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Various iterative methods have been introduced by involving Taylor’s series on the auxiliary function g (x) to solve the nonlinear
equation f (x) = 0. In this paper, we introduce the expansion of g (x) with the inclusion of weights w; such that 2 w, = 1 and
knots 7; € [0,1] in order to develop a new family of iterative methods. The methods proposed in the present paper are applicable
for different choices of auxiliary function g(x), and some already known methods can be viewed as the special cases of these
methods. We consider the diverse scientific/engineering models to demonstrate the efficiency of the proposed methods.

1. Introduction

Most of the problems in science and engineering involves
nonlinear equation of the form f(x)=0, where
f: DCR— R is a sufficiently smooth function in the
neighborhood of a simple zero a € D. Many physical
problems related to diverse areas such as biological appli-
cations in population dynamics and genetics where impulses
arise naturally, motion of a particle on an inclined plane and
projectile motion in physics, Van der Waals problem, and
continuous stirred tank reactor equation in chemistry etc.,
can be modelled by nonlinear equations. Consequently,
many numerical methods based on different techniques have
been developed for solving nonlinear equations, see for
example [1-12] and references therein. The following
quadratically convergent Newton’s method [13], which
needs 2 function evaluations per iteration, is considered as
the fundamental tool for obtaining the numerical solution of
nonlinear equations:

)
n+l n f/ (xn)’

X n=0,1,23,...,f (x,)#0. (1)

Definition 1 (see [12]).

Let p be the convergence order of the iterative method
and q is the number of functional evaluations per iteration
required by the method, then the efficiency index (IE) of the
method is defined as

IE = p2. (2)

Obviously, the efficiency index (IE) of Newton’s method
is 1.4142.

An appropriate selection of an initial guess makes
Newton’s method very efficient, whereas this method works
ordinarily for an inappropriate initial guess. In second
century BC, an ancient Chinese, Ying Buzu Shu, introduced
a more useful method, which gives accurate results in some
cases even where Newton’s method does not work, for which
two initial approximations are chosen. Using x; and x, as
initial approximations, the next approximation can be ob-
tained as

_ xzf(xl) - x1f(x2)
ST ) f () @

During the last two decades, ancient Chinese algorithms
have been a scorching topic for many researchers [14-16]. In
2016, another Chinese He [17] introduced two modifications
(Bubbfil Algorithms 1 and 2) of the above method with fast
convergence.
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Several modifications of Newton’s method have also
been introduced, e.g., [5, 12, 18, 19]. Weerakon and Fer-
nando [20] constructed the following useful cubically
convergent method:

()
I ) f O
f (%) v
xﬂ
Yo =Xn— f/ (xn)'
The midpoint rule [19, 21],
Xppy = X f(xn) (5)

" = () S ()

with an order of convergence 3, is also a well-known
technique. There exist several other third- and fourth-order
methods involving diverse techniques for nonlinear equa-
tions, e.g., [5, 18, 22, 23]. Abbasbandy [1] used the Adomian
decomposition method (ADM) [2] to find the simple root of
nonlinear equations. But employing ADM involves higher
order derivatives of Adomian polynomials which is a major
weakness of ADM. But this is not the case in the decom-
position technique due to Cherruault [24, 25]. The technique
of Cherruault has extensively been used to develop some
useful algorithms for solving nonlinear equations [3, 9, 26].
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Recently, Shah et al. [27], using the same technique and an
auxiliary function g(x) along with the expansion of the
original equation f(x) =0, have introduced a family of
iterative methods for nonlinear equations.

In the present paper, making use of the decomposition
technique of [24, 25], together with the expansions of both
f(x) and g(x), we construct a new family of swiftly con-
vergent iterative methods. In order to exhibit the efficiency
of proposed methods, we present numerical as well as
graphical analysis by considering three mathematical models
from different branches of science, i.e., physics, mathe-
matics, and chemistry.

