
A c t a In fo rmat ica 27, 1-40 (1989)

�9 S p r i n g e r - V e r l a g 1989

Iteration of Transformation Passes

over Attributed Program Trees

Henk Alblas

Univers i ty of Twente, D e p a r t m e n t of C o m p u t e r Science, P.O. Box 217, NL-7500 A E Enschede,

The Ne the r l ands

Contents page

S u m m a r y . 1

1. In t roduc t ion . 1

2. Basic Concep t s . 3

3. Cond i t i ona l Tree T rans fo rma t ions . 6

4. I t e ra t ion of Eva lua t i on and Tree T rans fo rma t ion Phases 10

5. C o m p a r i s o n wi th the Eva lua t i on M e t h o d for Ci rcu la r A t t r ibu te G r a m m a r s 22

6. An Example : C o n s t a n t Fo ld ing and P ropaga t ion , and D e a d C o d e E l imina t ion 24

6.1. Specif icat ion by a Ci rcu la r A t t r i bu t e G r a m m a r 25

6.2. Specif icat ion by Tree T rans fo rma t ion Rules 34

6.3. An E x a m p l e of the Example . 38

7. Discuss ion . 39

References . 39

Summary. Transformations of attributed program trees form an essential

part of compiler optimizations. A strategy of repeatedly applying alternate

attribute evaluation and tree transformation phases is discussed. An attribute

evaluation phase consists of a sequence of passes over the tree. A tree trans-

formation phase consists of a single pass, which is never interrupted to carry

out a re-evaluation. Both phases can be performed in parallel. This strategy

requires a distinction between consistent (i.e., correct) and approximate attri-

bute values. Tree transformations can be considered safe if they guarantee

that the attribute values everywhere in the program tree will remain consis-

tent or will become at least approximations of the consistent values, so

that subsequent transformations can be applied correctly.

This attribute evaluation and tree transformation strategy shows similari-

ties with the evaluation methods for circular attribute grammars.

1. Introduction

Attribute grammars have proved to be a useful formalism for specifying the

syntax and the static semantics of programming languages, as well as for imple-

menting editors, compilers, translator writing systems and compiler generators.

2 H. Alblas

Several methods have been developed to evaluate the semantic attributes

within the derivation tree of a program. An overview is given in [7].

In this paper we restrict ourselves to the simple left-to-right multi-pass evalu-

ation strategy [1, 4], where a fixed number of depth-first left-to-right traversals

(called passes) are made over the derivation tree and all instances of the same

attribute are evaluated during the same pass.

Conditional tree transformations form an essential part of compiler optimiza-

tions. For the specification of such transformations the classical attribute gram-

mar framework has to be extended with attributed tree transformation rules

[11, 14, 16], where predicates on attribute values may enable the application

of a transformation. Such a conditional tree transformation rule includes: an

input template (describing the structure of the tree part to which the transforma-

tion has to be applied), an output template (describing the structure of the

transformed part of the tree), enabling conditions which are predicates on attri-

bute instances of the input template, and, possibly, rules which define the values

of the attribute instances that are normally available before the evaluation pro-

cess starts, i.e., the synthesized attribute instances associated with the terminal

symbols of the output template.

Traditionally, before the application of a tree transformation rule all attribute

instances attached to the derivation tree are assumed to have correct values.

A tree transformation may cause the values of some of the attribute instances

within the derivation tree to become incorrect, which means that a renewed

application of the attribute evaluation instructions will result in different values.

To make the attribution of a derivation tree correct again, a re-evaluation

of the entire tree could be applied. However, a repeated computation of all

the attribute instances after every transformation is inefficient and should be

avoided. Several methods have been developed to minimize the number of

recomputations and the number of visits to subtrees [2, 7, 13, 15, 17]. These

methods have in common that they assume a re-evaluation of the affected attri-

butes of the tree to be performed after every tree transformation.

In this paper we consider a different approach in the sense that the re-

evaluation process will be delayed until a sequence of tree transformations has

been performed and the entire tree is expected to be affected. This approach

requires a different view of the correctness of attribute values in a derivation

tree. For a non-circular attribute grammar, the classical theory defines one single

value to be correct for each attribute instance. This is also called the consistent
value of the attribute instance. For the purpose of conditional tree transforma-

tions we extend the classical attribute grammar framework by allowing a set

of values to be correct for each attribute instance. Such a value is called safe.
Every safe value should be an approximation of the consistent value. More

precisely, for each attribute there is a partial order < on its possible values,

and a value x of an attribute instance is safe iffx<y, where y is its consistent

value. Thus, the consistent value is the optimal safe value.

In this paper we study tree transformations which preserve the safety of

the attribute values in the derivation tree. Our research was stimulated by the

ideas stated in [9, 10].

Iteration of Transformation Passes over Attributed Program Trees 3

The safety of the conditional tree transformation rules is the responsibility

of the writer of these rules, i.e., their safety is not checked at compiler generation

time. However, we do provide some local criteria so that the writer can check

the safety of his rules.

The use of safe tree transformation rules allows a tree transformation and

re-evaluation strategy with the following characteristics.

1) Tree transformations are performed during a pass over the derivation

tree.

2) The re-evaluation of attribute instances in the derivation tree is delayed

until a transformation pass has been finished. (Note that the attribute instances

of the area corresponding to the output template receive a value as part of

the tree transformation).

3) The attribute evaluation phase (which consists of a fixed number of passes)

and the tree transformation phase (which consists of one pass) are performed

alternately, until it turns out that no more tree transformations are possible.

4) The attribute evaluation phase and the tree transformation phase may

also be combined, if required.

The method of the alternate (or combined) application of attribute evaluation

and tree transformation phases, presented in this paper, shows similarities with

the evaluation methods for circular attribute grammars, presented by Babich

and Jazayeri in [3] and Farrow in [8]. Each method, in its own way, improves

the attribute values by repeatedly traversing the derivation tree.

This paper is organized as follows: Section 2 provides an introduction to

the classical theory of attribute grammars and summarizes the principles of

simple left-to-right multi-pass evaluation. Conditional tree transformations are

defined in Sect. 3. In Sect. 4 the safety criteria for conditional tree transformation

rules are developed, which allow the delay of a re-evaluation phase, which con-

cerns the entire derivation tree, after every tree transformation. In Sect. 5 the

alternate or combined application of an attribute evaluation and a tree transfor-

mation phase is compared to the evaluation method for circular attribute gram-

mars. Both methods are applied to an example which concerns constant folding,

constant propagation and dead code elimination in Sect. 6. Concluding remarks

are made in Sect. 7.

2. Basic Concepts

An attribute grammar AG, as defined in 1-12], is a context-free grammar aug-

mented with attributes and attribute evaluation rules. The underlying grammar

G is a 4-tuple (VN, Vr, P, S). The finite sets VN of nonterminal and Vr of terminal

symbols form the vocabulary V= VN u Vr. P is the set of productions and S t VN

is the start symbol, which does not appear in the right part of any production.

The grammar G is assumed to be reduced in the sense that every nonterminal

symbol is accessible from the start symbol and can generate a string of terminal

symbols only.

Each symbol X e V has a finite set A(X) of attributes, partitioned into two

disjoint subsets I(X) and S(X) of inherited and synthesized attributes, respective-

ly. The start symbol should not have inherited attributes.

4 H. Alblas

The set of all attributes will be denoted by A, i.e., A = Ux~v A(X). Attributes

of different g rammar symbols are considered as different. If necessary we will

denote an attribute a of symbol X by a of X. With each attribute a a set V(a)

of possible values is associated.

Let P consist of r productions, numbered from 1 to r and let the p-th produc-

tion be

Xpo ~ Xpl Xp2 ... Xpn

where n>O, X v o e V N and XvkeV for 1 <k<n .
Production p is said to have the attribute occurrence (a, p, k) if aeA(Xpk).

The set of attribute occurrences of production p will be denoted by AO(p).

This set can be parti t ioned into two disjoint sets of defined occurrences and

used occurrences denoted by DO (p) and UO (p) respectively.

These subsets are defined as follows:

DO (p)= {(s, p, O)lse S(Xpo)} w {(i, p, k) l ieI(Xpk) ^ 1 <_ k <- n},

UO(p)-- {(i, p, O) lieI(X,,o)} u {(s, p, k) lse S(X,,~) ^ 1 <_ k <- n}.

Associated with each product ion p is a set of attribute evaluation rules which

specify how to compute the values of the attribute occurrences in DO(p). The

evaluation rule defining attribute occurrence (a, p, k) has the form

(a, p, k),=f((al, p, kl), (a2, p, k2) (a,,,, p, km))

where (a, p, k)~DO(p), f is a total function and (aj, p, kj)EUO(p) for l < j < m .
We say that (a, p, k) depends on (a j, p, k j) for 1 < j < m.

For each sentence of G a derivation tree exists. For the definition of a tree

transformation rule we also need the concept of a "possibly incomplete" deriva-

tion tree where arbitrary symbols may label the root and the leaves. Apar t

from that, by a derivation tree we mean a "comple te" derivation tree, i.e., a

derivation tree whose root is labeled with the start symbol and whose leaves

are labeled with terminal symbols only. By a subtree we mean a subtree of

a complete derivation tree.

The nodes of a (possibly incomplete) derivation tree are labeled with symbols

from V. For each inner node a product ion p: Xpo ~ Xpl Xp2 ... Xpn exists, such

that the node is labeled with Xpo and its sons with Xpl , Xp2 Xpn, respective-

ly. We say that p is the product ion (applied) at that node.

Given a derivation tree, instances of attributes are attached to the nodes

in the following way: if node N is labeled with g rammar symbol X, then for

each attribute a~A(X) an instance of a is attached to node N. We say that

the derivation tree has attribute instance a of N.

Let N O be a node, p the production at N 0, and N~, N2 Nn its sons from

left to right, respectively. An attribute evaluation instruction

a of Nk,=f(al of Nk~, a2 of Nk a,. of Nk,.)

Iteration of Transformation Passes over Attributed Program Trees 5

is associated with attribute instance a of N k if the attribute evaluation rule

(a, p, k):=f((al, p, kl), (a2, p, k2), .. . , (am, p, kin))

is associated with product ion p. We say that a of N k depends on at of Nk, for

l <_i<_m.

For each derivation tree T a dependency graph Dr can be defined by taking

the attribute instances of T as its vertices. Arc (a of N~, b of N~) is contained

in the graph if and only if attribute instance b of Nj depends on attribute instance

a of N~.

If DT is acyclic, its arcs specify a partial ordering of the attribute instances.

The existence of arc (a of N/, b of Nj) indicates that attribute instance a of N~

must be computed before attribute instance b of Nj.

A path in a dependency graph will be called a dependency path, for which the

following notat ion will be used: dp[al ofNt , a 2 o f N 2 , . . . , a n o f Nn'] for n > 1 stands

for a path composed of the arcs (al of N1, a2 of N2) , (a 2 of N2, a 3 of Na)

(an- 1 of N n_ 1, an of Nn). A path dp [a I of N 1 a n of N n, a t of N1] will be called

a circular dependency path. An attribute g rammar is circular if it includes a

derivation tree whose dependency graph contains a circular dependency path,

otherwise the attribute g rammar is non-circular. Unless stated otherwise, we

assume an attribute g rammar to be non-circular.

