
 Open access Proceedings Article DOI:10.1109/E-SCIENCE.2005.55

Iteration aware prefetching for remote data access — Source link

Philip J. Rhodes, S. Ramakrishnan

Published on: 05 Dec 2005 - International Conference on e-Science

Topics: Iterator, Data access, Cache, Grid computing and Grid

Related papers:

 Iteration aware prefetching for large multidimensional datasets

 Replica selection in the Globus Data Grid

 The Globus Toolkit R-tree for partial spatial replica selection

 Efficient organization of large multidimensional arrays

 Data Prefetching for Scientific Workflow Based on Hadoop

Share this paper:

View more about this paper here: https://typeset.io/papers/iteration-aware-prefetching-for-remote-data-access-
5a89fa4jmw

https://typeset.io/
https://www.doi.org/10.1109/E-SCIENCE.2005.55
https://typeset.io/papers/iteration-aware-prefetching-for-remote-data-access-5a89fa4jmw
https://typeset.io/authors/philip-j-rhodes-19ds839twh
https://typeset.io/authors/s-ramakrishnan-12ajzzt0o5
https://typeset.io/conferences/international-conference-on-e-science-i44z7ou5
https://typeset.io/topics/iterator-1bi5u65b
https://typeset.io/topics/data-access-3umivkog
https://typeset.io/topics/cache-1i1l9v6x
https://typeset.io/topics/grid-computing-3slduoxr
https://typeset.io/topics/grid-1e79jo7o
https://typeset.io/papers/iteration-aware-prefetching-for-large-multidimensional-2br3scj4iu
https://typeset.io/papers/replica-selection-in-the-globus-data-grid-4qbfuyvejn
https://typeset.io/papers/the-globus-toolkit-r-tree-for-partial-spatial-replica-38b1z7eo8o
https://typeset.io/papers/efficient-organization-of-large-multidimensional-arrays-35e9mxpo9u
https://typeset.io/papers/data-prefetching-for-scientific-workflow-based-on-hadoop-2b4trzan6u
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/iteration-aware-prefetching-for-remote-data-access-5a89fa4jmw
https://twitter.com/intent/tweet?text=Iteration%20aware%20prefetching%20for%20remote%20data%20access&url=https://typeset.io/papers/iteration-aware-prefetching-for-remote-data-access-5a89fa4jmw
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/iteration-aware-prefetching-for-remote-data-access-5a89fa4jmw
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/iteration-aware-prefetching-for-remote-data-access-5a89fa4jmw
https://typeset.io/papers/iteration-aware-prefetching-for-remote-data-access-5a89fa4jmw

Iteration Aware Prefetching for Remote Data Access

Philip J. Rhodes and Sridhar Ramakrishnan

Department of Computer and Information Science
University of Mississippi

{rhodes, sridhar}@cs.olemiss.edu

Abstract1

Although processing speed, storage capacity and net-

work bandwidth are steadily increasing, network latency

remains a bottleneck for scientists accessing large remote

data sets. This problem is most acute with n-dimensional

data. Grid researchers have only recently begun to de-

velop tools for efficient remote access to n-dimensional

data sets.

Within the context of the Granite Scientific Database

system, we show that latency penalties can be dramati-

cally reduced using explicit knowledge of a user’s access
pattern represented as an Iterator. The iterator not only

performs an n-dimensional iteration for the user, but also

communicates the access pattern to Granite so that a pre-

fetching cache can be constructed that is tuned to the

user’s access pattern.

We experimentally evaluate a scenario for incorporat-

ing Granite’s prefetching mechanism into the Grid, dem-

onstrating extraordinary performance gains. In light of

these results, we describe planned additions to existing

Grid services to allow selection of datasets according to
the user access pattern.

1 Introduction

The size of scientific data sets has grown explosively in

recent years, presenting new challenges for researchers

and educators without local access to high performance

computing resources. The Visible Woman dataset from the

National Institutes of Health totals 39GB of anatomical

sections. The Sloan Digital Sky Survey contains about 15

terabytes of information [SDSS]. The NCAR Mass Stor-

age System exceeded one petabyte of climate data in

2003, and has recently added a second petabyte [NCAR].

The vast majority of researchers cannot store such
datasets on local machines, but remote access to arbitrary

subsets of the complete file can make large datasets tracta-

ble for most scientists. However, researchers [Radke,

Schütt04] have only recently begun to develop efficient

methods for accessing subsets of n-dimensional datasets,

where data exists in a space described by n axes. A typical

subset request might ask for the data contained in an n-

rectangular subregion aligned with the dataset axes. With-

out special support, such a request must be satisfied by a

large number of distinct one dimensional requests. Each

distinct request must pay network latency costs, which can

drastically reduce performance.

Even with an n-dimensional access method, penalties

associated with network latency can be further reduced if

knowledge of the pattern of access is known in advance.