2. Construction of Methods
Assume the nonlinear equation:
f(x)=0, (6)

with a simple zero « and the initial guess y sufficiently close
to a. We take g (x) as an auxiliary function, such that g (x) is
sufficiently smooth and g («) #0,

f(x)g(x) =0. (7)

Using the quadrature formula and the fundamental law
of calculus, the following coupled system can be formed:

FWgw) +x-MfWMK(G %) +gQ(fxy)] +h(x) =0, (8)

h(x) = f(x)g(x) - f(Pgy) - (x-P[fWK(g,xy)+gM(fx7y)] 9)

where K (g',x,y) and Q(f', x,y) represents Y2 w;g' (y +
7,(x —y)) and Y2 w; f' (y + 7; (x — y)) respectively; w; and
7; are weights and knots, respectively, such that Y7 w; = 1
and 1; € [0, 1].

We write equation (8) in terms of nonlinear operator
N (x) as follows:

x=y- f,(V)g(y)+h(x) ,
FPK(g\xy)+gp)Q(f . xy) 10
=c+N(x),
where
o (11)
N(x) = f (g ) +h(x) )

FWK(g'xy)+gQ(f'xy)

We construct a sequence of higher order iterative
methods by decomposing N (x) in the following way
[24, 25]:

(o)

N (x) =N<in> = N (xo) +

i=0

Mg

o(ge) (30}

(13)

Il
—_

Our purpose is to seek the solution in the form of the
following series:

x= % (14

Thus, we have the following iterative scheme:
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Xy =G,
Xy = N(xo)’

x, = N (g +x;) = N (xp), (16)
Xy = N(xg+x;+++x,) - N(xg+x,+--+x,,), n=12, ....

Thus, For m = 1, we have
X +X+ %, =N(xg+x, +--+x,), n=123..., X=X, =xgt X, =y ,f()’)g()’) .
o fWg W +gyf (y)
x=c+2xi.
i=1

Thus, the following recurrence relation can be formed by
(17) using equation (22).

(22)

From equations (11), (12), and (16), we have Algorithm 1 (28).
Xg=C=19,
’ v Xpyp = X, — ,f(x")g(f”) , n=0,1,2,...,
N FGo)g o)+ (5)9 (%)
x; = N (x)
(18) (23)
= f I()’)g (y) + h(x) g ) i.e., corresponding to the initial approximation x,, (n + 1)st
fWMK(g,xy)+gQ(f'.xy) approximation can be determined. It is notable that the
Usi tion (9) ; above algorithm is actually Newton’s method applied to
sing equation (9), we ge F(x)g ().
faly) Now, for m = 2, equation (20) gives
1= [ 7 . (19)
fWg W+anf ) X=X, = xg+ X, + Xy (24)
We note that x is approximated as Using equation (12), we have
X, =x)+x, ++x,, (20) N (g + %) = - Fgy) +h(x, +x,)
where P FWK(hxo+x0,y) + (NS xo + x15y)
lim Xm = X. (21) (25)
e Using equations (9), (16), (22), and (24), we get
x =X, =xy+x; + %5,
26
—y- F g (y) _ S (x0 +x1)g (%0 + x1) (26)
fMF W +gf' ) fFK(Gx+x1,7) + WS % +x1,7)
Thus, the following recurrence relation can be formed  Algorithm 2
using equation (26).
f(x)g (%)
Y =Xy — 7 7 5 n=012,...,
f(xn)g’ (%) + g (%) f (%)
(27)
o=y - ICALICH)

f(xn)ijzlwig, (xn T (yn - xn)) + g(xn)Zszlwif, (xn T (yn - xn))’
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which is a new predictor-corrector method, and corresponding x = X5 = Xo + X, + X, + X5 (28)
to initial approximation x,, (#+ 1)st approximation can be
determined. Using equation (12), we have

Now, for m = 3, equation (20) gives

SWg) +h(xo+x, +x,)