An attributed derivation tree is a derivation tree where all attribute instances

have a value (which is not necessarily consistent). A consistently attributed deriva-

tion tree is a derivation tree where the execution of any evaluation instruction

does not change the values of the attribute instances.

The task of an attribute evaluator is to compute the values of all attribute

instances attached to the derivation tree, by executing their associated evaluation

instructions. In general the order of evaluation is free, with the only restriction

that an attribute evaluation instruction cannot be executed before the values

of its arguments are available. Initially the values of all attribute instances

attached to the derivation tree are undefined, with the exception of the instances

of the imported attributes. For simplicity we assume that the imported attributes

are the synthesized attributes of the leaves of which the values are determined

by the parser. The output of the evaluator is a consistently attributed derivation

tree.

In this paper the attribute instances are evaluated during a bounded number

of passes over the derivation tree, where a pass is a depth-first left-to-right

traversal of the tree. Note that (for the sake of simplicity) we do not allow

right-to-left traversals. We further restrict the evaluation strategy to be simple

multi-pass [-1, 4], which means that with each attribute a fixed pass number

can be associated so that the evaluation of all its instances in any derivation

tree of the g rammar can be performed in that pass.

We assume the reader to be familiar with attribute evaluation in passes.

F rom I-1] we repeat some terminology and definitions concerning simple multi-

pass evaluation.

A partition of the set of attributes A into a sequence of mutually disjoint

subsets will be denoted by (A o, A 1 A,.), where A o includes all synthesized

6 H. Alblas

attributes of terminal symbols (whose values should be computed by the parser

before the evaluator is started).

A partition (Ao, A 1 Am) of the set of attributes A is correct if A o consists

of the synthesized attributes of the terminal symbols and the instances of all

attributes in set Ai(1 < i<m) can be evaluated during the i-th pass of the simple

multi-pass evaluator.

An attribute grammar is simple m-pass if a correct partition (Ao, A~, . . . , A m)

of the set of attributes A exists. An attribute grammar is simple multi-pass if

it is simple m-pass for some m.

For each partition (Ao, At, ..., Am) of the set of attributes A of an attribute

grammar a pass function pass: A--*{0,1, . . . ,m} can be defined as pass(a)

= i ifaeAi. The pass function is correct if the partition is correct.

3. Conditional Tree Transformations

We consider attributed tree transformations which preserve the syntax, i.e., all

intermediate trees are derivation trees in the same context-free grammar.

To define conditional tree transformations we first recall the definition of

a purely syntactical tree transformation rule [6], composed of two tree templates.

A tree template is a possibly incomplete derivation tree. Multiple occurrences

of the same symbol as the label of a node are distinguished by indices. So,

in general, node labels are of the form X [i], where X is a terminal or nonterminal

and i an index. Nonterminal symbols (possibly with an index) labeling the leaves

are the variables of the tree template.

An instance of a tree template is created by substituting for each variable

of the tree template a subtree whose root has the same nonterminal as the

variable.

A tree transformation rule is a pair (itt, ott) of tree templates, such that all

variables occurring in ott also occur as variables in itt, (and if the roots of

itt and ott are labeled by the same nonterminal, then these nonterminals should

have the same index); itt and ott are called the input tree template and the

output tree template, respectively.

A tree transformation rule (itt, ott) is applicable to a subtree IT of a derivation

tree T1, if

1) itt matches the top of IT, i.e., IT is an instance of itt.

2) ott fits in the surrounding tree, i.e., if A [i] and B [j] label the roots of

itt and ott, respectively, and X--* aAf leP is the production applied immediately

above IT in T1, then also X ~ a B f l must be in P (or A = B = S) .

The application of tree transformation rule (itt, ott) consists of the creation

of an instance OT of ott in which the relation between subtrees of OT and

variables of ott is the same as established by matching itt with IT. The resulting

subtree OT replaces subtree IT of T1, thus creating a new derivation tree T2.

Note that by the definition of tree templates (the variables of ott must be differ-

ent) duplication of a subtree of IT in OT is excluded.

Syntactically (i.e., for attribute-free derivation trees), the applicability of a

tree transformation rule to a subtree is confined by the above-mentioned criteria.

Iteration of Transformation Passes over Attributed Program Trees 7

It may be further restricted by contextual information, collected and distributed

by attributes. For this we need to associate attributes with tree templates.

Let X [i] be the label of a node of a tree template tt where X is a grammar

symbol and i denotes its index in tt. The index may be omitted in the case

of a single occurrence of X in tt. We say that tree template tt has attribute

instance (a, tt, X[i]) if aeA(X). (a, tt, X[i]) is an inherited instance if aeI(X),
and a synthesized instance if aeS(X).

Let (itt, ott) be a tree transformation rule. Attribute instances in itt and

ott are corresponding if they are the same attribute of identically labeled nodes,

i.e., they are of the form (a, itt, Y) and (a, ott, Y). This notion is only relevant

for attribute instances of the root and the leaves of itt and ott.

Having associated attributes with tree templates in a natural way, the trans-

formation rules can be extended by enabling conditions [11, 14, 16] which are

predicates on attribute instances of the input template.

Next, we focus on the attribution of a derivation tree ai~ter the application

of a tree transformation rule. The difference between the original tree and the

restructured tree is effected by the replacement of the input template by the

output template and, in the event of differently labeled template-roots, by a

change of the production applied immediately above the restructured subtree.

No syntactical changes take place elsewhere in the tree (except for the case

that an entire subtree is deleted).

From the fact that the attribute evaluation rules are associated with the

productions it follows that after every application of a tree transformation rule

the attribute evaluator can be re-activated in order to execute (at least) the

attribute evaluation instructions associated with the newly included productions,

i.e., the productions of the output template and possibly the production immedi-

ately above the restructured subtree. However, special actions have to be taken

for the synthesized attribute instances associated with the new terminal nodes

of the output template (new in the sense that the label of such a node does

not occur in itt). We propose these attribute instances (normally set by the

parser!) to be defined, as part of the tree transformation rule, by lecixal evaluation
rules in terms of attribute instances of the input template.

Let (itt, ott) be a tree transformation rule, and let (a, ott, Y) be an attribute

instance, associated with a new terminal symbol Y of ott. A lexical evaluation

rule for (a, ott, Y) has the form

(a, ott, Y)..=f((ax, itt, Yx), (a2, itt, Y2) , (a,,, itt, Y,.))

where f is a partial function and (a~, itt, Yj) is an attribute instance of itt, for
1 <=j<m.

The synthesized attribute instances of terminal symbols of the output tem-

plate, for which a corresponding terminal symbol exists in the input template,

are assumed to be copied from the input template.

We assume tree transformations to be performed during a sequence of left-to-

right transformation passes over the derivation tree (possibly interrupted by

re-activations of the attribute evaluator) and distinguish two possibilities to

apply a tree transformation during such a pass.

8 H. Alblas

Consider a subtree which may be restructured by the application of a tree

transformation rule. During a pass over the tree the root of the subtree will

be visited twice: the first time during a downward move and the second time

during an upward move. Visiting the root for the first time the transformation

could be applied when entering the subtree (i.e., before visiting the descendants

of the root). Visiting the root for the second time the transformation could

be done when leaving the subtree. So, for each tree transformation rule we

will specify when it has to be applied, either during a downward move or during

an upward move.

For our pass-oriented approach we therefore use the following definition

of a conditional tree transformation rule.

Definition 3.1. A conditional tree transformation rule is a 5-tuple tr: (dir, itt, ott,

cond, eval), where

- dir is the direction of the move at the moment when the transformation

has to be tried. The domain of dir is {up, down}.
- itt and ott are the input and the output tree template, respectively. All

variables occurring in ott also occur as variables in itt. If the roots of

itt and ott are labeled by the same nonterminal, then these nonterminals

have the same index.

- cond is the enabling condition, a predicate on attribute instances of itt.

- eval is the set of lexical evaluation rules which specify the computation

of the synthesized attribute instances of the new terminal nodes of ott

in terms of attribute instances of itt (in the case cond yields true). []

Note that the lexical evaluation rules are only used in case the predicate

cond is true. Thus, if (al, itt, Y1), " " , (an, itt, Y,) are all attribute instances of itt,

cond is the predicate

p((ai,, itt, Y~,) (aik, itt, Y~k))

and the lexical evaluation rule

(a, ott, Y),=f((aj,, itt, Y~I) (ajm, itt, Yim))

is in eval, then we require in Definition 3.1 that for all xl xn with xie V(ai):

if p(xi xik) = true then f(xj~, ..., x j,,) is defined.

A conditional tree transformation rule tr: (dir, itt, ott, cond, eval) is applicable

to a subtree IT, if the following conditions are satisfied:

- itt matches the top of IT;

- ott fits in the surrounding tree;

- the evaluation of cond yields true.

Making a pass over an attributed derivation tree a tree transformation rule

tr: (dir, itt, ott, cond, eval) can be applied to a subtree IT, after a downward

or an upward move to the root of IT, if tr is applicable to IT and, if in addition

the direction of the move corresponds with the value of dir.

The application of transformation rule tr consists of the steps (1), (2), and

(3), and possibly (4):

(1) Creation of an instance OT of ott (in which the correspondence between

subtrees and variables, established by IT, is maintained) and the replacement

of IT by OT, thus creating a (partially attributed) derivation tree T2.

Iteration of Transformation Passes over Attributed Program Trees 9

(2) Computation of the values of the synthesized attribute instances associat-

ed with the terminal nodes of ott, using the rules specified by eval for the

new terminal nodes.

(3) Evaluation of the attribute instances in the restructured area of T2 (i.e.,

the area covered by ott and, in the case of differently labeled template roots,

the production applied immediately above OT);

(4) Re-evaluation of all attribute instances of T2 (except of course the synthe-

sized attribute instances of the leaves).

The full application of tr consists of (1), (2), (3), and (4) and the (partial)
application of tr consists of (1), (2), and (3). Note that both types of application

result in a (completely) attributed derivation tree. The full application results

in a consistently attributed derivation tree, whereas the attributed derivation

tree resulting from the (partial) application of tr may contain inconsistencies.

Application of tr will be described in more detail in Sect. 4.

Conditional tree transformation rule tr: (dir, itt, ott, cond, eval) will be written

as follows:

tr: transform dir itt cond cond into ott eval eval end.

It is allowed to leave out the part "cond cond" if cond is true and the part

"eval eval" if eval is empty.

Conditional tree transformation rules with the same input template and

the same direction may be combined as follows:

tr: transform diritt eond condl into ottl eval evall

eond cond, into ott. eval eval,

end.

We illustrate the application of tree transformations with two small examples,

taken from a more comprehensive example which concerns data flow analysis,

in particular constant folding, constant propagation and dead code elimination,

in Sect. 6.

For the specification of tree templates we use the following linear notation

for trees: within angular brackets the root is followed by its sequence of subtrees.