For example, if a scientist wants to traverse a 3000x3000

dataset in row-by-row fashion using 3x3 blocks, 1 million
3x3 block accesses are required. Performing so many

accesses over a high latency network connection will be

unacceptably slow. An alternative is to download the en-

tire file and work on it locally, but this is an unrealistic

option for files that are tens or hundreds of gigabytes in

size, especially if the scientist is only interested in a subset

of the data. A third option is to split the file into chunks or

slabs, but such splitting may require assumptions about

how the dataset will be accessed. Visualization applica-

tions like ray-casting and splatting may require accessing
the dataset in arbitrary directions [Levoy88, Westover90].

However, if the scientist’s local workstation has

enough memory to store a block of size 500x3000 ele-

ments, latency costs are only paid for the 6 separate net-

work transactions necessary to refresh that large block 6

times. If the server and client are sufficiently distant, this

can result in dramatic performance gains.

In previous work we described Iteration Aware Pre-

fetching (IAP), a method that increases performance by

minimizing the effects of disk latency [Rhodes05b]. IAP
uses large n-dimensional cache blocks to reorganize the

user’s access pattern into a comparatively small number of

large accesses. IAP is an important feature of the Granite

Scientific Database [Rhodes01, Rhodes02]. An iterator is

used both to perform the desired iteration and to inform

the Granite system of the intended access pattern so that

the shape of the cache blocks can be tuned to the iteration.

Such blocks provide very significant performance gains

compared to blocks which are not tuned to the iteration.

We have a growing toolkit of iterators, including recti-

linear block, plane, and element iterators, as well an
oblique plane iterator that allows arbitrary orientation

1 This work was supported in part by the National Science Foundation under grants IIS-0082577 and IIS-9871859

within the data volume. In [Rhodes05], we demonstrated

the effectiveness of IAP for visualization of large volumet-

ric scientific datasets. In this paper, we concentrate on

rectilinear iteration, in which the direction of iteration is

aligned with the major axes. The fast fourier transform,

wavelet decomposition, feature detection, and other appli-

cations involve rectilinear iteration through the data vol-

ume in various directions. IAP is particularly effective in

mitigating the cost of latency when the direction of itera-

tion would otherwise result in very slow performance.
Although improvements like Internet2, ESNet, and

UltraScienceNet [USN] ensure that network bandwidth

will increase steadily over the next several years, network

latency will continue to hinder remote data access. Since

network latency for long distance transfers is often much

higher than disk latency, Granite’s prefetching mechanism

should prove especially useful when researchers work

with large datasets stored at distant sites.

There are two main points to this paper. First, we dem-

onstrate the advantages of Granite’s IAP method when
applied to the problem of remote access to n-dimensional

scientific datasets. Second, we outline our plans to aug-

ment existing Grid metadata and tools to support IAP in

Grid Computing environments. The next section discusses

background and related work, followed by a brief descrip-

tion of our implementation of IAP for array based data in

section 3. Section 4 describes a scenario for IAP on the

Grid which we evaluate experimentally in section 5. Sec-

tion 6 outlines our plan for bringing IAP to Grid comput-

ing. We end with future work and conclusions.

2 Background

Grid computing has evolved in recent years in response

to the need for coordinated sharing of resources, data, and

knowledge among geographically separated groups of

scientists and institutions [Buyya01, Cannataro03, Cher-

venak01, Foster01]. Grid computing environments are

built on a layer of basic services that support the resource

management, data transfer, authentication, and instru-

mentation functions necessary to support a collaborative

computing environment [Chervenak01, Foster97,

Laszewski00]. These include storage systems, an abstrac-
tion for the various tools which provide efficient access to

the large datasets used by Grid scientists, and metadata

repositories, which store descriptive information about

files and network resources [Chervenak01]. Typical

choices for storage systems include HPSS (High Perform-

ance Storage System), and HDF5, a format and API for

scientific data access [Allen00, Watson95]. Metadata is

made available through services such as LDAP (Light-

weight Directory Access Protocol) [Howes97, Wahl97].

On top of these basic services are systems that support

access to distributed data resources through the addition of

replica management and selection [Chervenak01,

Csajkowski98, Raman98, Vazhkudai01]. Allowing grid

applications to choose which of several copies of the same

data can be accessed most efficiently is an important part

of replica selection [Vazhkudai02]. The access itself can

be accomplished with the help of tools such as GASS

(Global Access to Secondary Storage), RIO (Remote IO),

SRB (Storage Resource Broker), and GridFTP [Baru98,
Bester99, Foster97, Allcock05]. Nallipogu, et al. extend

SRB through pipelining, improving performance partly by

minimizing latency [Nallipogu02].

2.1 Communications

Development of low level protocols for transferring

very large datasets has been an active field of research.

Both TCP and UDP based methods have been developed.

GridFTP is a commonly used method of transferring

large files in a Grid environment [Allcock05]. It uses

striped and parallel data transfer to maximize the use of

available bandwidth. GridFTP’s architecture is modular,
allowing the development of extensions for new protocols

and functionality. An example can be found in [Schütt04].

