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Abstract

In this paper, we consider the monotone inclusion problem consisting of the sum of a continuous
monotone map and a point-to-set maximal monotone operator with a separable two-block structure and
introduce a framework of block-decomposition prox-type algorithms for solving it which allows for each
one of the single-block proximal subproblems to be solved in an approximate sense. Moreover, by showing
that any method in this framework is also a special instance of the hybrid proximal extragradient (HPE)
method introduced by Solodov and Svaiter, we derive corresponding convergence rate results. We also
describe some instances of the framework based on specific and inexpensive schemes for solving the single-
block proximal subproblems. Finally, we consider some applications of our methodology to establish for the
first time: i) the iteration-complexity of an algorithm for finding a zero of the sum of two arbitrary maxi-
mal monotone operators and, as a consequence, the ergodic iteration-complexity of the Douglas-Rachford
splitting method, and; ii) the ergodic iteration-complexity of the classical alternating direction method
of multipliers for a class of linearly constrained convex programming problems with proper closed convex
objective functions.
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1 Introduction

A broad class of optimization, saddle point, equilibrium and variational inequality (VI) problems can be posed
as the monotone inclusion problem, namely: finding x such that 0 € T'(z), where T is a maximal monotone
point-to-set operator. The proximal point method, proposed by Rockafellar [23], is a classical iterative scheme
for solving the monotone inclusion problem which generates a sequence {zj} according to

lzr — T + 1) zo1)|| < ex, Zek < 0.
k=1

This method has been used as a generic framework for the design and analysis of several implementable
algorithms. Observe that {e} is a (summable) sequence of errors bounds.
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New inexact versions of the proximal point method which uses instead relative error criteria were proposed
by Solodov and Svaiter [25, 26, 27, 28]. In this work we use one of these variants namely the hybrid proximal-
extragradient (HPE) method [25] to develop and analyze block decomposition algorithms, and we now briefly
discuss this method. The exact proximal point iteration from z with stepsize A > 0 is given by z4 =
(AT + I)~1(2), which is equivalent to

veT(zy), A+ 2z —2z=0. (1)

In each step of the HPE, the above prozimal system is solved inexactly with (z,\) = (zx—1, A\x) to obtain
z, = z4 as follows. For a given constant o € [0, 1], a triple (Z,9,¢) = (2, U, €k) is found such that

v e T°(2), |AD + 2 — 2||? + 2Xe < 0?2 — 2|)?, (2)

where T° denotes the e-enlargement [1] of T. (It has the property that 7¢(z) D T'(z) for each z.) Note that
this construction relaxes both the inclusion and the equation in (1). Finally, instead of choosing Z as the next
iterate z,, the HPE method computes the next iterate z, by means of the following extragradient step:

Zy =z — A0.

Iteration complexity results for the HPE method were established in [15] and these results depend on the
distance of the initial iterate to the solution set instead of the diameter of the feasible set.

By viewing Korpelevich’s method as well as Tseng’s modified forward-backward splitting (MF-BS) method [30]
as special cases of the HPE method, the authors have established in [15, 16] the pointwise and ergodic iteration-
complexities of these methods applied to either: monotone variational inequalities problems, the monotone
inclusion problems for the sum of a Lipschitz continuous monotone map with a maximal monotone operator
whose resolvent is assumed to be easily computable, convex-concave saddle point problems, or a large class
of linearly constrained convex programming problems, including for example cone programming and prob-
lems whose objective functions converge to infinity as the boundaries of their domain are approached. In
the context of variational inequality problems, we should mention that prior to [15, 16] Nemirovski [17] has
established the ergodic iteration-complexity of Korpelevich’s method under the assumption that the feasible
set of the problem is bounded, and Nesterov [18] has established the ergodic iteration-complexity of a new
dual extrapolation algorithm whose termination depends on the guess of a ball centered at the initial iterate.

In this paper, we continue along the same line of investigation as in our previous papers [15] and [16],
which is to use the HPE method as a general framework to derive iteration-complexity results for specific
algorithms for solving various types of structured monotone inclusion problems. More specifically, we consider
the monotone inclusion problem consisting of the sum of a continuous monotone map and a point-to-set
maximal monotone operator with a separable two-block structure, namely:

0€ T(z,y) = {< ?ygfcz;iz > L€ Alx), beB(y)}. ()

We introduce a general block-decomposition HPE (BD-HPE) framework in the context of this inclusion prob-
lem, which allows for each one of the single-block proximal subproblems to be solved in an approximate sense.
More specifically, given a pair ((z,y),\) = ((xx—1, Yk—1), Ak), an instance of the BD-HPE framework computes
an approximate solution ((Z,7), (04, 0y),€) of (1) (in the sense of (2)) with T given by (3) by first computing
an approximate solution (&, 0., ;) of (1) with T'= F,(-,y) + A(), then computing an approximate solution
(9, 0y, gy) of (1) with T' = Fy(Z,-) + B(-), and finally setting ¢ = ¢, + €,. Moreover, by showing that any
method in this framework is also a special instance of the HPE method, we derive convergence rate results for
the BD-HPE framework based on the ones developed in [15] for the HPE method.

Subsequently, we describe some ways of implementing the BD-HPE framework based on specific and
inexpensive schemes for solving the single-block proximal subproblems. We also consider some applications
of our methodology introduced here to establish for the first time: i) the iteration-complexity of an algorithm
for finding a zero of the sum of two arbitrary maximal monotone operators and, as a consequence, the ergodic



iteration-complexity of the Douglas-Rachford splitting method, and; ii) the ergodic iteration-complexity of
the classical alternating direction method of multipliers (ADMM) for a class of linearly constrained convex
programming problems with proper closed convex objective functions.

The ADMM was first introduced in [10, 11]. Recently, there has been some growing interest in the
ADMM for solving large scale linear cone programming (see for example [5, 4, 21, 12, 14]). However, to
the best of our knowledge, no iteration-complexity analysis for the ADMM have been established so far.
Development and analysis of splitting and block-decomposition (BD) methods is by now a well-developed
area, although algorithms which allow a relative error tolerance in the solution of the proximal subproblems
have been studied in just a few papers. In particular, Ouorou [20] discusses an e-proximal decomposition
using the e-subdifferential and a relative error criterion on . Projection splitting methods for the sum of
arbitrary maximal monotone operators using a particular case of the HPE error tolerance for solving the
proximal subproblems were presented in [7, 8]. The use of the HPE method for studying BD methods was first
presented in [24]. We observe however that none of these works deal with the derivation of iteration-complexity
bounds. More recently, Chambolle and Pock [6] have developed and established iteration-complexity bounds
for a BD method, which solves the proximal subproblems exactly, in the context of saddle-point problems with
a bilinear coupling.

This paper is organized as follows. Section 2 contains two subsections. Subsection 2.1 reviews some basic
definitions and facts on convex functions and the definition and some basic properties of the e-enlargement of a
point-to-set maximal monotone operator. Subsection 2.2 reviews the HPE method and the global convergence
rate results obtained for it in [15]. Section 3 introduces the BD-HPE framework for solving a special type of
monotone inclusion problem mentioned above and shows that any instance of the framework can be viewed
as a special case of the HPE method. As a consequence, global convergence rate results for the BD-HPE
framework are also obtained in this section using the general theory outlined in Subsection 2.2. Section 4
describes specific schemes for solving the single-block proximal subproblems based on a small number (one or
two) of resolvent evaluations. Section 5 describes some instances of the BD-HPE framework which, are not
only interesting in their own right, but also illustrate the use of the different schemes for solving the single-block
proximal subproblems. It contains three subsections as follows. Subsection 5.1 discusses a specific instance
of the BD-HPE framework where both single-block proximal subproblems are solved exactly. Subsection
5.2 gives another instance of the BD-HPE framework in which both single-block proximal subproblems are
approximately solved by means of a Tseng’s type scheme. Subsection 5.3 studies a BD method for a large
class of linearly constrained convex optimization problems, which includes cone programs and problems whose
objective functions converge to infinity as the relative boundaries of their domain are approached. Section
6 considers the monotone inclusion problem consisting of the sum of two maximal monotone operators and
show how it can be transformed to an equivalent monotone inclusion problem with two-block structure of
the aforementioned type, which can then be solved by any instance of the BD-HPE framework. Section 7
considers the ADMM for solving a class of linearly constrained convex programming problems with proper
closed convex objective functions and shows that it can be interpreted as a specific instance of the BD-HPE
framework applied to a two-block monotone inclusion problem.

1.1 Notation

We denote the set of real numbers by R and nonnegative numbers by R, . For a real symmetric matrix E, we
denote its largest eigenvalue by 0,.x(E). The domain of definition of a one-to-one function F' is denoted by
Dom F'. The effective domain of a function f : R™ — [—o0, 00] is defined as dom f := {x € R" : f(x) < co}.

2 Technical background
This section contains two subsections. In the first one, we review some basic definitions and facts about

convex functions and e-enlargement of monotone multi-valued maps. This subsection also reviews the weak
transportation formula for the e-subdifferentials of closed convex functions and the e-enlargements of maximal



monotone operators. The second subsection reviews the HPE method and the global convergence rate results
obtained for it in [15].

2.1 The e-subdifferential and c-enlargement of monotone operators

Let Z denote a finite dimensional inner product space with inner product and associated norm denoted by
(-,-) and || - ||. A point-to-set operator T : Z =% Z is a relation T' C Z x Z and

T(z)={veZ]|(zv)eT}

Alternatively, one can consider T as a multi-valued function of Z into the family p(Z) = 2(*) of subsets of Z.
Regardless of the approach, it is usual to identify T with its graph defined as

Gr(T)={(z,v) €eZxZ|veT(z)}
The domain of T, denoted by Dom T, is defined as
DomT :={z€2Z:T(z) #0}.