Comma symbols act as separators. We write a of Y for the attribute instance

(a, tt, Y) of a tree template tt. To simplify our notation we allow indices of

different occurrences of the same grammar symbol in itt and ott to be deleted

if there is no need to distinguish these grammar symbols in cond and eval.

Observe that the notation a of Y for attribute instance (a, itt, Y) and (a, ott, Y)

leads to the same notation for corresponding attribute instances in itt and ott.

Example 3.1. The conditional tree transformation rule

transl : transform up (whilestat, while, (cond, boolconst), do, stats, od)

eond boolval of boolconst = true

into (loop-forever, forever, do, stats, od)

eond boolval of boolconst = false

into (no-operat ion)

end

10 H. A l b l a s

whilestat loop-forever
11/1\~ . / i l k " . x

/ / / / / / / \\ ~'~'N / / / // \\ \ \
i / i i I \ \ \ ...I. ~i ii] \ " .~ .~ . ~ \ "..

I - / I \ .~, / / I ~ \

while cond do stats od forever do stats od
I
I
I
I

boolconStboolva~ =~ no-operation

Fig . 1 R e p l a c e m e n t of a w h i l e s t a t e m e n t by a l o o p - f o r e v e r o r a n o - o p e r a t i o n

expr expr
/ / / 1 " ~ I

t t I "" ~-- . I

expr + expr =*- I I

I I I
I I I
I I I

intconst [1]intva~ intconst [2]intva~ intconst~ntval

Fig . 2. C o m p i l e - t i m e e v a l u a t i o n o f a c o n s t a n t e x p r e s s i o n

describes the replacement of a while statement by a loop-forever or a no-opera-

tion, as illustrated in Fig. 1, in the form itt=*-ott. Note that stats is the only

variable of itt (boolconst is a terminal). []

Example 3.2. The unconditional tree transformation rule

trans2: transform up (expr, (expr, intconst [1]), + ,(expr, intconst [2]))

into (expr, intconst)

evai intval of intconst..=intval of intconst [1] +

intval of intconst 1-2]

end

describes the compile-time evaluation of constant expressions. The input tem-

plate in Fig. 2 shows two instances of synthesized attribute intval of terminal

symbol intconst. The sum of these values is assigned to the instance of intval

in the output template. []

4. Iteration of Evaluation and Tree Transformation Phases

Steps (1) and (2) of the application of a tree transformation rule tr: (dir, itt,

ott, cond, eval) to an attributed derivation tree T 1 result in a partially attributed

derivation tree T2. To make the attribution of T2 complete again step (3), and

possibly also step (4), could be performed. We repeat the purpose of both steps:

Iteration of Transformation Passes over Attributed Program Trees 11

(3) The local re-evaluation phase, restricted to the restructured part of T2

(i.e., the area associated with ott and, if necessary, the production applied imme-

diately above ott).

(4) The global re-evaluation phase, for the whole of T2.

To describe the local re-evaluation phase in detail, we extend the occurrences

of the input and the output template in T1 and T2, if necessary, such that

the resulting templates have identically labeled roots and consist of more than

one node. Identically rooted versions of the input and the output template,

both consisting of more than one node, whether an extension took place or

not, will be called complete input and output templates and will be denoted

by compl-itt and compl-ott, respectively.

No extension is needed if itt and ott already have roots with the same

label and already consist of more than one node, i.e., in this case compl-itt = itt

and compl-ott = ott.

Otherwise, itt and ott need to be extended with an extra production as

follows: Let production Xpo ~ Xp ~ ... Xpk ... Xp, be applied immediately above

itt in T1, with Xpk labeling the root of itt and let production Xqo

X~ ~ ... Xqk ... Xq, be applied immediately above ott in T2, with Xqk labeling

the root of ott. Clearly Xp~=Xqi for O<i<n, i+k . The extensions compl-itt

and compl-ott of itt and ott, respectively, are constructed as follows: Consider

an incomplete derivation tree, composed of a node labeled Xpo and n sons

labeled Xp 1 Xpk Xp,, respectively. Now, replace the node labeled Xpk

by itt to form compl-itt. Observe that the leaves of compl-itt are both new

leaves labeled with grammar symbols X p i (l < i < n , i + k) from the right part

of production p and old leaves from itt. A similar approach is followed to

construct compl-ott from production q and ott.

The set of attribute instances of a complete tree template can naturally be

partitioned into three disjoint subsets of input, output and inner attribute

instances.

Definition 4.1. For a complete tree template, the input attribute instances are

the inherited attribute instances of its root and the synthesized attribute instances

of its leaves; the output attribute instances are the synthesized attribute instances

of its root and the inherited attribute instances of its leaves; the inner attribute

instances are the attribute instances of the inner nodes. []

We now come back to the attribution of the restructured area of the deriva-

tion tree. To start with, it is assumed that in step (1) the attribute instances

of the subtrees substituted for the variables of compl-itt and compl-ott have

kept their values after the transformation. The same holds for the attribute

instances of the tree part surrounding compl-itt and compl-ott (including their

roots).

Moreover, the evaluation of attribute instances of compl-ott is preceded

by step (2), i.e., by the computation of the synthesized attribute instances of

the new terminal nodes of ott, as specified by eval. Also, the synthesized attribute

instances of the identically labeled terminal nodes of itt and ott are assumed

to keep their values. The same holds for the synthesized attribute instances

of the terminal nodes of the productions above itt and ott. So, when starting

12 H. Alblas

the local re-evaluation process, all the input attribute instances of compl-ott

have a value. This implies that the attribute evaluator, suitably adapted, is

able to compute the inner and output attribute instances of compl-ott, using

the ordinary attribute evaluation instructions.

In general, the values of some of the output attribute instances of compl-ott

in T2 will differ from the values of their corresponding output attribute instances

of compl-itt in T 1. Let a of N1 be an output attribute instance of compl-ott

whose new value differs from its old value. Then, in T2 every attribute instance

b of N: , such that the dependency graph Dr2 includes a dependency path

dp[a of N1, ..., b of N2], may have an incorrect value. A tree transformation

may even cause the values of the input attribute instances of compl-ott to be

incorrect (and hence the inner and the output instances as well).

Hence, if a correct value is required for every attribute instance in the deriva-

tion tree, then the local re-evaluation phase has to be followed by a global

re-evaluation phase, unless for every output attribute instance of compl-ott in

T2 its value is equal to the value of its corresponding output attribute instance

of compl-itt in T1.

We now discuss a strategy where the re-evaluation process after each tree

transformation may be confined to the local re-evaluation phase, and where

the global re-evaluation phase may be delayed. Thus, in the following we always

assume the partial application of a tree transformation.

The classical theory on attribute grammars defines one single value to be

correct for each attribute instance of any derivation tree (of which the values

of the synthesized attribute instances of the leaves are given). For our tree trans-

formation strategy, where re-evaluations may be restricted to the restructured

area, we extend the classical attribute grammar framework by allowing a set

of values to be correct for each attribute instance. Each value of such a set

should be an approximation of the correct value according to the classical attri-

bute grammar definition [5, 8-10, 14].

In [9, 10] the new correct values are called safe, whereas the old correct

values are called consistent. We also use this terminology.

Assumption 4.1. Hereafter, we asume that for each attribute a the set V(a) of

possible values of a is partially ordered, and we denote this partial order by

____ (in fact, this is ambiguous, because we should write ---<a, but we want to

keep our notation as simple as possible). For x, y e V(a), if x<=y, we say that

x is an approximation of y, or that y is better (>) than x. For synthesized

attributes of terminals we assume the partial order to be trivial, i.e., x < y iffx = y.

This is necessary, because these attributes are imported attributes for which

no evaluation rules are defined. For all other attributes we assume that the

partial order has a smallest element, denoted (again ambiguously) by _L. []

As an example, V(a) may be the set of all finite sets of identifiers, ordered

by set-inclusion, with the empty set as the smallest element.

Informally, the value x of an attribute instance is called safe if x < y, where

y is its consistent value.

For the comparison of safely and consistently attributed derivation trees,

and for the expression of the requirements that guarantee the reliability of trans-

Iteration of Transformation Passes over Attributed Program Trees 13

formations based on safe derivation trees, we introduce the following notations

and concepts.

Notation. Let T be an attributed derivation tree, then T c denotes the result

of a global re-evaluation of T. More precisely, T r is the unique consistently

attributed tree with the same underlying derivation tree as T, and the same

values for the corresponding synthesized attribute instances of the leaves. []

Notation. For attributed derivation trees T1 and T2, subtree IT of T1 and

tree t ransformation rule tr, T1 [-IT] t r T2 means that tr is applicable to IT

of T I , with T2 the result of the (partial) application. Note that T2 ~ is the

result of the full application. []

The purpose of a set C of conditional tree t ransformation rules, for a given

consistently attributed derivation tree T, is to produce another consistently at-

tributed derivation tree T' such that T' is obtained from T by a sequence of

full applications of rules of C. This is formalized as follows. T ' is consistently

derivable from T by C if

either T ' = T

or there is a subtree IT of T, a rule t r e C, and an attributed derivation

tree T1 such thatT[-IT] t~ ~ T1 and T' is consistently derivable

from T 1 ~ by C.

Of course, one would normally continue applying the rules of C until no

rule of C is applicable anymore.

Note that if T ' is consistently derivable from T then this can always be

realized by a number of tree t ransformation passes, during which the rules

are applied in their proper direction.

We now want to define a condition on the transformation rules so that

their partial application can be used rather than their full application. The

idea is to use approximat ions of the consistently derivable trees rather than

those trees themselves.

Notation. For attributed trees T and T ' with the same underlying syntax tree,

T < T' means that the value of every attribute instance of T is an approximat ion

(in the sense of Assumption 4.1) of the value of the corresponding attribute

instance of T'. Note that if T < T' then T c = T 'c (using the triviality of the partial

order of the values of synthesized attributes of terminals). []

We are now ready to formally define the safety of (the values of the attribute

instances of) a derivation tree, and the safety of a tree t ransformation rule.

Definition 4.2. T is safe iff T < T c. []

Note that Tis consistent iff T = TO; hence a consistent tree is safe.

Definition 4.3. A conditional tree t ransformation rule tr is safe if:

If T1 [-IT] t r T2, and T l i s s a f e ,

then a) TI~[-IT] t r T2 ' , and

b) T2 < T2 '~,

for some T2'. []

14 H. Alblas

Part a) of this definition says that if tr is applicable to a subtree of a safely

attributed tree, then tr is also applicable to that subtree of the corresponding

consistently attributed tree. Part b) says that the result of the first (partial)

application is an approximation of the result of the second (full) application.

Note that it is also a safe approximation. In fact, from part b) we know that

T2< T2 '~, and from this it follows that T2C= T2 'c, and so, T 2 < T2 ~. Thus

we obtain the following fact: a safe transformation rule preserves safety of trees;

this guarantees the reliability of subsequent transformations.

