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Abstract. We look at the class Bn which contains those transcendental mero-
morphic functions f for which the finite singularities of f−n are in a bounded
set and prove that, if f belongs to Bn, then there are no components of the
set of normality in which fmn(z)→∞ as m→∞. We then consider the class

B̂ which contains those functions f in B1 for which the forward orbits of the
singularities of f−1 stay away from the Julia set and show (a) that there is a
bounded set containing the finite singularities of all the functions f−n and (b)
that, for points in the Julia set of f , the derivatives (fn)′ have exponential-type

growth. This justifies the assertion that B̂ is a class of hyperbolic functions.

1. Introduction

Let f be a meromorphic function which is not rational of degree less than two,
and denote by fn, n ∈ N, the n-th iterate of f . The set of normality, N(f), is
defined to be the set of points, z ∈ C, such that (fn)n∈N is well-defined, meromor-
phic and forms a normal family in some neighbourhood of z. The complement of
N(f) is called the Julia set, J(f), of f . An introduction to the properties of these
sets can be found in, for example, [3].

We will use the following notation concerning singularities:

S(f) = {z ∈ C : z is a singularity of f−1},
P (f) = {z ∈ C : z is a singularity of f−n, for some n ∈ N}.

It was shown by Herring [7, Theorem 7.1.2] that

{z ∈ C : z is a singularity of f−n} ⊆ Sn(f) =
n−1⋃
j=0

f j(S(f)\Aj(f)),

where

Aj(f) = {z ∈ C : f j is not analytic at z},
and that

P (f) =
∞⋃

n=0

Sn(f).
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Eremenko and Lyubich [6] investigated the properties of entire functions in the class

B = {f : f is a transcendental meromorphic function with S(f) bounded}.
In Section 2 we look at the properties of functions in the class

Bn = {f : f is a transcendental meromorphic function with Sn(f) bounded}.
(Note that B1 is equal to B.) We prove the following result.

Theorem A. If f ∈ Bn, then there is no component of N(f) in which fmn(z) →
∞ as m →∞.

Remarks. Our proof is based on ideas of Eremenko and Lyubich [6, Theorem 1] who
proved this result in the case when f is entire and n = 1. The proof of Theorem A
given by Bergweiler [3, Theorem 16] uses [3, Lemma 8] which asserts that, if f ∈ B,
p ≥ 1 and 0 is not a pre-image of ∞, then there exist a positive constant R and
a curve Γ connecting 0 to ∞ such that |fp(z)| ≤ R for z ∈ Γ. Unfortunately, this
lemma is not correct, as shown by the counterexample f(z) = tan z

z + π
2 . Although

f ∈ B, f2 is unbounded on each path to ∞. The rest of the proof of [3, Theorem
16] is correct and the reference to [3, Lemma 8] can be successfully replaced by a
reference to Lemma 2.1 of this paper.

It follows from Theorem A that, if f ∈ Bn, then there can be no periodic cycle
{N0, . . . , Nn−1} of components of N(f) with fmn(z) → ∞ as m → ∞ in one of
the components—such a cycle is known as a cycle of Baker domains or essentially
parabolic domains. Thus we have the following Corollary to Theorem A.

Corollary. If f ∈ Bn, then f has no Baker domains of period n.

Many authors have considered functions in the class

S = {f : f is a transcendental meromorphic function with S(f) finite}.
It is easy to see that, if f ∈ S, then f ∈ ⋂∞

n=1 Bn and so a special case of the above
Corollary is that functions in S have no Baker domains.

In Sections 3 and 4 we consider the iteration of functions in the class

B̂ = {f : f ∈ B and P̄ (f) ∩ J(f) = ∅},
where P̄ denotes closure with respect to the plane. In Section 3 we use Theorem
A to prove the following result.

Theorem B. If f ∈ B̂, then P (f) is bounded.

In Section 4, we use Theorem B together with the results of Section 2 to prove
the following result for meromorphic functions which has applications to estimating
the Hausdorff dimension of J(f) when f ∈ B̂; see [8].

