Um) c Um.

Suppose integers Nm < Nm + X < ... < Nk_x and open sets Um c Um+l
G ... C Í7*_i have been chosen inductively so that Í7, is an open, connected,
simply-connected subset of D, cp is univalent on U,, <p(Uj) c Uj, and Uj D
U "=at A„^ fory = m, m + I, . . . , k — I. Let Ar¿ be an integer so that N'k > Nk_x
and cp restricted to U "_>v &n,k l% univalent. As above, letting
L = Uk_, \ ( U ?_Ni An,k), choose Nk > N'k so that cp(L) n ( U ?.Nk An,k) = 0, and
let Uk = Uk_x U (U"=Aí4 A„*). We show as before that Uk has the desired proper-
ties and continue the induction for k > n. We see that V = \J ka=m Uk is a
fundamental set for cp on D on which cp is univalent.
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In addition, we claim that given an angle 6 < tt, then V contains a small sector
with vertex at 1 and opening 9. Indeed, suppose 8 < 1 is given; we must find r < 1
so that if Re w > r and d(w, w) < 8 then w G V. Let u = Re w and x„ = Re zn.
We have d(z„, x„) < d(zn, zn) < c0 and, since d(zn, zn+,) < cm, we can find q < 1 so
that d(xn, xn+x) < q for all positive integers «. Therefore, we can find q* < 1 so
that if d(w, w) < 8 and d(u, xk) < q for some integer k, then d(zk, w) < q*. But
since d(xn, xn+,) < q for all «, and limn^0O xn = 1, if m > xN then ci(w, x¿) < £7 for
some k > N. Now find an integer y so that e, > q* and let r = x^. By the above, if
u = Re w > r and d(w, w) < 8 then d(u, xk) < q for some k > Nj so d(w, zk) < q*
< Cj and w G AkJ c K.    D

Theorem 3.2. Le/ cp ¿>e a« analytic mapping of D into D, cp nonconstant and not a
Möbius transformation of D onto D, and let a be the Denjoy-Wolff point of xp. If
<p'(a) =£ 0, then there is a fundamental set V for cp on D, a domain ß, either the
complex plane or the unit disk, a linear fractional transformation <I> mapping ß onto ß,
and an analytic mapping o of D into ß such that <p and o are univalent on V, a( V) is
a fundamental set for $ on ß, and 4> ° a = a ° cp. Moreover, tb is unique up to
conjugation by a linear fractional transformation mapping ß onto ß, and <ï> and a
depend only on cp, not on the particular fundamental set V.

Proof. Since cp'(a) ^ 0, Proposition 3.1 shows there is a fundamental set V for cp
on D such that cp is univalent on V. We will construct an abstract Riemann surface
S and a map ^ of S onto itself which corresponds to ß and 4>.

I. The construction of the Riemann surface S. We introduce S as a point set,
topologize it, and give it an analytic structure. For this purpose we will restrict our
attention to the action of cp on V. Some points of V are not in the image of cp, some
are not in the image of cp ° cp, et cetera. We may think of S as being made from V
by gluing on (abstract) preimages of points in V so that every point of S is in the
image of cp„.

If m and « are integers and z and w are in V we say (z, «) is equivalent to (w, m)
and write (z, «) — (w, m) if there is an integer k, k > max{ — «, — m), so that
<f>k+n(z) = <P* + m(w)- Since <P is one-to-one on V, <pk+n(z) = <pk+m(w) if and only if
fk+Áz) = <P*- + m(H') IOT anv ^ and k' not smaller than -« and — m. The relation
— is an equivalence relation between pairs; we use the symbol [(z, «)] to denote the
equivalence class containing (z, «). Let S = {[(z, «)]|z G V, « an integer}. The
pair (z, «) should be thought of as representing cp„(z).

If U is open in V and « is an integer, let 91^ = {[(z, «)]|z G U). We claim that
the sets {91^} form a basis for a Hausdorff topology on S. Suppose zf = [(z,, nj)],

j = 1, 2 and z,* ¥= z*. Let k = max{ — «,, — «2}. We have zf = [(<pk+„(zj), k)] since
(zj, nj) ~ (cpfc + ̂ z,), -/c) and tpA+ni(z,) ^ Vk+^zj), since zf ^z^. Choose 17, and
£/2 disjoint open sets in V containing <pk+n(zj) and <pk+„ (z2) respectively. Then
91^ and 91^ are disjoint neighborhoods of z* and z* respectively. Now suppose
w* is in 91^' n 9L^2, that is suppose w* = [(wx, m,)] = [(w2, mjf] where Wj G W}
for j = 1, 2. Thus we have <pk + m¡(wx) = <pk + „2(w2) where A: = max{ — mx, —m2).
Since 9tf = 9l^r(t/\ » * - «pJ^W) n %+„,( W^ then 91^ c %% n 91^
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and w* is in 91/¿. Thus {91^} is the basis for a Hausdorff topology on S (see, for
example, [6, p. 67]).

We introduce an analytic structure on S by defining the coordinate maps cn:
V -> S given by cn(z) = [(z, «)]. The map c„ is easily seen to be one-to-one (since cp
is) and continuous. Since V is locally compact and S is Hausdorff, cn is a
homeomorphism of V onto cn( V). If « = m + I where / > 0 then c~xcn is defined
on V and c~xc„(z) = cmx([(z, «)]) = c~x[(z, m + /)] = c ~'[(c^'z), mj] = <p,(z), so
c^ 'c„ is analytic on V. Since cp, is one-to-one on V, cjj xcm = cp," ' which is analytic
on <p,( V), where it is defined. Thus S is a Riemann surface.

S is simply connected, for suppose y: [0, 1]-»S is a loop. Since y([0, 1]) is
compact, we can find an integer « so that y([0, 1]) is in the open set cn(V). But
c„( V) is homeomorphic to V, which is simply connected, so y is null homotopic in
cJ,V).

S is not compact since if z is any point in V different from a then the sequence
z* = [(z, — k)], k = l,2,3,..., does not have a convergent subsequence. Indeed,
suppose U is an open subset of V with compact closure and suppose « is a fixed
integer. Then z* G 91^ means z G <p„ + k(U), for k > -«, but cpm converges uni-
formly on U to a ¥= z. Thus, the sequence z* can have at most finitely many terms
in any neighborhood with compact closure, and cannot have a convergent subse-
quence.

Therefore, the Riemann surface S is analytically equivalent to either the unit
disk or the complex plane. (We will see below that both cases can occur.)

II. The maps ty and it. Define the map it: F—> S by 7r(z) = [(z, 0)] and the map
"fy: S —» §> by ^([(z, «)]) = [(cp(z), «)]. One easily verifies that ^e is well defined,
that tt and ¥ are analytic and that it and ^f are one-to-one. ^ is surjective since
[(z, «)] = [(<p(z), n - 1)] = *([(z, « - 1)]). Clearly * ° tt = tt ° <p.

We note that tt( V) is a fundamental set for t on S. Indeed if AT is a compact
subset of S, then we can find an integer « so that K c cn( V) and ^f^(K) c tt( V).

III. The maps tD and o, and the domain ß. We have already noted that the
Riemann surface S is analytically equivalent to either the unit disk or the complex
plane: let ß denote this domain, and let p be a Riemann map of S onto ß. We
define a on V by o = p ° tt and define $ on ñ by $ = p °^ ° p"1. One easily
verifies that $ is a one-to-one map of ß onto itself (hence a linear fractional
transformation), that a is a univalent map of V into ß, that o( V) is a fundamental
set for tD, and that <b ° o = o ° ¡p.

We extend a to all of D by letting o(z) = $ - „(o(<pn(z))) where « is a positive
integer large enough that cp„(z) is in V, and tl>_n denotes the «th iterate of <I>_1. The
extension is well defined because, for any positive integer k, $_k ° o ° <pk = o on
V so that if cpm(z) and cp„(z) are in V and m = « + k then &-m(o(<pm(z))) =
(l>_n(<l>_ik(a(cp/t(cpn(z))))) = <I)_„(a(cpn(z))). The extension is single valued, analytic,
and maps D into ß because $_„, a, and cp„ are single valued and analytic and «I»-1
maps ß into ß.

