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Abstract1

Although processing speed, storage capacity and net-

work bandwidth are steadily increasing, network latency 

remains a bottleneck for scientists accessing large remote 

data sets. This problem is most acute with n-dimensional 

data. Grid researchers have only recently begun to de-

velop tools for efficient remote access to n-dimensional 

data sets. 

Within the context of the Granite Scientific Database 

system, we show that latency penalties can be dramati-

cally reduced using explicit knowledge of a user’s access 
pattern represented as an Iterator. The iterator not only 

performs an n-dimensional iteration for the user, but also 

communicates the access pattern to Granite so that a pre-

fetching cache can be constructed that is tuned to the 

user’s access pattern.

We experimentally evaluate a scenario for incorporat-

ing Granite’s prefetching mechanism into the Grid, dem-

onstrating extraordinary performance gains. In light of 

these results,  we describe planned additions to existing 

Grid services to allow selection of datasets according to 
the user access pattern.

1 Introduction

The size of scientific data sets has grown explosively in 

recent years, presenting new challenges for researchers 

and educators without local access to high performance 

computing resources. The Visible Woman dataset from the 

National Institutes of Health totals 39GB of anatomical 

sections. The Sloan Digital Sky Survey contains about 15 

terabytes of information [SDSS]. The NCAR Mass Stor-

age System exceeded one petabyte of climate data in 

2003, and has recently added a second petabyte [NCAR]. 

The vast majority of researchers cannot store such 
datasets on local machines, but remote access to arbitrary 

subsets of the complete file can make large datasets tracta-

ble for most scientists. However, researchers [Radke, 

Schütt04]  have only recently begun to develop efficient 

methods for accessing subsets of n-dimensional datasets, 

where data exists in a space described by n axes. A typical 

subset request might ask for the data contained in an n-

rectangular subregion aligned with the dataset axes. With-

out special support, such a request must be satisfied by a 

large number of distinct one dimensional requests. Each 

distinct request must pay network latency costs, which can 

drastically reduce performance.

Even with an n-dimensional access method, penalties 

associated with network latency can be further reduced if 

knowledge of the pattern of access is known in advance. 

For example, if a scientist wants to traverse a 3000x3000 

dataset in row-by-row fashion using 3x3 blocks, 1 million 
3x3 block accesses are required. Performing so many 

accesses over a high latency network connection will be 

unacceptably slow. An alternative is to download the en-

tire file and work on it locally, but this is an unrealistic 

option for files that are tens or hundreds of gigabytes in 

size, especially if the scientist is only interested in a subset 

of the data.  A third option is to split the file into chunks or 

slabs, but such splitting may require assumptions about 

how the dataset will be accessed. Visualization applica-

tions like ray-casting and splatting may require accessing 
the dataset in arbitrary directions [Levoy88, Westover90].

However, if the scientist’s local workstation has 

enough memory to store a block of size 500x3000 ele-

ments, latency costs are only paid for the 6 separate net-

work transactions necessary to refresh that large block 6 

times. If the server and client are sufficiently distant, this 

can result in dramatic performance gains.

In previous work we described Iteration Aware Pre-

fetching (IAP), a method that increases performance by 

minimizing the effects of disk latency [Rhodes05b]. IAP 
uses large n-dimensional cache blocks to reorganize the 

user’s access pattern into a comparatively small number of 

large accesses. IAP is an important feature of the Granite 

Scientific Database [Rhodes01, Rhodes02]. An iterator is 

used both to perform the desired iteration and to inform 

the Granite system of the intended access pattern so that 

the shape of the cache blocks can be tuned to the iteration. 

Such blocks provide very significant performance gains 

compared to blocks which are not tuned to the iteration. 

We have a growing toolkit of iterators, including recti-

linear block, plane, and element iterators, as well an 
oblique plane iterator that allows arbitrary orientation 
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within the data volume. In [Rhodes05], we demonstrated 

the effectiveness of IAP for visualization of large volumet-

ric scientific datasets. In this paper, we concentrate on 

rectilinear iteration, in which the direction of iteration is 

aligned with the major axes. The fast fourier transform, 

wavelet decomposition, feature detection, and other appli-

cations involve rectilinear iteration through the data vol-

ume in various directions. IAP is particularly effective in 

mitigating the cost of latency when the direction of itera-

tion would otherwise result in very slow performance. 
Although improvements like Internet2, ESNet, and 

UltraScienceNet [USN] ensure that network bandwidth 

will increase steadily over the next several years, network 

latency will continue to hinder remote data access. Since 

network latency for long distance transfers is often much 

higher than disk latency, Granite’s prefetching mechanism 

should prove especially useful when researchers work 

with large datasets stored at distant sites.