Theorem C. If f ∈ B̂, then there exist K > 1 and c > 0 such that

|(fn)′(z)| > cKn |fn(z)|+ 1
|z|+ 1

,

for each z ∈ J(f)\An(f), n ∈ N.

If f is rational, then the following conditions are equivalent—see [2, Section 9.7]
and [4, Section 5.2] and note that, for rational functions, P̄ denotes closure in the
sphere:

• P̄ (f) ∩ J(f) = ∅;

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ITERATION OF A CLASS OF HYPERBOLIC MEROMORPHIC FUNCTIONS 3253

• P̄ (f) is a compact subset of N(f);
• f is expanding, in the sense that there exist K > 1 and c > 0 such that
|(fn)′(z)| > cKn for each z ∈ J(f), n ∈ N.

A rational function with these properties is said to be hyperbolic. For transcenden-
tal meromorphic functions, these conditions are no longer equivalent and so it is
not clear what the definition of a hyperbolic transcendental meromorphic function
should be. In view of Theorems B and C, however, it does seem natural to say that
the functions in B̂ are hyperbolic.

2. Properties of functions in the class Bn

We use the following notation:

B(z, r) = {w : |w − z| < r},
DR = {z ∈ C : |z| > R} ∪ {∞}.

The following lemma is probably ‘well known’; we include a proof for the sake of
completeness.

Lemma 2.1. If f ∈ Bn and Sn(f) ⊆ B(0, R), then each component of f−n(DR)
is simply connected in C.

Proof. Let V be a component of f−n(DR), let g denote a branch of f−n which
maps a point of DR into V and let h denote all analytic continuations of g(et) to
H = {t : Re t > log R}. Then, by the monodromy theorem, h is analytic in H and
maps H onto V . There are now two cases to consider.

Case A. The function h is univalent in H and hence h(H) = V is simply connected.

Case B. The function h is 2mπi-periodic in H , for some minimal positive integer
m.

Indeed, if h is not univalent in H , then there is some minimal positive integer
m for which h(tm) = h(tm + 2mπi) for some tm ∈ H and, if t is close to tm, then
it follows from the open mapping theorem that there exists t′ close to tm + 2mπi
with h(t) = h(t′) and hence t′ = t + 2mπi. Thus h has period 2mπi.

In Case B,

h(t) = ϕ(et/m), for t ∈ H,

where ϕ(s) = a1s + a0 + a−1s
−1 + · · · is univalent in {s : |s| > R1/m}, and so

fn(z) = (ϕ−1(z))m, for z ∈ ϕ({s : |s| > R1/m}).
Now, if a1 6= 0, then ϕ({s : |s| > R1/m}) includes a neighbourhood of ∞, so

fn(z) ≈ a−m
1 zm as z →∞.(2.1)

But (2.1) is impossible because ∞ is an essential singularity of fn and not a pole.
Thus a1 = 0 and ϕ maps {s : |s| > R1/m} ∪ {∞} onto a simply connected region
in C containing a0, and this region is V .

We now use Lemma 2.1 to prove the following result.

Lemma 2.2. Let f be a transcendental meromorphic function. There exists Rf

such that, if R > Rf , Sn(f) ⊆ B(0, R) and |z|, |fn(z)| > R2, then

|(fn)′(z)| > |fn(z)| log |fn(z)|
16π|z| .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3254 P. J. RIPPON AND G. M. STALLARD

Proof. First let c be a periodic point of f (see, for example, [3, Theorem 2]) and
then take Rf so large that |fn(c)| < Rf for each n ∈ N.

Now suppose that R > Rf , Sn(f) ⊆ B(0, R) and |z|, |fn(z)| > R2. Let V be
the component of f−n(DR) which contains z and let g denote the branch of f−n

that maps fn(z) to z. Since c /∈ V , it follows from Lemma 2.1 that we can choose
a branch L of log so that L(z − c) is analytic on V .