Using safety rather than consistency as the new definition of correctness

we may conclude that during a pass over a derivation tree, after the application

of a tree transformation rule and during the continuation of the pass, the attri-

bute instances may not have their best values, although their values are always

safe. This means that during a pass where no global re-evaluations are performed,

every tree transformation is correct, although an interrupt of the pass in order

to make extra tree traversals for re-evaluation purposes (i.e., to compute the

best values for all attribute instances) might have disclosed further opportunities

for transformations during the continuation of the pass [9, 10].

A tree T2 is safely derived from a consistently attributed input tree T1

if T2 is the result of a sequence of safe tree transformations applied to T1.

It can simply be shown from Definition 4.3 that by a global re-evaluation of

the safely derived tree T2 an output tree T2 c is obtained which is consistently

derivable from the input tree T1. This leads to the following evaluation and

transformation algorithm for a simple m-pass attribute grammar. First, m evalua-

tion passes are made to compute the consistent value for every attribute instance

in the derivation tree. Second, a tree transformation pass is made in which

as many tree transformations are applied as possible. This process of making

a sequence of evaluation passes followed by a single transformation pass is

repeated until no more tree transformations are possible.

Algorithm 4.1. Attribute evaluation and conditional tree transformations for

a simple m-pass attribute grammar with partially ordered attribute domains,

and a set of safe conditional tree transformation rules.

Input: A derivation tree T of which only the values of the synthesized

attribute instances of the leaves are available (more formally an

attributed derivation tree T of which the values of all attribute

instances are 1 , except the values of the synthesized attribute

instances of the leaves).

Output: An attributed derivation tree, consistently derivable from T c, to

which no conditional tree transformation rule is applicable.

Algorithm:

repeat

for i from 1 to m

do perform the i-th evaluation pass od;
perform a transformation pass during which as many tree transforma-

tions are applied as possible

until no tree transformations were applied during the last pass. []

Iteration of Transformation Passes over Attributed Program Trees 15

As = 9 As = 11
7 ~ , j / x .

~ . / " x
f . ~ / x ,

I " x ,

I I I I
I I I I
I I I I

b c b c

Fig. 3. Derivation trees with safe and consistent attribute values

We now want to show that local restrictions can be imposed on the attribute

evaluation and tree t ransformation rules that guarantee the safety of the tree

t ransformation rules. For this we need the monotonici ty of the evaluation rules

and the enabling conditions.

A function f (x l , x2 x,) of attribute values, whose result is an attribute

value, is monotonic if:

if ai<bi (l <i<=n), and

f (al , a2, . . . , a,), f (bl , b2 b,) are defined,

then f (al , a2, ..., a ,)< f (bl , bz, . . . , b,).

An attribute evaluation rule or a lexical evaluation rule is monotonic if the

function in its right part is monotonic. Note that the monotonici ty of a lexical

evaluation rule means that if ai<bl then f (a l , a 2 a ,) = f (b l , b 2 b,) (if

they exist).

An enabling condition f (x l , x2, . . . , x,) of a tree t ransformation rule is mono-

tonic if:

i fai<__bi(l<i<n) and f (a l , a 2 a ,)= t rue ,

then f (b l , b2, ... , b,) = true.

(i.e., for false < true f is monotonic).

Statement 4.1. In the following we restrict ourselves to attribute grammars whose

attribute evaluation rules are monotonic. []

Note that, in general, the execution of monotonic attribute evaluation rules

preserves the safety of trees, but does not necessarily improve their attribute

values. Indeed, the attribute values may even become worse. This is shown

in the following (unrealistic) example.

Example 4.1. Figure 3 shows two attributed versions of the same derivation

tree. The attribute values are non-negative integers with the usual ordering

and 0 as the bo t tom element. The attribute instances and their values are shown

in the trees. Let the (monotonic) evaluation rule s of A .'=s of B + s of C be asso-

ciated with product ion A--*BC, and let the rules s of B..=5 and s of C..=6 be

associated with productions B ~ b and C--* c, respectively. Thus, the left tree

is safely attr ibuted (because T < TO and the right tree is consistently attributed

(and is, in fact, T 0. Application of the evaluation rule for s of A in the context

of the left tree delivers the value 7 for s of A which is still safe, but not an

improvement, compared to the current safe value. []

16 H. Alblas

Consider a tree transformation rule tr: (dir, itt, ott, cond, eval). What happens

locally to compl-itt and compl-ott during application of tr to a consistent tree,

is determined completely by the values of the input attribute instances of compl-

itt (by consistency, all attribute instances of compl-itt are determined by the

attribute evaluation rules; the attribute instances of compl-ott are determined

by the lexical evaluation rules, the attribute evaluation rules, and the attribute

instances taken over from compl-itt, as indicated by steps (2) and (3) of the

application of tr). We say that compl-ott is better than compl-itt if for every

possible choice of values for the input attribute instances of compl-itt, the values

of the output attribute instances of compl-itt are approximations of the values

of the corresponding output attribute instances of compl-ott (if they exist). Intui-

tively, this means that application of tr "increases the amount of information".

Definition 4.4. A tree transformation rule tr: (dir, itt, ott, cond, eval) is locally
safe, if:

(a) cond is monotonic,

(b) all lexical evaluation rules in eval are monotonic,

(c) for every possible compl-itt and compl-ott (extensions of itt and ott)

compl-ott is better than compl-itt. []

Definition 4.5. An attributed tree T is locally safe if, for every attribute evaluation

instruction of T, its execution leads to a better (>) value for the attribute instance

that is computed. []

This means that attribute evaluation improves the tree. Two facts are impor-

tant.

(i) The execution of one attribute evaluation instruction to a locally safe

tree leads again to a locally safe tree (by monotonicity of the attribute evaluation

rules).

(2) If a tree is locally safe, then it is safe.

(Proof of (2): Call the attribute evaluator for a locally safe tree T. By Definition

4.5 and by (1), the attributed trees obtained after each step of the evaluator

form an ascending chain. The output of the evaluator is T c. Hence T=< TO.)

The following theorem states a local criterion for the safety of a tree transfor-

mation rule.

Theorem 4.1. A locally safe conditional tree transformation rule tr is safe.

Proof. Requirement a) of Definition 4.3 is implied by condition (a) of Definition

4.4 and the safety of T 1.

To prove requirement b) of Definition 4.3, consider the transformations

T1 [-IT] t r T2, where T1 is safe, and

TV [IT] tr, T2'.

The monotonicity of the attribute evaluation rules, condition (b) of Definition

4.4, and the safety of T1 imply: T2__< T2'.

Iteration of Transformation Passes over Attributed Program Trees ! 7

,< ,c The next step to prove is: T2 _ T2 . Condition (c) of Definition 4.4 says

that, in the application TIC[IT] t r T2', every output attribute instance of

compl-ott has a better value than the corresponding output attribute instance

of compl-itt. Observe however, that the smaller values from compl-itt have been

used as arguments in attribute evaluation instructions for T I c . Also observe,

that the values of all attribute instances in the context of compl-ott in T2'

have been copied from T I c. So, by monotonicity, the execution of an attribute

evaluation instruction leads to a better value for any attribute instance that

depends directly on output attribute instances of compl-ott, and (since T1 c is

consistent) to the same value for any other attribute instance. This means that

T2' is locally safe and hence, by (2) above, safe.

Finally, T 2 < T 2 ' and T 2 ' < T 2 'c imply (by transitivity of <) that T2

<T2 'C []

In the proof above we have shown that application of a locally safe tree

transformation rule to a consistent tree yields a locally safe tree. Similarly, we

can prove the important fact:

(3) Application of a locally safe tree transformation rule to a locally safe

tree yields again a locally safe tree.

We now investigate whether it is useful to perform attribute evaluations

during the transformation pass.

Recall that monotonic attribute evaluation rules and safe tree transformation

rules preserve the safety of trees, but do not always guarantee better values

for the attribute instances that are recomputed. However, by (1) and (3) above,

the use of both monotonic attribute evaluation rules and locally safe tree trans-

formation rules preserves the local safety of trees and thus yields an improvement

at any execution of an attribute evaluation instruction.

Intuitively, such an improvement is desirable because it may lead to the

earlier applicability of transformation rules. (We have not pursued this formally;

informally we will assume in what follows that the improvement of attribute

values has a positive effect on tree transformation algorithms). Thus, for a simple

m-pass attribute grammar with monotonic attribute evaluation rules, the follow-

ing kind of combination of attribute evaluations and locally safe tree transforma-

tions is attractive.

Algorithm 4.2. Attribute evaluation and conditional tree transformations for

a simple m-pass attribute grammar with partially ordered attribute domains

and monotonic attribute evaluation rules, and a set of locally safe conditional

tree transformation rules.

Input:

Output:

A derivation tree T of which only the values of the synthesized

attribute instances of the leaves are available (more formally an

attributed derivation tree T of which the values of all attribute

instances are _L, except the values of the synthesized attribute

instances of the leaves).

An attributed derivation tree, consistently derivable from T c, to

which no conditional tree transformation rule is applicable.

18 H. Alblas

Algorithm:

repeat

for i from 1 to m

do perform the i-th evaluation pass od;

perform a pass during which some attribute instances are evaluated,

and as many tree transformations are applied as possible

until no tree transformations were applied during the last pass. []

One could also think of a complete mixture of attribute evaluations and

tree transformations, as follows (note that the tree in which all attribute instances,

except the synthesized attribute instances of the leaves, have the value _1_ is

locally safe).

Algorithm 4.3.

Initialize all attribute instances of the derivation tree with _L, except the

synthesized attribute instances of the leaves;

repeat

perform a pass during which all attribute instances are evaluated, and

as many tree transformations are applied as possible

until no tree transformations were applied during the last m + ! passes. []

Practical examples show that, in general, a subsequent transformation pass

is productive only after a complete re-evaluation of the entire derivation tree.

From this it follows that preference should be given to Algorithm 4.1, or to

Algorithm 4.2 on the condition that the attributes to be computed during the

transformation pass are selected carefully.

In the following algorithms we keep the requirements that the attribute

evaluation rules are monotonic and the tree transformation rules are locally

safe.

In Algorithms 4.1 and 4.2 every transformation pass (except the last one)

is preceded by the m-th pass of the previous evaluation phase and followed

by the first pass of the next evaluation phase. In the remainder of this section

we will investigate whether Algorithm 4.2 can be sped-up by moving the evalua-

tions of the attributes with pass number 1 and pass number m to the tree

transformation pass.

We first adapt Algorithm 4.2 such that the attributes with pass number

m are both computed during the m-th evaluation pass and during the transforma-

tion pass. This is expressed by Algorithm 4.4.

Algorithm 4.4.

repeat

for i from 1 to rn

do perform the i-th evaluation pass od;

perform a pass during which all attribute instances with pass number

m are evaluated, and as many tree transformations are applied as possible

until no tree transformations were applied during the last pass. []

Iteration of Transformation Passes over Attributed Program Trees 19

Recall that the monotonicity of the attribute evaluation rules and the local

safety of the tree transformation rules guarantees that every recomputation of

an attribute instance during the transformation phase yields an improvement.

Thus, intuitively, Algorithm 4.4 is an attractive alternative to Algorithm 4.1.