There are two main points to this paper. First, we dem-

onstrate the advantages of  Granite’s IAP method when 
applied to the problem of remote access to n-dimensional 

scientific datasets. Second, we outline our plans to aug-

ment existing Grid metadata and tools to support IAP in 

Grid Computing environments. The next section discusses 

background and related work, followed by a brief descrip-

tion of our implementation of IAP for array based data in 

section 3. Section 4 describes a scenario for IAP on the 

Grid which we evaluate experimentally in section 5. Sec-

tion 6 outlines our plan for bringing IAP to Grid comput-

ing. We end with future work and conclusions.

2 Background 

Grid computing has evolved in recent years in response 

to the need for coordinated sharing of resources, data, and 

knowledge among geographically separated groups of 

scientists and institutions [Buyya01, Cannataro03, Cher-

venak01, Foster01]. Grid computing environments are 

built on a layer of basic services that support the resource 

management, data transfer, authentication, and instru-

mentation functions necessary to support a collaborative 

computing environment [Chervenak01, Foster97, 

Laszewski00]. These include storage systems, an abstrac-
tion for the various tools which provide efficient access to 

the large datasets used by Grid scientists, and metadata 

repositories, which store descriptive information about 

files and network resources [Chervenak01]. Typical 

choices for storage systems include HPSS (High Perform-

ance Storage System), and HDF5, a format and API for 

scientific data access [Allen00, Watson95]. Metadata is 

made available through services such as LDAP (Light-

weight Directory Access Protocol)  [Howes97, Wahl97].

On top of these basic services are systems that support 

access to distributed data resources through the addition of 

replica management and selection [Chervenak01, 

Csajkowski98, Raman98, Vazhkudai01]. Allowing grid 

applications to choose which of several copies of the same 

data can be accessed most efficiently is an important part 

of replica selection [Vazhkudai02]. The access itself can 

be accomplished with the help of tools such as GASS 

(Global Access to Secondary Storage), RIO (Remote IO), 

SRB (Storage Resource Broker), and GridFTP [Baru98, 
Bester99, Foster97, Allcock05]. Nallipogu, et al. extend 

SRB through pipelining, improving performance partly by 

minimizing latency [Nallipogu02]. 

2.1 Communications

Development of low level protocols for transferring 

very large datasets has been an active field of research. 

Both TCP and UDP based methods have been developed. 

GridFTP is a commonly used method of transferring 

large files in a Grid environment [Allcock05]. It uses 

striped and parallel data transfer to maximize the use of 

available bandwidth. GridFTP’s architecture is modular, 
allowing the development of extensions for new protocols 

and functionality. An example can be found in [Schütt04]. 

Currently, GridFTP transfers data using TCP, but its open 

architecture allows for other options.   

UDP based methods often have the advantage of higher 

overall performance compared to TCP methods because 

they do not pay the overhead associated with TCP’s built-

in mechanism to guarantee completeness of the received 

data. However, in most scientific applications it is impera-

tive that all data arrive safely, so UDP based methods must 
provide their own mechanism for ensuring completeness 

[Grossman04, Rao04]. 

The work described in this paper relies upon our own 

implementation of a simple UDP method that avoids the 

latency penalties associated with TCP, yet guarantees the 

completeness of the received data. Although this method 

is robust enough to demonstrate the effectiveness of IAP 

for Grid applications, our eventual goal is to take advan-

tage of GridFTP and other established protocols. 

2.2 Remote n-dimensional access

Grid support for multidimensional data sets is largely 
provided using underlying scientific data APIs such as 

HDF5 [Allen00]. Only recently has work begun on ways 

of querying remote sources of data within a multidimen-

sional paradigm. For example, Radke et al. describe an 

extension to GridFTP that adds support for remote n-

dimensional queries to files stored in HDF5 [Radke]. 