If H = {t : Re t > log R}, then

Φ(t) = L(g(et)− c)

can be analytically continued to H , and Φ(H) does not include any disc of radius
greater than π. Thus, by Bloch’s Theorem,

|Φ′(t)| ≤ π

B(Re t− log R)
, for t ∈ H,

where B denotes Bloch’s constant. Hence∣∣∣∣ g′(et)et

g(et)− c

∣∣∣∣ ≤ π

B(Re t− log R)
,

where et = fn(z), and so∣∣∣∣ fn(z)
(z − c)(fn)′(z)

∣∣∣∣ =
∣∣∣∣g′(fn(z))fn(z)

z − c

∣∣∣∣ ≤ π

B(log |fn(z)| − log R)
.(2.2)

The lemma follows by using |z − c| ≤ |z| + |c| < 2|z|, log |fn(z)| > 2 logR and
B > 1

4 .

Recall that Theorem A states that, if f ∈ Bn, then there is no component of
N(f) in which fmn(z) → ∞ as m → ∞. We are now in a position to give a proof
of this result.

Proof of Theorem A. If f ∈ Bn, then there exists R > max(e16π, Rf ) with Sn(f) ⊆
B(0, R). If N(f) has a component U in which fmn(z) →∞ as m →∞, then there
exist p ∈ N, w ∈ N(f) and r > 0 such that B̄(w, r) ⊂ fpn(U) and |fmn(z)| > R2,
for each z ∈ B(w, r), m = 0, 1, 2, . . . .

Now let Vm be the component of f−n(DR) in which Um = fnm(B(w, r)) lies.
Then, taking c to be the same periodic point as in the proof of Lemma 2.2, it
follows from Lemma 2.1 that there exists a branch Lm of log for which Lm(z − c)
is analytic in Vm. Next, put Tm = Lm(Um − c) and Fm(t) = Lm(fn(et + c)− c), so
that Tm+1 = Fm+1(Tm). It follows from (2.2) that, if t ∈ Tm, then

|F ′
m(t)| =

∣∣∣∣ (fn)′(et + c)et

fn(et + c)− c

∣∣∣∣
=

∣∣∣∣ (fn)′(z)(z − c)
fn(z)− c

∣∣∣∣ , where z = et + c ∈ Um,

≥
∣∣∣∣ (fn)′(z)(z − c)

2fn(z)

∣∣∣∣
≥ B

2π
(log |fn(z)| − log R)

≥ B log R

2π
≥ 2,

and so

|(Fm ◦ · · · ◦ F1)′(t)| ≥ 2m, for t ∈ T1.
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Thus, by Bloch’s Theorem, Tm contains a disc of radius rm, where rm → ∞ as
m → ∞. This, however, is impossible since Tm ⊆ Lm(Vm − c) which contains no
disc of radius greater than π.

3. Proof of Theorem B

Recall that Theorem B states that, if f ∈ B̂, then P (f) is bounded. Let f ∈ B̂.
Since S̄(f) ⊆ P̄ (f) and P̄ (f)∩J(f) = ∅, it follows that S̄(f) ⊆ N(f) and so, since
S(f) is bounded, we deduce that f ∈ ⋂∞

n=0 Bn. The fact that S(f) ⊆ N(f) also
implies that

P (f) =
∞⋃

j=0

f j(S(f)).(3.1)

Since S̄(f) is bounded and contained in N(f), there exist r > 0 and a finite number
of points w1, . . . , wM ∈ S(f) such that

S(f) ⊆
M⋃
i=1

B̄(wi, r) ⊆ N(f).(3.2)

It follows from (3.1) and (3.2) that

P (f) ⊆
M⋃
i=1

∞⋃
j=0

f j(B̄(wi, r)).(3.3)

Therefore, for 1 ≤ i ≤ M , we let Ui denote the component of N(f) which contains
wi and consider the possible forward orbits of Ui.

We first show that Ui cannot be a wandering domain. If Ui is a wandering
domain, that is, fn(Ui) ∩ fm(Ui) = ∅ when n 6= m, then there cannot exist a
non-constant limit function of {fn|U}; see, for example, [1, Lemma 2.1]. Since
f ∈ B1, it follows from Theorem A that there exist a sequence {nk} and a finite
value a ∈ C such that fnk(z) → a in Ui as nk → ∞. Since wi ∈ S(f) ∩ Ui, it
follows that a ∈ P̄ (f) and, since f ∈ B̂, this implies that a ∈ N(f). This, however,
is impossible if Ui is a wandering domain.