We now skip the m-th evaluation pass.

Algorithm 4.5.

repeat

for i from 1 to m - 1

do perform the i-th evaluation pass od;

perform a pass during which all attribute instances with pass number

m are evaluated, and as many tree transformations are applied as possible

until no tree transformations were applied during the last pass. []

In what follows, we investigate the conditions which guarantee Algorithms

4.4 and 4.5 to have the same input/output behavior and to need the same

number of repetitions. Note that in Algorithm 4.4 each tree transformation

pass starts with a consistently attributed tree, whereas this is not guaranteed

in Algorithm 4.5.

The applicability of tr: (dir, itt, ott, cond, eval) depends on the values of

the attribute instances of itt needed as arguments for cond. The separate m-th

evaluation pass may be skipped if, during the transformation pass, the necessary

attribute instances with pass number m are guaranteed to be evaluated before

the applicability of tr is taken into consideration. Observe that no restrictions

have to be imposed on the synthesized attribute instances of the new terminals,

because condition (b) of Definition 4.4 requires all lexical evaluation rules in

eval to compute "correc t" values.

Consider the application of a tree transformation rule tr: (down, itt, ott,

cond, eval) to a subtree with root N. Visiting node N for the first time during

the combined m-th evaluation and tree transformation pass the following steps

are taken. The first step is the computation of the inherited attribute instances

of N (with pass number m). The second step is the possible application of tr.

At the beginning of the second step the attribute instances of itt, already comput-

ed during this repetition, are:

1) all attribute instances (a, itt, X), for X an arbitrary node of itt, such that

pass (a of X) ~ m-- 1 ;

2) all inherited attribute instances (b, itt, Y), for Y the root of itt, such that

pass(b of Y) = m.

Hence, with respect to downward tree transformation rule tr, the activities

of the m-th evaluation pass may be delayed until the transformation pass, if

for every attribute instance (c, itt, Z), not being an inherited attribute instance

of the root of itt, and needed as an argument for cond, the following holds:

pass(c of Z) =< m-- 1.

We now consider a tree transformation rule tr: (up, itt, ott, cond, eval) to

be applied to a subtree with root N. During the second visit to node N during

the combined m-th evaluation and tree transformation pass the following steps

are taken. First, the synthesized attribute instances of N (with pass number

20 H. Alblas

m) are computed. Secondly, the possible applicability of tr is investigated. At

the beginning of the second step the values of all attribute instances of itt have

a value which was computed during the current repetition.

From these observations we conclude the following theorem.

Theorem 4.2. Given a simple m-pass attribute grammar with monotonic attribute

evaluation rules, and a set of locally safe conditional tree transformation rules.

Algorithms 4.4 and 4.5 have the same input/output behavior and need the same

number of repetitions, if:

for every tree transformation rule (down, itt, ott, cond, eval), for every attribute

instance (a, itt, X) not being an inherited attribute instance of the root of itt,

and needed as an argument for cond, the following holds: pass (a of X) __< m - 1. []

Next, we investigate the combination of the transformation pass and the

first subsequent re-evaluation pass, by comparing Algorithms 4.6 and 4.7.

Algorithm 4.6.

perform the first evaluation pass;

repeat

for i from 2 to m

do perform the i-th evaluation pass od;

perform a pass during which all attribute instances with pass number

1 are evaluated, and as many tree transformations are applied as possible;

perform the first evaluation pass

until no tree transformations were applied during the last transformation

pass. []

Algorithm 4.7.

perform the first evaluation pass;

repeat

for i from 2 to m

do perform the i-th evaluation pass od;

perform a pass during which all attribute instances with pass number

1 are evaluated and as many tree transformations are applied as possible

until no tree transformations were applied during the last pass. []

Both algorithms should have the same input/output behavior and need the

same number of repetitions.

Observe that the local re-evaluation phase, associated with each tree transfor-

mation, includes the recomputation of all the output attribute instances of the

complete output template, which may imply that some subtrees, already visited

during the combined tree transformation and first re-evaluation pass of Algo-

rithm 4.7 should be visited again to recompute attribute instances with pass

number 1.

First, we discuss the consequences of the application of a tree transformation

rule tr: (down, itt, ott, cond, eval) to a subtree with root N during a downward

move.

Assume that ott was extended to compl-ott. Let Xqo--,Xql ... X~k ... Xq~

be the production applied immediately above ott and let Xqk label the root

Iteration of Transformation Passes over Attributed Program Trees 21

of ott. The subtrees already visited during the combined transformation and

first re-evaluation pass are the subtrees with root Xqj(I<j<k , XqjeVN). The

local re-evaluation of compl-ott as part of the application of tr implies a renewed

evaluation of the inherited attribute instances (a, compl-ott, Xqj) (1 <j<k, pass

(a of Xq~)= 1), already computed in this pass. This requires another first pass

visit to all subtrees with root Xqj(1 <=j<k, XqjeVN) if the local re-evaluator

computes for at least one attribute instance (a, compl-ott, Xqj) another value

than for the corresponding attribute instance (a, compl-itt, Xqj). No such prob-

lems arise if no extension of ott took place to form compl-ott.

Next, we discuss the consequences of the application of a tree transformation

rule tr: (up, itt, ott, cond, eval) to a subtree with root N during an upward

move.

Again, we consider the case that compl-ott contains an additional production

Xqo~Xq l ... Xqk ... Xq,,, such that Xqk labels the root of ott. The subtrees

already visited during the combined pass are the subtrees with root Xqj(1 <j

<k, Xqj~VN). Observe that, contrary to the downward case, now also a visit

to the restructured subtree has been made. New values for the output attribute

instances of compl-ott, being different from the values of the corresponding

attribute instances of compl-itt, may require additional first pass visits to both

the subtrees with root Xq~(l <j<k , X ~ V N) and the subtrees substituted for

the variables of ott. Of course, the revision of the first re-evaluation pass may

be restricted to the subtrees substituted for the variables of ott if no extension

of ott was needed to form compl-ott.

The above-mentioned comparison of corresponding inherited attribute

instances of compl-itt and compl-ott has to be done for every possible extension

of itt to compl-itt in any derivation tree T i and ott to compl-ott in a derivation

tree T2 such that T1 [IT] - -~ T2.

It should be emphasized, however, that only different values for inherited

attribute instances may forbid the deletion of a separate first re-evaluation pass.

Synthesized attribute instances never cause any problem.

Taking the easy case, with only synthesized attribute instances involved in

the first pass, we conclude the following theorem.

Theorem 4.3. Given a simple m-pass attribute grammar with monotonic attribute

evaluation rules, and a set of locally safe conditional tree transformation rules.

Algorithms 4.6 and 4.7 have the same input/output behavior and need the same

number of repetitions, if:
all attributes with pass number 1 are synthesized attributes. []

It is easy to see that for attribute grammars and conditional tree transforma-

tion rules which obey both criteria formulated in Theorems 4.2 and 4.3 Algo-

rithms 4.8 and 4.9 have the same input/output behavior and need the same

number of repetitions.

Algorithm 4.8.

perform the first evaluation pass;

repeat

for i from 2 to m

do perform the i-th evaluation pass od;

22 H. Alblas

perform a pass during which all attribute instances with pass numbers 1

and m are evaluated, and as many tree transformations are applied as

possible;

perform the first evaluation pass

until no tree transformations were applied during the last transformation

pass. []

Algorithm 4.9.

perform the first evaluation pass;

repeat

for i from 2 to m - 1

do perform the i-th evaluation pass od;

perform a pass during which all attribute instances with pass numbers 1

and m are evaluated, and as many tree transformations are applied as

possible

until no tree transformations were applied during the last pass. []

For a simple 2-pass attribute grammar and a set of conditional tree transforma-

tion rules, which obey the above-mentioned criteria, Algorithm 4.9 simplifies

to:

Algorithm 4.10.

perform the first evaluation pass;

repeat

perform a pass during which all attribute instances are evaluated and

as many tree transformations are applied as possible

until no tree transformations were applied during the last pass. []

An application of the last algorithm will be presented in Sect. 6.2, where tree

transformation rules are defined for constant folding, constant propagation and

dead code elimination.

5. Comparison with the Evaluation Method for Circular Attribute Grammars

The method of iterating transformation passes over attributed derivation trees,

presented in Sect. 4, shows similarities with the evaluation methods for circular

attribute grammars, presented by Babich and Jazayeri in [3] and Farrow in

[8].

The problem of circular attribute grammars is the impossibility to find for

every derivation tree an evaluation order of its attribute instances such that

at the moment of execution of every attribute evaluation instruction all the

necessary arguments are available.

Babich and Jazayeri [3] solved this problem by supplying assumptions for

the instances of certain attributes before the evaluation process is started. We

will call these attributes the "key" attributes. An assumption is a value for

Iteration of Transformation Passes over Attributed Program Trees 23

an instance of a key attribute to be used by the evaluator before it can compute

its own value. Every attribute instance, for which no assumption is supplied,

should have the property that its value will always be computed before it is

needed as an argument in an attribute evaluation instruction.

For circular attribute grammars our solution will be similar to that of Sect. 4.

For each attribute a the set V(a) is assumed to be partially ordered with /

as smallest element. We also assume the attribute evaluation rules to be mono-

tonic.

We initially supply the key attributes with Z as assumption. Then we may

as well assign the value _1_ to all attribute instances in the derivation tree, except,

of course, to the synthesized attribute instances of the terminals.

Since T• the tree where each attribute instance has its " b o t t o m " value)

is locally safe, attribute evaluation will improve the values of the attribute

instances in the derivation tree and yield a locally safe tree again (by monotoni-

city of the evaluation rules). Thus, for any algorithm that repeatedly applies

all attribute evaluation instructions, the attributed tree gets better at each step.

Hence, if in the domains of the key attributes all ascending chains are finite,

the algorithm has to stop, and moreover it will stop with a fixpoint, i.e., with

a consistent tree. It is easy to see (by monotonicity again) that it must be the

smallest fixpoint.

In general, the evaluation algorithm for a circular attribute grammar may

be as follows.

Algorithm 5.1. Evaluation algorithm for a circular attribute grammar with par-

tially ordered attribute domains (such that all ascending chains are finite for

the key attributes), and monotonic attribute evaluation rules.

Input: A derivation tree where only the values of the synthesized attri-

bute instances of the leaves are available.

Output: The same derivation tree where all attribute instances have their

smallest consistent value.

Algorithm:
assign the value _1_ to all instances of the key attributes;

new assumptions :=values of all instances of the key attributes;

repeat

old assumptions..=new assumptions;

invoke the evaluator;

new assumptions :=values of all instances of the key attributes

until new assumptions = old assumptions. []

In this paper it is assumed that the circular attribute grammars under consid-

eration have the simple multi-pass property after the deletion of dependencies

(a, p, j) ~ (b , p, k), where a is a key attribute. So, the evaluator to be invoked

in Algorithm 5.1 may be a simple multi-pass evaluator.