Currently, GridFTP transfers data using TCP, but its open

architecture allows for other options.

UDP based methods often have the advantage of higher

overall performance compared to TCP methods because

they do not pay the overhead associated with TCP’s built-

in mechanism to guarantee completeness of the received

data. However, in most scientific applications it is impera-

tive that all data arrive safely, so UDP based methods must
provide their own mechanism for ensuring completeness

[Grossman04, Rao04].

The work described in this paper relies upon our own

implementation of a simple UDP method that avoids the

latency penalties associated with TCP, yet guarantees the

completeness of the received data. Although this method

is robust enough to demonstrate the effectiveness of IAP

for Grid applications, our eventual goal is to take advan-

tage of GridFTP and other established protocols.

2.2 Remote n-dimensional access

Grid support for multidimensional data sets is largely
provided using underlying scientific data APIs such as

HDF5 [Allen00]. Only recently has work begun on ways

of querying remote sources of data within a multidimen-

sional paradigm. For example, Radke et al. describe an

extension to GridFTP that adds support for remote n-

dimensional queries to files stored in HDF5 [Radke].

Schütt et al. describe nested FALLS, a method of speci-

fying a series of one dimensional accesses in a single

compact representation. By mapping an n-dimensional

block to the underlying one dimensional file, nested

FALLS can be used to send a single query over the net-

work, rather than a large number of one dimensional que-

ries. In addition, some elements in a volume can be

skipped, allowing basic multiresolution functionality

through subsampling.

In order to demonstrate the effectiveness of IAP for

remote access, we designed and implemented a Granite

server that allows a remote client to request an arbitrary n-
dimensional rectangular subset of a dataset.

2.3 Prefetching and Caching

Efficient access to data stored on local disk has been a

topic of intense interest for decades. For spatial scientific

datasets, perhaps the best known method is chunking

[Sarawagi94]. Chunking reorganizes a dataset into n-

dimensional chunks according to the expected access pat-

tern. However, for extremely large datasets it is impracti-

cal to make a copy of the dataset for each expected access

pattern. In this context, access patterns are defined by the

shape of rectangular block queries, so the number of
variations is very large. An alternative is to use chunks

that have the same length in each direction, providing a

reasonable speedup regardless of the access pattern used.

HDF5 can produce and use chunked files, and can also use

chunks as its basic unit of I/O and caching.

Much of the prefetching work relating to a network

environment is geared toward web applications. [Wang99]

provides a survey of caching schemes for this area. For

Grid applications, Perez et al. [Perez02, Perez03] describe

MapFS, a system that uses hints to help decide which data
to prefetch and retain in a cache.

2.4 Access Patterns and the Grid

The designers of the Data Grid [Chervenak01] recog-

nize the need for applications to convey hints about access

pattern to the underlying storage system. Researchers have

also used a history of the files accessed by an application

to decide replication policy [Bell03, Ranganathan02].

However, to the best of our knowledge, no attempt has

been made to convey the expected multidimensional pat-

tern of access within a file to the remote server. Awareness

of the access pattern allows fewer, larger data requests to

be made across a network, thereby reducing total latency
costs.

3 The Granite Model

The Granite model accommodates multiresolution

representations, datasets combined from multiple sources,

and formats ranging from simple arrays to unstructured

meshes. Unstructured meshes are addressed by the lattice

component. The work presented here is done within the

context of the datasource component of the Granite sys-

tem, which handles array-based data.

A datasource is conceptually an n-dimensional array

containing a set of sample points. The array indices define

the index space, also called a data volume. Each index

space location has a collection of associated data values,

called a datum.

Datasources must handle two basic kinds of queries. A
datum query specifies a single index space location, and is

satisfied by the return of a single datum. A subblock query

specifies an n-dimensional rectangular region of the index

space, and is satisfied by the return of a data block, which

is conceptually an n-dimensional array of datums.

3.1 Storage Orderings

While a datasource has an index space that is n-

dimensional, the file is a one dimensional entity. The data-

source is responsible for satisfying queries expressed in its

index space by reading data from the file. It must therefore

map its index space to file offsets. It does this with the
help of a kind of axis ordering. An axis ordering is simply

a ranking of axes from outermost to innermost. “Inner-

most” and “outermost” suggest position in a set of nested

for loops. The innermost axis changes most frequently and

is called the rod axis when referring to storage orderings.

Axes are labeled with numbers, so an axis ordering is

really just a list of integers. For example, the storage or-

dering for Figure 1 would be {0,1} if axis 0 is vertical and

axis 1 is horizontal. When an axis ordering denotes the

order in which data is stored on disk, it is called a storage
ordering. The innermost axis of a storage ordering is

known as the rod axis, where rods are series of elements

Figure 1. The numbers indicate the ordering

of elements in the one dimensional file. The

storage ordering here is {0,1}, and the

shaded regions indicate the rods for the file.