An operator T : Z = Z is affine if its graph is an affine manifold. Clearly, if T is affine, then the following
implication holds:
(673 ZO, izl,...,k

k k
ar+...+ap=1 zZaivi€T<Zaizi>. (4)
i=1 i=1

v; € T(Zl), 1,...,k
Moreover, T : Z = Z is monotone if
(v—0v,2—2) >0, Y(z,v), (2,0) € Gr(T),

and T is mazimal monotone if it is monotone and maximal in the family of monotone operators with respect
to the partial order of inclusion, i.e., S : Z = Z monotone and Gr(S) D Gr(T) implies that S = T.

In [1], Burachik, Tusem and Svaiter introduced the e-enlargement of maximal monotone operators. In [15]
this concept was extended to a generic point-to-set operator in Z as follows. Given T : Z = Z and a scalar ¢,
define T¢ : Z = Z as

T°(2)={veZ|{(z—Z2v—0)>—¢, VZeZ, Y0eT(2)}, Vzel (5)
We now state a few useful properties of the operator T° that will be needed in our presentation.
Proposition 2.1. Let T, 7' : Z = Z. Then,
a) if e1 < &g, then T (z) C T°2(z) for every z € Z;
b) T¢(2) + (T") (2) C (T + T (2) for every z € Z and ,¢' € R;
¢) T is monotone if, and only if, T C T°;
d) T is mazimal monotone if, and only if, T = T°;

Observe that items a) and d) of the above proposition imply that, if 7' : Z = Z is maximal monotone,
then
T(z) C T%(2) VzeZ,e>0,

so that T¢(z) is indeed an enlargement of T'(z).

Note that, due to the definition of T°, the verification of the inclusion v € T¢(z) requires checking an
infinite number of inequalities. This verification is feasible only for specially-structured instances of operators
T. However, it is possible to compute points in the graph of T° using the following weak transportation
formaula [2]. This formula will be used in the complexity analysis of the ergodic mean.



Theorem 2.2 ([2, Theorem 2.3]). Suppose that T : Z = Z is mazimal monotone. Let z;,v; € Z and €;,c; €
Ry, fori=1,...,k, be such that

’Uz’GTEi(Zi), i:1,...,]€, Zai:L

and define
k k
2% =) i izi, V=D g,
€% = Zf:l ailei + (2 — 2% v —v9)] = Zf=1 ailei + (zi — 2%, vi)].

Then, the following statements hold:
a) € >0 and v* € T (2%);
b) if, in addition, T = Of for some proper lower semi-continuous convez function f and v; € O, f(z;) for
i=1,...,k, then v* € Oza f(2%).

Finally, we refer the reader to [3, 29] for further discussion on the e-enlargement of a maximal monotone
operator.
For a scalar € > 0, the e-subdifferential of a function f : Z — [—o00,+0o0] is the operator d.f : Z = Z
defined as
0:f(z) ={v| f(Z) > f(z) + (2 —z,v) — e, VZ2€ Z}, VzeZ. (6)

When ¢ = 0, the operator J.f is simply denoted by Of and is referred to as the subdifferential of f. The
operator Jf is trivially monotone if f is proper. If f is a proper lower semi-continuous convex function, then
df is maximal monotone [22].

The conjugate f* of f is the function f*:Z — [—o00, 00| defined as

f*(v) = sup(v, 2) — f(2), YveZ.
2€Z

The following result lists some useful properties about the e-subdifferential of a proper convex function.
Proposition 2.3. Let f : Z — (—o00, 00| be a proper convex function. Then,

a) 0-f(2) C (0f)%(2) for anye >0 and z € Z;

b) O:f(z) ={v |f(2) + f*(v) < (z,v) + e} for anye >0 and z € Z;

¢) ifvedf(z) and f(2) < oo, then v € O-f(Z), where e := f(2) — [f(2) + (2 — z,v)].

For the following definitions, assume that Z C Z is a nonempty closed convex set. The indicator function
of Z is the function dz : Z — [0, 0o] defined as

0 z€”Z
6 2) = ) )
2(2) {oo, otherwise,
and the normal cone operator of Z is the point-to-set map Nz : Z = Z given by
0, z & Z,
Na(2) = ~ ~ i ™
{veZ, |(—2zv)<0,VieZ}, z€lZ.

Clearly, the normal cone operator Nz of Z can be expressed in terms of 0z as Ny = 0dz. The orthogonal
projection Pz : Z — Z onto Z is defined as

Py(z) = argmin, ., ||z — 2| Vz e Z.

It is well-known that Pz is the resolvent of the normal cone operator, that is, Pz = (ANz + I)~! for every
A> 0.



2.2 The hybrid proximal extragradient method

This subsection reviews the HPE method and corresponding global convergence rate results obtained in [15].
Let T : Z = Z be maximal monotone operator. The monotone inclusion problem for 7' consists of finding
z € Z such that
0€T(2).

We also assume throughout this section that this problem has a solution, that is, 7-1(0) # 0.
We next review the hybrid proximal extragradient method introduced in [25] for solving the above problem
and state the iteration-complexity results obtained for it in [15].

Hybrid Proximal Extragradient Method:
0) Let zp € Z and 0 < o < 1 be given and set k = 1;

1) choose A; > 0 and find Zx, Uy € Z, oy, € [0,0] and €5 > 0 such that

O € T (21), I Akn + 2 — z5—1]1? + 20ner < 0212k — 21 || (8)

2) define z, = zp—1 — A\ Uk, set k — k + 1, and go to step 1.
end

We now make several remarks about the HPE method. First, the HPE method does not specify how to
choose A\, and how to find Zx, O and e as in (8). The particular choice of Ay and the algorithm used to
compute Zi, ¥ and e; will depend on the particular implementation of the method and the properties of the
operator T. Second, if Z := (AT + I)"1z,_1 is the exact proximal point iterate, or equivalently

veT(Z), (9)
AU+ Z— 21 =0, (10)

for some ¢ € Z, then (Zx,0x) = (2,0) and e, = 0 satisfies (8). Therefore, the error criterion (8) relaxes the
inclusion (9) to © € T¢(2) and relaxes equation (10) by allowing a small error relative to ||Z; — zx—1]|-

We now state a few results about the convergence behaviour of the HPE method. The proof of the following
result can be found in Lemma 4.2 of [15]. It provides a computable estimate of how much the square of the
distance of an arbitrary solution to an iterate of the HPE method decreases from one iteration to the next
one.

Proposition 2.4. For any z* € T~1(0), the sequence {||z* — zx||} is non-increasing and

k
2% = zoll® > ll2* — 2l + Y [ — zicall® = (1N + 2 — zima|® + 2Xies)] (11)
=1
k
> |l2* = 2l + (1= 0?) D> 15— zial® (12)
=1

The proof of the following result which establishes the convergence rate of the residual (9, &) of z; can
be found in Theorem 4.4 of [15].

Theorem 2.5. Assume that o < 1 and let dy be the distance of z9 to T=*(0). Then, for every k € N,
U € T°%(Z1) and there exists an index i < k such that

~ l1+o 1 o2d2 )\,
1] < do 1_J< . 2), e < o (13)
Zj:l )‘j 21-0 )Zj:l )‘j




Theorem 2.5 estimate the quality of the best among the iterates z1, ..., Zx. We will refer to these estimates
as the pointwise complexity bounds for the HPE method.

We will now describe alternative estimates for the HPE method which we refer to as the ergodic complexity
bounds. The next result describes the convergence properties of an ergodic sequence associated with {Z;}.

Theorem 2.6. For every k € N, define

k k k
1 1 1
Zy = — )‘i~i7 g = — )\'N', = — A 5 s 14
2L Ak ; Z Uk Ak: lz:; i Ui €k Ak lz:; (61 +< Zk >) ( )
where Ay 1= Zle Ai. Then, for every k € N,
~ 1 a , 2d0
= (20— T (25 < — 15
0 = 3G —2) TG, o] < 52 (15)
and
0<ef < o [2037 — 2020 — 20) — Dk — ol] < 214 ), (10
S Ep A% z 20,2k — 20 Zk — 20 AL Pk
where dy is the distance of zy to T~1(0), and
1 1 1O
= ot S g mas il where o= 3 A (")
Moreover, the sequence {py} is bounded under either one of the following situations:
a) if o <1 then
o\/Tk Ai
< = h = =<1 1
ok < T o7 where 7; = max AL (18)
b) DomT is bounded, in which case
D
Pr < CT +1,

where D ;= sup{|ly — ¢'|| : v, ¥’ € Dom T} is the diameter of DomT.

Proof. The bounds (15) and (16) and statement a) follow immediately from Proposition 4.6 and the proof of
Theorem 4.7 of [15]. Let 2* be the closest point to zy lying in 771(0). Relation (17), the triangle inequality
for norms, Proposition 2.4 and the definition of D imply that

1 1 D
pu < o max, (15 = 27+ 7 = ) < 7 (D[l = 20l) = 7 +1. 0
Note that the rate of convergence (16) in Theorem 2.6 is only useful if we know how to bound pj, which
is the case when ¢ < 1 or Dom T is bounded. When ¢ = 1 and Dom T is unbounded, we do not know how
to bound pj in the general setting of the HPE method. However, we will show that p, can still be bounded
in special cases of the HPE method when ¢ = 1. Our interest in this extreme case is due to the fact that the
ADMM (see Section 7) can be viewed as a special implementation of the HPE method with o = 1.

3 The BD-HPE framework

In this section, we introduce the BD-HPE framework for solving a special type of monotone inclusion problem
consisting of the sum of a continuous monotone map and a point-to-set maximal monotone operator with a
separable block-structure. Recall from Section 1 that the acronym BD-HPE stands for “block decomposition



hybrid proximal extragradient”. As suggested by its name and formally proved in this section, the BD-HPE
framework is a special case of the HPE method. Using this fact and the results of Subsection 2.2, global
convergence rate bounds are then established for the BD-HPE framework.

Throughout this paper, we let X and Y denote finite dimensional inner product spaces with associated
inner products both denoted by (-, -) and associated norms both denoted by || -||. We endow the product space
X x Y with the canonical inner product defined as

((x,y), (', y") = (@, 2") + (,9), V(x,y), (@, y)eXxY.