To prove uniqueness, we suppose that F is a fundamental set for cp on D such
that cp is univalent on V and that ß, <ï> and 5 are the corresponding objects as
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above. Let K = {/tp(0)|0 < / < 1}. Now K is compact, connected and has the
property that for each N, U"_/v <P„(^0 is connected. Since V and V are each
fundamental sets for cp, there is an integer N so that U"_¿v %(%) G V C\ V. Let
W be the connected component of V n V that contains (J ^°_jv <Pn(^0- Clearly W
is a fundamental set for cp on D. It follows that o(W) and ¿(IF) are fundamental
sets for 0 and $ on ß and ß respectively. Define t: ß —> ß by t(z) =
®jx(ö(o~x(<bn(z)))) where « is an integer large enough that ®„(z) G W. The map t
is well defined since if ^„(z) is in W and/» is a positive integer then

^-¿(«(•-•(W*)))) = ̂ (¿M^'KW)))) = ̂ -'(¿(a-'^z)))).
One easily verifies that t is a univalent map of ß onto ß, so ß = ß, t is a linear
fractional transformation and <5 = T°tl>oT_1. We note also that 5 = r ° a on V.

In the next section, we will give complete solutions of Schroeder's and Abel's
functional equations for certain special linear fractional transformations <f> and use
the above theorem to draw conclusions for general maps of the disk into the disk.

Remark. In the theorem above we showed that ß and <ï> are unique up to
conjugacy and depend only on cp. Naturally, if we are given cp we would like to
know what ß are <I> are. By an examination of fixed points, we show that a can be
defined at the Denjoy-Wolff point a so as to be continuous on V u {a} and that ß
and <í> can be chosen from one of the four cases below. (Which of these cases
applies is the subject of Theorems 3.3-3.6.)

Case 1. ß = C, o(a) = 0, and $(z) = sz where 0 < \s\ < 1.
Case 2. ß = C, o(a) = oo, and <I>(z) = z + 1.
Case 3. ß = D, o(a) = 1, and 4>(z) = [(1 + s)z + (1 - s)][(l - s)z + (I + s)]~l

where 0 < s < 1.
Case 4. ß = D, o(a) = 1, and 4»(z) = [(1 ± 2i)z - l][z - 1 ± 2i]~\
We note that if p is a fixed point of tj> in ß, then/» = p([(z, «)]) where [(z, «)] is a

fixed point of ^ on S, that is, that (z, «) ~ (tp(z), «), hence that z is a fixed point
of cp in V. Conversely, if cp has any fixed points in D, the Denjoy-Wolff point a is
the only one. In this case, a is in V, (a, n) ■— (a, m) for all integers n, m so that
[(a, nj] is a fixed point for t on S and p = p([(a, «)]) is a fixed point for <ï> in ß.
Summarizing, we see that $> has a fixed point in ß if and only if cp has a fixed point
in D, and in this case the fixed point of O is o(a).

A linear fractional transformation xp has two fixed points p, p' on the sphere and
xp'(p)xp'(p') — 1 or else xp has one double fixed point/» and xp'(p) = 1. If |i//'(/>)l <
\xp'(p')\ and w=£p' then lim,,^ xp„(w) = p. If xp'(p) = 1, then lim^« xp„(w) = /»
for all w in the sphere. If |vF(/»)| = 1 but xp'(p) ¥= 1 then xp is a rotation of the
sphere and for every point w in the sphere the sequence xpn(w), « = 1, 2, 3, ... ,
has w as a limit point.

If « is a positive integer and z is in V, we have tl>n(a(z)) = a(cpn(z)). Since the
sequence cp„(z), « = 1, 2, 3, ... , does not have z as a limit point if z =£ a, we see
that the sequence tj>n(a(z)) cannot have o(z) as a limit point, so that í> is not a
rotation. If we define o(a) by o(a) = limn_>00 $n(o(z)) for any z in V, then a is
continuous on V u {a).
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Elementary calculations show that if a linear fractional transformation xp maps
the disk onto the disk and is not a rotation of the sphere then the fixed points are
on the unit circle and xp'(p) > 0.

Conjugating tj> by an appropriate linear fractional transformation to move its
fixed points, we reduce to one of the four cases mentioned above. (The functions <I>
of Case 4 with the positive and negative signs are inverses of each other, and are
not conjugate to each other by a linear fractional transformation mapping the disk
onto itself.) We note that in Cases 1 and 3, <S>'(o(aj) = s and that in Cases 2 and 4,
*'0(fl» = l.

Each of the four cases can actually occur. For Cases 1, 3 and 4 we may take
cp = $ and o(z) = z. For Case 2, we may take cp(z) = (1 + z)(3 - z)_l and
a(z) = (l +z)(l - z)-\

Deciding which of the four cases a particular cp falls into may be difficult, but we
do have the following results.

Theorem 3.3. Let cp, <I>, and ß be as in Theorem 3.2. Then ß = C and <I>(z) = sz
(or conjugate to this) if and only if the Denjoy- Wolff point a is in D and <p'(a) = s.

Proof. Case 1 of the above remark is the only case for which <í> has a fixed point
in ß. Since fixed points of t)> in ß correspond to fixed points of cp in D, we see that
this case occurs if and only if a is in D. Now o is analytic at a and, since cr is
univalent on V, o'(a) ¥= 0. We have o'(a)<p'(a) = o'(<p(a))<p'(a) = (a ° <p)'(a) =
(4> o a)'(a) = so'(a) so that <p'(a) = s.    □

Theorem 3.4. Let cp, ß, <ï> and o be as in Theorem 3.2 and suppose the Denjoy-
Wolff point a has modulus 1. Suppose, in addition, either that <p' can be defined at a so
as to be continuous on D U {a} or that for some z0 in D, the sequence tp„(z0),
« = 1, 2, 3, ... ,  converges to a nontangentially. Then $>'(o(a)) = lim,.^,   <p'(ra).

Corollary. // cp is an analytic mapping of the disk into the disk with Denjoy-
Wolff point a on the unit circle and limr^,- cp'(ra) = s < I, then we may take ß = D
and <I>(z) = [(1 + s)z + (1 — s)][(l — s)z + (1 + s)]~x in the conclusion of Theorem
3.2.

We recall that by Theorem J-C, if \a\ = 1 then s = limr_>1- xp'(ra) exists and
0 < s < 1.

Proof. If {/¡sa simply connected region and ß a point of U, let Gv(z, ß) denote
Green's function for U with pole at ß. In the proof of the theorem we will estimate
Green's functions for V and o( V) and show

<p'(a) =  lim [Gy(tpn(0), ß)]i/n

= Jim [Go(n(tl»n(a(0)), o(ß))]1/n = 0'(a(a)).

We begin by noting a few elementary facts required below. (See, for example,
[23].) If U is a simply connected region and co is a univalent map defined on U then
Gv(z, ß) = Gw(t/)(to(z), to(yS)). If U G W then Gv(z, ß) < GV(z, 0). If K is a
compact subset of U and ß and ß' are in K, then there are constants C, and C2 so

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



82 C. C. COWEN

that CxGv(z, ß) < Gj/z, ß') < C2Gv(z, ß), for z not in K. Therefore, if z„, « =
1,2,3, ... , is a sequence converging to a point on the boundary of U,
hmn-,JGu(zny ßj\x/" = hmn^xlGu(zn> ß')\X/" and we can afford to be somewhat
cavalier about the location of the pole.