For compiler optimization purposes a circular attribute grammar may be

specified, just to collect all the information necessary for optimization, but with-

out performing any syntactical transformation. This evaluation (information col-

24 H. Alblas

lection) process is repeated until convergence occurs. Subsequently, a single

pass over the original derivation tree is made to perform all the possible tree

transformations.

The method of iterating transformation and evaluation passes in Sect. 4

resembles this evaluation method for circular attribute grammars for two rea-

sons:

1) The lexical evaluation rules of a tree transformation rule permit the specifi-

cation of synthesized attribute instances of terminal symbols, which have pass

number 0, in terms of attribute instances with pass number > 0. In a traditional

attribute grammar the inclusion of such a dependency brings along with it

a circularity very often.

2) A tree transformation may degrade the consistent value of an attribute

instance in a derivation tree to a safe, non-optimal value in a restructured

derivation tree, making this attribute instance a candidate for improvement

during a subsequent evaluation phase.

In the next section, both the method of iterating mixed transformation and

evaluation passes, and the method based on iterative approximations of attribute

values (using a circular attribute grammar), followed by a single transformation

pass, are applied to the problem of constant folding, constant propagation and

dead code elimination for a small programming language.

6. An Example: Constant Folding and Propagation, and Dead Code Elimination

The following example describes constant folding, constant propagation and

dead code elimination for a small grammar including assignment, conditional

and while statements. The example is borrowed from [16], where global data

flow information is collected, used in determining the applicability of optimizing

tree transformations, and updated after invalidation of the flow information

by tree transformations. The optimization algorithm described in [16] operates

on abstract syntax trees, whereas the variants described in this section are defined

in terms of concrete derivation trees.

The main topic of this paper is the mixing of attribute evaluation and tree

transformation phases, based on the safety of attribute values. However, the

evaluation of attribute instances in an unchangeable tree seems more natural.

For this reason we first tackle the problem of finding the values of all constant

variables and constant expressions everywhere in a derivation tree, by using

a traditional yet circular attribute grammar. Having available this information,

it can be used to restructure the tree, i.e., to replace all constant variables and

constant expressions by constants and to eliminate all dead code.

This approach starts by making passes over the derivation tree to collect

data flow information until no more information becomes available. Finally,

one transformation pass is performed devoted to the replacement of constant

variables and constant expressions by constants and the elimination of dead

code. These transformations turn out to keep the derivation tree consistent.

This can be checked locally (and also statically) by verifying that compl-itt

and compl-ott define the same values for the output attribute instances (cf.

Iteration of Transformation Passes over Attributed Program Trees 25

Definition 4.4(c)). So, there is no need to worry about the safety of the tree

transformation rules.

Next to this approach, where an attribute evaluation phase is followed by

a final and conclusive tree transformation phase, we demonstrate the mixing

of attribute evaluation and tree transformation phases.

In Sect. 6.1 the circular attribute grammar approach is discussed. Section 6.2

illustrates the main topic of this paper.

6.1 Specification by a Circular Attribute Grammar

The grammar specifying the collection of data flow information has the following

attributes. Associated with each statement is a synthesized attribute mod, which

is a finite set of identifier numbers. Attribute mod of a statement includes the

identifier numbers of all variables possibly modified by the statement. Attribute

mod is computed in bot tom up order, first for assignment statements and then

for structured statements.

For constant propagation attributes /-pool (i for inherited) and s-pool (s

for synthesized) are used. A pool is a finite set of (idno, val) pairs, where idno

is the number of an identifier and val its associated value. Inherited attribute

/-pool of a statement contains the variables which have the same value whenever

the execution of the statement is started. Synthesized attribute s-pool of a state-

ment includes the variables which have the same value whenever the execution

of the statement is finished.

For each assignment statement the following holds. Let idno be the identifier

number of the variable in the left part. If the right part is known to be a

constant expression with value val, then the pair (idno, val) is inserted into

the pool of available constant variables, replacing a pair with the same idno

if it exists. If it is unknown whether the right part is a constant expression,

then the pair with first component idno (if it exists) is deleted from the pool

of available constant variables. In both cases, attribute mod is initialized with

a set being composed of idno only.

When leaving a conditional statement an s-pool has to be returned which

includes those (idno, val) pairs that occur identically in both the s-pool of the

then part and the else part, unless the value of the condition is known. In

this case the s-pool of the then part or the else part has to be returned. A

similar approach is followed for the computation of mod. The difference is

that in case of an unknown condition, the mod values of the then part and

the else part are joined.

When entering a while statement, all variables assigned within the while

statement have to be deleted from its associated /-pool, unless the value of

the condition is known to be false, which means that the while statement behaves

as a no-operation. The value false for the condition also means that attribute

mod must be an empty set. In any other case the value of mod of the while

body is passed up.

Associated with every expression and every condition are synthesized attri-

butes intval and boolval, respectively. Both attributes consist of a status field,

26 H. Alblas

indicating whether the expression or condition is known to be constant. If yes,

then the second field represents the associated value.

Finally, synthesized attributes idno, intconstval and boolconstval, associated

with terminal symbols ident, intconst and boolconst, respectively, are set by

the scanner. These attributes are of type number, integer and boolean, respective-

ly.

Attribute grammar AG1 below enumerates the nonterminal and terminal

symbols, the start symbol, the attribute descriptions (specifying the attribute

types, the association of attributes with grammar symbols and the nature of

the attributes, i.e., inh for inherited and syn for synthesized) and the semantic

functions to be used in attribute evaluation rules. The description ends with

the productions of the grammar, each followed by its associated set of attribute

evaluation rules, enclosed in square brackets. Copy rules between identical attri-

butes of the left-hand side and the right-hand side are deleted in the event

of a single nonterminal as the right-hand side of a production.

Attribute Grammar AG1 :

nonterminals: program, compound, stats, stat, assignment, condstat, whilestat,

cond, expr.

terminals: begin, end, if, then, else, fi, while, do, od, :=, + , = , ;, ident, intconst,

boolconst.

start symbol: program.

attribute types:

const max = ... {maximal number of identifiers allowed in any program to be

compiled};

empty-set-of-ident = I-];

empty-pool = [];

type number= 1. .max;

unknown-or-known = (unknown, known);

inttype = record

case status: unknown-or-known of

unknown: ();

known: (val: integer)

end;

booltype = record

case status: unknown-or-known of

unknown: ();

known: (val: boolean)

end;
set-of-ident = set of number;

pool = set of pool-entry;

pool-entry = record

idno: number,

val: integer

end.

attributes:

Iteration of Transformation Passes over Attributed Program Trees 27

idno:
intconstval:

boolconstval:

intval:
boolval:
mod:

/-pool:

s-pool:

functions:
function

number, syn of ident;

integer, syn of intconst;

boolean, syn of boolconst;
inttype, syn of expr;
booltype, syn of cond;
set-of-ident, syn of compound, stats, stat, assignment,

condstat, whilestat;
pool, iuh of compound, stats, stat, assignment, condstat,

whilestat, cond, expr;

pool, syn of compound, stats, stat, assignment, condstat,
whilestat.

initialize-mod-with (idno: number) delivers set-of-ident:
begin {returns the singleton set [idno]} end;

function insert (idno: number, intval: inttype) into: (p: pool) delivers pool:
begin {inserts a new pair (idno, intval.val) into the pool p, replacing a

pair with the same idno, if existing}
end;

function
begin

end;
function

begin

end;
function

begin
end;

function

begin

delete (idno: number) from: (p: pool) delivers pool:

{deletes the pair with first component idno, if existing, from the
pool p}

intersect (p 1, p 2: pool) delivers pool:

{returns the pool which is the intersection of the pools p 1 and
p2}

delete-all-identifiers-in (mod: set-of-ident) from: (p: pool) delivers
pool:

{deletes all pairs (idno, val) from pool p for which idno is in mod}

element (idno: number) in: (p: pool) delivers boolean:

{checks, whether a pair with first component idno is in pool p
or not}

end;

function value-of (idno: number) in: (p: pool) delivers integer:
begin {returns the value associated with idno in pool p} end.

production rules and semantic rules:

(1) program ~ compound.

[/-pool of compound :=empty-pool]

(2) compound ~ begin stats end.
[mod of compound :=mod of stats;
/-pool of stats :=/-pool of compound;
s-pool of compound :=s-pool of stats

]
(3) stats [1] ~ stats [2]; stat.

[mod of stats [1] :---mod of stats [2] + mod of stat;

28 H. Alblas

/-pool of stats [2] :=/-pool of stats [1];

/-pool of stat,=s-pool of stats [2];

s-pool of stats [1] :=s-pool of stat
]

(4) stats --* stat.

(5) stat ~ assignment.

(6) stat ~ condstat.

(7) stat ~ whilestat.

(8) stat --* compound.

(9) assignment --* ident.-=expr.

[mod of assignment :=initialize-mod-with (idno of ident);

/-pool of expr :=/-pool of assignment;

s-pool of assignment :=

if (intval of expr).status = known

then insert (idno of ident, (intval of expr).val)) into:

(/-pool of assignment)

else delete (idno of ident) from: (/-pool of assignment)

fi
]

(10) condstat--* if cond then stats [1] else stats [2] ft.

[mod of condstat :=

if (boolval of cond).status --- unknown

then mod of statst [1] + mod of stats [2]

else if (boolval of cond).val = true

then mod of stats [1]

else mod of stats [2]

fi

fi;
/-pool of stats [2] :=/-pool of stats [1] ..=/-pool of cond :=

/-pool of condstat;

s-pool of condstat :=

if (boolval of cond).status = unknown

then intersect (s-pool of stats [1], s-pool of stats [2])

else if (boolval of cond).val = true

then s-pool of stats [1]

else s-pool of stats [2]

fi

fi
]

(11) whilestat ~ while cond do stats od.

[mod of whilestat :=

if (boolval of cond).status = unknown

then mod of stats

else if (boolval of cond).val = true

then mod of stats

else empty-set-of-ident

fi

Iteration of Transformation Passes over Attributed Program Trees 29

fi;

s-pool of whilestat :=i-pool of stats:=i-pool of cond ..=

if (boolval of cond).status = unknown

then delete-all-identifiers-in (mod of stats) from: (/-pool of whilestat)

else if (boolval of cond).val = true

then delete-all-identifiers-in (mod of stats) from:

(/-pool of whilestat)

else/-pool of whilestat

fi
fi

]

(12) cond ~ expr [11 = expr [21.

[/-pool of expr [2] ..=/-pool of expr [1]. '=/-pool of cond;

if (intval of expr [1]).status = known and

(intval of expr [2]). status = known

then (boolval of cond).status :=known;

(boolval of cond).val :=

((intval of expr [1]).val = (intval of expr [2]).val)

else (boolval of cond).status:=unknown

fi
]
3(13) cond ~ boolconst.

[(boolval of cond).status :=known;

(boolval of cond).val :=boolconstval of boolconst

1
(14) expr [11 ~ expr [21 + expr [3].

[/-pool of expr [31 :=/-pool of expr [2] :=/-pool of expr [1];

if (intval of expr [2]).status = known and

(intval of expr [31).status = known

then (intval of expr [11).status=: known;

(intval of expr [1]).val :=

(intval of expr [2]).val + (intval of expr [3]).val

else (intval of expr [11).status :=unknown

fi

1
(15) expr ~ ident.