The associated norm, also denoted by || - || for shortness, is then given

Iz )l = VIl +lyl?, - V(z,y) € Xxy.

Our problem of interest in this section is the monotone inclusion problem of finding (z,y) such that
(0,0) € [F + (A® B)|(z,y), (19)

or equivalently,
0€ Fy(z,y) + A(z), 0€ Fy(z,y)+ B(y), (20)

where F(z,y) = (Fi(z,y), Fy(z,y)) € X x Y and the following conditions are assumed:
Al A: X=X and B:Y =Y are maximal monotone operators;

A2 F:DomF CXxY— X xYis a continuous map such that Dom F' O cl(Dom A) x Y;
A.3 F is monotone on Dom A x Dom B;

A.4 there exists Ly, > 0 such that

|Fu(z,y") — Fo(z,y)|| < Laylly —yll, Vo€ DomA, Vy,y' €Y. (21)

We now make a few remarks about the above assumptions. First, it can be easily seen that A.1 implies
that the operator A® B: X x Y = X x Y defined as

(A® B)(z,y) = A(z) x B(y), V(z,y) € X x1Y,

is maximal monotone. Moreover, in view of the proof of Proposition A.1 of [16], it follows that F + (A ® B)
is maximal monotone. Second, without loss of generality, we have assumed in A.2 that F is defined in
cl(dom A) x Y instead of a set of the form cl(dom A) x Q for some closet convex set O dom B (e.g.,
Q = cl(dom B)). Indeed, if F' were defined on the latter set only, then it would be possble to extend it to the
whole set cl(dom A) x Y by considering the extension (z,y) € X x Y — F(z, Pa(y)), which can be easily seen
to satisfy A.2-A.4. Note that evaluation of this extension requires computation of a projection onto €. Third,
assumption A.4 is needed in order to estimate how much an iterate found by the block decomposition scheme
below violates the proximal point equation for (19).

The exact proximal point iteration for this problem is: given (zx_1,yx—1) € X X Y, let (xg,yr) be the
solution of the proximal inclusion subproblem:

0 € AFu(zr,y)+A@)]+z— 21, (22)
0 € AlFy(z,y)+ By +y—yr-1. (23)

In this section, we are interested in BD methods for solving (19), where the k-th iteration consists of finding
an approximate solution Zj of the subproblem

0 € NFe(z,yp—1) + A(z)] + & — 21, (24)



then computing an approximate solution g of
0 € AlFy(Zk,y) + B(y)] + 4 — yr-1, (25)

and finally using the pair (Zj,9) to obtain the next iterate (g, yr). Note that if (24) and (25) are solved
exactly, then the pair (Zj,ys) will satisfy the proximal point equation (22)-(23) with residual (rg,r,) =
(Fo(Zk, U) — Fo(Tk,yr—1),0), that is, the inclusion in (22)-(23) with its left hand side replaced by (r4,7y).
Moreover, Assumption A.4 provides a way to control this residual. Note also that A.2 ensures that the
method outlined above is well-defined. Indeed, we can show that 5, € cl(dom A) but can not guarantee that
Yr—1 € cl(dom B), which explains the need to assume that Dom F' D cl(dom A) x Y.

To formalize the method outlined in the previous paragraph, we now state the BD-HPE framework.

Block-decomposition HPE framework:
0) Let (zo,y0) € X x Y, 0,0, €[0,1], and 65,0, € [0,1) be given and set k = 1;

1) choose A > 0 such that

0'325 )\k(}way 1/2
Op = {amax ({ MGoLey o2+ NILE, < o; (26)

2) compute Ty, ar € X and €7 > 0 such that

ap € A% (Z), | Me[Fe(Fr, Yho1) + k] + T — zpo1||® 4 22ed < 02|17 — x| (27)
AR [Fe (T, yp—1) + ax] + T — 2—1]|* < 62|78 — 261 (28)

3) compute F, by €Y and e} > 0 such that
be € B (G), || MlFy(Zk, ) + br] + T — i ||* + 2Ape} < U;H?Jk — el (29)

4) set R
(@, yr) = (Tr—1, Y1) — Me[F(Zk, ) + (@, b)], (30)

k «— k41, and go to step 1.

end

We now make a few remarks about the BD-HPE framework. First, instead of using constants o, 6., and
oy in (27), (28), and (29), respectively, we could use variable factors oy, < 0y Gk < 6, and oy, < oy,
respectively, just like in the HPE method. However, for sake of simplicity, we will deal only with the case
where these factors are constant. Second, even though we have assumed in step 0) that o, < 1, we observe
that this condition is implied by (26) and the fact that ¢ < 1. Third, (27) implies that (28) holds for any
Gz € |0s,1). Hence, when o, < 1, we can simply choose &, to be equal to o, as long as (26) holds with
0y = 05. Fourth, if o, < 1, then the assumption that o, < 1 implies that there always exists A\;, > 0 satisfying
(26). Fifth, if o, = 1, then the assumption that ¢ < 1 implies that there exists A\p > 0 satisfying (26) if,
and only if, 6, = 0, in which case we must have 0 = 1. Sixth, there are relevant instances of the BD-HPE
framework in which (27) and (28) hold with o, = 1 and &, = 0, and (26) holds with ¢ = 1, or equivalently,
05 + )\zLiy < 1. Finally, assumption (26) does not necessarily imply that o, < 1 (see the latter remark).

The following result shows that, under inequality (26), any instance of the BD-HPE framework is also an
instance of the HPE method of Section 2.2 applied to the monotone inclusion (19).

Proposition 3.1. Consider the sequences {(zx,yx)}, {(Fx, Tx)}> {(@n,0x)}, (i} and {(3,€Y)} generated by



the BD-HPE framework. Then, for every k € N,

F(&r, i) + (dr, by) € [F + (A BT (@4, §y) C (F + A® B)F (@, i) 81)
and

Al o) + @B+ ) — o) |+ 2006+ <) < 0B ) — s w2
As a consequence, any instance of the BD-HPE framework is a special case of the HPE method for the inclusion
problem (19) with O, = F(&k, Gr) + (ak, bi) and e, = €f + €} for every k € N.
Proof. Using the inclusions in (27) and (29), definition (5) and the definition of ej, we have for every (a,b) €
(A® B)(z,y) that
(@ 1) — (@,9), (@r, b) = (@,b)) = (T — 2, dx — @) + (G — y,bx = b) > —(ef +€]),

which shows that (ay,by) € (A ® B)% ek (%4, §1), and hence that (31) holds, in view of statements b) and c)
of Proposition 2.1. Let

rie = Mg (Fo (g, Yp—1) + ax) + T — Tp—1, = Ne(Fy(Zk, ) + i) + U — Y1 (32)

Then,

Ne[F (&, Gr) + (@n, bi)) + (Ers ) — (@1, Yh—1) =(F + Ne(Fo(Zs G6) — Fo(@h, yn-1)), 7).

which, together with (21), (26) and (32), and the inequalities in (27), (28) and (29), imply

[kt o 1) + @B+ ) — )|+ 2o +<)

<k + M (Fa (@ i) — Fo(@ro yo—) 12 + 712 + 220 (5 + €})

< (kI + Al Fe (Fx, Gi) = Fo(@r yi-0) 1) + 411> + 20 (eF + £7)

< (Il + MLy G — ye—11)? + 721> + 22n(eF + )

< ARLE Tk = g1 P + 220 Lay I 1Ge — -1l + (il + 22e0) + (172117 + 22nef)

< NLZ Tk — Yr—1]® + 2282 LayllEr — ze—1 Tk — yo—1ll + 0211 Ek — zp—1ll® + ool Gk — ye—1ll®

< i (12 = r—1l” + 19k — ys—111%) = o@ll(@x, Gx) — (@1, ye-1)|I*. O
We now state two iteration-complexity results for the BD-HPE framework which are direct consequences

of Proposition 3.1 and Theorems 2.5 and 2.6. The first (pointwise) one is about the behaviour of the sequence
{(Zk, Jx)} and the second (ergodic) one is in regards to an ergodic sequence associated with {(Z, 7k )}

Theorem 3.2. Assume that o < 1 and consider the sequences {(Zy,Jx)}, {(ar,br)}, { M} and {(F,€¥)}
generated by the BD-HPE framework and let dy denote the distance of the initial point (xo,yo) € X X Y to the
solution set of (19). Then, for every k € N,

(ax, br) € A% (&1,) x B (i),

and there exists i < k such that

i 1 1 2d3 N
HF(i'ivgi)+(diabi) <dp 1+0< % 2>a g +ef < 020 E a2
BN R 2(1—02) 3251 A
Proof. This result follows immediately from Proposition 3.1 and Theorem 2.5. O
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Theorem 3.3. Consider the sequences {(Zy,Jr)}, {(ax,br)} and {(c¥,€Y)} generated by the BD-HPE frame-
work and define for every k € N:

k k 2
1 ~ 1 ~ ~ 1
QNS‘a, gr) = — )\z fi, Ni , &“,b“ = — )\z éz,bz 5 Fa = )\1F 531', ~i 5 33
(T%: Uk) Ak; (T4, i) (g, bg) Ak; ( ) k Ak; (T4, Ti) (33)
and
Ei,F = Ak Z)\ 3%7% -T]myk) F(jugz» Z 07 (34)
€L 4 = i Z)\ e (& — £, @;)) > 0, (35)
1 ~
a — . . y ~ o a . >
€kp A i:Zl)\z (5Z + <yl Ir, bz>) >0, (36)

where Ay = Zle Ai. Let dy denote the distance of the initial point (xg,y0) € X X Y to the solution set of
(19). Then, for every k € N,

Ff e Feior(@,970),  (ag,bf) € A%ha(Eg) x Bz (gp), (37)
and p d2
na ~a Ja 2 2
HFk + (ag, by) || < TIS’ €rptEraterp < AL =21+ m), (38)
where " s
2 1 220 1
= 1 52 24212 < 1 39
wim g (o) VTR < 700 (1 ) (39)

and o4y = max{6,,0,}. Moreover, if F is affine, then 13’,? = F(2¢,97). Also, if A (resp., B) is affine and
ef =0 (resp., €] = 0) for every k € N, then af € A(Z}) (resp., b € B(g})).