Without loss of generality, we assume a = 1, and we let 5 = lim,.^,- cp'(r).
For p and 9 positive, let Sp9 = {z\ \z — 1| < p and |arg(l — z)\ < f?}. Suppose cp

is as in the hypothesis and for some z0 in D, the sequence cp„(z0), « = 1, 2, 3, ... ,
converges nontangentially to 1. By Lemma 2.2, we may take z0 = 0 and we define
9* to be the smallest angle such that cp„(0) G S29. for all n = 1, 2, 3, ... . Let V be
the fundamental set for cp constructed in Proposition 3.1 that contains sectors.
Then for any 9, 9* < 9 < tt/2, we can find p so that 5 = Sp9 G V. For a certain
ß' in S, we have

GY(z, ß') > Gs(z, ß')

M^n^r-íW'-= -log

Since the sequence cp„(0), « = 1, 2, 3, ... , converges to 1 nontangentially, there is
a constant C so that Gs(<pn(0), ß') > C\l - <pn(0)Y/29, and it also follows, by
Theorem J-C, that lim^J(l - %+1(0))/(l - <pk(0))\ = s. Now

rim|l-<p„(0)| \/n lim
n~*oo

n i(i-v*+1(o))/(i-«fc(o))i
\/n

so for any ß in V we have

lim [Gy(<pn(0\ß)]l/" >   i™ [GsWn(0\ß')]X/n

>   lim [C|l - <p„(0)F/2eY/n = s"'29.
n—»oo L      ' J

Since this holds for every 9, 0* < 9 < tt/2, we have in fact that
lim^JGVtcp^O), ß)]l/n > s. On the other hand, V c D so Gv(z, ß) < GD(z, ß)
and lim^JG^iO), /?)]'/" < hm^JG^íO), O)]1/" = lim^^t-loglcp^O)!]'/"
= lim^O - |<pn(0)|)'/" = 5. Thus hm^JG^iO), ß)]x/" = s when the iterates
converge nontangentially.

Now suppose cp is as in the hypotheses and cp' can be defined at 1 to be
continuous on D u {1}. Then, if cp„(0) is eventually in arbitrarily small disks
tangent to the unit circle at 1, we may take the fundamental set F to be a disk
A = f z\ \z — r\ < 1 — r} where 0 < r < 1. Since

GA(z, r) = -log|l-(l-r)-1(l-z)|

we have

Um [-log|l - (1 - r)-'(l - <p„(0))|]1/n = rim [GK(<p„(0), r)]l/m.

Clearly, for large «, we have

i[l -|1 - (1 - r)"'(l - <p„(0))|] < -log|l - (1 - r)-\l - cpn(0))|

<2[l-|l-(l-r)-'(l-<pn(0))|].
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Now, if 0 < s < 1, the iterates cp„(0) converge nontangentially and there are
constants Cx and C2 so that C,|l - cp„(0)| < 1 - |1 - (1 - r)~'(l - cp„(0))| <
C2|l - <p„(0)|, so we have lim_oo[GK(cpn(0), r)]1'" = lim„^Jl - <p„(0)\i/n = » as
before. On the other hand, if s = 1, the iterates cpn(0) may not converge nontangen-
tially and the above argument fails. However, cpn(0) is in successively smaller disks
tangent to the unit circle at 1, and we have, in any case, a constant C so that
CJ1 - tp„(0)|2 < 1 - |1 - (1 - r)"'(l - cp„(0))| so we have

lim [Gy(q>„(0), r)]1" >  i™ |1 - <P„(0)|2/" - s2 - 1.

Since lim^JG^ÍO), r)]1/" < 1 a priori, we have lim^JG^ÍO), r)]1/" = 5 in
this case as well.

On the other hand, if cp„(0) is not eventually in arbitrarily small disks tangent to
the unit circle at 1, then cp'(l) = I. For convenience, we regard cp as mapping the
upper half-plane into itself with fixed point at infinity. It follows from Theorem P
and Proposition 3.1 that V contains half strips of arbitrary width and as in Cases 2
and 4 below

hm   GK(%(0),Jß),/"=l = <p'(l).

We now turn our attention to $ on S2. By Theorem 3.3, we may exclude Case 1
of the remark, where ß = C and tj>(z) = sz.

Suppose we have Case 3, ß = D and

<D(z) =[(1 + s)z + (1 - J)][(1 - s)z + (l+ I)]"'

for some s, 0 < s < 1. Since a( V) is a fundamental set for tj> on D, o( V) contains
sectors Spg, for 9 arbitrarily close to 7r/2 and we show, as above, that
lim_oo[GCT(V)(O„(a(0)),a(¿8))]'/'1 = s = f(l).

Suppose we have Case 2, ß = C and $(z) = z + 1. For x and y arbitrary real
numbers and b > 0, let RXJI¿ = {z|Re z > x, y — b < Im z <y + b). Since o( V)
is a fundamental set for <ï> on C, given b > 0, we can find x and y so that
R = Rxo/J) G o(V). For an appropriate ß' and complex constant f,

GR(*H(o(0)), ß') = GR(n + o(0), ß>)

sinh(^/i +f) - 1    sinh(^«+ f) + 1= -log

An explicit calculation yields

rim [Ga(y)(<t>„(o(0)l°(ß))Y/n > „i™ [<?*(« + o(0), ß')]x/n = exp(-Tr/2b).

Since b was an arbitrary positive number, we have

}™[Ga(y)(t>n(o(0)),°(ß))]i/n> U

and as before, we conclude this limit is equal to 1, i.e. equal to <I>'(oo).
Suppose we have Case 4, ß = D and ®(z) = [(1 ± 2i)z - l][z - 1 ± 2/]"1. By

means of the mapping p(z) — ± i(z + l)(z — 1)_1 we transform this case to
translation by 1 on the upper (negative sign) or lower (positive sign) half-plane, i.e.
p o $ o p'x(z) = z + 1. Calculations similar to those of Case 2 above yield
lim_JGa(K/t]>n(a(0)), a(/?))]'/" = 1 = $'(1).
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Combining the results of the above calculations with the identity tj(cp„(0)) =
<I>„(ct(0)) and the mapping property of Green's functions, we obtain the desired
result:

S =  lim [Gv(q>M, ß)\/n = „i™ [<W<ï>>(0)), o(ß))\/n = *'(a(a)).

The corollary follows from the theorem because, by Lemma 2.1, if s < 1 then the
sequence cp„(0), « = 1, 2, 3, ... , converges to a nontangentially.    □

We now prove a theorem which allows us, in some cases, to distinguish Case 2
and Case 4 of the remark.

Theorem 3.5. Let <p be an analytic mapping of the unit disk into itself with
Denjoy- Wolff point a of modulus 1. Suppose that defining <p'(a) to be I allows cp' to be
continuous on D u {a}. If, for some point z0 in D, the sequence <p„(z0), « =
1, 2, 3, . . . , converges to a nontangentially, then the domain ß obtained from cp in
Theorem 3.2 is the whole plane.

Proof. By Theorem 3.4, tD'(o(a)) = 1 so either Case 2 or Case 4 of the remark
applies. We will show that if Case 4 applies, then the sequence of iterates cannot
converge nontangentially to a.

Under the given hypotheses, we may choose F to be a disk tangent to the unit
circle dD, at a, and on a smaller such disk a is analytic on the boundary circle
except at a. Therefore, we may assume, without loss of generality, that a = 1,
V = D, and o is analytic on dD except at 1.

Now suppose ß = D and <I> is as in Case 4, say,

$(z)=[(l-2/)z- l][z-l-2/]-'.

Using the mapping p(z) = i(l + z)(l — z)~~x, we transform this case into transla-
tion on the upper half-plane: 4>(2) = po$o p~x(z) = z + 1. Thus, letting 5 =
p ° a, we have ct maps D onto a fundamental set for <I> on the upper half-plane, and
à o cp = cj> o fj. Moreover, ct maps dD \ {1} onto an analytic curve in the upper
half-plane and the image of T = {e'e\-TT < 9 < 0} is a curve tangent to the positive
real axis. (Since ct( V) is a fundamental set for translation, o(T) is eventually below
any ray parallel to the positive real axis.)