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

Axis 1

Axis

0

that are contiguous in both the data volume and the one

dimensional file.

3.2 Iterators

Since our system aims to improve I/O performance for

particular access patterns, we use iterators to represent the

access pattern, as well as to perform the actual iteration

through the datasource index space. Iterators have a value

that changes with each invocation of the iterator’s next()

method. This value might denote a single location in the

index space, or perhaps an entire region. In either case, the

iterator value can be used directly in both datum and sub-
block queries.

An axis ordering is used to help represent the behavior

of iterators that proceed through the index space in recti-

linear fashion. Generally, the performance of an iteration

over data stored on disk depends upon the relationship

between the storage ordering and the iteration ordering.

Performance is highest when the two are the same. In this

ideal case, the path of the iterator through the data volume

maps to a straightforward “left to right” path through the

file on disk. In this situation, the filesystem caching pro-
vided by the operating system does very well in caching

and prefetching the correct data. Performance is consid-

erably worse when the storage ordering and iteration or-

dering don’t match. Here, the path through the data vol-

ume maps to a pattern that skips around in the file. This

makes the filesystem cache much less effective, since it

tends to cache and prefetch the wrong data. This problem

is worst when the storage and iteration orderings are the

reverse of each other. For example, a {2,1,0} iteration

yields the worse performance on a {0,1,2} file. A {1,2,0}
iteration is better, while a {0,1,2} iteration is best, since it

matches the storage ordering.

The iteration space is the space traversed by the itera-

tor. It may be the entire index space of a datasource, or

some subset of that space. We also represent the starting

point and the stride through the iteration space in cases

where the iterator skips over some locations. Along with

the axis ordering, all this information is useful and avail-

able when the system creates a prefetching cache tuned to

the iteration.

3.3 Spatial Prefetching

Most caching methods for local data view files as one

dimensional entities, but this view of the data is not ade-

quate for scientific applications involving multidimen-

sional datasets because it misses the neighborhood rela-

tionships that the user needs. The problem becomes even

more acute as the dimensionality of the dataset increases.

To address this issue we have designed a multidimensional

cache that corresponds to the user’s dimensional view of

the data.

In this section we present a brief conceptual overview

of a form of IAP called spatial prefetching (SP). For a

more thorough and formal discussion of spatial prefetch-

ing and IAP in general, see [Rhodes05b].

3.3.1 Choosing Cache Block Shape

Because our multidimensional cache model is aimed at

supporting multidimensional array data, we organize the

cache itself as a collection of data blocks, called cache

blocks, with the same dimensionality as the data. A sig-
nificant component of the caching strategy is to determine

how to shape the cache blocks to most effectively improve

I/O performance.

If the pattern of future accesses is already known,

however, we can choose a cache block shape that guaran-

tees that all the needed contents will be used before being

discarded. We call such a cache block shape well formed

with respect to the iteration. Caches with blocks well

formed for an iteration do not reload discarded blocks

when the iteration is performed. This is particularly valu-
able in a remote context because of the expense of re-

transmitting data across a network.

Given some amount of memory with which to con-

struct a cache block, a well formed block can be built by

examining the iterator ordering from right to left. For each

axis, we extend the cache block as far as we can along that

axis until we either run of out memory, or hit the end of

the iteration space. If there is still memory available, we

repeat this process with the next axis, terminating when

either memory or the list of axes is exhausted.
For example, consider a {1,2,0} iteration over a 5123

datasource. First, we initialize the cache block shape to

{1,1,1}. We start with axis 0, at the right side of the or-

Rod axis

0 1 2 3 4 5 6 7

8 9 10 ...

Run Axis

a)

Rod axis

R
u
n

A
x
i
s

0

1

2

3

4

5

6

7

8

9

10

...

b)

Figure 2. The numbers indicate the order in

which elements are visited by the iterator, while

the shaded regions represent an effective cache

block shape. a) Both the storage and iterator

ordering are {0,1}. b) The storage ordering is

{0,1}, but the iterator ordering is {1,0}.

dering, and extend the block shape to the end of the itera-

tion space along this axis, yielding a shape of {512,1,1}.

Next, we extend the shape along axis 2, but perhaps avail-

able memory constrains us to a shape of {512,1,128}.

This cache block shape is well formed with respect to a

{1,2,0} iteration, so once the iterator leaves this block it

need not be reloaded. For datum iterations and most block

iterations, this means that only one cache block need be

kept in memory at a time, since the iterator never hops

back and forth between blocks. The shaded regions in
figure 2 are examples of well formed cache block shapes

for {0,1} and {1,0} iterations, respectively.

If the cache is being used to directly access a disk, we

must allocate enough memory for the cache block so its

constituent rod segments are long enough to provide a

speedup. The memory required is partially determined by

the relationship between the storage and iterator orderings.

For example, the cache block shape shown in figure 2b

requires more memory than the one shown in figure 2a

because the storage and iterator orderings are orthogonal.