Schütt et al. describe nested FALLS, a method of speci-

fying a series of one dimensional accesses in a single 



compact representation. By mapping an n-dimensional 

block to the underlying one dimensional file, nested 

FALLS can be used to send a single query over the net-

work, rather than a large number of one dimensional que-

ries. In addition, some elements in a volume can be 

skipped, allowing basic multiresolution functionality 

through subsampling.

In order to demonstrate the effectiveness of IAP for 

remote access, we designed and implemented a Granite 

server that allows a remote client to request an arbitrary n-
dimensional rectangular subset of a dataset.

2.3 Prefetching and Caching

Efficient access to data stored on local disk has been a 

topic of intense interest for decades. For spatial scientific 

datasets, perhaps the best known method is chunking 

[Sarawagi94]. Chunking reorganizes a dataset into n-

dimensional chunks according to the expected access pat-

tern. However, for extremely large datasets it is impracti-

cal to make a copy of the dataset for each expected access 

pattern. In this context, access patterns are defined by the 

shape of rectangular block queries, so the number of 
variations is very large. An alternative is to use chunks 

that have the same length in each direction, providing a 

reasonable speedup regardless of the access pattern used. 

HDF5 can produce and use chunked files, and can also use 

chunks as its basic unit of I/O and caching.  

Much of the prefetching work relating to a network 

environment is geared toward web applications. [Wang99] 

provides a survey of caching schemes for this area. For 

Grid applications, Perez et al. [Perez02, Perez03] describe 

MapFS, a system that uses hints to help decide which data 
to prefetch and retain in a cache. 

2.4 Access Patterns and the Grid

The designers of the Data Grid [Chervenak01] recog-

nize the need for applications to convey hints about access 

pattern to the underlying storage system. Researchers have 

also used a history of the files accessed by an application 

to decide replication policy [Bell03, Ranganathan02]. 

However, to the best of our knowledge, no attempt has 

been made to convey the expected multidimensional pat-

tern of access within a file to the remote server. Awareness 

of the access pattern allows fewer, larger data requests to 

be made across a network, thereby reducing total latency 
costs. 

3 The Granite Model

The Granite model accommodates multiresolution 

representations, datasets combined from multiple sources, 

and formats ranging from simple arrays to unstructured 

meshes. Unstructured meshes are addressed by the lattice 

component. The work presented here is done within the 

context of the datasource component of the Granite sys-

tem, which handles array-based data.

A datasource is conceptually an n-dimensional array 

containing a set of sample points.  The array indices define 

the index space, also called a data volume. Each index 

space location has a collection of  associated data values, 

called a datum. 

Datasources must handle two basic kinds of queries. A 
datum query specifies a single index space location, and is 

satisfied by the return of a single datum. A subblock query 

specifies an n-dimensional rectangular region of the index 

space, and is satisfied by the return of a data block, which 

is conceptually an n-dimensional array of datums.

3.1 Storage Orderings 

While a datasource has an index space that is n-

dimensional, the file is a one dimensional entity. The data-

source is responsible for satisfying queries expressed in its 

index space by reading data from the file. It must therefore 

map its index space to file offsets. It does this with the 
help of a kind of axis ordering. An axis ordering is simply 

a ranking of axes from outermost to innermost. “Inner-

most” and “outermost”  suggest  position in a set of nested 

for loops. The innermost axis changes most frequently and 

is called the rod axis when referring to storage orderings. 

Axes are labeled with numbers, so an axis ordering is 

really just a list of integers. For example, the storage or-

dering for Figure 1 would be {0,1} if axis 0 is vertical and 

axis 1 is horizontal. When an axis ordering denotes the 

order in which data is stored on disk, it is called a storage 
ordering. The innermost axis of a storage ordering is 

known as the rod axis, where rods are series of elements 

Figure 1. The numbers indicate the ordering 

of elements in the one dimensional file. The 

storage ordering here is {0,1}, and the 

shaded regions indicate the rods for the file.
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that are contiguous in both the data volume and the one 

dimensional file. 