N(xy+x,+x,) = ; ; . (29)
(o 4204 22) = R (G w0 + 31+ 50 7) + IR0+ 3+ 30 7)
Using equations (9), (16), (26), and (28), we get
x=X3=xy+x, +x;+x3
o F g (y) _ f (x50 +x1)g (%0 + x1)
FWMI WM+gf' ) FWK(G,x+x57) +g(Qfs %0 +x1,7) (30)
) f (30 + %1 +x,)g (% + X, +x,) _
FWK (g %0+ %, +x3,9) + g(Q(f', %0 + X1 +%5,7)
Thus, the following recurrence relation can be formed  Algorithm 3
using equation (30).
f(%,)9 (%)
yn:xn_ [ 7 5 i’l=0,1,2,...,
F(xn)g' (x,) + g (x,)f (%)
. Fn)g(n)
2y = Y P ! P [ > (31)
f(xn)Zizlwig (xn T (yn - xn)) + g(xn)Zi:Iwif (xn T (yn - xn))
. f(2)(z,)
" " f(xn)zzilwig’ (xn + T (Zn - xn)) + g(xn) ;ilwif’ ('xn + Ti (Zn - xn))
which is also a new three-step iterative technique. Shah and Noor [28] have established the above formula.
Algorithm 5. Taking p = 1,w, = 1, and 7, = 1, Algorithm 2
2.1. Some Special Cases of Algorithm 2 reduces to the following iterative method.
Algorithm 4. Taking p = 1,w, = 1, and 7, = 0, Algorithm 2 Yn =Xy~ ACHFICH
. - L 1 — b 1 — Y% n n ! ! >
reduces to the following iterative method: fn)g’ () + g (xa)f* (x,)
[ (%) (%) F )9 (n)
=X, — ; y , Xpi1 = Vo — , n=0,1,2,....
g FGeg (o) + 9 (o) () IR @) )+ () f ()
(33)
f w9 ()

X n=0,12,....

n+ = yn - ! [ >
1 f(ea)g' () + 9 (k) f (x,)
(32) Algorithm 6. Taking p =1,w, =1, and 7, = (1/2), Algo-

rithm 2 reduces to the following iterative method:

b= - S (%09 (x,)
T F (g (xa) + g (k) ()

X =y S O)g () .
T E g Ot x)2) + g o) G w0

(34)
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Algorithm 7. Taking p =2,w, = (1/4),w, = (3/4),7, =0,
and 1, = (2/3), Algorithm 2 reduces to the following iter-
ative method:

y = x, - f(x,)g (%) ’
T f(x)g () + g () f (%)
(35)
N 4f ()9 () o
n+1_yn ! i 7 7 s n= ,1,2,‘...
F(x)g' (x0) + g (%) f (%) + 31 (%) g (% +27,)/3) + 39 (x,) " (3 + 27,)13)
Algorithm 8. Taking p =2,w, = (1/2),w, = (1/2),7, =0,
and 1, = (1/2), Algorithm 2 reduces to the following iter-
ative method:
10 A N
T f(xa)g () + g (%) S ()
(36)

=y 2f ()9 () n=0.1.2. ..
T f(x)g () + g () f () + F (59" (s 3)/2) + 9 () (5 + 30)12) Y

To the best of our knowledge, Algorithms 5-8 are new  Algorithm 10. Taking p = 1,w, = 1,and 7; = 1, Algorithm 3

methods having convergence orders 3,3,4, and 4, reduces to the following iterative method:
respectively. b n Flx)9(x,)
o x,)9 (x,) + g (x,) f (x,)
2.2. Some Special Cases of Algorithm 3 S xa)g () + 9 () /7 ()
S )9 ()
Algorithm 9. Taking p = 1,w; = 1, and 7, = 0, Algorithm 3 Zn=Yn— 7 7 >
reduces to the following iterative method: F(0)g" () + 9 (50)f* (7)
yi’l = xn —_ ,f (xn)g (xn) . , xyH.] — Z;«, _ ,f (Zn)g (Zn) - , n= 0’ 1’ 2’ o
f(xn)g (xn) + g(xn)f (xn) f(xn)g (zn) + g(xn)f (Zn)
(38)
- S )9 ()

n=Vn~ ’
f(xn)g' (x,) + g (x,)f" (x,)
Algorithm 11. Taking p = 1,w, =1, and 7, = (1/2), Algo-
f(z.)9(z,) n=012 rithm 3 reduces to the following iterative method:

B T T (g (x0) + 9 () (%)
(37)
R S (%4)g (%)
" (g () + g (k) f ()
o S )9 (n)
= g (Ot 2f2) + 9 () T (O + 20)/2) 39
f(z,)9(z,) R 012 ...