4 Remote Access and IAP

We see two important ways in which Granite can con-

tribute to Grid computing. First, IAP can be used during

remote data access to reduce the penalties associated with

network and disk latency. Second, if grid tools and appli-

cations are aware of the storage ordering of datasets, better

decisions can be made when choosing datasets and access

patterns. In this section we describe a scenario for using

IAP in a remote environment. Section 5 presents an ex-

perimental evaluation of this scenario, while section 6

discusses our plans for bringing IAP to grid environments
in light of these results.

4.1 Reducing Latency Costs

Figure 3 shows an overview of a remote access imple-

mentation using IAP. On the left, an iterator specifies a

user access pattern that accesses elements in the order

indicated by the numbering. Using IAP, the client con-

structs a cache block that can contain a large number of

the elements required by the user. Instead of sending a

query for each element in the iteration, the client may now

send a query for each cache block. Since each cache block

contains a large number of elements, the number of times

network latency costs must be paid is greatly reduced.
Also, since the cache blocks are well formed with respect

to the iteration, once the iteration leaves a cache block, the

block will not be needed again. For the example shown in

the figure, this means that sixteen separate accesses have

been transformed into four. In practice, we use cache

blocks that are hundreds of megabytes in size, yielding a

much more dramatic reduction in the number of network

transactions.

In section 5 we investigate whether it is beneficial for

the server to apply IAP once more to the access pattern

that it sees coming in over the network. On the right side

of figure 3, we show that the four block queries are trans-

formed into two larger block queries using an IAP cache

on the server itself.

4.2 Choosing Iteration Order and Data Sets

Although client-side IAP helps to address disk latency

as well as network latency, the results in the next section
show that it would be best if the user iteration ordering

closely matches the storage ordering.

There are two ways to achieve this. If the user applica-

tion doesn’t strictly require a particular iteration ordering,

then it may elect to use one that closely matches the data-

set storage ordering on the most convenient server. If a

particular iteration ordering is required, then a server

should be chosen that holds a copy of the dataset with a

storage ordering that most closely matches the required

iteration ordering.

5 Results

To examine the benefits of IAP and the Granite model

for remote data access, we ran a series of tests that trans-

ferred data between a client at the University of Missis-

sippi and a server at the University of New Hampshire.

The server is a single processor Pentium 4 machine with a

2.4Ghz CPU and 2GB of RAM running the Linux operat-

ing system. The disk on this machine is a fast 15,000 RPM

SCSI disk with a 3.6ms average read seek time. The client

is a 2.5Ghz dual processor Power Macintosh G5 and 2GB

of RAM running OS X. Both machines are connected to

the local network with 100Mb Ethernet. The institutions
are connected via Internet2 with a round trip time of ap-

Client Network Server

IAP on client IAP on server

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0

1

2

3

0

1

Figure 3. IAP transforms the user access pat-

tern on the client (specified using an iterator)

into a comparatively small number of network

transactions with the server, thereby reducing

network latency penalties. The server may then

elect to use IAP to further transform the access

pattern to reduce disk latency penalties.

proximately 48ms. All transfers were done using our own

UDP protocol using a packet length of 61440 bytes and an

inter-packet delay of 10ms. This protocol allows the client

to request either a single datum or an n-dimensional block

of data from the server. In preliminary tests, we found that

traversing the data volume using single datum requests

would take several years, so we concentrate here on tests

that use block requests only.

Table 1 shows our results for traversals of a 1024x

1024x1024 (1GB) subset of an 8GB file of bytes stored in
{0,1,2} order using various caches and iterator orderings.

For each test, the filesystem cache on the server was

flushed to remove the effects of operating system caching.

5.1 IAP vs. LRU Caching

In order to establish the effectiveness of n-dimensional

cache blocks with shapes tuned to the iteration pattern, we

compare our method with a simple LRU cache containing

cubic blocks. Cubic blocks are not well formed, as dis-

cussed in section 3.3.1, so the iterator will cause the cache

to reload the same block many times during the course of

the traversal. We tested LRU performance using both
datum and block iterations. The datum iteration requests a

series of single elements, while a block iteration requests a

series of contiguous 643 blocks from the server. Perform-

ance for the datum iteration was very poor, so we ran tests

on a subset of the 10243 volume used in table 1. Using a

single cache block of 128MB on the client, we project that

a complete traversal of the 10243 volume would take

approximately 692 days for a datum iteration, as shown in

column a. Column d shows that the time for a block itera-

tion is much more reasonable (about 5.4 hours), since the

number of network transactions is smaller. Columns b and
e show that a similar test for a 128MB SP cache accom-

plishes the same traversals in times ranging from 317 to

1194 seconds, depending on the type of iteration and its

ordering. Even for block iterations, the 128MB SP cache

yields speedups of 59.9, 58.3, and 30.7 for each ordering.

The SP cache produces speedups of about 100,000 for

datum iterations.