[if element (idno of ident) in: (/-pool of expr)

then (intval of expr).status,=known;

(intval of expr).val :=

value-of (idno of ident) in: (/-pool of expr)

else (intval of expr).status :=unknown

fi

1
(16) expr ~ intconst.

[(intval of expr).status :=known;

(intval of expr).val .'=intconstval of intconst

1

30 H. Alblas

i-pool whi~stat mad s-pool

i-pool cond boolval i-pool stats[l l mad s-pool
l l j / l

i-pool st,at mad s-pool

/
i-pool, whi lestot mod s-pool

i-pool co nd boolval i-pool stats[2] mad s-pool

i-pool expr intval i-pool expr intval

1 ' , I

1 1

ident idno ident idno

Fig. 4. Circular attribute dependencies

This grammar is ambiguous because of production rule (14). The ambiguity

may be resolved by requiring the plus operator to be left associative.

The tree part in Figure 4 shows several circular dependency paths. These

circularities can be removed by cutting, for instance, the dependencies between

on the one hand attribute occurrence boolval of cond and on the other the

occurrences of attributes mod and s-pool of grammar symbols condstat and

whilestat in productions (10) and (11), respectively, and the occurrences of attri-

bute /-pool of grammar symbols cond and stats in production (11), i.e., by

replacing the used occurrences of (boolval of cond).status in the attribute evalua-

tion rules associated with productions (10) and (11) by unknown.

Now the attribute grammar becomes simple 2-pass [1] with the distribution

of the attributes over the passes, as shown in Table 6.1.

The synthesized attribute instances of terminal symbols, i.e., intconstval of

intconst, boolconstval of boolconst and idno of ident, are assumed to be set

by the parser.

The above-mentioned change in the semantic rules of productions (10) and

(11) prevents the evaluator from ignoring data flow information from statements

which will never be executed. This is a serious loss for constant propagation.

So, we return to the original circular attribute grammar, where we are faced

with the problem of needing attribute values which are not yet available. If

Iteration of Transformation Passes over Attributed Program Trees 31

Table 6.1. Distribution of the attri-

butes over the passes

Attribute Pass number

mod 1

intval 2

boolval 2

/-pool 2

s-pool 2

we take the above-mentioned distribution of the attributes over the passes, then

the only situation where this will happen is in productions (10) and (11).

For circular attribute grammar AG1 the following theorem is important.

Theorem 6.1. For the following partial orders:

-- set inclusion (~_) on the set of pool values, with the empty set as the

smallest element,

- its converse (~_) on the set of rood values, with the set { 1 max} including

all identifier numbers as the smallest element,

- unknown _< (known, x) on the sets of inttype and booltype values,

the attribute evaluation rules of attribute grammar AG1 are monotonic.

Proof. From an inspection of the evaluation rules of AG1 it becomes evident

that they are monotonic. []

Observe that in the value set of attribute boolval of cond all ascending

chains are finite (they are of the form: unknown < (known, x)).

To solve the circularity problem of attribute grammar AG1 we supply the

assumption "unknown" for all instances of boolval of cond in the derivation

tree before the evaluation process is started. Every other used attribute occur-

rence has the property that its value will always be computed before it is needed.

The following theorem gives a fixed upper bound for the number of invoca-

tions of the evaluator before the tree is consistently attributed.

Theorem 6.2. For any program of attribute grammar AG1, including W while

statements and C conditional statements, each enclosed by a while statement, at

most W + C + 2 invocations of the evaluator are needed to find all possible constant

expressions.

Sketch of proof. In general, the number of invocations is at most: (number

of key attribute instances) �9 (length of longest chain - 1) + 1.

For attribute grammar AG1 the chain for attribute boolval of cond has

length 2. The additional invocation is included to establish convergence. So,

the number of invocations is at most: the number of while and conditional

statements + 1.

However, it depends on the embedding of structured statements in while

statements whether this number of invocations is really necessary.

32 H. Alblas

The change of status of a conditional or while statement, not enclosed by

a while statement, will affect the conditions of other statements during the cur-

rent execution.

Generally, this is not the case for statements embedded in a while statement.

The non-left-to-right dependency between attribute occurrences rood of stats

and /-pool of stats of production (11) may cause the effect of the change of

the condition of a statement forming part of a while body on the conditions

of other statements within the same body to be delayed until the next invocation

of the evaluator; a possible effect on the condition of the enclosing while state-

ment will certainly be postponed until the next invocation.

From this we conclude that the number of invocations of the evaluator

is at most: 1 {for outer structured statements, i.e., not enclosed by a while

statement} + (W + C) {for structured statements embedded in a while statement}

+ i {for convergence} = W + C + 2. []

Notice that the non-left-to-right dependencies between on the one hand attri-

bute occurrence rood of stats and on the other the occurrences/-pool of cond

and /-pool of stats in production (11) force the distribution of the attributes

over two passes, as shown in Table 6.1, i.e., the execution of the second pass

may start as soon as the first pass has been finished. However, there is no

non-left-to-right dependency between attributes of the second pass and attributes

of the first pass. This means that the (n+ 1)-th execution of the first pass may

be performed simultaneously with the n-th execution of the second pass, for

any n __> 1. This observation will be used in the constant folding and propagation

part of Algorithm 6.1.

Having found the constant expressions in a derivation tree a single pass

over the tree suffices to do all possible transformations.

The following tree transformation rules specify the replacement of a constant

expression by a single constant and the elimination of dead code.

transformation rules:
transl : transform down (expr)

eond (intval of expr).status = known

into (expr, intconst)

eval intconstval of intconst.-=(intval of expr).val

end;

trans2: transform down (condstat, if, cond, then, stats [1], else, stats [2], fi)

eond boolval of cond = (known, true)

into (compound, begin, stats [1], end)

eond boolval of cond = (known, false)

into (compound, begin, stats [2], end)

end;

trans3: transform down (whilestat, while, cond, do, stats, od)

eond boolval of cond = (known, true)

into (loop-forever, forever, do, stats, od)

cond boolval of cond = (known, false)

into (no-operation)

end.

Iteration of Transformation Passes over Attributed Program Trees 33

The execution of these transformations during a downward move causes

the transformation of a complicated expression or a structured statement to

be executed in a single step, whereas bottom up transformations might need

several steps.

It is easily verified that for transl and trans2 compl-itt and compl-ott define

the same values for the output attribute instances. This keeps the tree consistent.

Observe, that any application of rule trans3 will put the derivation tree

out of the language defined by the above-mentioned attribute grammar. Of

course, a warning should be given if such a tree transformation occurs. To

keep the tree in the language one could think of additional productions (and

associated attributes and attribute evaluation rules) for a loop-forever and a

no-operation. This will be demonstrated in Sect. 6.2.

We are now ready for the complete algorithm that first collects the necessary

data flow information and then performs the possible transformations.

Algorithm 6.1. Constant folding and propagation, and dead code elimination

according to attribute grammar AG1 and its associated set of tree transformation

rules.

Input: A derivation tree where only the synthesized attribute instances

of ident, intconst and intbool are available.

Output: A consistently attributed derivation tree where all constant

expressions have been replaced by constants and all dead code

has been eliminated.

Algorithm:

initialization

assign the value unknown to all instances of attribute boolval of

cond;

new assumptions..=values of instances of attribute boolval of cond;

pre evaluation pass

perform a pass during which the instances of attribute mod are com-

puted;

iteration of evaluation passes

repeat

old assumptions .'=new assumptions;

perform a pass during which the instances of all attributes are

computed;

new assumptions.-=values of instances of attribute boolval of cond

until new assumptions = old assumptions;

transformation pass

perform a pass during which all possible transformations are applied. []

The maximal number of passes in this algorithm is expressed in the following

corollary.

Corollary 6.1 [of Theorem 6.2] For any program of attribute grammar AG1,

including W while statements and C conditional statements, each enclosed by a

while statement, at most W + C + 4 passes in Algorithm 6.1 are needed to do

all possible constant folding, constant propagation and dead code elimination. []

34 H. Alblas

6.2 Specification by Tree Transformation Rules

In this section we first describe the collection of data flow information by a

traditional non-circular attribute grammar AG2, and then enrich this grammar

with attributed tree transformation rules to specify constant folding, constant

propagation and dead code elimination as well.

Attribute grammar AG2 has attributes idno, intconstval, boolconstval, mod,

/-pool and s-pool, which have the same meaning as the corresponding attributes

of AG1. The attribute grammar itself takes a dark view of constant folding

and constant propagation in the sense that the values of expressions and condi-

tions are assumed to be unknown, which in fact disallows constant folding

and constant propagation. These optimizations are as yet realized by the exten-

sion of the attribute grammar with conditional tree transformation rules.

Attribute Grammar AG2:

nonterminals: see AG1, plus: loop-forever and no-operation.

terminals: see AG 1, plus: forever.

start symbol: program.

attribute types: see AG1, without: unknown-or-known, inttype and booltype.

attributes: see AG1, without: intval and boolval, and

plus: the association of attributes mod,/-pool and s-pool with loop-

forever and no-operation.

functions: see AGI.

production rules and semantic rules:

(1) program -~ compound.

[/-pool of compound ,=empty-pool]

(2) compound --* begin stats end.

[mod of compound :=mod of stats;

/-pool of stats,=/-pool of compound;

s-pool of compound,=s-pool of stats
]

(3) stats 1-1] ~ stats 1.2]; stat.

[mod of stats [1] ..=mod of stats 1.2] + mod of stat;

/-pool of stats 1.2] ,=/-pool of stats [1];

/-pool of stat,=s-pool of stats 1.2];

s-pool of stats [1] .-=s-pool of stat
]

(4) stats ~ stat.

(5) stat ~ assignment.

(6) stat ~condsta t .

(7) stat ~ whilestat.

(8) stat ~ compound.

(9) stat ~loop-forever.

(10) stat ~no-operat ion.

Iteration of Transformation Passes over Attributed Program Trees 35

(11) assignment --, ident ,=expr.

[mod of assignment ,=initialize-mod-with (idno of ident);

/-pool of expr :=/-pool of assignment;

s-pool of assignment,=delete (idno of ident) from:

(/-pool of assignment)
]

(12) assignment -~ ident ,=intconst.

[mod of assignment :=initialize-mod-with (indo of ident);

s-pool of assignment.'=insert (idno of ident, intval of intconst) into:

(/-pool of assignment)
]

(13) condstat ~ if cond then stats [1] else stats [2] ft.

[mod of condstat,=mod of stats [1] + mod of stats [2];

/-pool of stats [2] :=i-pool of stats [1] :=/-pool of cond ,=

/-pool of condstat;

s-pool of condstat :=intersect (s-pool of stats [1],

s-pool of stats [2])
]

(14) whilestat -~ while cond do stats od.

[mod of whilestat ,=mod of stats;

s-pool of whilestat.-=i-pool of stats,=/-pool of cond.'=

delete-all-identifiers-in (mod of stats) from: (/-pool of whilestat)
]

(15) loop-forever --, forever do stats od.