Thus, Ui eventually lands in a periodic cycle {N0, . . . , Nn−1} of components of
N(f). Since P̄ (f) ∩ J(f) = ∅, there are no Siegel discs or Hermann rings and so,
for 0 ≤ p ≤ n− 1, there exists zp ∈ N̄p with fmn(z) → zp locally uniformly in Np.
Since f ∈ ⋂∞

n=0 Bn, it follows from Theorem A that zp 6= ∞, for 0 ≤ p ≤ n − 1,
and so

⋃∞
j=0 f j(B̄(wi, r)) is bounded. The result now follows from (3.3).

4. Proof of Theorem C

The proof of Theorem C uses results from earlier sections and the following two
well known results. The first is Koebe’s one-quarter theorem; see for example, [5].

Lemma 4.1. If f is univalent in B(z, r), then

f(B(z, r)) ⊃ B(f(z), |f ′(z)|r/4).

The other result we need is a basic property of Julia sets. Let

O−(w) = {z : fn(z) = w for some n ∈ N},
E(f) = {w : O−(w) is finite}.
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If f is meromorphic, then E(f) contains at most two points and we have the
following result; see, for example, [3, Section 2].

Lemma 4.2. If U is compact, U ∩ E(f) = ∅, z ∈ J(f) and V is an open neigh-
bourhood of z, then there exists N ∈ N such that, for all n ≥ N , we have

fn(V ) ⊃ U.

Theorem C states that, if f ∈ B̂, then there exist K > 1 and c > 0 such that

|(fn)′(z)| > cKn |fn(z)|+ 1
|z|+ 1

,

for each z ∈ J(f)\An(f), n ∈ N.
Let f ∈ B̂. We know that P̄ (f) ∩ J(f) = ∅ and, from Theorem B, that P̄ (f) is

bounded. Thus there exist C > 1 and an open set G containing P̄ (f), such that

B

(
z,
|z|+ 1

C

)
∩G = ∅,(4.1)

for each z ∈ J(f).
Since P̄ (f) is bounded, it follows from Lemma 2.2 that there exists R > 0 such

that

|(fn)′(z)| > 16C
|fn(z)|+ 1
|z|+ 1

, for n ∈ N, |z| > R, |fn(z)| > R.(4.2)

We now claim that there exists N1 ∈ N such that

|(fn)′(z)| > 16C
|fn(z)|+ 1
|z|+ 1

, for n ≥ N1, z ∈ (J(f)\An(f)) ∩ B̄(0, R).(4.3)

Otherwise, there exists a sequence of points znk
∈ (J(f)\Ank

(f)) ∩ B̄(0, R) such
that

|(fnk)′(znk
)| ≤ 16C

|fnk(znk
)|+ 1

|znk
|+ 1

,

with znk
→ α ∈ J(f) ∩ B̄(0, R) as nk →∞.

It follows from (4.1) and Lemma 4.1 that, if g is the branch of f−nk that maps
fnk(znk

) to znk
, then

g

(
B

(
fnk(znk

),
|fnk(znk

)|+ 1
C

))
⊇ B

(
znk

,
|znk

|+ 1
64C2

)
.