3.2 Iterators

Since our system aims to improve I/O performance for 

particular access patterns, we use iterators to represent the 

access pattern, as well as to perform the actual iteration 

through the datasource index space. Iterators have a value 

that changes with each invocation of the iterator’s next() 

method. This value might denote a single location in the 

index space, or perhaps an entire region. In either case, the 

iterator value can be used directly in both datum and sub-
block queries.

An axis ordering is used to help represent the behavior 

of iterators that proceed through the index space in recti-

linear fashion. Generally, the performance of an iteration 

over data stored on disk depends upon the relationship 

between the storage ordering and the iteration ordering. 

Performance is highest when the two are the same. In this 

ideal case, the path of the iterator through the data volume 

maps to a straightforward “left to right” path through the 

file on disk. In this situation, the filesystem caching pro-
vided by the operating system does very well in caching 

and prefetching the correct data. Performance is consid-

erably worse when the storage ordering and iteration or-

dering don’t match. Here, the path through the data vol-

ume maps to a pattern that skips around in the file. This 

makes the filesystem cache much less effective, since it 

tends to cache and prefetch the wrong data. This problem 

is worst when the storage and iteration orderings are the 

reverse of each other. For example, a {2,1,0} iteration 

yields the worse performance on a {0,1,2} file.  A {1,2,0} 
iteration is better, while a {0,1,2} iteration is best, since it 

matches the storage ordering.

The iteration space is the space traversed by the itera-

tor. It may be the entire index space of a datasource, or 

some subset of that space. We also represent the starting 

point and the stride through the iteration space in cases 

where the iterator skips over some locations. Along with 

the axis ordering, all this information is useful and avail-

able when the system creates a prefetching cache tuned to 

the iteration.

3.3 Spatial Prefetching

Most caching methods for local data view files as one 

dimensional entities, but this view of the data is not ade-

quate for scientific applications involving multidimen-

sional datasets because it misses the neighborhood rela-

tionships that the user needs. The problem becomes even 

more acute as the dimensionality of the dataset increases. 

To address this issue we have designed a multidimensional 

cache that corresponds to the user’s dimensional view of 

the data. 

In this section we present a brief conceptual overview 

of a form of IAP called spatial prefetching (SP). For a 

more thorough and formal discussion of spatial prefetch-

ing and IAP in general, see [Rhodes05b].

3.3.1 Choosing Cache Block Shape

Because our multidimensional cache model is aimed at 

supporting multidimensional array data, we organize the 

cache itself as a collection of data blocks, called cache 

blocks, with the same dimensionality as the data. A sig-
nificant component of the caching strategy is to determine 

how to shape the cache blocks to most effectively improve 

I/O performance.

If the pattern of future accesses is already known, 

however, we can choose a cache block shape that guaran-

tees that all the needed contents will be used before being 

discarded. We call such a cache block shape well formed 

with respect to the iteration. Caches with blocks well 

formed for an iteration do not reload discarded blocks 

when the iteration is performed. This is particularly valu-
able in a remote context because of the expense of re-

transmitting data across a network.

Given some amount of memory with which to con-

struct a cache block, a well formed block can be built by 

examining the iterator ordering from right to left. For each 

axis, we extend the cache block as far as we can along that 

axis until we either run of out memory, or hit the end of 

the iteration space. If there is still memory available, we 

repeat this process with the next axis, terminating when 

either memory or the list of axes is exhausted. 
For example, consider a {1,2,0} iteration over a 5123 

datasource. First, we initialize the cache block shape to 

{1,1,1}. We start with axis 0, at the right side of the or-
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Figure 2. The numbers indicate the order in 

which elements are visited by  the iterator, while 

the shaded regions represent an effective cache 

block shape. a) Both the storage and iterator 

ordering are {0,1}. b) The storage ordering is 

{0,1}, but the iterator ordering is {1,0}. 



dering, and extend the block shape to the end of the itera-

tion space along this axis, yielding a shape of {512,1,1}. 

Next, we extend the shape along axis 2, but perhaps avail-

able memory constrains us to a shape of {512,1,128}.

This cache block shape is well formed with respect to a 

{1,2,0} iteration, so once the iterator leaves this block it 

need not be reloaded. For datum iterations and most block 

iterations, this means that only one cache block need be 

kept in memory at a time, since the iterator never hops 

back and forth between blocks. The shaded regions in 
figure 2 are examples of well formed cache block shapes 

for {0,1} and {1,0} iterations, respectively. 