I T )0 (@t %)) + 9 (2 (2 + %))



Algorithm 12. Taking p =2,w, = (1/4),w, = (3/4),7, =0,
and 7, = (2/3), Algorithm 3 reduces to the following iter-
ative method:

~ f(x,)g(x,)
" f g (x) + g (x)f (%)

In =X

>

4f ()9 (V)
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(40)

T g (50) + 9 (5) F (6) + 3F (6)g (% +27,)3) + 39 () F (% + 2,)/3)
41 (2.,)9(z,)

n=0,1,2,....

X+l = %

Algorithm 13. Taking p =2,w, = (1/2),w, = (1/2), 7, =0,
and 7, = (1/2), Algorithm 3 reduces to the following iter-
ative method:

R CAYICH
T g (o) + 9 () f ()

2f (yu)9 ()

" (x)g () + g (e f () + 35 (x,)g (o + 22,)13) + 39 (x,) 7 ((x, +22,)/3)

T g () + 9 G ) S (5 (et )2) + 9 (i) S (o )72
2f (2,)9(2)

(41)

Xptl = %

To the best of our knowledge, Algorithms 10-13 are new
iterative methods for solving nonlinear equation (6) with
convergence orders 3, 4,4, and 4, respectively.

Obviously, different iterative methods can be obtained
from Algorithms 2 and 3 by using distinct values of the
auxiliary function g(x). Suitable selection of auxiliary
function g(x) plays a significant role for the better per-
formance of these methods. To demonstrate the efficiency of
our proposed algorithms, we choose g(x)=1I(x). Thus,

corresponding to this choice, algorithm 10+,
i=4,5,6,...,13, is the special case of algorithm i.
Algorithm 14
el ()
T X f () + f ()
(42)
Ynf (n)

n=0,1,2,....

et = I () + £ ()

The convergence order of the method described in Al-
gorithm 14 is 3, and the total number of evaluations per
iteration is 3. Thus, IE = 1.4422.

" x)g () + g () () + f (x)g ((x +2)/2) + 9 () (0 + 2,)/2)

n=0,1,2,....

Algorithm 15

e S (%)
In = F () + £ (%)

(43)

o=y Yuf ()
T X f () + S ()

n=012,....

The convergence order of the method described in Al-
gorithm 15 is 3, and the total number of evaluations per
iteration is 4. Thus, IE = 1.3161.

Algorithm 16

xﬂf (xn)
xuf' () + f (3,)

Yn =X~

VS (Vn)

= — ) =0,1,2,....
Bt S ((n+y)2) + F ()

(44)
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The convergence order of the method described in Al-
gorithm 16 is 3, and the total number of evaluations per
iteration is 4. Thus, IE = 1.3161.

=x — xnf(xn)
I = T ) + £ (%)

49,.f (V)

Xptl = Yn —

The convergence order of the method described in Al-
gorithm 17 is 3, and the total number of evaluations per
iteration is 4. Thus, IE = 1.3161.

e ()
T )+ f )

2y, f (¥)

3xnf, ((xﬂ + Zyﬂ)/3) + xﬂf, (xn) + 4f ('xi’l)’

Xnt1 = VYn —

The convergence order of the method described in Al-
gorithm 18 is 3, and the total number of evaluations per
iteration is 4. Thus, IE = 1.3161.

Algorithm 19

s
T )+ ()
o )
Zy=Yn xnf/ (xn) + f(xn)’ (47)
x Zuf (21) n=0,1,2,....

T () ()

The convergence order of the method described in Al-
gorithm 19 is 4, and the total number of evaluations per
iteration is 4. Thus, IE = 1.4142.

Algorithm 20

e xS (%)
I e () + f ()
—— VS (n)

X, f' () + f (x)

X f' (0 + ya)2) + %, f' (%) + 2 (x,)

7

Algorithm 17
(45)

n=20,1,2,....

Algorithm 18

(46)
n=0,12,....
Zuf (24)
Xp1 =2y — , n=0,1,2,....
T xf (2) + £ (%)

(48)

The convergence order of the method described in Al-
gorithm 20 is 4, and the total number of evaluations per
iteration is 6. Thus, IE = 1.2599.