Let h(z) = Arg[(l — z)(l + z)"x] + tt/2. Then « is a positive harmonic function
in D, h(T) = 0 and A(r') = tt (where F = {e'*|0 < 9 < tt}). It is easily seen that if
y is a smooth curve in D so that lim,^,- y(0 = 1 then y makes an angle 9 with the
interval (-1, 1) at 1 if and only if lim,^,- h(y(t)) = 9 — tt/2. We will show that for
any z0 in D, then lim„_(00 «(cp„(z0)) = 0, that is, the sequence cp„(z0), « =
1, 2, 3, ... , converges to 1, tangent to T.

For x and b positive real numbers, let Rxb = {z|Re z > x, 0 < Im z < b}, and
let g(z) = gXyb(z) = Arg[cosh(7rZ»~'(z — x)) - 1]. Then g is a positive harmonic
function in Rxb and g(z) = 0 if z is real, z > x and g(z) = it if z is any nonreal
point of the boundary. Let h(z) = h(o~x(z)) for z in ö(V).

Suppose z0 is in D and ct(z0) = a + iß. Given b > ß, find x large enough that
x > a, that the ray {zjRez > x, Im z = b) is in a(V), and that the segment
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{z|Re z = x, 0 < Im z < b) does not meet <î(r'). For this x and b, we see that
g(z) > h(z) everywhere on the boundary of the set Rxb n ct( V), so that g(z) > h(z)
in this set, in particular, for z = <&„(ô(z0)) = « + a + iß, n large. (To justify this
precisely, we should replace Rxb by the finite rectangle {z|x < Re z < x', 0 <
Im z < b) and take the limit as x' -» oo. We omit these details.)

Therefore, we have

lim   «(<p„(z0)) =   lim   «"($„(ct(z0))) <   lim   g(n + a + iß) = ßb~x.
rc—>oo n—>oo n—*oo

Since ¿» was arbitrary, we see that lim„_>0O «(cp„(z0)) = 0.
By an analogous argument for the lower half-plane, we see that if

d>(z)=[(l+2/)z- l][z-l+2/]-'

that the sequence cp„(z0) converges to a tangent to the arc of dD on the left of a.

D
The converse of this theorem is false, as may be seen by examining the map cp

defined on D by cp(z) = ct~'(ct(z) + 1) where ct is a conformai map of D onto
{z|Re z > 0 and -Re z < Im z < VRez }.

We next examine the important special case when cp is real valued on the real
axis.

Theorem 3.6. Suppose <p is an analytic function that maps D into D and is real
valued on the interval (-1, 1). Suppose also that there is no fixed point of tp at which
cp' vanishes. Then, for V, ct, and <ï> as in Theorem 3.2, the set VR = V n (-1, 1) is
nonempty, and we may choose o and <î> to be real valued on KR and R respectively.

In particular, Case 4 of the remark above cannot occur. Since a function cp
satisfying the hypotheses above satisfies either the hypotheses of Theorem 3.3 or
those of Theorem 3.4, we may decide which of the remaining cases occurs by
locating the Denjoy-Wolff point a and finding cp'(a).

Proof. Since cp„(0) is real for « = 1, 2, 3, ... , the Denjoy-Wolff point a =
lim„_(00 tp„(0) is real, and if a = ± 1 then the sequence cp„(0) converges to a
nontangentially. Moreover, cp„(0) is in V for « sufficiently large, so VR ¥= 0.

Suppose that the function <I> constructed in Theorem 3.2 has been normalized as
in the remark. In addition, in Cases 1 and 2, we suppose that for some particular x
in V, x =£ a, o(x) is real. (We note that in Case 1, by Theorem 3.3, $'(0) = cp'(a)
which is real since - 1 < a < 1.) Clearly V (i.e. the complex conjugate of V) is also
a fundamental set for <p on which cp is univalent, and we define ct on F by
ct(z) = ct(z).

Now in Cases 1, 2, or 3 of the remark, since cp and t& are real valued on the real
axis, we have S(cp(z)) = o(<p(z)) = o(y(z)) =®(o(z)) = <Ï>(ct(z)) = <Ï>(ct(z)). That is
both ct, V, and tj» and ct, V and $ are as in the conclusion of Theorem 3.2. By the
uniqueness property, this means there is a linear fractional transformation t
mapping ß onto itself such that <î>= t^m"' and ct = t ° ct. From the relation
<£ = T o rjp o T-' we see that t(z) = fz in Case  1, t(z) = z + f in Case 2, or
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t(z) = [(1 + S)z 4 (1 - Oftl - f)z 4- (1 + O]'1 in Case 3, where f is an ap-
propriate constant. From the equation ö = t ° o (and, in Cases 1 and 2, from
ct(x) = ct(x)), we see that, in fact, t(z) = z. Therefore, ct(z) = o(z) and o is real
valued on FR.

In Case 4 where, say <D(z) = [(1 4 2/)z - l][z - 1 4 2i]~x, we have

ct(cp(z)) = HoJIjj = Í>(~oT¿) ) = *(5(z))
where <i>(z) = [(1 - 2/)z - l][z - 1 - 2i]~\ That is, both ct, V, and tj> and ct, F,
and <P are as in the conclusion of Theorem 3.2. By the uniqueness property, this
means there is a linear fractional transformation mapping D onto D such that
tï> = TotJ>oT-1. But there is no such t: the t's satisfying this equation are
t(z) = [- fz 4 1 4 f][(1 - f)z 4- f]_1, but none of these map D onto D. We have
the same conclusion when <ï> has the negative sign in Case 4. This contradiction
means that, under our hypotheses, Case 4 cannot occur,    fj

We conclude this section by proving two specialized theorems on the nature of ct.
The proofs illustrate techniques that can be useful in studying o for cp more general
than stated in the hypotheses.

Theorem 3.7. Suppose cp is a finite Blaschke product with Denjoy-Wolff point a
such that \a] = 1 and cç'(a) < 1. Then o is an inner function that is continuous near a.

Proof. Let s = tp'(a). By Theorem 3.4 we may take ß = D and

<P(z) =[(1 4 s)z 4 (1 - j)][(l - s)z 4 (1 + s)]'1.

Choose 5 > 0 small enough that |cp'(z) — s\ < min{i/2, (1 — s)/2} if \z — a\ < 8.
We take V, in Theorem 3.2, to be

V = {z G D\ \z - a\ <o}

and let / = {z\ \z\ = 1, \z — a\ < 8} and V = V u /• Thus cp is a univalent map of
/ into itself and n T-o <P»(I) = {"}■

Since ct maps D into D, limr_„, o(re'9) exists for almost all 9, and we write o(e'9)
for this limit when it exists.

Now suppose e'9 is in / and a(e'9) = ß. Since ct is univalent on V and e'9 G V,
ß G o(V). It follows, from the continuity of cp and <D, that o(<pn(e'9)) = $„(o(ei9))
= ®„(ß) and since <pn(ei9) G V, that $n(ß) € o(V), for « = 1, 2, 3,_But a(V)
is a fundamental set for tp on D, so ®„(ß) G o(V) for « = 1, 2, 3, . . . implies
|tp„(/?)| = 1 for all«.

Thus ct is a univalent map of V into D and ct(/) is a subset of the unit circle. It
follows from standard theorems in conformai mapping that a is continuous on /.

Let IF = U ?-M~l(V) = U ?-M~\V) (where f~x(A) = {x|/(x) G A}),
so W is open in D and H7 D D. For e'* in IF, say xpk(e'9) is in / for some
k = 0, 1, 2, ... , we have cj(t?'Ä) = ^'(aOp^t?''9))) so \o(ei9)\ = 1. On the other
hand, if e'9 is not in W, we have <pn(e'9) £ F for every «, « = 0, 1, 2,. . . . Given «,
for / near 1 we have <p(rew) & V so that o(rew) $ ®~x(o(V)). Since
U„°°=i *„" \a( V)) - D \ {-1}, this shows CT(e'*) = -1 fore'" € IF.

Thus, we have shown llim,.^- o(re'9)\ = 1 for every 9 and ct is continuous near
a.    □
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From the above we see that D \ W has measure zero. It seems likely that
D \ W = {ei9\<pn+x(ei9) = <p„(ei9) ¥= a for some « = 0, 1, 2, . . . }, but I found no
easy proof of this.