Proof. First, note that (37) follows immediately from the definitions in (33), (34), (35) and (36), the inclusions
n (27) and (29), and Theorem 2.2. In view of Proposition 3.1, any instance of the BD-HPE framework is
a special case of the HPE method with 0 = F(Zg, %) + (ax, l;k) and e = e} + ¢} for every k € N. Since,
in this case, the quantities 2§, 7§ and &} defined in Theorem 2.6 are equal to (Zf,75), F + (&g,i)g) and
€3 p+E3 g +e5 p, respectively, it follows from the conclusions of this theorem that the first inequality in (38)
holds and

2d2
exrterrterp < T:(l + pr), (40)
where 1
Pr =g max, (s 9:) — (@i, y3) |- (41)

Noting the definition of 7 in (39), we now claim that py < n, which, together with (40), clearly implies the
second inequality in (38). Indeed, let (*,y*) be a solution of (19) such that ||(zo,y0) — (z*,y*)|| = do. Due
to Proposition 2.4, we know that

1@k yx) = (@1, yp-0)|| < [[(@rsyr) = @590+ [ (@p-1,90-1) = (@7 g7
< [l(@o, y0) = (=% 4l + (0, yo) — (=7, y")I| = 2do. (42)

It follows from (29) and (30) that

Nk — ye—1ll < ok — il + lluk — ye—1ll < oyllge — ye—1ll + llyk — vk—1:

11



and hence that

~ Yk — Yk—1 - - Oy Yk — Yk—1
15— vl < 2=y <o — | < D vl (43)
-0y, 1-o0y
Also, it follows from (21), (28) and (30) that
|2k — 2kl — AeLayllTr — Ye—1]l < |1Z6 — 2k + Ae[Fo Tk, Yo—1) — Fo(Zx, Jr)] ||
< 0ol — -1l < Gall|Tk — 2l + 2k — 2h—1l]),
and hence that ol |+ ALy 7 H
- Oz || T — Tp—1|| + AeLayl|lYr — Yk—
T — ]| < - vl — Oko1 (44)

1-35,
Adding the second inequality in (43) to inequality (44) and using (42), the first inequality in (43) and the
definition of o, , in the statement of the theorem, we conclude that

1(@x, Tr) — (@5 i) | < N1 Z0 — il + 196 — yrell

1 7 ~
=14 (0 |z — zh—1l| + oy llyk — ye—1ll + MeLayllTk — yi—1l])
zy
<1, \/55 +o02+ A\ L2, 7k = 2512+ Yk — Y12 + 5% — ve_1]2
zy
“1l1—-0 \/53 + 05 + )‘%L%y \/4d(2) +(1- Uy)_2||yk — yr—1]?
zy
2d0 1 1/2
1 \/~2 2 4 N\272 .
ST ( i <1—oy>2> 7zt oyt AL

The last estimate together with (39) and (41) clearly imply our claim that pi < mg. Finally, note that the
second inequality in (39) follows from (26) and the assumption that &, < o,, and that the last assertion of
the theorem follows from implication (4) about an affine map 7. O

We observe that, if we had assumed in Theorem 3.3 that o < 1 (or Dom A x Dom B is bounded), then its
proof would be much simpler since in this case we could have used the last part of Theorem 2.6 to establish
boundedness of {pi}. However, as observed earlier, our interest in the case where o = 1 is due to the fact that
the ADMM (see Section 7) can be viewed as an instance of the HPE method with ¢ = 1. To handle the case
o = 1, the proof of Theorem 3.3 uses inequality (16), which depends on the quantity pi. As shown in this
proof, all that is required for showing boundedness of {p;,} is the assumption that ¢ < 1 and max{¢,,0,} < 1.

Theorems 3.2 (resp., Theorem 3.3) requires condition (26) to hold for some o < 1 (resp., 0 < 1), which in
turn implies that o, < 1. We have seen that any these assumptions implies that the BD-HPE framework is
a special case of the HPE method (see Proposition 3.1). We conjecture whether iteration-complexity bounds
can be established for the BD-HPE framework, or some subclass of it, under some weaker assumption, i.e.,
one which either allows condition (26) to hold for some o > 1, or o, to be equal to 1.

4 Approximate solutions of the proximal subproblems

In this section, we describe some specific procedures for finding approximate solutions (%, ax, %) and (Jx, b, ey)
of (24) and (25) according to steps 2 and 3, respectively, of the BD-HPE framework. We should emphasize
that such solutions can be found by other procedures which are not discussed below.

The problem of finding approximate solutions as above can be cast in the following general form. Through-
out this section, we assume that

B.1) C: X = X is a maximal monotone operator;

12



B.2) G :DomG C X — X is a continuous map which is monotone on cl(Dom C) C Dom G.

Given € X and A > 0 together with tolerances o, > 0, our goal is to describe specific procedures for
computing a triple (Z,¢,e) € X x X x Ry such that

ceC(2), |MG(E)+8E) +7—2|®+2X <?|i —z|?, (45)

IMG(Z) +¢) + & — 2| <o[l& — =] (46)

We note that conditions B.1 and B.2 imply that G + C is a maximal monotone operator (see the proof

of Proposition A.1 of [16]). This implies that, for any A > 0, the resolvent of G + C, namely the map

[I +A(G + C)]7! is a single-valued map defined over the whole X. The following simple result shows that
when the resolvent of G + C' is computable, (45) and (46) can be solved exactly.

Proposition 4.1. For any x € X and A > 0, the triple (Z,¢,¢) defined as
T=NG+O)+ I z), é&:=

satisfies (45) and (46) for any o >0 and & > 0.
Proof. Using the three identities in (47), we easily see that ¢ € C(Z) and
ING(Z) + &) + 7 — x| + 22 =0 < 0?7 — =% O

Now we deal with the case in which C'is the sum of a differentiable convex convex with Lipschitz continuous
gradient and a maximal monotone operator T for which the resolvent of G 4+ T is easy to compute. Note that
this case describes a meaningful situation in which it is possible to compute a triple (Z,¢,e) for which the
smallest provably o satisfying (45) is positive while the smallest & satisfying (46) is zero.

Proposition 4.2. Assume that C = 0f + T, where T : X = X is mazimal monotone and f : X — (—o0, 0]
is a proper closed convex function such that f is differentiable on cl(domT) C int(dom f), Vf is L-Lipschitz
continuous on cl(DomT). Then, for any x € DomT and X > 0, the triple (Z,¢,¢) defined as

F= I+ MG+ T)] (@ — AV (), &z%(m—i‘)—G(is), 6:§||5c—x||2 (48)

satisfies (45) and (46) for any o > VAL and & > 0. Moreover, é € (0-f + T)(Z).
Proof. First observe that the last two identities in (48) imply that

L
ING(Z) + &) + 7 — z]|? + 2Xe = 2)e < 2) <2||gz~ - x||2> = \L||Z — 22,

and hence that (Z, ¢, ) satisfies (45) and (46) for any o > v AL and ¢ > 0. It remains to show that ¢ € C¢(Z).
Using the definition of Z, we have

%(x )~ Vf(z) € (G +T)(&),

and hence, ¢ € Vf(z) + T(z), due to the definition of é. We now claim that Vf(x) € 0. f(Z), from which we
conclude that

¢ (0f +T)(x) C[(0f) +T)(x) C (Of +T)*(2) = C°(%),
where the second and third inclusions follow from Proposition 2.3(a) and Proposition 2.1, and the equality

follows from the definition of C. To prove the claim, note that Proposition 2.3(c) with v = V f(z) implies that
Vf(x) € do f(Z), where

&= @)~ @)~ (V@) 5 —2) < Dl -l =<,

where the inequality is due to the fact that V f is L-Lipschitz continuous on cl(DomT) D DomT 3> Z, z, and
cl(DomT') is convex. O
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In contrast to Proposition 4.2, the next result shows how one can obtain an approximate solution (Z, ¢, ¢)
of (45) for which e = 0. A special case of it (in which = R™) forms the basis of Tseng’s modified forward-
backward splitting algorithm (see [30]).

Proposition 4.3. Assume that G : X — X is L-Lipschitz continuous on a closed convex set Q) such that
DomC C Q C DomG. Then, for any x € X and X > 0, the triple (Z,¢,¢) defined as

7= (I +AC)" (z — A\G(Pa(z))), &= %(:v — %)= G(Pa(z)), £=0 (49)

satisfies (45) and (46) for any 0,6 > AL.

Proof. First note that the first two identities in (49) imply that Z € DomC C Q and ¢ € C(Z), and hence
that ¢ € C°(Z) in view of the definition of ¢ and Proposition 2.1(c). Also, relation (49), the inclusion & € Q2
and the assumption that G is L-Lipschitz continuous on 2 imply that

ING(@) +8) + 7 — 2]|* + 2Xe = [A(G(2) + &) + 7 — 2| = N[ G(@) — G(Pa(a))]?
= N[IG(Pa(1)) — G(Pa(2))]|* < NL?|[Pa(2) — Pa(x)|* < (AL)*|17 — 2|,

where the last inequality follows from the fact that Pq is a nonexpansive map. We have thus shown that
(Z,¢,¢e) satisfies (45) and (46) for any o, > AL. O

Note that the above formula for # is in terms of the resolvent (I + AC)~! of C, which must be easily
computable so that & can be obtained. Observe also that for the case where C' = Nx for some closed convex
set X C X, we have (I + ANx)~! = Px and the above expression for  reduces to & = Px(z — A\G(Pq(z))).