Algorithm 21

xnf (x")

T )+ f )
o Vo (V)
I e (Gt y)2) + f ()
o z,f (z,) _
Xni1 = 2y xnf’ ((xn+2n)/2)+f(xn), 11—0,1,2,....
(49)

The convergence order of the method described in Al-
gorithm 21 is 4, and the total number of evaluations per
iteration is 6. Thus, IE = 1.2599.

Algorithm 22

L nf(s)
In = P () + £ ()
o 4y, f (v,)
I e T (o 29m)13) + 2l () + Af (%) 0
x 42,1 (2,) n=0,1,2,....

ntl = Zn T 3an’ ((xn + Zzn)/?’) + xnfl (xn) +4f (x"))



The convergence order of the method described in Al-
gorithm 22 is 4, and the total number of evaluations per
iteration is 6. Thus, IE = 1.2599.

xnf (xﬂ)
o f' () + f ()

Yn=Xn—

2y,.f (y)

Journal of Mathematics

Algorithm 23

I P (o + yn)2) + %o () + 2 (%)

Zznf (Zn)

X =z

(51)

n+l

The convergence order of the method described in Al-
gorithm 23 is 4, and the total number of evaluations per
iteration is 6. Thus, IE = 1.2599.

3. Convergence Analysis

In this section, convergence criteria of proposed algorithms
are studied in the form of the following theorem.

Theorem 1. Assume that the function f: I C R — Ronan
open interval I has a simple root « € I. Let f (x) be sufficiently
differentiable in the neighborhood of «, then the convergence
orders of the methods defined by Algorithms 2 and 3 are three
and four, respectively.

" f (% 20)/2) + 2, f (%) + 2 (%)

n=0,1,2,....

Proof. Let a be a simple zero of f (x). Since f is sufficiently
differentiable, the Taylor series of f (x,) and f' (x,) about «
are given by

f(x,)=f"(a) [en +C,80 4 c3€) + cpet +cse) + O(e:)],
f'(x,) = f'(a) [1 + 2,8, + 3¢;€ + 4cy€) + 5cser + 6cge
+ O(efl)],
(52)
;= W N(fP () f (),

where e,=x,—-a and
i=23,...

Expanding f (x,)g(x,), f' (x,)g(x,) and f(x,)g' (x,)
by Taylor series, we get

f(x)g(x,) = f' (oc)[g((x)en +(c,9(@) + g (@)} +(%g" () +c,9" (a) + c3g((x)>ez + O(ei)], (53)
_g(oc) +(2c,9(a) + g' (a))e, +(%g” () +2¢,9' (@) + 363g(oc)>ei+
fH(x)g(x,) = f' (@) . , (54)
<gg” (@) + czg" (@) + 3c3g' (o) + 4c4g(oc)>efl + O(ei)
f(x)g (x,) = f' () —g' (@e, +(c,g' (@) + g" (w))e’ +(%gm (@) + 9" (@) + ¢34’ (oc))ez + O(ei)]. (55)
From equations (53), (54), and (55), we get
2c§ —2¢c;
f(x,)g (x,) _ _( g (0‘)) 2 34 0fe 6
Pleale) + 10eg G | "\ gt@ )| 200 @ g'@ 2g'r [*TO)

gl gl g’
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Using equation (56), we have

f (x)g (x,)

In =T ) () + £ (x,)d (%)

! 2 !
=« +<c2 + i((j)))efl +<2c3 - 2c§ - c;g(“()

+ O(e4).

The Taylor series of f(y,) and g(y,) are given as

fn)=f( Kcz +

g(yn) =

where

Let

g(a) + Ag' () +

Vnzxn+Ti(yn_

n

© g'(@) 24 (oc)2>ea
9@ ga)? )"

2

g (@) g

Azgu (06) . ASg"' (06)
2! 3!

g’ (a))efl +<2c3 -20 - 2C2g’ (a0 + g" () - 2g' (062)2>631 +
g(a)

() g(a)

= (cz + g (a)))efl +(263 - 263 — 26,9 (@)

g ()

x,). Taylor’s expansions of

g(v,). g (v,) and f'(v,) are given by

gla)+g (&) (1-1))e, +(

g (v.) =g (@) +g" (@) (1-7))e, + { g’ (06)(62 +

) =f(

g' (0‘)271‘
g9(x)