Theorem 3.8. Suppose cp is an analytic mapping of D into itself, with no fixed
points in D. Let <ï>, o, and ß be as in 3.2 and the subsequent remark, let a =
hm„_,_00 $„(0), and ¡et b be a fixed point of xp, different from the Denjoy-Wolff point
a of tp, such that tp' has a continuous (and bounded) extension to {b} U D. Let K be
a compact subset of D, b G K, such that K \ {a, b) c D and <p(K) c K. If {Zj}JLx
C K n D and lim^^ zy = b then lim-^^, a(zj) = a.

Proof. By Lemma 2.4, q = tp'(b) > 1. Choose 8 > 0 so that |cp'(z)| < q 4 1 and
|cp(z) - a\ > 8 for \z - b\ < 8. Let L = {z\(q 4 l)~x8 < \z - b\ < 5} n K. From
the hypothesis on K, we see that L is a compact subset of D.

Now if \z - b\ < (q 4- l)~x8, then |<p(z) - b\ = \(z - b)fx0 <p'(tz 4 (1 - t)b) dt\
< \z - b\(q 4 1) < Ô. Thus if z is in K and \z - b\ < (q 4 1)~'5 then either
cp(z) G L or |<p(z) — b\ < (q 4 l)~x8. For each z in K, \z — b\ < 8, since cp„(z) —>
a, we see that there is an integer k, k = 0, I, 2, . . . , so that cp^z) G L. Moreover,
if \z - b\ < (q 4 l)N8, then tpn(z) $ L for « < N. Let L' = o(L), so L' is a
compact subset of ß and the sequence tp~' converges uniformly to a on L'. If
cp„(z) G L then <P„(ct(z)) = o-(cp„(z)) G L' so ct(z) G <D„-'(L').

Combining the above, we see that lim^^ o(zj) = a; indeed if \z, — b\ <
(q 4 l)~N8 then ct(z,) G U "_* ^j\L').    U

Corollary. Suppose <p is an analytic mapping of the disk D into itself and is real
valued on the interval (-1, 1). Suppose the Denjoy-Wolff point of tp is 1 and that
linv^., cp(x) = -1 and lirn^., cp'(x) = q < oo. Then liin^.i ct(x) = a, where in
each case -1 < x < 1.

Proof. In the proof of the theorem above, take K = [-1, 1]. Although <p' need
not be continuous in {-1} U D, cp' is continuous on K. Since K is convex, the
integral estimate still holds and the proof proceeds as above.    □

If tp has two fixed points, the conclusion of the theorem can be paraphrased:
o(a) is one fixed point of tp, ct(¿») is the other. If tp has only one fixed point, the
proof of the theorem yields the more subtle conclusion that {o(Zj)} converges to
the fixed point of <P in the same way as {tp~ '(0)} does.

The hypotheses of Theorem 3.8 may strike the reader as unduly complex, and no
doubt this is not the best possible theorem along these general lines. However,
some hypothesis regarding the set from which we choose the sequence zk is
essential. Consider the Blaschke product <p(z) = (3z 4 2)3(2z 4- 3)~3. The Denjoy-
Wolff point of cp is 1 and the other fixed points are -1 and (— 9 ± 5/V7 )/16 (all
on the unit circle) and cp'(l) = 3/5 < 1. By Theorem 3.4,

tD(z) = (4z4 l)(z4-4)-*

and ß = D is a possible choice. By the corollary above, limx^.__, ct(x) = -1. On the
other hand there is a sequence of points Xk, \Xk\ = 1, lim^^ Xk = -1 such that
<Pk(K) = 1 for each k, so that lim,.^- o(rXk) = 1 for each k. Clearly, the behavior
of the inner function ct is very bad near -1.
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4. The solution of Schroeder's and Abel's equations. In the previous section we
have seen how to associate a mapping cp of the disk into itself with a linear
fractional transformation, tp. We begin by showing how this produces a one-to-one
correspondence between solutions of the functional equations for cp and <P. Since
the functional equations are easily solved for linear fractional transformations, we
obtain information about the solutions for more general functions.

Lemma 4.1. Suppose cp, V, tp, a, and ß are as in Theorem 3.2 and suppose
g(z) = Xz 4 /i, where X and fi are complex numbers, X =£ 0. Then the correspondence
F <^*f = F ° ct is a one-to-one correspondence between solutions FofF°Q> = g°F
on ß and solutions f of f ° <p = g ° f on D.

Proof. If F satisfies F ° tp = g ° F then letting f = F ° a we have / ° cp =
F°CT°cp = F°tpoCT = goFoCT = go/

Conversely, if / is analytic and satisfies f°q> = g°f on D, since ct is univalent
on V, we may define F on ct( V) by letting F = / ° a ~ ' so that F°<fr = g°F on
o(V). Since o(V) is a fundamental set for tp on ß, we may define F on ß by
F(z) = g_„(F(<P„(z))), where « is a positive integer large enough that <ï>„(z) is in
a(F) and g_„ is the «th iterate of g"1. The function F is well defined because if
<Pm(z) and <ï>„(z) are both in ct( V) and m = « 4 k, for k positive, then, from the
equation F ° <ï> = g ° F, we have g-m(F(<S>m(z))) = g_„(g_k(F(xtk(^n(z))))) =
g_„(F(tp„(z))). We see that F is analytic and satisfies the equation F ° <P = g ° F
on S2 and that F ° a = f.    □

The reader should note that no matter what the form of g, if F ° «P = g ° F then
/ = F ° ct is a solution of / ° cp = g ° /, and that this is a one-to-one correspon-
dence between solutions on ct( V) and V respectively.

We now give complete, explicit solutions of Schroeder's equation for the linear
fractional transformations that concern us. The following four propositions corre-
spond to the four cases in the remark following Theorem 3.2. In addition, for
completeness, we include in Proposition 4.2 the solution for a rotation, i.e. <&(z) =
sz, where |i| = 1. (Schroeder's equation is the case p = 0 in the functional equation
of Lemma 4.1.)

Proposition 4.2. // <P(z) = sz, 0 < \s\ < 1, then F ° <fr = XF has a nonzero
solution F analytic in C (or D) if and only ifX = s" for « = 0, 1, 2, .... If s is not a
root of unity and X = s" for some nonnegative integer n, then F(z) = cz" for some
constant c. If s is a primitive kth root of unity and X = s" for « = 0, 1, 2, . . . , k — 1
then F(z) = z"g(zk) where g is analytic in C (or D).

Proof. Compare the Taylor series of F(sz) and XF(z).    □

Proposition 4.3. //<t>(z) = z 4 1, the function F, analytic in the entire plane, is a
solution of F ° tP = XF(X ^ 0) if and only if F(z) = e""g(e2wiz) where ea = X and g
is analytic in the punctured plane {w: 0 < |h>| < oo}.

Proof. Clearly a function of the form given satisfies the functional equation.
Conversely, if F is entire and F ° tp = XF (X =h 0), choose a such that ea = X and
define g on {w: 0 < \w\ < oo} by g(w) = e~azF(z) where w = e2mz. The function g

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ITERATION AND FUNCTIONAL EQUATIONS 89

is well defined and analytic because F satisfies the functional equation and is
analytic.    □

Proposition 4.4. Suppose tp(z) = [(l + s)z 4- (1 - s)][(l - s)z 4 (1 4 s)]~x
where 0 < s < 1. Let 8 = (Log s)~x and f(z) = 8 Log[(l - z)(l 4 z)-1]. The func-
tion F, analytic in D, is a solution of F ° tp = XF (X ^ 0) // and only if F(z) =
ea^zXg(e2,"^z)) where e" = X and g  is analytic  in  the annulus   {w:   |Log|w| | <

^iLog.r1}.
Proof. Observe that f maps D onto the strip {w: |Im w\ < (7r/2)|Log s\~x) and

that f ° tp = f + 1. We now repeat the proof of 4.2.    □

Proposition 4.5. Suppose <P(z) = [(1 ± 2i)z - l][z - 1 ± 2i]~'. Let f(z) =
i(l 4 z)(l — z)~x. The function F, analytic in D, is a solution of the equation
F o tp = XF (X ¥= 0) if and only if F(z) = e+a^g(e2™iiz)) where ea = X and g is
analytic on the punctured disk {w: 0 < \w\ < 1}.