Thus, for large nk,

fnk

(
B

(
α,

1
100C2

))
⊆ fnk

(
B

(
znk

,
|znk

|+ 1
64C2

))
⊆ B

(
fnk(znk

),
|fnk(znk

)|+ 1
C

)
and so, by (4.1),

fn

(
B

(
α,

1
100C2

))
∩G = ∅,

for arbitrarily large values of n. Since α ∈ J(f), this contradicts Lemma 4.2, and
hence (4.3) is true.
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Our next claim is that there exists N2 ∈ N such that, for each n ≥ N2, z ∈
J(f)\An(f), we have

|(fn)′(z)| > 1
8C

|fn(z)|+ 1
|z|+ 1

.(4.4)

Otherwise, there exists a sequence of points znk
∈ J(f)\Ank

(f) such that

|(fnk)′(znk
)| ≤ 1

8C

|fnk(znk
)|+ 1

|znk
|+ 1

,

with znk
→ α ∈ J(f) or znk

→∞ as nk →∞.
It follows from (4.1) and Lemma 4.1 that, if g is the branch of f−nk that maps

fnk(znk
) to znk

, then

g

(
B

(
fnk(znk

),
|fnk(znk

)|+ 1
C

))
⊇ B (znk

, 2 (|znk
|+ 1)) ⊇ B(0, |znk

|+ 1).

Since znk
→ α ∈ J(f) or znk

→ ∞ as nk → ∞, there exist β ∈ J(f), r > 0 such
that, for large values of nk,

B(β, r) ⊆ B(0, |znk
|+ 1),

and hence

fnk(B(β, r)) ⊆ fnk(B(0, |znk
|+ 1)) ⊆ B

(
fnk(znk

),
|fnk(znk

)|+ 1
C

)
.

Thus, by (4.1),

fn(B(β, r)) ∩G = ∅,

for arbitrarily large values of n. Since β ∈ J(f), this contradicts Lemma 4.2, and
hence (4.4) is true.

We now put N = max(N1, N2). If z ∈ J(f)\A2N+p(f), then it follows from (4.2)
and (4.3) that

|(f2N+p)′(z)| > 16C
|f2N+p(z)|+ 1

|z|+ 1
,(4.5)

for each p ∈ N ∪ {0}, provided that either |z| ≤ R or |z|, |f2N+p(z)| > R.
If z ∈ J(f)\A2N+p(f), |z| > R and |f2N+p(z)| ≤ R, then either |fN (z)| ≤ R in

which case, by (4.3) and (4.4),

|(f2N+p)′(z)| > 1
8C

|fN (z)|+ 1
|z|+ 1

16C
|f2N+p(z)|+ 1
|fN (z)|+ 1

= 2
|f2N+p(z)|+ 1

|z|+ 1
,(4.6)

or |fN (z)| > R in which case, by (4.2) and (4.4),

|(f2N+p)′(z)| > 16C
|fN(z)|+ 1
|z|+ 1

1
8C

|f2N+p(z)|+ 1
|fN (z)|+ 1

= 2
|f2N+p(z)|+ 1

|z|+ 1
.(4.7)

It follows from (4.5), (4.6) and (4.7) that, for each z ∈ J(f)\A2N+p(f), p ∈ N∪{0},
we have

|(f2N+p)′(z)| > 2
|f2N+p(z)|+ 1

|z|+ 1
.(4.8)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3258 P. J. RIPPON AND G. M. STALLARD

If n ≥ 2N , then there exist m ∈ N, 0 ≤ p < 2N such that n = m2N + p and so, if
z ∈ J(f)\An(f) and n ≥ 4N , then it follows from (4.8) that

|(fn)′(z)| > 2m |fn(z)|+ 1
|z|+ 1

> (2
1

4N )n |fn(z)|+ 1
|z|+ 1

.

To complete the proof of Theorem C we need to show that there exist cn > 0, for
n = 1, 2, . . . , 4N − 1, such that

|(fn)′(z)| > cn
|fn(z)|+ 1
|z|+ 1

,

for z ∈ J(f)\An(f).
If this is not true, then there exist m ∈ N and a sequence of points zk ∈

J(f)\Am(f) such that

εk =
|(fm)′(zk)|(|zk|+ 1)

|fm(zk)|+ 1
→ 0 as k →∞.

An argument similar to the proof of (4.4) with εk instead of 1/(8C) and m instead
of nk now leads to the fact that, for large k,

fm

(
B

(
0,
|zk|+ 1
8Cεk

))
∩G = ∅.

Thus fm(C) ∩ G = ∅, which is a contradiction, and so the proof of Theorem C is
now complete.
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