+ g' ()16,

21,(c; - 63)g (@) + 7,6, (1 - 7,)g" (@) +

T

g(a)

2g

(Zg' (@)g" (0) - 2¢,9" (@) -
g'(

1+2¢,(1-1))e, +<21i(c2 +£;(—(Z))

ZTig' (@)
g(a)

<3c3 - 2c§ - 371,05

n
g (@)
26,7, 5cy — 262 = 3T.c4 + 2
‘ 2 l( 3 2 i“3 g((x)

g (@)
6

g(a)

g(:))) + 99 2(“) (1- T,.)Z }eﬁ+] + O(ei),

26,4 (@)
g(a) )+

)+4c4(1 -37; +3Ti2 —Tf)

zg/ (a)z g/r (0()
_ g((x)z + 7(0) )ez +O(efl).

n 2
+ g (a)7;
2

n

nm

(1 =37, + 31,-2 - Tf’)+

W

- €

/(“)3

-1, (0)g" (06)>

)62 + 3c3(1ri2 -27; + 1))efl+

»ez + O(ei)

g/l ((x) 5 B
-g" ()7, + 5 )e +

ofer)|

+O(e s

(57)

(58)

(59)

(60)
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Now, expanding f(y,)9(»,), f(x,)g (v,) and
f' (v,)g(x,) by Taylor series, we get

(g (@) +g (oc)cz)efl+

FOgy) = f () 20’ (@) , (61)
(g" () =29 (a)c, +2g (a)c; — ‘Z(a) - 2g(oc)c§)efl + O(e:)
g' @e, +(g" (@ (1-7,) + crg' (@)ey+
f(x)g' (v) = f' (@) (@), ; (62)
{g' @+ L0 ) verg” @+ 00 -y } +0(c})
[ 9(@) +(g' () =29 (0)ic, + 29 (a)c, e, +
(g(oc)(ZTici +37ic; — 6T;c3 + 3¢3) + 26,9’ () + g 2(0()>e,21+
/ / ’ g(oc)(4c4 - 4C§Ti - 6c2c3ri2 - 4c47i3 + 10c,¢51; + 12c4rf - 12c4ri)+ ‘
f(va)g(x,) = (@) : (63)
' 2 2 26,79’ (a)?
1 g (0‘)(353 =3¢ - zczTi) T g L+ O(efl)
" 1 m
i +c,(1+1,)g ((x)+gg (a)
Using equations (61)-(63), we obtain
Zczg’ (@) (T- B ) ~ 4g/ (“)2 . g// (06)+
A 16 I (L T O T ) S
fx)g )+ £ (g (x,) gl 7)™ " "
265 (1; - 2) +2¢5
Using equation (64) and the fact Y7 w;, = 1, the error
term for Algorithm 2 is as follows:
2=y - f (g ()
O f(x)g )+ (v)a (%)
(65)
2 i 2 i 2
) gngOO (2-1)+ 9(“;‘3 +22(1-1) e +0(et)
gla
The last expression shows that the convergence order of The Taylor series expansions of f(z,) and g(z,) are

Algorithm 2 is 3. given by
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Fz) = f(a )[(ZCL‘Z ()"‘) (2-1)+29 @ +zc§(1-fi))e;+o(e‘;)],

g(@) (66)
2 "
9(z,) = 9(a) + Bg' (@) + gz'(oc) . B’ 93'(06)
where
/ / 2 i
B[00 +2§(i‘;‘§ -2 0 2 - 26k €]+ O[cl). (67)
Let u, = x,, + 7;(2,, — x,,). Thus, Taylor’s expansions of
g(u,) and g' (u,) are given by
9(4) = 9@+ @ (1 - n)e, + D1 - x el
Y "
N {ZCM @ -1) ﬂ;% (2-7)+ Zng(a()"‘) +7 6“") (1-35,+32 - 7) } +o(e),
@+ g" (@) (1-1)e, + 9P (1 -1 )2
9 9 i/)*n i) “n (68)
( ! " 2 n )
g (u,) = ZCZTigg((Z))g (@ 2-7)+ g (@ g (e) ;‘:‘)x)g (@ +2657,(1-7)g" (@)+ + O(efl).
< >efl
g ;((x) (1 =37+ 311.2 - T?)
Now, expanding f(z,)g(z,), f(x,)g (4, and
f'(u,)g(x,) by Taylor series, we get
f(z)g(z,) = f'( )[(Zg ((a)) - 24 (@)1,c, + 49" (¥)c, — 2g (@)1,65 + 2g(oc)c§)e3 + O(eﬁ)], (69)
g (@e, +(g" (@) (1-1,) + c,g' (@))ei+
f(xa)g" () = f' (@) , (70)
‘{%9 @+ erg” @01 -7)+ L D1y } +O(e})
g(a) +(g' (a) - 2g(a)Tic, + 2g (@)c, e, +
fl U,)g\x, =f,(“) ” Oez. (71)
( ) ( ) {3c3(r -27; + 1)g(oc)+2c2(1—f)g ((x)+ (“)} e, ( )
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TaBLE 1: Numerical result for motion of a particle.