Proof. Observe that f maps D onto the upper half-plane and that f ° tp = £ +
1. We now repeat the proof of 4.3.    □

We can now give a proof of Königs' 1884 theorem on solutions of the functional
equation / ° cp = À/ when cp has a fixed point in D, and describe the situation when
cp has no fixed points in D.

Theorem 4.6 [14]. Suppose cp is a nonconstant analytic function mapping D into D
with fixed point a in D (but cp not a Mbbius transformation mapping D onto D).

(a) If <p'(a) = 0, then the only nonzero solution of f ° cp = Xf is X = 1 and f
constant.

(h) If <p'(a) =£ 0, then f ° tp = Xf has nonzero solutions if and only if X = tp'(a)n,
n = 0,1,2, ... . When X = <p'(a)n, every solution is a multiple of the solution f whose
values are fiz) = a(z)n, where o and tp are as in Theorem 3.2 and Case 1 of the
remark.

Proof, (a) Clearly X = 1, / constant is a solution of the functional equation.
Since/ = 0 is the only solution when X = 0, we assume X ¥= 0.

Suppose / » cp = Xf. Because a is a fixed point of cp, we have fia) = /(cp(a)) =
Xfia), so either fia) = 0 or X = 1. In any case, we see that/ — fia) is also a solution
of the functional equation so we may assume fid) = 0.

Suppose f(J\a) = 0 fory = 0, 1,2, . . . , k — 1. Taking kth derivatives on both
sides of our equation yields (fik) ° <p)(<p')k 4 (terms involving /w, j < k) = a/w.
Hence Xfw(a) = /w(a)(cp'(a))* 4 0 = 0 and f(k\a) = 0 as well.

Therefore the only solutions of / ° cp = À/are X = 1 with/constant and/ = 0.
(b) Since cp' does not vanish at the Denjoy-Wolff point a, xp satisfies the

hypotheses of Theorem 3.2. The function tp has tp'(CT(a)) = cp'(a) = s, 0 < |s| < 1,
and we may assume that <P(z) = sz. The conclusion follows from Proposition 4.2
and the correspondence between solutions of the functional equations for cp and tp
(Lemma 4.1).    □

Theorem 4.7. //cp is an analytic function mapping D into D with no fixed points in
D, then the solution space off ° cp = Xf is infinite dimensional for every X ^ 0.
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Proof. The <P and ß of Theorem 3.2 cannot be sz and the plane since cp has no
fixed points (Theorem 3.3). The conclusion follows from Propositions 4.3, 4.4, or
4.5 and the correspondence between solutions of the functional equations for cp and
<í>.    □

Of course, the information we have developed in this and the preceding section is
more complete than stated in the above result. Given a particular function cp, one
would want to identify <P and a as precisely as possible and examine the nature of
the solutions.

Abel's equation is the case X = I, p «■ 1 in the functional equation of Lemma
4.1. We note that if Ax and A2 are two solutions of the equation A ° cp = A 4 1
then Ax — A 2 is a solution of Schroeder's equation with X = 1. Thus to give a
complete solution to Abel's equation we may give one solution and all solutions to
Schroeder's equation with X = 1. In the proofs of 4.4 and 4.5 we gave one solution
to Abel's equation for these linear fractional transformations, so we obtain one
solution for a function cp that has no fixed points in D. We record the following
consequence of these observations and Theorem 4.7.

Theorem 4.8. // cp has no fixed points in D, then the set of solutions of
A ° cp = A 4 1, where A is analytic in D, is an infinite dimensional hyperplane in the
vector space of functions analytic in D.

If cp has a fixed point a in D, there can be no solutions of A ° cp = A 4 1 that
are analytic in D since A(a) = oo (A(a) = A(<p(aj) = A(a) 4 1). However, if
cp'(cz) = s ¥= 0 and ct is as in Case 1 of the remark following Theorem 3.2, the
function A(z) = (logs)-1 log|cj(z)| is a harmonic solution of Abel's equation in
D\{a).

5. Fractional iteration. It is clear that the iterates cp„, n = 0, 1, 2, . . . , form a
discrete semigroup of functions. It is natural to ask whether this semigroup can be
embedded in a continuous (analytic?) semigroup of analytic functions, that is,
whether we can define fractional iterates of cp. Depending on what one requires of
the semigroup functions, the answer is known to be no in some cases (e.g. Baker [2]
or Karlin and McGregor [13]) yes in others (e.g. Szekeres [22]). Using the linear
fractional transformation tp, we construct the "tail" of a semigroup and what
deserves to be called the infinitesimal generator of the semigroup interpolating
{cp„}, but we find that the existence of a genuine semigroup depends on the
geometry of V and ct( V). Berkson and Porta [3] give a detailed discussion of the
infinitesimal generator in the semigroup case.

We begin by noting real analytic groups containing the linear fractional transfor-
mations tp. That is, we define, for z in Q, and -oo < l < oo, H(z, t) in ß so that H
is complex analytic in the first argument, real analytic in the second and satisfies
the identities H(H(z, tx), t2) = H(z, tx 4 tj) and H(z, 1) = tp(z). The infinitesimal
generator G, of the group is G(z) = 3///9i|,_0. For 0 < |i| < 1, we write s' for
e"ogi. If tP(z) = sz for z in C, where 0 < |i| < 1, let H(z, t) = s'z, so G(z) =
(log s)z. If tp(z) = z 4 1 for z in C, let H(z, t) = z 4 t, so G(z) = 1. If <P(z) =
[(1 4 s)z 4 (1 - s)][(l - s)z 4 (1 4 s)]~x for z in D, where 0 < s < 1, let

H(z, t) =[(l 4 s')z 4 (1 - *')][(! - s')z 4 (1 4 s')]~\
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so G(z) = (5 logi)(z2 - 1). If tp(z) = [(1 ± 2i)z - l][z - 1 ± 2/]-' for z in D, let
H(z, t) = [(( ± 2i)z - t][tz - t ± 2/]"1, so G(z) = ± (i/2)(l - z)2. It is not hard
to see that these are the only semigroups of functions mapping ß into ß and
continuous in the sense that <P, —> <p( uniformly on compact subsets of ß.

If cp and V are as in Theorem 3.2, and z is in D, let v(z) = min{«: <pn(z) G V). If
tp is the linear fractional transformation constructed from cp in Theorem 3.2,
normalized as in the subsequent remark, and H(z, t) is the group of linear
fractional transformations defined above for tp, we define

t(z) = inf{/: v(z) < / and H(o(z), tx) G a(V) for all tx > t).

To see that t(z) exists we note that {//(ct(z), t): 0 < / < 1} is a compact subset of
ß, and since ct( V) is a fundamental set for <P in ß, there is a positive integer N so
that tp„ maps this set into o( V) for « > N. But tP„(//(a(z), /)) = H(a(z), t + n) so
the set in the definition of t(z) is nonempty.

Theorem 5.1. Let <p satisfy the hypotheses of Theorem 3.2 and let r be defined as
above. There is a function h = h(z, t) defined for z in D and t > t(z), complex
analytic in the first argument, real analytic in the second such that

h(h(z, tx), t2) = h(z, tx 4 t2)   for tx > t(z) and t2> 0

and such that h(z, n) = cp„(z) >v«e« « is an integer, n > t(z). Moreover, there is a
function g, meromorphic in D, holomorphic in V, which agrees with the infinitesimal
generator of the semigroup h(z, t) on the set (z: t(z) = 0}.