If the cache is being used to directly access a disk, we 

must allocate enough memory for the cache block so its 

constituent rod segments are long enough to provide a 

speedup. The memory required is partially determined by 

the relationship between the storage and iterator orderings. 

For example, the cache block shape shown in figure 2b 

requires more memory than the one shown in figure 2a 

because the storage and iterator orderings are orthogonal.

4 Remote Access and IAP 

We see two important ways in which Granite can con-

tribute to Grid computing. First, IAP can be used during 

remote data access to reduce the penalties associated with 

network and disk latency. Second, if grid tools and appli-

cations are aware of the storage ordering of datasets, better 

decisions can be made when choosing datasets and access 

patterns. In this section we describe a scenario for using 

IAP in a remote environment. Section 5 presents an ex-

perimental evaluation of this scenario, while section 6 

discusses our plans for bringing IAP to grid environments 
in light of these results. 

4.1 Reducing Latency Costs

Figure 3 shows an overview of a remote access imple-

mentation using IAP.  On the left, an iterator specifies a 

user access pattern that accesses elements in the order 

indicated by the numbering. Using IAP, the client con-

structs a cache block that can contain a large number of 

the elements required by the user. Instead of sending a 

query for each element in the iteration, the client may now 

send a query for each cache block. Since each cache block 

contains a large number of elements, the number of times 

network latency costs must be paid is greatly reduced. 
Also, since the cache blocks are well formed with respect 

to the iteration, once the iteration leaves a cache block, the 

block will not be needed again. For the example shown in 

the figure, this means that sixteen separate accesses have 

been transformed into four. In practice, we use cache 

blocks that are hundreds of megabytes in size, yielding a 

much more dramatic reduction in the number of network 

transactions. 

In section 5 we investigate whether it is beneficial for 

the server to apply IAP once more to the access pattern 

that it sees coming in over the network. On the right side 

of figure 3, we show that the four block queries are trans-

formed into two larger block queries using an IAP cache 

on the server itself.  

4.2 Choosing Iteration Order and Data Sets

Although client-side IAP helps to address disk latency 

as well as network latency, the results in the next section 
show that it would be best if the user iteration ordering 

closely matches the storage ordering.

There are two ways to achieve this. If the user applica-

tion doesn’t strictly require a particular iteration ordering, 

then it may elect to use one that closely matches the data-

set storage ordering on the most convenient server. If a 

particular iteration ordering is required, then a server 

should be chosen that holds a copy of the dataset with a 

storage ordering that most closely matches the required 

iteration ordering.

5 Results

To examine the benefits of IAP and the Granite model 

for remote data access, we ran a series of tests that trans-

ferred data between a client at the University of Missis-

sippi and a server at the University of New Hampshire.  

The server is a single processor Pentium 4 machine with a 

2.4Ghz CPU and 2GB of RAM running the Linux operat-

ing system. The disk on this machine is a fast 15,000 RPM 

SCSI disk with a 3.6ms average read seek time. The client 

is a 2.5Ghz dual processor Power Macintosh G5 and 2GB 

of RAM running OS X. Both machines are connected to 

the local network with 100Mb Ethernet. The institutions 
are connected via Internet2 with a round trip time of ap-

Client Network Server

IAP on client IAP on server
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Figure 3. IAP transforms the user access pat-

tern on the client (specified using an iterator) 

into a comparatively  small number of network 

transactions with the server, thereby  reducing 

network latency  penalties. The server may  then 

elect to use IAP to further transform the access 

pattern to reduce disk latency  penalties. 



proximately 48ms. All transfers were done using our own 

UDP protocol using a packet length of 61440 bytes and an 

inter-packet delay of 10ms. This protocol allows the client 

to request either a single datum or an n-dimensional block 

of data from the server. In preliminary tests, we found that 

traversing the data volume using single datum requests 

would take several years, so we concentrate here on tests 

that use block requests only. 

Table 1 shows our results for traversals of a 1024x 

1024x1024 (1GB) subset of an 8GB file of bytes stored in 
{0,1,2} order using various caches and iterator orderings. 