Method n X, If (x,) |x, — x*|
NM 6 -0.3170617745729570950 8.245568e — 22 3.926144e-11
WEF 5 —-0.3170617745729570950 1.612296e - 71 1.751504e — 24
MP 5 —-0.3170617745729570950 8.062909¢ - 78 1.477384e - 26
SH1 5 —0.3170617745729570950 4.280457¢ - 66 1.081215e - 22
SH2 5 —-0.3170617745729570950 1.543287e - 22 1.310848e — 22
SN3 5 —-0.3170617745729570950 1.543287e¢ - 22 1.441913e - 22
NR1 4 —-0.3170617745729571000 3.332577e-19 1.042056¢ - 20
NR2 4 —-0.3170617745729571000 3.332577e—-19 1.119981e—13
AGI1 5 -0.3170617745729570950 2.670763¢ - 56 1.882972¢ 19
AG2 5 —-0.3170617745729570950 5.041170e - 43 3.979192e - 15
AG3 4 —-0.3170617745729571000 3.332577e-19 1.782496e - 16
AG4 4 —-0.3170617745729571000 3.332577e-19 9.411615e—12

Using equations (69), (70), and (71), we obtain

f(z.)9(2,)

B 26,9 (@)

flx)g (w)+ f (w)g(x) | g(«)

Thus, by using equation (72) and the fact ¥ w, = 1, the
error term for Algorithm 3 is as follows:

_ f(2,)9(2,)
" f(x)g () + f ()9 (x,) (73)

4
€, =a+ O(en).

X

nil = %

This completes the proof. O

4. Applications in Science and Engineering

In this section, we consider three scientific and engineering
models related to mathematics, physics, and chemistry
which include motion of a particle on an inclined plane, Van
der Waal’s equation of state, and continuous stirred tank
rector equation. We make use of Maple software for com-
putational work and MATLAB for graphical analysis. We
apply the methods proposed in Algorithm 15 (AGI1), Al-
gorithm 16 (AG2), Algorithm 20 (AG3), and Algorithm 21
(AG4) along with Weerakon and Fernando method (WF,
equation (3)), midpoint method (MP, equation (4)), Shah
et al’s [27] methods (Algorithm 11 (SH1), Algorithm 13
(SH2), and Algorithm 14 (SN3)), Noor et al’s [9] method
(Algorithm 2.13 (NR1)), Shah and Noor’s [28] method
(Algorithm 2.6 (NR2)), and basic Newton’s method (NM,
equation (1)) to show that the methods proposed in the
present article work more efficiently (see the following
Tables 1-3 and Figures 1-3).

We use the following stopping criteria for computer
programmes:

x,. —%,| +|f(x,)]) <&, wheree=10"". (74)
f

(1) Motion of particle on an inclined plane [9].

! 2
(2-1)+ 29((‘;2 v2l(1- T,.)]e; L0, (72)
g o

We solve the nonlinear model formed due to the
motion of a particle on an inclined plane whose angle
of inclination 6 changes at a constant rate
(do/dt) = w<0.

ewt _ e— wt
x(t) = —iz ——— —sinwt ), (75)
2w 2
with
x, = —0.45. (76)

(2) Van der Waals equation of state [29].