We also ran a test using an LRU cache with 4096 cache

blocks of dimensions 323 totaling 128MB, and found

performance was far worse than in the other LRU test. The

projected time for a complete {0,1,2} traversal using this

cache was 1.2x107 seconds (138 days). Although using

smaller blocks means that each block is reloaded fewer

times, the data volume is divided into many more blocks,

so many more requests are made to the server as the it-

erator traverses the space.

It should be clear from these results that shaping the
cache block to suit the iteration is extremely effective.

Because such cache blocks are well formed we can make

the block as large as possible, greatly reducing the number

of network transactions but completely avoiding the

problem of repeatedly reloading data from the server.

5.2 Iterator Ordering and Performance

Columns g and i show execution times for datum and

block iteration conducted locally on the server machine

without any caching except the filesystem caching mecha-

nism. The results for the datum iteration in column g show

extreme sensitivity to the relationship between the storage
and iterator orderings. This relationship determines local-

ity of access and the number of reads made to disk during

the traversal. The times for block iteration shown in col-

umn i show much less sensitivity and are much faster

overall because block requests allow Granite to make

fewer reads and to perform those reads in an order that

maximizes locality in the file on disk.

For similar reasons, it is harder for an SP cache to im-

prove upon performance with block iteration. The results

for a 256MB cache shown in column j show very marginal

gains compared to column i, with the exception of the
{2,1,0} case. Because this last case shows marked im-

provement, however, the results in column j show less

sensitivity to iteration ordering.

The results for remote access in columns b and e show

that even when accessing data over a high latency network

connection, performance is still sensitive (by a factor of

roughly 2) to iteration ordering. Columns c and f show the

Table 1. Results for a traversal of a 1GB subset of an 8GB file. All execution times are in seconds.

Remote Datum Iteration Remote 643 Block Iteration Local Datum Iteration Local Block Iteration

Client Cache 128MB LRU 128MB SP 128MB SP 128MB LRU 128MB SP 128MB SP

Server Cache none none 256MB SP none none 256MB SP none 256MB SP none 256MB SP

Ordering a b c d e f g h i j

{0, 1, 2} 5.9x107 (est) 543 495 1.9x104 317 275 3380 469 125 102

{1, 2, 0} 5.9x107 (est) 874 816 1.9x104 326 276 6013 665 128 114

{2, 1, 0} 5.9x107 (est) 1194 978 2.0x104 618 423 2.2x106 (est) 764 674 238

results of our attempt to reduce this sensitivity and im-

prove overall performance by adding a 256MB SP cache

on the server. The results for the block iteration show

some improvement, but the datum iteration results show

relatively little gain in performance or reduction in sensi-

tivity. This is largely because the SP cache on the client is

already reorganizing the user access pattern in a manner

that increases disk performance. This explains why remote

performance exceeds local performance in columns b and

g. In order to produce further gains, the server must use
even more memory than the client.

6 Granite and the Grid

 The results in the preceding section show that al-

though IAP is enormously effective for remote access, the

performance is still sensitive to the datasets’ storage or-

dering on disk. Switching from our own transport protocol

to the more efficient GridFTP will make this sensitivity

more apparent. Server-side IAP is not a cost effective so-

lution for our scenario, since a large separate cache would

need to be maintained for every client connection.

An attractive alternative is to make available replicas
of important datasets with different storage orderings.

Although this requires duplication of the data, replication

is already an important part of Grid computing. Replicas

with different orderings may be purposefully seeded on

the Grid or produced incidentally by a scientist iterating

through an existing replica and saving the result.

This scheme requires the modification of several ex-

isting Grid components, including data transport, meta-

data, and resource management.

To take advantage of the efficiencies of GridFTP, we
must extend it to support the retrieval of n-dimensional

subsets of remote Granite datasets, similar to Radke’s

work for HDF5 [Radke]. For server-side IAP, no further

modification of GridFTP is necessary, since the server

does not need to know the access pattern in advance.

We must attach to replicas additional metadata de-

scribing the n-dimensional bounds and storage ordering of

each particular copy. This metadata is static, and should be

conceptually paired with the data stored in the storage

system. Granite currently uses XML to describe both
bounds and orderings as lists of integers, and similar rep-

resentations should be possible in other systems.

If replicas with various orderings are available, a client

may either choose an iteration which matches the most

convenient copy, or the client or broker may choose a

copy which best suits the user’s intended access pattern. If

no replica has a storage ordering that exactly matches the

iteration ordering, we must choose the best alternative, a

process which requires us to rank the available orderings

from best to worst match.

A simple ranking can be constructed using the storage

ordering and dataset bounds to determine for which rep-

lica the iteration would have the best locality in the one

dimensional file space.

We could also model expected performance by taking

into account the physical characteristics of the disk the

dataset is stored on, including average seek time, I/O

bandwidth, disk buffer size, and disk block size. However,

it may be more effective and accurate to collect actual disk

performance statistics for various orderings whenever
possible. This approach has the advantage of providing

numbers that can be be directly compared to the end-to-

end network statistics gathered in some grid systems

[Vazhkudai01].