The next result describes a way of computing an approximate solution (Z,¢é,e) of (45) which forms the
basis of Korpelevich’s method (see [13]) for solving monotone variational inequalities and its generalized version
(see for example [19, 16]) for solving monotone hemi-variational inequalities. In contrast to Proposition 4.3, it
assumes that C is a subdifferential and it needs to evaluate two resolvents of G in order to compute (Z, ¢, €).

Proposition 4.4. Assume that C = 0g, where g : X — (—00, 0] is a closed proper convex function and G is
L-Lipschitz continuous on domg. Then, for any x € domg and A > 0, the triple (Z,¢,¢) defined as

&= (I+Xg) ' (z = \G(x), ¢= %[x —2t] = G(7), e:=9(7)—[gla™)+ (T —a",e)], (50)
where
T = (I +09) ' (z — \G(%)), (51)

satisfies (45) and (46) for any 0,6 > AL.

Proof. First observe that € is well-defined since Z,2* € domg, in view of their definition in (50) and (51),
respectively. We first prove that ¢ € C¢(Z). Indeed, the definition of ¢ and ™ in (50) and (51), respectively,
imply that ¢ € g(z™). Hence, it follows from Proposition 2.3(c) and the definition of € in (50) that ¢ € d-g(Z),
and hence that ¢ € (0g)¢(z) = C(Z), in view of Proposition 2.3(a).

To show that the inequality in (45) holds for any ¢ > AL, define

= % o — AG(z) — 4] (52)

Using the definition of  and p in (50) and (52), respectively, we conclude that p € dg(&). This fact and the
last identity in (50) then imply that

e=g(@) - g(a") — (Bd—a") = —[gla") — g(@) — (pa" — D)+ (p—e,&—at) < (p—EF—a").
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This, together with the second identity in (50), then imply that
ING(E) + &) + & — x| +2 e = |7 — 2T |2 + 2 e < |7 — 2T |2 + 2\ (p — ¢,
A -8 + & -t = Xp - < AP — ) + & — 2|2
= [IMG(x) — G(2))|? < (AL|jz — Z]])?,

z—at)

where the last equality follows from (52) and the second identity in (50), and the last inequality is due to the
assumption that G is L-Lipschitz continuous on dom g D {z,Z}. We have thus shown that (45) and (46) hold
for any 0,6 > AL. O

5 Specific examples of BD-HPE methods

The goal of this section is to illustrate how the different procedures discussed in Section 4 for constructing
triples (Zx, ax, ) and (fk, by, el) satisfying (27), (28), and (29), respectively, can be used to obtain specific
instances of the BD-HPE framework presented in Section 3. This section is divided into three subsections. In
the first one, we discuss a specific instance of the the BD-HPE framework in which (24) and (25) are both
solved exactly (see Proposition 4.1). In the second subsection, we give another instance of BD-HPE framework
in which these two proximal subproblems are approximately solved by means of Tseng’s scheme presented in
Proposition 4.3. In the third subsection we study a BD method for a large class of linearly constrained convex
optimization problems, which includes cone programs whose objective functions converge to infinity as the
relative boundaries of their domain are approached.

5.1 Exact BD-HPE method

In this subsection, we consider a special case of the general BD-HPE framework where the subproblems (24)
and (25) are solved exactly and specialize the iteration-complexity bounds of Theorems 3.2 and 3.3 to the
current setting.

In this subsection, we assume that we know how to solve the proximal subproblems (24) and (25) exactly.
More precisely, we consider the following special case of the BD-HPE framework.

Exact BD-HPE method:
0) Let (z0,0) € X xY and o € (0,1] be given and set A = ¢/L, and k = 1;
1) compute (Zx,9r) € X x Y as

Tp = [T+ MEo(g6—1) + A7 @r-1), Gk = [L+ MEy(@x, ) + B)] 7 (Gr-1)- (53)

2) set xp = T — A[Fo(Zk, J) — Fu(Zk, Yr—1)] and k <+ k + 1, and go to step 1;

end

The following result shows that the above algorithm is indeed a special case of the BD-HPE framework in
which subproblems (24) and (25) are solved exactly (see Proposition 4.1).

Lemma 5.1. Consider the sequences {(zk,yx)} and {(Zr,Gr)} generated by the exact BD-HPE method, and
for each k € N, define e} =€} =0, A, = A,

~ 1 - I ~ 1, _ _ I -
ay = X(Cﬂkq —Ty) = Fo(@r, Uk—1), br = X(ykq — k) — Fy(Tr, Uk),  Yr—1 = Uk—1- (54)

Then, for every k € N, (26), (27), (28), (29) and (30) hold with 0, = 6, = 0, = 0. As a consequence, the
exact BD-HPE method is a special instance of the BD-HPE framework in which 0, = 6, = 0y = 0.
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Proof. The definition of {\} clearly implies that (26) holds with o, = &, = o, = 0. Using the definition of €%,
ef and A\, and relations (53) and (54), and applying Proposition 4.1 twice to the pairs (G, C) = (F (-, Jx—1), A)
and (G, C) = (F(Zx, ), B), we conclude that (27), (28) and (29) hold with ¢, = &, = 0, = 0. Moreover, (30)
follows from (54) and the update rule of zj in step 2 of the exact BD-HPE method. O

The following result, which is an immediate consequence of the previous result and Theorem 3.3, establishes
the iteration-complexity of the exact BD-HPE method.

Theorem 5.2. Consider the sequences {x} and {(Zy,yr)} generated by the evact BD-HPE method, and
define the sequence {(ay,bx)} according to (54). Moreover, for each k € N, define:

1 k - 1 k k
mk’yk EZ mlayl ( 7 EZ ala Z ’ Z 90173/2

?r\*—‘

and
a k b~ = Fa  Sa e =
€k F = %Zi:l <(xi7yi) - (ajk’yk)a F(x“yz» >0,
k =~ ~a = a k ~ ~a I
efa =1 i (B — 2, 0:) 20, et pi=1F 2ig <<yz — Uy » bz>> > 0.

Let dy denote the distance of the initial point (xo,%o) € X X Y to the solution set of (19). Then, for every
k € N, the following statements hold:

a) (an,bx) € A() x B(Gr), and if o < 1, there exists i < k such that

L,,d 1
HF(jiagi)‘i‘(divbi) < 20 Lk

b) we have ~
Fg € Foor (80, 98), (ag,bl) € A%.a(z2) x Bh5(§2),
and - -
|5+ @ b)) < =22, e ptebateis < ]:y 2 (1+2v30).

Also, if F is affine, then F¢ = F(2%,9%). In addition, if A (resp., B) is affine, then af € A(Z}) (resp.,
by € B(yi))-

Proof. This result follows immediately from Lemma 5.1 and Theorems 3.2 and 3.3 by specializing the latter
two results to the case where 0, =, =0y =0, Ay = X\ :=0/Lyy and €} =€} =0 for every k € N. O

5.2 An inexact BD-HPE method based on Tseng’s procedure

In this subsection, we describe an inexact BD-HPE method based on Tseng’s procedure described in Propo-
sition 4.3.

We start by describing the general assumptions of this subsection. In addition to conditions A.1) to A.4)
of Subsection 3, we also impose the following condition:

A.5 there exist scalars L;, Ly, > 0 and a closed convex set €2, such that Dom A C Q, Q; x Y C Dom F,
and:

— F.(-,y) is Ly,-Lipschitz continuous on 2, for every y € Y;

— Fy(x,-) is Ly,-Lipschitz continuous on Y for every = € €.
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Tseng’s based inexact BD-HPE method:

0) Let (z0,50) € X x Y, o € (0,1] and X € (0,0/L] be given, where

- L2 LooL 1z
L= {gmax <|: v ey :|> } ’ (55)
LooL,, L2,+L2,

and set k = 1;

1) set z)_, := Pqo, (xk—1) and compute (Zy,Jx) € X X Y as
Bp = [T+ M) (@p1 = AFe(@)1,001)), Gk = [T+ AB] ™ (yro1 — AFy (Fg, yr—1)); (56)
2) compute (zg,yx) as

xp, = T — AN Fe(Tr, ) — Fo(@lyk-1)ls vk = G — AMFy(Tr, O6) — Fy Tk, yr—1)], (57)
set k «+— k+ 1, and go to step 1.

end

It is easy to see that (55) and the assumption that Ly, > 0 imply that
1
&= 7 max{L;,, Ly, } <1, (58)

Proposition 5.3. Tseng’s based inexact BD-HPE method is a special instance of the BD-HPE framework,
where 0y = 0 = ALy, and oy = ALy, and for every k € N,

A = A\, ep =€l =0,

and
N 1 5 ~ 1 - N
ap = —(xp—1 — Tk) — Fo(@h_1,Yk-1)s b = —(Wk—1 — J) — Fy(Tk, yr—1)- (59)

A A
Proof. Applying Proposition 4.3 to the quintuple (G,C,Q,z,0) = (F(-,yk-1), A, L, Tr—1, ALzz), and also
to the quintuple (G,C,Q,x,0) = (Fy(Zk,-), B,Y,yk—1, A\Lyy), and noting (57) and the definition of a; and
by, we conclude that (30) holds and that (Z,ax) and (g, bx) satisfy (27), (28), and (29), respectively, with
0y = 03 = ALy, 0y = ALy, and € = ¢j = 0. It remains to show that A\, = X satisfies (26) and that
max{&,,0,} < 1. Indeed, using the fact that &, = AL, and o, = AL,,, the definition of L in (55), the
assumption that A < ¢/L and o < 1, and (58), we easily see that (26) holds and that

max{&,,0,} = Amax{Lyy, Lyy} < %max{Lm,Lyy} —oE<E< . O

The following convergence rate result now follows as an immediate consequence of Proposition 5.3 and
Theorems 3.2 and 3.3.