Now, we consider the governing nonlinear equation
for the special case of well-known Van der Waals
equation of state, i.e.,

2
(P + a‘l/—rzl) (V —na,) = nRT. (77)

Particularly, we solve the above equation in the fol-
lowing form:

x> = 5.22x% +9.0825x — 5.2675 = 0, (78)

with
x, = 1.65. (79)

(3) Continuos stirred tank reactor (CSTR) [30].

We consider the nonlinear model of continuous
stirred tank reactor, i.e.,

xt +11.50x° + 47.49x°
+83.06325x + 51.23266875 = 0,

(80)
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TABLE 2: Numerical results for Van der Waals equation of state.

13

Method n X, If (x,)] |x, — x*|
NM 9 1.7200000000000000000 0.000000e + 00 4.291037e—- 14
WE 6 1.7200000000000000000 1.436781e — 34 3.172435e—12
MP 6 1.7200000000000000000 1.617053e — 40 3.506693¢ — 14
SH1 6 1.7200000000000000000 4.269024e — 37 4.705826e— 13
SH2 6 1.7200000000000000000 0.000000e + 00 6.576319¢ - 13
SN3 6 1.7200000000000000000 0.000000e + 00 7.745611e—13
NR1 6 1.7200000000000000000 0.000000e + 00 5.067884e — 14
NR2 6 1.7200000000000000000 0.000000e + 00 1.095066¢e — 23
AG1 5 1.7200000000000000000 6.680166¢ — 42 4.588240e — 14
AG2 6 1.7200000000000000000 8.041535e — 41 2.743100e — 14
AG3 4 1.7200000000000000000 0.000000e + 00 1.631356e — 22
AG4 5 1.7200000000000000000 0.000000e + 00 3.924480e - 15
TaBLE 3: Numerical result for continuous stirred tank reactor (CSTR).
Method n X, |f ()l |x, — x*|
NM 8 —1.4500000000000000000 0.000000e + 00 4.758488e — 16
WE 6 —1.4500000000000000000 5.336686¢ — 58 2.952929¢ - 20
MP 5 —1.4500000000000000000 1.329498e — 30 4.323476e—11
SH1 6 —1.4500000000000000000 7.836919¢ — 59 2.155427e—-20
SH2 5 —1.4500000000000000000 0.000000e + 00 5.727534e — 24
SN3 5 —1.4500000000000000000 0.000000e + 00 8.031736e — 26
NRI1 5 —1.4500000000000000000 0.000000e + 00 1.017168e — 27
NR2 19 —2.8500000000798648000 1.339461e - 20 1.822556e — 10
AG1 5 —1.4500000000000000000 7.313531e - 60 9.512503e - 21
AG2 4 —1.4500000000000000000 4.569485e — 72 1.234708e — 24
AG3 4 —1.4500000000000000000 0.000000e + 00 1.944442¢ - 17
AG4 3 —1.4500000000000000000 0.000000e + 00 1.828241e—13
20 20
15+ e 15+ e
10} 1 10} 1
c . g 5t .
3 g
S : $ of .
b b
g - g _
e 1 |
. \‘\ hel
'\ 4 ~O 4
6 8 9 10 8 9 10
No. of iterations No. of iterations
*- AGI -0- WF - SN3 *- AGI -0- WF - SN3
*- AG2 MP ©o- NM *- AG2 MP - NM
>- AG3 -0- SHI1 -©0- NR >- AG3 -o- SHI1 -©0- NR
- AG4 SH2 --0- FN -D- AG4 SH2 --0- FN

FIGURE 1: Log of residuals for equation (75).

FIGURE 2: Log of residuals for equation (78).
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FIGURE 3: Log of residuals for equation (80).
with
xy = —1.75. (81)

5. Conclusions

In this paper, introducing the weights and knots in the
expansion of the auxiliary function g (x), i.e., different from
usual cases, we have developed a new family of iterative
methods for nonlinear equations, i.e., Algorithms 15, 16, 20,
and 21. We have compared our methods with some existing
methods both numerically and graphically. The results
obtained clearly reveal that the proposed methods are more
rapidly convergent methods. These methods, besides giving
some more efficient new techniques, are the generalized
shape of some well-known methods.

Data Availability

All the data and supplementary material are available, if
needed.
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