In any case, replica selection must be performed with

both disk and network performance in mind. If all replicas

are nearby, storage ordering will dominate, but if the rep-

lica with the ideal storage ordering is very distant, it may

be better to choose a nearby replica with a storage order-

ing that is at least a reasonable match.
While the specification and dissemination of storage

ordering and bounds information should be fairly straight-

forward, the implementation of the matching process is

more complex. However, the ClassAd system [Raman98]

contains a ranking mechanism that could be augmented to

support replica selection that takes n-dimensional infor-

mation such as storage ordering and bounds into account.

7 Conclusions and Future Work

We have shown that spatial prefetching, an example of

iteration aware prefetching, is extremely effective in re-

ducing the costs of network latency when iterating through
sub-volumes of large n-dimensional datasets. In addition,

we have shown that remote access performance is sensi-

tive to the relationship between iterator and storage or-

dering, even when network latency is high.

Because of this sensitivity, we suggest that for impor-

tant datasets useful to many researchers, multiple copies

with different storage orderings should be available for

remote access. The dataset bounds and storage ordering

must then be made available to Grid services to allow

clients to select a replica that best suits the user’s intended
access pattern. Alternatively, the user access pattern might

be selected based upon the storage ordering of the most

convenient server.

We will begin the process of bringing IAP to Grid

computing by adapting Granite to take advantage of

GridFTP. We must then augment the metadata associated

with a particular file instance to include the bounds and

storage ordering. Lastly, we must design and implement a

mechanism for selecting the replica which will give the

best performance for the access pattern desired by the

application. As a result of this work, scientists will have

effective remote access to the very large n-dimensional

datasets that are an increasingly important part of modern

science.

8 Acknowledgments

The authors would like to offer their sincere thanks to

R. Daniel Bergeron, Gerry Pregent, Gina Ross, Ted Sparr,

and most especially Andrew Foulks for allowing us to use

UNH facilities to conduct our experimental evaluation.

We would also like to thank Sudarshan Vazhkudai for his

helpful comments.

9 References

[Allcock05] B.Allcock, J. Bresnahan, R. Kettimuthu, M. Link,
C. Dumitrescu, I. Raicu, I. Foster, "The Globus Striped
GridFTP Framework and Server", HPDC 2005 (Submitted)

[Allen00] G Allen, W Benger, T Goodale, H Hege, G Lanfer-
mann, A Merzky, T Radke, E Seidel, J Shalf, "The Cactus
Code: A Problem Solving Env. for the Grid", HPDC 2000

[Baru98] C Baru, R Moore, A Rajasekar, M Wan, The SDSC
Storage Resource Broker Proc. CASCON'98 Conference, 1998

[Bell03] W. Bell, D. Cameron, R. Carvajal-Schiaffino, A. Paul
Millar, K. Stockinger, F. Zini, "Evaluation of an Economy-
Based File Replication Strategy for a Data Grid", Int. Wrk. on
Agent based Cluster and Grid Computing at CCGrid 2003

[Bester99] J. Bester, I. Foster, C. Kesselman, J. Tedesco, S.
Tuecke, "GASS: A Data Movement and Access Service for
Wide Area Computing Systems", Workshop on Input/Output in
Parallel and Distributed Systems, 1999

[Buyya01] "Economic Models for Management of Resources in
Peer-to-Peer and Grid Computing", ITCom 2001

[Cannataro03] M. Cannataro and D. Talia,"The Knowledge

Grid", CACM, January 2003
[Chervenak01] A Chervenak, I Foster, C Kesselman, C Salisbury,

S. Tuecke, "The Data Grid: Towards an Architecture for the
Distributed Management and Analysis of Large Scientific
Datasets", Jnl. of Network and Comp. Applications, 2001

[Czajkowski98] K. Czajkowski, I. Foster, C. Kesselman, S.
Martin, W. Smith, and S. Tuecke. “A Resource Management
Architecture for Metacomputing Systems”, 4th Workshop on
Job Scheduling Strategies for Parallel Processing, 1998

[Foster01] I. Foster, C. Kesselman, S. Tuecke, "The Anatomy of
the Grid", Intl J. Supercomputer Applications, 2001

[Foster97] I. Foster, C Kesselman, "Globus: A metacomputing
infrastructure toolkit", Int. Jnl of Supercomputing App., 1997

[Grossman04] R. Grossman, Y. Gu, D. Hanley, X. Hong, B.
Krishnaswamy, “Experimental studies of data transport and
data access of earth-science data over networks with high
bandwidth delay products”, Comp. Networks, Vol. 46(3), 2004

[Howes97] T.A. Howes and M.C. Smith. “LDAP Programming
Directory-Enabled Application with Lightweight Directory
Access Protocol”. Technology Series. MacMillan, 1997.