For each test, the filesystem cache on the server was 

flushed to remove the effects of operating system caching.

5.1 IAP vs. LRU Caching

In order to establish the effectiveness of n-dimensional 

cache blocks with shapes tuned to the iteration pattern, we 

compare our method with a simple LRU cache containing 

cubic blocks. Cubic blocks are not well formed, as dis-

cussed in section 3.3.1, so the iterator will cause the cache 

to reload the same block many times during the course of 

the traversal. We tested LRU performance using both 
datum and block iterations.  The datum iteration requests a 

series of single elements, while a block iteration requests a 

series of contiguous 643 blocks from the server. Perform-

ance for the datum iteration was very poor, so we ran tests 

on a subset of the 10243 volume used in table 1. Using a 

single cache block of 128MB on the client, we project that 

a complete traversal of the 10243 volume would take 

approximately 692 days for a datum iteration, as shown in 

column a. Column d shows that the time for a block itera-

tion is much more reasonable (about 5.4 hours), since the 

number of network transactions is smaller. Columns b and 
e show that a similar test for a 128MB SP cache accom-

plishes the same traversals in times ranging from 317 to 

1194 seconds, depending on the type of iteration and its 

ordering. Even for block iterations, the 128MB SP cache 

yields speedups of 59.9, 58.3, and 30.7 for each ordering. 

The SP cache produces speedups of about 100,000 for 

datum iterations.

We also ran a test using an LRU cache with 4096 cache 

blocks of dimensions 323 totaling 128MB, and found 

performance was far worse than in the other LRU test. The 

projected time for a complete {0,1,2} traversal using this 

cache was 1.2x107 seconds (138 days). Although using 

smaller blocks means that each block is reloaded fewer 

times, the data volume is divided into many more blocks, 

so many more requests are made to the server as the it-

erator traverses the space. 

It should be clear from these results that shaping the 
cache block to suit the iteration is extremely effective. 

Because such cache blocks are well formed we can make 

the block as large as possible, greatly reducing the number 

of network transactions but completely avoiding the 

problem of repeatedly reloading data from the server.  

5.2 Iterator Ordering and Performance

Columns g and i show execution times for datum and 

block iteration conducted locally on the server machine 

without any caching except the filesystem caching mecha-

nism. The results for the datum iteration in column g show 

extreme sensitivity to the relationship between the storage 
and iterator orderings. This relationship determines local-

ity of access and the number of reads made to disk during 

the traversal. The times for block iteration shown in col-

umn i show much less sensitivity and are much faster 

overall because block requests allow Granite to make 

fewer reads and to perform those reads in an order that 

maximizes locality in the file on disk. 

For similar reasons, it is harder for an SP cache to im-

prove upon performance with block iteration. The results 

for a 256MB cache shown in column j show very marginal 

gains compared to column i, with the exception of the 
{2,1,0} case. Because this last case shows marked im-

provement, however, the results in column j show less 

sensitivity to iteration ordering.

The results for remote access in columns b and e show 

that even when accessing data over a high latency network 

connection, performance is still sensitive (by a factor of 

roughly 2) to iteration ordering. Columns c and f show the 

Table 1. Results for a traversal of a 1GB subset of an 8GB file. All execution times are in seconds. 

Remote Datum Iteration Remote 643 Block Iteration Local Datum Iteration Local Block Iteration

Client Cache 128MB LRU 128MB SP 128MB SP 128MB LRU 128MB SP 128MB SP

Server Cache none none 256MB SP none none 256MB SP none 256MB SP none 256MB SP

Ordering a b c d e f g h i j

{0, 1, 2} 5.9x107 (est) 543 495 1.9x104 317 275 3380 469 125 102

{1, 2, 0} 5.9x107 (est) 874 816 1.9x104 326 276 6013 665 128 114

{2, 1, 0} 5.9x107 (est) 1194 978 2.0x104 618 423 2.2x106 (est) 764 674 238



results of our attempt to reduce this sensitivity and im-

prove overall performance by adding a 256MB SP cache 

on the server. The results for the block iteration show 

some improvement, but the datum iteration results show 

relatively little gain in performance or reduction in sensi-

tivity. This is largely because the SP cache on the client is 

already reorganizing the user access pattern in a manner 

that increases disk performance. This explains why remote 

performance exceeds local performance in columns b and 

g.  In order to produce further gains, the server must use 
even more memory than the client.