Proof. Let tp, a, V, and ß be as in Theorem 3.2 and the subsequent remark and
let H(z, t) the group for tp as defined above. Define h(z, t) for t > t(z) by
h(z, t) = ct ~ x(H(o(z), t)) where ct ~ ' is the inverse of the restriction of ct to V. Since
t > t(z), H(o(z), t) is in ct( V) and ct ~ ' is defined there.

Now, if /, > t(z) and t2 > 0, we have

h(h(z, tx), t2) = ojx(H(o(ojx{H(o(z), tx))), t2)) = oj\H(H(o(z), tj), t2))

= ajx(H(a(z), tx 4 t2)) = h(z, tx 4 t2).

We also have, for « > t(z), h(z, n) = ajx(H(o(z), «)) = ct~ '(tPn(0(z))) =
<r* '(ct(cp„(z))) = cp„(z) where the last equality holds since « > t(z) > v(z) and tp„(z)
is in V.

The analyticity assertions follow from the analyticity of o~' and a and the
corresponding facts for H.

On the set {z: t(z) = 0} the functions h(z, t), t > 0, form a real analytic
semigroup. A simple calculation shows that the infinitesimal generator of this
semigroup is g(z) = G(o(z))(o'(z))~x, where t(z) = 0. This formula defines a
meromorphic function in D that is holomorphic in V, as asserted.    □

Corollary. Suppose cp is an analytic mapping of D into D and is real valued on
the interval (-1, 1). Let a denote the Denjoy-Wolff point of cp and let x, and x2 be
real numbers -1 < x, < a < x2 < 1. If <p'(x) > 0 on the interval (xx, xj) there is a
function h(x, t), real analytic in each argument, defined for x, < x < x2 and t > 0
such that h(h(x, /,), t2) = h(x, tx 4 tj) for tx, t2> 0 and h(x, 1) = cp(x).
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(This is similar to Theorem la of Szekeres [22] for nonanalytic functions.)
Proof. Since cp' > 0, cp is univalent on (x„ x2) and (cp^)-1 is well defined as a

function from (cpk(xx), q>k(x2)) onto (x,, xj) for any positive integer k. Given x,
x, < x < x2, choose an integer n so that « > t(x). In the theorem above, we
defined h(x, t) for t > « and for such / we see that h(x, t) is in the interval with end
points a and cp„(jc). We extend the definition of h, by letting

h(x,t) = (<pnyl(h(x,t + n))    for/>0.    □

If cp(z) = 2£L0 akzk is a probability generating function with a0+ ax > 0, we
may apply the corollary for the interval (0, 1). Of course, h(x, t) need not be a
probability generating function if / is not an integer. (Cf. Karlin and McGregor

[12].)
In order for the construction in Theorem 5.1 to give a genuine semigroup, cp must

be univalent, that is V = D must be possible. This is far from being sufficient to
guarantee that, for each / > 0, the function h(z, t) is defined for all z in D and
maps D into itself. If cp is univalent, but o(D) is not mapped into itself by H(z, t)
for / > 0 then the functions h(z, t) may be definable on all of D for each t (if ct-1
can be extended to U ,>0 H(a(D), t)) but fail to map D into D. If in addition a(D)
has corners in its boundary, then h(z, t) will not be defined for some z and /. I
know of no reasonable criteria for cp that will guarantee that {cp„} can be embedded
in a real analytic semigroup of analytic functions mapping D into D.

On the other hand, the following theorem shows that the semigroups discussed
above are the only ones; in particular it follows that such semigroups are real
analytic in /. Moreover, we show that the fixed points of cp, are the same for all
/ > 0, where we say e'9 is a fixed point of cp if limf_,- <p(re'9) = ei9. (It need not be
the case for arbitrary cp that the fixed points of cp„ are all the same. Results of this
type are known for cp with fixed point in D, for example see [19].)

Theorem 5.2. Let cp, <P, and a be as in Theorem 3.2 and suppose cp,(z) = h(z, t) is
a one parameter semigroup, t > 0, z in D, that is continuous in the sense that cp, —> tp,
uniformly on compact sets as t —» t0. Then <p is univalent in D, the fixed points of cp,
(t > 0) are the same as those of cp, and h(z, t) = ct~'(//(ct(z), /)) where H is a
semigroup associated with tp.

Proof. If cp*, <P*, and ct* are as in Theorem 3.2, then we have <Pj ° ct* =
ct* ° cp*. If we also have Sr" ° v = v ° cp* then the uniqueness assertion says tp* is
conjugate to ^l. If cp, is a semigroup as above, this remark shows that for t a dyadic
rational number, we have <P, ° a = a ° cp,, so by continuity this holds for all t.

Since tP'(CT(z0))CT'(z0) = o'(<p(z0))cp'(z0), cp'(z0) = 0 implies o'(z0) = 0. Conversely
ct'(z0) = 0 implies 0 = tp¡(CT(z0))CT'(z0) = <j'(cp,(z0))cp,'(z0) and since ct' is not identi-
cally 0 (and o'(a) =£ 0) cp,'(z0) = 0 for all /. Since cp, -> z uniformly on compact sets
as / -^ 0+, we conclude <p' and ct' never vanish on D.

This means ct (and therefore cp) is univalent in D. Indeed, suppose ct(z0) = o(w0)
where z0 and w0 are distinct points of D. Denoting cp,(z0) by z, and tp,(w0) by wr we
have o(zj) = o(<p,(z0)) = <P,(ct(z0)) = ®,(a(w0)) = <s(wj) for all t > 0. Now for t
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large enough, w, and z, are in a fundamental set for cp, so for these t, o(wj) = ct(z,)
means wt = z,, that is cp,(z0) = <p,(w0). Letting t0 = inf{t: <p,(h>0) = cp,(z0)}, we
observe that, by continuity, cp,(w0) = cp,o(z0) and t0 > 0 since w0 ^ z0. As t —> t0~,
we have w, —> w, = z,o and z, -» z,o but w, 7^= z,. Since o(w,) = ct(z,) for all t, this
means ct'(z, ) = 0 which contradicts the assertion above.

We are now ready to show that all the iterates have the same fixed points, that is,
for s and / positive if lim,.^, <ps(re'9) = e'9 then lim,.^,- <p,(re'9) = e'9. By suitably
renaming, it is sufficient to show this for 5 = 1.

For simplicity of notation we will prove it for cp whose Denjoy-Wolff point is on
dD, and, by using a suitable transformation, we assume <P,(z) = z 4 / on the whole
plane or an appropriate strip or half-plane according as tp falls in Case 2, 3, or 4 of
the remark after Theorem 3.2. The proof for cp having a fixed point in D is
completely analogous: the spirals ebs, s real, replace the lines Im z = y0.

Let limr_,- <p(re'9) = e'9 and let e > 0 be given. Find a continuous curve y:
[0, l]^Öso that |y(0)| = |y(l)| = 1, e/2 < |y(i) - ei9\ < e for 0 < s < 1, and
limJ__>0+ o(y(s)) and Ums_tl- ct(y(j)) exist and are finite. (That such a curve exists
follows from the Riesz theorem.) Let X = D o<r<i {o(se'9): r < s < l). Since X
is the nested intersection of nonempty, compact, connected subsets of the sphere, X
is nonempty, compact and connected, and of course X c d(a(D)).

Now we claim either X — {00}, or else X = {x 4 iy0: x > x0) for some finite y0
and x0 > -00. We observe that w G X means w + t G a(D) for any / since
w 4 t G o(D) means w 4 « G o(D) for any integer « > t so that <p„(re'9)—>
o~x(w 4 «) which contradicts <p„(re'9)-> e'9. If x, 4 iyx and x2 4 iy2 are in X,
yx ¥=y2, then there is x3 so that x3 4 i{-(yx 4 yj) is in X. Since a(D) is connected
and X c d(o(D)) this means that x4 4 i\(yx 4- yj) is in a(D) for some x4 > x3
which is impossible. Thus either X = {00} or there is some y0 so that X c
{z: Im z = y0}. Now if x + iy0 G X implies x < xx for some finite x„ then
{s + iy0: s > x,} is a free boundary arc of o(D) which is mapped continuously
by ct-' onto an arc in dD. We can find a sequence rk increasing to 1 and an integer
« so that CT(r^'*)—>x 4 iy0 in X and x 4- « > x, so that limk_<,x fpn(rke'9) =
ct~'(x 4 « 4 iy0) ¥= e'9 which is impossible. Thus if X contains any finite point, it
must be {x 4 iy0: x > x0}. In this case we observe that {x + iy0: x G R} does not
intersect o(D) and that X intersects the curve ct(y) at most in the single point
x0 4 iy0.