Theorem 5.4. Consider the sequences {(xr,yr)}, {(Zx,Ur)} generated by Tseng’s based inevact BD-HPE
method with \ = o /L, where L is given by (55). Define the sequence {(ax,bx)} according to (59) and the
sequences {(Z%,99)}, {(@g,09)}, {Fe}, {ek rt, {eh a} and {e} g} as in Theorem 5.2. Let do denote the
distance of the initial point (zo,y0) € X X Y to the solution set of (19). Then, for every k € N, the following
statements hold:

a) (g, bi) € A(Z) x B(Gr), and if o < 1, there exists i < k such that

_ ; Ldy [1+o
HF(%wyi) + (@i, bs) > ;

O'\/E 1—0',

<
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b) we have 3 )
Fy € Foor(ag, gg),  (ag, bg) € AT (ZR) x B™2 (g;),

and _
2Ldo oLd2
ko ’

220 1\
T (”(1@2)

Also, if F is affine, then F,? = F(Z¢,9%). In addition, if A (resp., B) is affine, then af € A(Z}) (resp.,
b € Bp)).
Proof. This result follows immediately from Proposition 5.3 and Theorems 3.2 and 3.3 by specializing the

latter two results to the case where o, = 64, = ALgy, 0y = ALyy, Ap = X = U/i, and €7 = Ez = 0 for every
k € N, and using the fact that max{6,,0,} < g€ (see the proof of Proposition 5.3). O

| B+ (@t b

<

where

and £ is defined in (58).

We observe that it is possible to transform the bounds in terms of L in the above result to bounds in terms
of the quantities Ly, Ly, and L, by using the estimate

L< \/Liw +L2,+ L2, <V2L,
which follows immediately from the definition of L in (55).

5.3 An inexact BD method for convex optimization

In this subsection, we are interested in developing a specific instance of the BD-HPE framework for solving a
class of linearly constrained convex optimization.
In this subsection, we consider the following optimization problem:

min{ f(y) + h(y) : Cy = d}, (60)
where the following assumptions are made:
0.1) C:Y — X is a nonzero linear map and d € X;
0.2) f,h:Y — (—o0, 0] are proper closed convex functions;
0.3) dom(h) C dom(f) and there exist a point § € ri(dom k) Nri(dom f) such that Cg = d;
0.4) the solution set of (60) is non-empty;
0.5) f is differentiable on cl(dom h) and V f is L-Lipschitz continuous on cl(dom h).

We now make some observations. First, under the above assumptions, y* is an optimal solution if, and
only if, it satisfies the condition
0 € df(y) + Oh(y) + Na(y), (61)

where M := {y € Y : Cy = d}. Second, the above assumptions also guarantee that df + dg + Ny is maximal

monotone.
Clearly, y

satisfies

*

is an optimal solution if, and only if, there exists z* € X such that the pair (y,z) = (y*,z*)

Cy—d=0, Vf(y)+ 0h(y) — C*x 30, (62)
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or equivalently, to the inclusion problem (19) with = and y swapped, where

Floa)= (D) Ve exxn AQ=0 BO=070)+0m0),

We now state the algorithm that we are interested in studying in this subsection.
An inexact BD method for (60):
0) Let (z0,%0) € X xY and 0 < 0 <1 be given, let A > 0 be such that
AL+ X2||C|* = o2 (63)
and set k = 1;

1) compute
T = 2p—1 = MOGp—1 —d), G = (L +A00) " [Gr—r = MV (Gr-1) — C )], (64)

2) set xp, = T + AC (k-1 — Jx) and k — k + 1, and go to step 1.

end

Define -
£:=(\L)Y2 <1, (65)

where the inequality is due to (63) and the assumption that C' # 0 (see O.1).

Proposition 5.5. The above inexact BD method for (60) is a special instance of the BD-HPE framework,
where 0, = 6, =0, 0, = (\L)"/? and, for every k € N,

Me=2A  e=0, ¢ :*”yk*yk 1% (66)
and 1
ar =0, b= X(gk—l — k) + C" % € [Ocv f + OR)(Tr),  Yr—1 = U1, (67)

Proof. Applying Proposition 4.1 with G = Cyr_1 — d, C =0 and x = x}_1, and noting the definition of ag,
we conclude that (Zy,ax) satisfies (27) and (28) with o, = 0 and &, = 0, respectively. Applying Proposition
4.2 with T = 0h, G = —C*Zj, and ¢ = g;_1 and noting the definition of by, we conclude that (yk,bk,sk)
satisfies (29) with o, = (AL)/? and that the inclusion in (67) holds. Moreover, (67) and the update rule for
x in step 2 of the algorithm imply that (30) holds. Also, by (65), we have

max{&,,0,} = (AL)Y/? =€ < 1. (63)

In addition, using (63) and the fact that o, = &, = 0, 07 = AL and L,,, = ||C||, we easily see that that A
satisfies (26). O

We are now ready to state the convergence rate result for the inexact BD method for (60).

Theorem 5.6. Consider the sequences {xy} and {(Z, gi)} generated by the inexact BD method for (60), and
the sequences {by} and {€!} defined as in (67) and (66). Moreover, for each k € N, define

k k
Z xmyz Z

xkayk

?MH
?vM—‘
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and

k
1 a3
Ez,B = EZ (EZ + <yl — Yk bz>) Z 0.
i=1

Let dy denote the distance of the initial point (xo,%o) € X X Y to the solution set of (62). Then, for every
k € N, the following statements hold:

a) by € (O f + OR)(Gk), and if o <1, there exists i < k such that

5 5 ~ do 1+o0 o2d?
i — d,—C* i bi < —— Y < - 70 .
H(C’y »—C7 i+ bi) “MWEV1-0’ fi = (1—02)Ak’
b) we have )
b€ 0. (F + BT, (69)
and J P2
~a *~a 7a 2 a 2 =
H(Cyk—d»—c T+ bp)|| < kj?’ €pp < kj?(l"'??),
where

and & is defined in (65).

Proof. This result follows immediately from Proposition 5.5 and Theorems 3.2 and 3.3 by specializing the
latter two results to the case where A\, = A :== oA, 0, = 6, =0, 0y = ()\L)l/2, and e and e} are given by

(37), and using the fact that, by (68), max{G,,0,} = . Observe also that (69) follows Theorem 2.2(b) and
the fact that by € 9. (f + h)(k), in view of statement a). O

Note that it is possible to replace A in the above estimates using its explicit formula:

1 L+ +/L?+402||C]? L |C|
- = < 7_’_7.
~ 02 o

We can interpret the above theorem in terms of the optimality condition (62) as follows. Defining ¢; = b;—C* i
and ¢; = €7, it follows from its statement a) that

Ui € 0, (f + W) (G) = C*&i, IO —dll = OL/KY?), |5l = O(1/kY?), e = O(1/k),
while, defining o} = EZ — C*2y and gf = €} p, its statement b) implies that
GOy (WG — CF ICHE —dl = 0(/k), It = O(/k), <k = O(1/k).

Finally, we have shown in this section that the inexact BD method for solving (60) presented in this
subsection is a special case of the BD-HPE framework in which the first equation (resp., second inclusion) in
(62) is identified with the first (resp., second) inclusion in (20). Clearly, it is also possible to derive a variant
of the BD method presented in this subsection which is also a special case of the BD-HPE framework but
with the second inclusion (resp., first equation) in (62) identified with the first (resp., second) inclusion in
(20). Note that for the latter variant, if the procedure of Proposition 4.2 is used for approximately solving the
second inclusion in (62), then we have o, = (AL)'/2, 5, = 0 and o, = 0, which allows us to choose a larger
A than the one in (63), namely A > 0 such that max{\L, A\?||C||?} = o2. Note also that the latter variant
provides a meaningful instance of the BD-HPE framework where 7, < o,.
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6 Sum of two maximal monotone operators

In this section, we consider the monotone inclusion problem consisting of the sum of two maximal monotone
operators and show how it can be transformed to a problem of form (19), which can then be solved by any
instance of the BD-HPE framework.
Consider the problem
0€ (A+ B)(x) (70)

where A, B : X = X are maximal monotone. We assume that the resolvents of A and B are easily computable.
Note that (70) is equivalent to the existence of b € X such that

—be A(z), be B(x),

or equivalently,
0€b+ A(x), 0€ —z+ B1(b).

Hence, the inclusion problem (70) is equivalent to the monotone inclusion problem
0€[F+(A® B h)(z,b), (71)

where
F(z,b) = (b, —x). (72)

Hence, we can apply any instance of the BD-HPE framework, and in particular the exact BD-HPE method
of Subsection 5.1, to the inclusion problem (71) in order to compute an approximate solution of (70). In the
following two subsections, we will discuss in detail these approaches, stating a general BD-HPE framework for
(71) in Subsection 6.1, and an exact BD-HPE method for (71) in Subsection 6.2.

6.1 Block-decomposition HPE framework for (70)
We start by stating a general BD-HPE framework for solving (70).
Inexact BD-HPE framework for (70):

0) Let (xg,bp) € X x X, 65,0, € [0,1) and 0,0, € [0,1] be given and set k = 1;
1) choose Ay > 0 such that (26) holds with L, = 1;
2) compute Zy,ar € X and €7 > 0 such that

ap € Ask (.i‘k), ||/\k[bk—1 + ELk] + Zp — 17k—1H2 + 2)\k€£ < O'i”i‘k — Jik_le; (73)
[Aelbr—1 + ar] + Tp — -1l < Fol|Zr — zp—1]]; (74)

3) compute §, by € X and €/ > 0 such that
Jr € (B™Y%(bg), || Ak[=Fx + Tr] + br — b1 [|? + 20ne? < UEHBk — b1l (75)

3) set
(g, br) = (Th—1,b—1) — A[(br, —=Tk) + (@k, Jr)] = (Th—1,br—1) — M (bk + ar, U — Tx),  (76)

k «— k+ 1 and go to step 1.

end
Clearly, the above framework is nothing else but the BD-HPE framework of Section 3 for the monotone

inclusion problem (71). Note that it is stated in terms of B~1. It is possible to state a version of it which
replaces condition (75) based on B~! by a sufficient condition based on B as described by the following result.
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Proposition 6.1. If ik,gk,bk_l,gk € X, A >0 and £} > 0 satisfy

2
bec (B, A B — e ﬂ+m~nﬂ|+zu%y<( ) 9 — El12, (77)

9y
1+oy
then (75) holds.