6 Granite and the Grid 

 The results in the preceding section show that al-

though IAP is enormously effective for remote access, the 

performance is still sensitive to the datasets’ storage or-

dering on disk. Switching from our own transport protocol 

to the more efficient GridFTP will make this sensitivity 

more apparent. Server-side IAP is not a cost effective so-

lution for our scenario, since a large separate cache would 

need to be maintained for every client connection.

An attractive alternative is to make available replicas 
of important datasets with different storage orderings. 

Although this requires duplication of the data, replication 

is already an important part of Grid computing. Replicas 

with different orderings may be purposefully seeded on 

the Grid or produced incidentally by a scientist iterating 

through an existing replica and saving the result. 

This scheme requires the modification of several ex-

isting Grid components, including data transport, meta-

data, and resource management.

To take advantage of the efficiencies of GridFTP, we 
must extend it to support the retrieval of n-dimensional 

subsets of remote Granite datasets, similar to Radke’s 

work for HDF5 [Radke]. For server-side IAP, no further 

modification of GridFTP is necessary, since the server 

does not need to know the access pattern in advance.

We must attach to replicas additional metadata de-

scribing the n-dimensional bounds and storage ordering of 

each particular copy. This metadata is static, and should be 

conceptually paired with the data stored in the storage 

system. Granite currently uses XML to describe both 
bounds and orderings as lists of integers, and similar rep-

resentations should be possible in other systems.

If replicas with various orderings are available, a client 

may either choose an iteration which matches the most 

convenient copy, or the client or broker may choose a 

copy which best suits the user’s intended access pattern. If 

no replica has a storage ordering that exactly matches the 

iteration ordering, we must choose the best alternative, a 

process which requires us to rank the available orderings 

from best to worst match. 

A simple ranking can be constructed using the storage 

ordering and dataset bounds to determine for which rep-

lica the iteration would have the best locality in the one 

dimensional file space. 

We could also model expected performance by taking 

into account the physical characteristics of the disk the 

dataset is stored on, including average seek time, I/O 

bandwidth, disk buffer size, and disk block size. However, 

it may be more effective and accurate to collect actual disk 

performance statistics for various orderings whenever 
possible. This approach has the advantage of providing 

numbers that can be be directly compared to the end-to-

end network statistics gathered in some grid systems 

[Vazhkudai01]. 

In any case, replica selection must be performed with 

both disk and network performance in mind. If all replicas 

are nearby, storage ordering will dominate,  but if the rep-

lica with the ideal storage ordering is very distant, it may 

be better to choose a nearby replica with a storage order-

ing that is at least a reasonable match.
While the specification and dissemination of storage 

ordering and bounds information should be fairly straight-

forward, the implementation of the matching process is 

more complex. However, the ClassAd system [Raman98] 

contains a ranking mechanism that could be augmented to 

support replica selection that takes n-dimensional infor-

mation such as storage ordering and bounds into account.  

7 Conclusions and Future Work

We have shown that spatial prefetching, an example of 

iteration aware prefetching, is extremely effective in re-

ducing the costs of network latency when iterating through 
sub-volumes of large n-dimensional datasets. In addition, 

we have shown that remote access performance is sensi-

tive to the relationship between iterator and storage or-

dering, even when network latency is high. 

Because of this sensitivity, we suggest that for impor-

tant datasets useful to many researchers, multiple copies 

with different storage orderings should be available for 

remote access. The dataset bounds and storage ordering 

must then be made available to Grid services to allow 

clients to select a replica that best suits the user’s intended 
access pattern. Alternatively, the user access pattern might 

be selected based upon the storage ordering of the most 

convenient server.

We will begin the process of bringing IAP to Grid 

computing by adapting Granite to take advantage of 

GridFTP.  We must then augment the metadata associated 

with a particular file instance to include the bounds and 

storage ordering. Lastly, we must design and implement a 

mechanism for selecting the replica which will give the 

best performance for the access pattern desired by the 



application. As a result of this work, scientists will have 

effective remote access to the very large n-dimensional 

datasets that are an increasingly important part of modern 

science.
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