Now the curves ct(y) and o(re'9), 1 — e/3 < r < 1, are disjoint, so the arc
a(re'9), 1 — e/3 < r < 1, lies in a single component of a(D) \ o(y), and X lies in
the boundary of one of these.

If X = {00} then |o-(/-e'*)| —» 00 as r —> 1~ and since cr(y) is bounded, for any
fixed /, o(re'9) and o(re'9) 4 t must be in the same component of o(D) \ a(y) for r
close to 1.

If X = {x 4 iy0: x > x0} then, for fixed /, o(rew) 4 t, 1 - e/3 < r < 1, inter-
sects ct(y) only finitely often (else x0 — t 4 iyQ G X n o"(y)). Since o(re'9) + t
contains points of arbitrarily large real part for r near 1 we again see that o(re'9)
and o(re'9) 4 t lie in the same component of o(D) \ o(y) for r near 1.
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Thus for r close to 1, re'9 and <p,(re'9) lie in the same component of D \ y, in
particular \<pt(re'9) — e'9\ < e. Since e was arbitrary, this shows lim,.^,- tpt(re'9) =
e'9.   D

6. Questions and comments. One would like an effective technique for computing
ct. If cp is analytic at the Denjoy-Wolff point a and |cp'(a)| < 1 (as must happen if a
is in D) then, as is well known, one can compute, recursively, the coefficients in the
Taylor expansion of a around a. In case \a\ = 1, this is not an entirely satisfactory
solution because we do not want to assume cp is analytic at a and because we are
possibly more interested in ct on D than in some neighborhood of a. Furthermore,
when tp'(a) = 1, the technique of finding Taylor coefficients breaks down because
there need not be a solution even in formal power series [18]. For example, if
<p(z) = 2 4- jz2, then we have from Theorem 3.5 that we may take ß = C and
tp(z) = z 4 1. Changing variables to facilitate computation, we find that there is a
function ct analytic on |z 4 1| < 1, ct(0) = 0, so that <P ° ¿ = a ° xf where cp(z) = z
4- j-z2 and tJ>(z) = z(l — z)~x. But elementary calculations show that ct does not
have a formal power series at 0. It would be desirable, but probably difficult, to
find techniques to effectively compute o.

As we have seen, the difference between Case 2 and Case 4 in the remark
following Theorem 3.2 (which correspond to <p'(a) = 1) is rather subtle. Although
Theorem 3.5 is helpful in this regard, it cannot be called an effective procedure to
distinguish between the cases, because computing iterates is at best a tedious
process. There is some evidence that if a = 1 and cp'(l) = 1 then Arg cp"(l) can be
used to distinguish the cases; namely cp"(l) pure imaginary implies ß = D. This is
the case when cp'" is continuous and cp"(0) ¥= 0, but more work needs to be done
along these lines.

Problem 1. How can one decide whether a given cp with tp'(a) = 1 gives rise to Case
2 or Case 4?

One way of looking at Theorem 3.2 is as a classification theorem: given cp
mapping D into D, we (sometimes) associate with it a certain linear fractional
transformation which tells us about cp. As noted above, linear fractional transfor-
mations cannot be used to classify functions that map D into D and have
cp(0) = cp'(0) = 0. How can we classify these functions?

Problem 2. Find a set of functions <§ so that for every tp mapping D into D with
cp(0) = cp'(0) = 0, there is a unique tp in <f so that <¡> ° o = o ° <p where o is analytic
in D.

If the functions of the family "J are well understood, the resulting classification
could be helpful in studying problems involving iteration of cp and related func-
tional equations.

It is plausible that the techniques used here to study iteration of analytic
functions on the disk could be applied more widely. The crucial facts used here
seem to be that cp has a unique attractive fixed point a such that <p„(z) —> a for all z,
that V is simply connected, and cp is univalent on V. If these conditions could be
weakened, we might be able to use the techniques to study entire functions or
functions on Riemann surfaces.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ITERATION OF FUNCTIONAL EQUATIONS 95

References
1. K. B. Athreya and P. E. Ney, Branching processes, Springer-Verlag, Berlin, 1972.
2. I. N. Baker, Fractional iteration near a fixpoint of multiplier 1, J. Australian Math. Soc. 4 (1964),

143-148.
3. E. Berkson and H. Porta, Semigroups of analytic functions and composition operators, Michigan

Math. J. 25 (1978), 101-115.
4. G. T. Cargo, Fixed points and ideal fixed points of holomorphic functions, Notices Amer. Math. Soc.

25(1978), A636.
5. A. Denjoy, Sur l'itération des fonctions analytiques, C. R. Acad. Sei. Paris 182 (1926), 255-257.
6. J. Dugundji, Topology, Allyn and Bacon, Boston, Mass., 1966.
7. P. Fatou, Sur les équations fonctionnelles, Bull. Soc. Math. France 47 (1919), 161-271; 48 (1920),

33-94,208-314.
8. T. E. Harris, The theory of branching processes, Springer-Verlag, Berlin, 1963.
9. H. Kamowitz, 77ie spectra of composition operators on Hp, J. Functional Anal. 18 (1975), 132-150.

10. S.   Karl in  and J.  McGregor,  Spectral theory  of branching processes,  I,  II,  Z.  Wahrschein-
lichkeitstheorie und Verw. Gebiete 5 (1966), 6-33, 34-54.

11. _, On the spectral representation of branching processes with mean 1, J. Math. Anal. Appl. 21
(1968), 485-495.

12. _, Embeddability of discrete time simple branching processes into continuous time processes,
Trans. Amer. Math. Soc. 132 (1968), 115-136.

13. _, Embedding iterates of analytic functions with two fixed points into continuous groups, Trans.
Amer. Math. Soc. 132 (1968), 137-145.

14. G. Koenigs, Recherches sur les intégrales des certaines equations fonctionelles, Ann. Ecole Norm.
Sup. (3) 1 (1884), supplement, 3-41.

15. M. Kuczma, On the Schroeder equation, Roxprawy Mat. 34 (1963).
16. R. Nevanlinna, Analytic functions, Springer-Verlag, Berlin, 1970.
17. K. Noshiro, On the theory of schlicht functions, J. Fac. Sei. Hokkaido Univ. Jap. (1) 2 (1934-1935),

129-155.
18. R. C. Penney, conversation with the author, 1979.
19. Ch. Pommerenke, Über die Subordination analytischer Functionen, J. Reine Angew. Math. 218

(1965), 159-173.
20. _, On the iteration of analytic functions in a half plane. I, J. London Mat. Soc. (2) 19 (1979),

439-447.
21. E. Schroeder, Über itierte Funktionen, Math. Ann. 3 (1871), 296-322.
22. G. Szekeres, Regular iteration of real and complex functions, Acta Math. 100 (1958), 203-258.
23. M. Tsuji, Potential theory in modern function theory, Maruzen, Tokyo, 1959.
24. S. E. Warschawski, On the higher derivatives at the boundary in conformai mapping, Trans. Amer.

Math. Soc. 38 (1935), 310-340.
25. J. Wolff, Sur l'itération des fonctions, C R. Acad. Sei. Paris 182 (1926), 42-43, 200-201.
26. _, L'intégrale d'une fonction holomorphe et a partie reelle positive dans un demi plan est

univalente, C. R. Acad. Sei. Paris 198 (1934), 1209-1210.

Department of Mathematics, Purdue University, West Lafayette, Indiana 47907

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