Proof. Since (B~1)¢ = (B°)~, the inclusion on (77) implies that j, € (B~1)%%. Using the inequality in (77)
and the triangle inequality for norms, we have

19k — @l <AL bk — br—1]l| + ||/\_1[5k —br—1] + Jx — T
< A [k — br— I+ 1

15k — @
Oy
Hence, |Gk — #x| < (1 + 0,)||A; *[bx — br—1]||, which combined with the inequality in (77) yields
X o = brma] + G — 1 + 20 el < ol b — b ]I
To end the proof, multiply the above inequality by )\%. O
Note that the pair (7,b) = (Jx, bg) in the above result is an approximate solution of the proximal point
equation A, Yb—br_1]+ (7 —&x) = 0 and § € B(D) in the sense described in the paragraph after the statement

of the HPE method in Section 2.2.
The specialization of Theorems 3.2 and 3.3 for the above method are as follows.

Theorem 6.2. Consider the sequences {\}, {(e¥,e0)}, {(Fx,br)} and {(a,9x)} generated by the BD-HPE
method for (70). Moreover, for every k € N, define:

~ ~ ~ 7 k ~ ~ ~ 7
(zZ7yg7aZab%) = Aik i=1 Ai(zhyiaaiab')
k ~ ~a ~
A= Di N (e (B = B a),  ehp = A iy A (e (b B )

Let dy denote the distance of the initial point (zo,by) € X x X to the solution set of (71), i.e

1/2

do = min { (| = wol|? + b~ bo|[*) *: ~b € A(x), b e Bx)}.

Then, for every k € N, the following statements hold:

a) (an,by) € A%k (Z1) x Bk (§x), and, if 0 < 1, then there exists i < k such that

H(Ei + i, —T5 + Ui)

1 1 242\
< dy +0< 2) e +ef < 55
l-0o Z] 1)\j 2(1 _02) Z] 1)\J

b) (ag,by) € Aha(F]) x B2 (g}) and

2, 242
< A €paterp < T(1+Wk)

B+ at, a5+ 30)
where Ny, s defined in (39) with Ly, = 1.

Proof. This result follows as an immediate consequence of Theorems 3.2 and 3.3 applied to (71)-(72) and
noting that in this case F' is affine and L,, = 1. O
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6.2 Exact BD-HPE method for (70)
In this subsection, we state an exact BD-HPE method for (70) and corresponding convergence rate results.

Exact BD-HPE method for (70):
0) Let z0,bp € X and X € (0,1] be given, and set k = 1;
1) compute Ty, b € X as

T =T+ M) (2ot — Abp_1), b = (I +AB™ )Y bp_y + Aip);

2) set xp = Ty — )\(I;k - Bk,l) and go to step 1.

end

The method above is nothing else but the exact BD-HPE method of Subsection 5.1 applied to (71)-(72)
with variable b replacing variable y and vice-versa.

The following well-known result describes how the resolvent of B~! used in step 1) can be computed using
the resolvent of B.

Lemma 6.3. Let b,u € X be given. Then,
b=(T+AB ) u)eb=u-AXIT+X"'B)*(\ ).
In view of the above result, br may be computed as
b = br—1 + ATk — AT +A71B) YA by + &)

The following iteration-complexity bounds for solving the inclusion problem (70) can now be stated as an
immediate consequence of Theorem 5.2.

Theorem 6.4. Consider the sequences {1} and {(Zx,bx)} generated by the BD-HPE method for (70) and
define the sequence {(ag,Jx)} as

- 1 5 ~ B 1 - - ~
ap = X(mk—l —Zp) —bp—1, U= X(bk—l — by) + T (78)

Moreover, for every k € N, define:
»a 50 za N(Z k vl ¥ ~ 7
(xk7 yk7 ak7 bk) = % Zi:l(x’h Yi, Qi b2)7
a k ~, ~a = a k T Ta -~
€k,A = %Zi:1<‘ri — I}, a;), €k,B = %Zi:l@i = by, ¥i)-
Let dy denote the distance of the initial point (xo,by) € X x X to the solution set of (71), i.e.:
- 1/2
do := min { (||:1c — o2+ |b— bOHQ) . —be A(z), be B(m)} .

Then, for every k € N, the following statements hold:

a) (an,by) € A(Z) x B(Gr), and if X < 1, there exists i < k such that

< dy [1+X

bi + g, —F; + §i) || < —= ;
I 2w Al

23



b) (ag,by) € A%h.A(38) x BE5(§2) and

0, 4 el <2i3(1 2\/5)\)
kAT ELB S + .

2d
< )
kA kA

B+ g, —a + 70)
Proof. This result follows as an immediate consequence of Theorem 5.2 applied to (71)-(72) and noting that
in this case F'is affine and L;, = 1, and hence A = o. O

We end this section by discussing the special case of the exact BD-HPE method for (70) in which A = 1. It
can be easily shown that this algorithm is equivalent to the Douglas-Rachford splitting method (see for example
[9]). Hence, Theorem 6.4(b) for A = 1 gives an ergodic complexity estimation of the Douglas-Rachford method.
However, as far as we know, the exact BD-HPE method for (70) with A < 1 is new.

7 Convergence of the alternating direction method of multipliers

In this section, we consider the ADMM for solving a large class of linearly constrained convex programming
problems with proper closed convex objective functions and show that it can be interpreted as a specific
instance of the BD-HPE framework applied to a two-block monotone inclusion problem.

We assume in this section that X, Y and 8 are inner product spaces whose inner products and associated
norms are denoted by (-,-) and | - ||. Consider the problem

min{f(y) + g(s) : Cy + Ds = c} (79)

where c€ X, C:Y — X and D : § — X are linear operators, and f : Y — (—o00,00] and g : § — (—o0, 00] are
proper closed convex functions. Throughout this section, we also assume that the resolvent of 9f and dg can
be computed exactly.

The Lagrangian function L : (Y x §) x X — (—o0, o0] for problem (79) is defined as

L(y,s;2) = f(y) + g(s) — (x,Cy + Ds — ¢). (80)
We make the following assumptions throughout this section:
C.1) there exists a saddle point of L, i.e., a point (y*, s*; x*) such that L(y*, s*;2*) is finite and

in L(y,s;2") = L(y", s";27) = max L(y", s™; z); 81
. min (4 8527) = L{y", %5 27) = max L(y”, s7; 2) (81)

C.2) ri(dom g*) Nrange D* # (;
C.3) C is injective.

For a scalar p > 0, the p-augmented Lagrangian function £, : (Y X 8) x X — (—o0, oo| associated with (79)
is defined as P
Lo(y:5:2) = f(y) + g(s) + (@,c = Cy = Ds) + 5| Cy + Ds = c|.

We next state the alternating direction method of multipliers applied to problem (79).
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Alternating direction method of multipliers:
0) Let p > 0 and (o, o) € X x Y be given and set k = 1;

1) compute 5 € 8 as
5, = argmin {L,(Jr—1, 5; Tx—1)} = argmin, {g(s) — (D" xg—1,8) + gHCQk_l + Ds — CHQ} . (82)
and g € Y as
i = argmin, {L,(y, 5i; wi1)} = argmin, {F(y) = (Cwir,9) + SOy + D5y — e} (83)

2) set xp = xx—1 — p(CYx, + DS — ¢) and k «— k + 1, and go to step 1;

end

Our goal in the remaining part of this section is to show that the ADMM is a special case of the exact BD-
HPE method of Subsection 5.1 for a specific monotone inclusion problem of the form (19). As a by-product,
we also derive convergence rate results for the ADMM.

We start by giving a preliminary technical result about the ADMM.

Proposition 7.1. Let (xp—1,9x—1) € X x Y be given. Then, the following statements hold:
a) 5 € 8 is an optimal solution of (82) if, and only if, the point
Tp = Tp_1 — p(Cﬂk,1 + D3, — C), (84)

satisfies
Si € ag*(D*.fk); (85)

b) if (8k, Yk, xk) are computed according to the k-iteration of the ADMM, then

- - 1 .
0 € 09(¢g*oD*)(Zk)+ Chx—1 —c+ ;(xk —Tp_1), (86)
0 € Of(k) — C*&p + pC*C(Jr — Jr—1), (87)
vy = T — pC(Ur — Jr—1)- (88)

Proof. By (84) and the optimality conditions of (82), we have that §; is an optimal solution of (82) if, and
only if,
D*3y, = D* [l'k—l — p(ng_l + D3§y — C)] € 8g(§k),

which in turn is equivalent to (85). On the other hand, (85) implies that D3, € DOg*(D*%y) C 0(g* o D*)(Zy).
Combining the latter inclusion with (84), we obtain (86). Moreover, (83) implies that

0e 6f(:l]k) —C*rp_1 + pC*(Cgk + D3y — C).

Combining the above equation with (84), we obtain (87). Finally, (88) follows immediately (84) and the
update rule for zj in step 3 of the ADMM. O

Proposition 7.2. Given (xp—1,9x—1) € X X Y, define

. X . _ . . 1 . N
& = (p0(g* 0 D*) + 1) Hap—1 + ple = Cp—1)], g = ;(mk—l — &) +c— Chp-1.

Then, the following statements hold:
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a) 51 € 8 is an optimal solution of (82) if, and only if, 5, € D=1 (W) N Ag*(D*2y);

b) if condition C.2) holds, then D=1 (1) N Og*(D*2y) # 0, and hence the set of optimal solutions of (82)
is nonempty;

¢) if condition C.3) holds, then the set of optimal solutions of (83) is nonempty.