[Laszewski00] G. von Laszewski, I. Foster, J. Gawor, P. Lane,
"A Java Commodity Grid Kit", Concurrency and Computation:
Practice and Experience, 2001

[Levoy88] M. Levoy, "Display of Surfaces from Volume Data"
IEEE Computer Graphics and Applications, Vol. 8(3), 1988

[Nallipogu02] E. Nalligopu, F. Ozguner, M. Lauria,"Improving
the Throughput of Remote Storage Access through Pipelin-
ing", 3rd Int’l Wrk. on Grid Computing (GRID 2002)

[NCAR] “NCAR's MSS exceeds 1 petabyte”, news item at
http://www.scd.ucar.edu/news/03/features/ 0227.petabyte.html

[Perez02] M. Perez, R. Pons, F. Garcıa, V. Robles, J. Carretero,
“A proposal for I/O access profiles in parallel data mining algo-
rithms”, 3rd ACIS International Conf. on SNPD, June 2002

[Perez03] Perez, M., Carretero, J., Garcia, F., Pena, J.M., and
Robles, V., “MAPFS: A Flexible Infrastructure for Data-
Intensive Grid Applications”, Annual CrossGrid Project Work-
shop and 1st European Across Grids Conference, Spain, 2003

[Radke] Globus Striped Ftp Server with HDF5 plugin
http://www.cactuscode.org/VizTools/ Radke.html

[Raman98] R. Raman, M. Livny, M. Solomon, “Matchmaking:
Distributed Resource Management for High Throughput Com-
puting”, HPDC 1998

[Ranganathan02] K. Ranganathan and I. Foster, "Identifying
Dynamic Replication Strategies for a HighPerformance Data
Grid", International Workshop on Grid Computing, 2001

[Rao04] N. S. V. Rao, Q. Wu, S. M. Carter, and W. R. Wing.
“Experimental results on data transfers over dedicated chan-
nels”, 1st International Workshop on Provisioning and Trans-
port for Hybrid Networks: PATHNETS, 2004

[Rhodes01] P.J. Rhodes, R.D. Bergeron, and T.M. Sparr, A Data
Model for Distributed Multisource Scientific Data, Hierarchi-
cal and Geometrical Methods in Scientific Visualization,
Springer-Verlag, Heidelberg, 2001

[Rhodes02] P.J. Rhodes, R.D. Bergeron,, and T.M. Sparr, "A
Data Model for Distributed Multiresolution Multisource Scien-
tific Data", Hierarchical and Geometrical Methods in Scientific
Visualization, Springer-Verlag, Heidelberg, Germany, 2002

[Rhodes05] P.J. Rhodes, X. Tang, R.D. Bergeron, and T.M.
Sparr, “Out of core visualization using Iterator Aware Multidi-
mensional Prefetching”, Proc. SPIE Vol. 5669, p. 295-306,
Visualization and Data Analysis 2005

[Rhodes05b] P.J. Rhodes, X. Tang, R.D. Bergeron, and T.M.
Sparr, “Iteration Aware Prefetching for Large Scientific Data-
sets”, Proc. SSDBM 2005. pp. 45-54

[Sarawagi94] S. Sarawagi, M. Stonebraker, “Efficient Organiza-
tions of Large Multidimensional Arrays”, Proc. of the Tenth
International Conference on Data Engineering, Feb. 1994

[Schütt04] T. Schütt, A. Merzky, A. Hutanu, F. Schintke, "Re-
mote Partial File Access Using Compact Pattern Descriptions",
Proc. of the 4th Int. Symp. on Cluster Computing, 2004

[SDSS] Sloan Digital Sky Survey, http://www.sdss.org/
[USN] DOE UltraScienceNet: Experimental Ultra-Scale Net-

work Testbed for Large-Scale Science,
http://www.csm.ornl.gov/ultranet

[Vazhkudai01] S. Vazhkudai, S. Tuecke, I. Foster, "Replica Se-
lection in the Globus Data Grid", IEEE International Symp. on
Cluster Computing and the Grid (CCGrid), May 2001

[Vazhkudai02] S. Vazhkudai, J. M. Schopf, I. Foster, "Predicting
the Performance of Wide Area Data Transfers", 16th Interna-
tional Parallel and Distributed Processing, 2002

[Wahl97] M. Wahl, T. Howes, and S. Kille, Lightweight Direc-
tory Acces Protocol (v3), RFC 2251, IETF 1997

[Wang99] J. Wang, “A Survey of Web Caching Schemes for the
Internet”, Proc. of ACM SIGCOMM '99, 1999

[Watson95] R.W. Watson, R.A. Coyne,"The parallel I/O archi-
tecture of the high-performance storage system (HPSS)", Proc.
14th IEEE Symposium on Mass Storage Systems, 1995

[Westover90] K. Westover, Footprint Evaluation for Volume
Rendering, Computer Graphics, vol. 24, 1990, pp. 367-376