Proof. First, observe that (Z,w) = (I, W) is the unique solution of
0=p(CPp—1—c+ W)+ T —xp_1, W € (g% o D*)(Z). (89)

a) Assume first that §; is an optimal solution of (82). By Proposition 7.1, we conclude that &) given by
(84) satisfies (85). Then,
Dsi € DOg* (D" %) C 0(g™ o D*)(Zy),

which, together with (84), imply that (Z,w) = (%, D5,) satisfies (89). Hence, in view of the observation made
at the beginning of this proof, we conclude that Zj, = &) and D3y = wy. These identities and inclusion (85)
then imply that 3, € D~1(wy) N Ag* (D*ix).
Conversely, assume that 5, € D~1(w) N dg*(D*2y). Then, Wy = D3y, and hence (&1, D3x) = (&%, W)
satisfies (89). In particular,
T =ap—1 — p(CUr—1 — ¢+ D5;) = Ty,

where the latter equality is due to (84). Since &y = I and, by assumption, §; € dg*(D* &), we conclude that
(85) holds, and hence that §j is an optimal solution of (82).
b) Using the fact that (&, wy) satisfies (89), we conclude that

Wy € 9(g* o D*) (&) = D(9g* (D*&y)).
where the latter equality is due to Assumption C.2). The latter inclusion clearly implies that D~ (wy) N
9g* (D) # 0.

c¢) This statement follows from the fact that, under Assumption C.3, the objective function of (83) is
strongly convex. O

We will now derive the aforementioned monotone inclusion problem of the form (19). Let X x Y :=
dom f x (D*)"}(domg*) and ¥ : X x Y — R be defined as

U(y,x) = minL(y,s2) = f(y) + (z,c— Cy) + (ming(s) - (D*,5))
= fy)+ (x,c—-Cy) —g"(D"x).
It is easy to see that the pair (y*,z*) as in Assumption C.1) satisfies

max min L(y,s;z) = maxmin¥(y,z) = V(y*,2*) = minmax ¥(y,x) = min maxL(y,s;z) € R.
me%(y,s)eyxs (y ) xe)?yEY (y ) (y ) yEYxe))(( (y ) (y,s)EEXSmGD}C( (y )

The latter condition is in turn equivalent to (y*,z*) being a solution of the inclusion problem:
0€df(y)—C*z, 0€09(g*oD*)(x)+Cy—c. (90)
Under the assumption that C*C is nonsingular, the latter inclusion problem is clearly equivalent to
0€ (pC*C) M 0f(y) — C*x), 0€p[dg"oD*)(x) +Cy—d]. (91)

and hence to inclusion problem (19) with

Fo)= | (ot ey |+ Al)=pdlg o D)), B) = (oC"C)0f ). (92)
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If U is an inner product space with inner product also denoted by (-, ), then a symmetric positive definite
operator M : U — U defines another inner product, denoted by (-, ) s, as follows:

(u,uYpp = (u, Mu'y,  Vu,u' € U.

We will denote the norm associated with the above inner product by || -||as. Moreover, when M = 71 for some
7 > 0, where I denotes the identity operator, we denote the norm || - || simply by || - ||--

Proposition 7.3. Assume that C*C is nonsingular, ri(dom g*) N Range(D*) is non-empty and consider the
inner products (-,-),~1 in X and (-, '>C‘p in'Y, where C, := pC*C. Then, the following statements hold:

a) the map F defined in (92) is monotone with respect to the inner product (-,-),-+ + (, '>C‘p m X xY
and the operators A and B defined in (92) are mazimal monotone with respect to (-,-),-1 and (,")¢
respectively;

b) F satisfies (21) with Ly, = 1;

¢) the sequence {(xk,Ur)} generated by the ADMM together with the sequence {Zy} defined in (84) corre-
spond to the same sequence {(x, Tk, Jr)} generated by the exact BD-HPE method applied to the inclusion
problem (19) with (F, A, B) given by (92) and with o =1 (or equivalently, A = 1).

Proof. Monotonicity of F in the rescaled space X x Y holds trivially. Maximal monotonicity of A (resp., B)
in X (resp., Y) endowed with the norm || - |[,~1 (resp., || - ll¢,) follows from the fact that this operator is the

subdifferential of g* o D* (resp., f) in the rescaled space. For b), observe that
1Fe (2, y) = Folz,y)5-2 = loCy = y)ll5-+ = pllCly = y)I* = (v — ¢/, (0C*C)y =) = ly =¥ lIZ, -

Statement ¢) follows immediately from Proposition 7.1 by noting that relations (86)-(88) reduce to the recursive
formulas for obtaining (zk,Zy,Jx) in the the exact BD-HPE method applied to the inclusion problem (19)
with (F, A, B) given by (92) and with A = 1. O

As a consequence of the previous proposition, we obtain the following convergence rate result.

Theorem 7.4. Consider the sequence {(wy,9r)} generated by the ADMM and the sequence {I} defined
according to (84). Consider also the sequence {(ax,by)} defined as

ar = a1 — ik — p(Ck—1 — ¢),  be = Gx—1 — i + C, ' C* iy, (93)

where C,, := pC*C. Moreover, define the sequences {(23,9%)}, {(ag,b3)} and {(ef oot )} as

k k
1 1
xk,yk % Z xwyl (ak;abk % Z aw ’L 9 (94)
and i
. 1 I o _ 1 a
i=1 i=1
Then, for every k € N
—aj € 0oy (9" 0 D) (L),  Cobf € 0 F(G1), (96)

5 1/2
1 e a2 2d,
e H—c 8+ C,he (C*C)_1> < e el <
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where dy is the distance of the initial point (zo,Jo) € X x Y to the solution set of (90) with respect to the inner
product (-,-),-1 + (-, '>C‘p in X xY, namely dgy is the infimum of

c*C

1 ~
5llzo = a1+l -7
over the set of all solutions (x*,y*) of (90).

Proof. By Proposition 7.3(c), we know that {(z,Zx,3r)} is the sequence generated by applying the exact
BD-HPE method to (91) with ¢ = 1 and L,, = 1, and hence A = 1. Hence, it follows from Lemma 5.1 and
Theorem 5.2, relations (92), (93), and the definition of F' and the fact that F' is affine, that the last inequality
n (97) holds, . )
ar € pd(g* o B*) (),  be € C;'Of (i), (98)

and
/2 2dq

< —.

-k
Now, using the definition of Cp and the norm induced by this operator, we easily see that the latter inequality
is equivalent to the first inequality in (97). Moreover, (96) follows from (95) and (98) and Theorem 2.2(b). O

(lo(C = &) + a2 + 115 - C; i) 2,))

We now translate the above result stated more in the context of the inclusion problem (90) and the exact
BD-HPE method to the context of the original optimization problem (79) and the ADMM, respectively.

Theorem 7.5. Consider the sequence {(xy, Uk, 5x)} generated by the ADMM and the sequences {Zy} and {by}
defined according to (84) and (93). Moreover, consider the sequences {(Z¢,95)}, {0p}, {(e% ..€% )} defined
n (94) and (95), and define for every k € N:

k
1 -
5% = Z §, rp=CyL+ D5} —c, rl:=pC*Chi—C*z}. (99)
=1
Then,
0€ g (3) - DEL,  rl €0 f(HE) - O (100)
and 12
2d, 2(1 +2v2)d3
<p|7“2||2 =|lrte-o)- ) S fheTEky S % (101)

where dy is defined as in Theorem 7.4.
Proof. First note that (84) and the definition of aj in (93) imply that

a, = pDér, (102)
which together with (95) imply

1 1 i 1
€hw = ki_zl<£i—§:z,pdi> %g i — Iy, D§;) %g Z; — DT, 8;) .
This identity, (85) and Theorem 2.2(b) then imply that
85 € Oz g™ (D"IY),

from which the first inclusion in (100) follows. The second inclusion in (100) follows from the definition of C,
in Theorem 7.4, the second inclusion in (96) and the definition of r} in (99). In addition, the estimates in
(101) follow from (97), the definition of C,, (99), (102), and the definition of a§ in (94). O

We should emphasize that the analysis of this section requires both subproblems (82) and (83) to be solved
exactly. We conjectured whether this assumption can be relaxed so as to allow the subproblems (or one of
them) to be solved approximately.
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8 Concluding remarks

In this paper, we have presented a general framework, namely the BD-HPE framework, of BD methods and
obtained broad convergence rate results for it. As a consequence, we have derived for the first time convergence
rate results for the classical ADMM by showing that it can be viewed as a special instance of the BD-HPE
framework. We have also proposed new BD algorithms and derived their respective convergence rate results.
These include a new splitting method for finding a zero of the sum of two maximal monotone operators and a
new BD method based on Tseng’s modified forward-backward splitting procedure. The analysis of the latter
uses of an important feature of the BD-HPE framework, i.e., that it allows the one-block subproblems to be
solved only approximately.

We also note that Nemirovski [17] and Nesterov [18] have previously established O(1/k) ergodic iteration-
complexity bounds similar to the ones derived in this paper for specific algorithms to solve VIs and saddle-point
problems. Hence, the various ergodic iteration-complexity bounds obtained in this paper extend their com-
plexity bounds to a broader class of algorithms and problems other than VIs. Moreover, Monteiro and Svaiter
[15, 16] have previously established pointwise complexity bounds for hemi-VIs and saddle point problems
similar to the ones derived in this paper.

Finally, we make some remarks about a recent work of Chambolle and Pock [6] in light of the development
in this paper. They have studied the monotone inclusion problem

0e K*'y+09g(z), 0€—-Kz+0af"(y),

where K is a linear map and f, g are proper closed convex functions, and analyzed the convergence rate of an
algorithm based on the exact evaluation of the resolvents of dg and df* (or 9f). Their analysis, in contrast
to ours, is heavily based on the fact that the above monotone inclusion problem is the optimality condition
associated with the saddle point problem
min max(Kz,y) + g(z) — f*(y).
Ty

It can be shown, by means of a rescaling procedure, that their method and assumptions coincide with the
exact BD-HPE method for the above inclusion problem (see Section 5.1) with the assumption that o < 1. It
should be noted however that, in contrast to our analysis, theirs does not deal with the extreme case of ¢ = 1
which, as mentioned earlier, is crucial to the analysis of the ADMM.
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