[mod of loop-forever :=mod of stats;

s-pool of loop-forever :=/-pool of stats.-=

delete-all-identifiers-in (mod of stats) from: (/-pool of loop-forever)
]

(16) no-operation ~ .

[mod of no-operation..=empty-set-of-ident;

s-pool of no-operation .'=/-pool of no-operation
]

(17) cond ~ expr [1] -- expr [2].

[/-pool of expr [2] :=i-pool of expr [1] :=/-pool of cond]

(18) cond ~ boolconst.

(19) expr [1] ~ expr [2] + expr [3].

[/-pool of expr [3] :=/-pool of expr [2] :=/-pool of expr [1]]

(20) expr ~ ident.

(21) expr ~intconst.

This grammar is ambiguous, not only on account of production rule (19),

which allows different derivation trees for the same expression, but also because

of productions (11), (12) and (21) which allow two derivations for a single integer

constant as the right part of an assignment statement.

As for grammar AG1, the first problem can be solved by requiring the

plus operator to be left-associative. The second problem will be solved by giving

priority to the combination of productions (11) and (21) in the case of the

assignation of a constant value. In fact, the parser does not know production

36 H. Alblas

rule (12). This rule has been included for optimization purposes only and the

integer constant in the right part of production (12) is assumed to be compiler-

made. As a matter of fact, the integer constant has to be hoisted into a production

for the assignment statement to make its attribute intconstval visible, because

one of the basic concepts of attribute grammars is that the evaluation rules

are associated with productions only. Instances of attributes farther away in

the tree are invisible.

Attribute grammar AG2 is simple 2-pass [1] with the same distribution

of the attributes rood,/-pool and s-pool over the passes, as shown in Table 6.1.

Again the instances of idno, inconstval and boolconstval are assumed to be

set by the parser.

The following tree transformation rules specify the conditional replacement

of a variable by a constant, constant folding, and dead code elimination.

transformation rules:
transl : transform up (expr, ident)

eond element (idno of ident) in: (/-pool of expr)

into (expr, intconst)

eval intconstval of intconst :=value-of (idno of ident) in:

(/-pool of expr);

end;

trans2: transform up (expr, (expr, intconst [1]), +,(expr, intconst [2]))

into (expr, intconst)

eval intconstval of intconst :=intconstval of intconst [1] +

intconstval of intconst [2]

end;

trans3: transform up (cond, (expr, intconst [1]) , = ,(expr, intconst [2]))

into (cond, boolconst)

eval boolconstval of boolconst..=(intconstval of intconst [1]

intconstval of intconst [2])

end;

trans4: transform up (assignment, ident,..=,(expr, intconst))

into (assignment, ident, ,=,intconst)

end;

trans5: transform up (condstat, if, (cond, boolconst),

then, stats [1], else, stats [2], fi)

eond boolconstval of boolconst = true

into (compound, begin, stats [1], end)

eond boolconstval of boolconst = false

into (compound, begin, stats [2], end)

end;

Iteration of Transformation Passes over Attributed Program Trees 37

trans6: transform up (whilestat, while, (cond, boolconst), do, stats, od)

eond boolconstval of boolconst = true

into (loop-forever, forever, do, stats, od)

eond boolconstval of boolconst = false

into (no-operation)

end.

For safety considerations the following theorems are important.

Theorem 6.3. For the following partial orders:

- set inclusion (~_) on the set of pool values, with the empty set as the

smallest element,

- its converse (~_) on the set of rood values, with the set { 1, ..., max} including

all identifier numbers as the smallest element,

the attribute evaluation rules of attribute grammar AG2 are monotonic.

Proof. Easily verified by checking the evaluation rules of AG2. []

Theorem 6.4. The tree transformation rules transl through trans6 are locally

safe.

Proof. The tree transformation rules meet all the conditions of Definition 4.4.

Take, for example, transformation rule trans5. We check condition (c). To

form compl-itt and compl-ott, itt and ott have to be extended with the produc-

tions stat ~condstat and stat ~compound, respectively. We discuss the case

that boolconstval of boolconst has the value true. Observe that mod of stat

will decrease,/-pool of stats [1] will stay the same and s-pool of star will increase

as a result of the transformation. Hence, the values of all the output attribute

instances of compl-ott improve. []

Every tree transformation may open up the applicability of further transfor-

mations. To let each tree transformation rule benefit from earlier transformations

as soon as possible, the rules are applied in bottom up order. Transformation

rule transl is the only one where the direction makes no difference (because

the transformation happens at the bottom of the tree).

Notice that for the extended attribute grammar AG2 the n-th execution

of the transformation pass may be combined with the n-th execution of the

second evaluation pass (since the direction of all tree transformations is up)
and the (n+ 1)-th execution of the first evaluation pass (since this pass works

strictly bottom up), for any n > 1 (Theorems 4.2 and 4.3, and Algorithm 4.10).

This observation leads to the following algorithm for constant folding and

propagation, and dead code elimination according to attribute grammar AG2.

Algorithm 6.2. Constant folding and propagation, and dead code elimination

according to attribute grammar AG2 and its associated set of tree transformation

rules.

Input: A derivation tree T where only the synthesized attribute instances

of ident, intconst and intbool are available.

38 H. Alblas

Output: An attributed derivation tree, consistently derivable from T c,

where all constant expressions have been replaced by constants

and all dead code has been eliminated.

Algorithm:

pre evaluation pass

perform a pass during which the instances of attribute mod are computed;

iteration of evaluation and transformation passes

repeat

perform a pass during which all attribute instances are evaluated

and as many tree transformations are applied as possible

until no tree transformation rules were applied during the last pass. []

The maximal number of passes in this algorithm is expressed in the following

theorem.

Theorem 6.5. For any program of attribute grammar AG2, including W while

statements and C conditional statements, each enclosed by a while statement, at

most W + C + 3 passes in Algorithm 6.2 are needed to do all possible constant

folding, constant propagation and dead code elimination.

Proof. See Theorem 6.2 and Corollary 6.1. []

6.3 An Example of the Example

The following program shows an example where the repetition of the combined

tree transformation and attribute evaluation pass leads to further improvements.

begin

a:=2;b:=l;c:=l;

while a = b do if b = c then d..= 1 else a'.= 1 fi od

end.

In Algorithm 6.2, the first execution of the combined tree transformation

and attribute evaluation pass results in the replacement of the conditional state-

ment by its then part. During the second execution the while statement is re-

placed by a no-operation. No more tree transformations are performed during

the third execution.

The resulting program is

begin a.-=2; b.-= 1; c~=l; end.

The same number of iterations is needed if the circular attribute grammar

is applied. In Algorithm 6.1, the first iteration produces the value true for the

condition of the conditional statement. The second iteration results in the value

false for the while condition. The third iteration establishes convergence.

Iteration of Transformation Passes over Attributed Program Trees 39

Having available all the necessary data flow information, a single pass over

the derivation tree is now sufficient to do all the possible tree transformations,

giving rise to the same program as found by the method where tree transforma-

tions and re-evaluations are performed in parallel.

7. Discussion

An implementation of compiler optimizations is discussed where conditional

tree transformations are performed during a pass over a derivation tree, which

is never interrupted for re-evaluation purposes. This is certainly allowed for

transformations which guarantee the attribute instances in the derivation tree

to remain unaffected. If not, then a distinction is made between consistent and

safe attribute values, both correct and excluding incorrectly applied tree transfor-

mations. This allows the transformation algorithm to proceed, possibly at the

price of missing some transformations during the current pass. Safe attribute

values also allow the combination of attribute evaluation and tree transforma-

tion phases.

An alternative is the formulation of a circular attribute grammar which

specifies a complete evaluation of both the original derivation tree and the

tree as it should be after its reconstruction. After the completion of all precompu-

tations a single final pass suffices to do all transformations.

The advantage of the circular attribute grammar approach is that less unnec-

essary pattern matching and computat ion of enabling conditions has to be done.

The disadvantage is that generally more space and time are needed for additional

attributes and associated computations. Moreover, an additional pass is needed.

A different approach is the application of an optimal global re-evaluation

phase after every tree transformation, which minimizes the number of recompu-

tations and the number of tree traversals (cf. [2]). The advantage of taking

full profit of consistent attribute values is that generally less transformation

passes are needed. The disadvantage is the need of additional attributes for

bookkeeping purposes.

Machine-independent optimizations form an essential part of a compiler

writing system being developed at the University of Twente. Each of the three

above-mentioned strategies is being implemented. Comparative experiments

have to show whether one of these should be given preference above the others.

Acknowledgements. Thanks go to Joost Engelfriet for his valuable and critical comments, which
considerably improved this paper.

References

1. Alblas, H.: A characterization of attribute evaluation in passes. Acta Inf. 16, 427-464 (1981)
2. Alblas, H.: Optimal incremental simple multi-pass attribute evaluation. Memorandum INF-86-27,

Department of Informatics, University of Twente (1986)
3. Babich, W.A., Jazayeri, M.: The method of attributes for data flow analysis. Part I. Exhaustive

analysis. Acta Inf. 10, 245-264 (1978)

40 H. Alblas

4. Bochmann, G.V.: Semantic evaluation from left to right. Commun. ACM 19, 55~2 (1976)

5. Chirica, L.M., Martin, D.F.: An order-algebraic definition of Knuthian semantics. Math. Syst.

Theory 13, 1-27 (1979)

6. DeRemer, F.L.: Transformational grammars. In: Bauer, F.L., Eickel, J. (eds.) Compiler construc-

tion: An Advanced Course. (Lect. Notes Comput. Sci., Vol. 21, pp. 121-145) Berlin Heidelberg

New York: Springer 1974

7. Engelfriet, J.: Attribute grammars: Attribute Evaluation Methods. In: Lorho, B. (ed.) Methods

and Tools for Compiler Construction, pp. 103-138. Cambridge: Cambridge University Press 1984

8. Farrow, R.: Automatic generation of fixed-point finding evaluators for circular, but we/l-defined,

attribute grammars. In: Proc. SIGPLAN 1986 Symposium on Compiler Construction. SIGPLAN

Notices 21, 85-98 (1986)

9. Ganzinger, H., Giegerich, R.: A truly generative semantics directed compiler generator. In: Proc.

SIGPLAN 1982 Symposium on Compiler Construction. SIGPLAN Notices 17, 172-184 (1982)

10. Giegerich, R., M6ncke, U., Wilhelm, R.: Invariance of approximative semantics with respect

to program transformations. In: Informatik-Fachberichte 50, pp. 1-10. Berlin Heidelberg New

York: Springer 1981
11. Glasner, I., M6ncke, U., Wilhelm, R.: OPTRAN, a language for the specification of program

transformations. In: Informatik-Fachberichte 34, pp. 125-142. Berlin Heidelberg New York:

Springer 1980

12. Knuth, D.E.: Semantics of context-free languages. Math. Syst. Theory 2, 127-145 (1968). Correc-

tion in: Math. Syst. Theory 5, 95-96 (1971)

13. M6ncke, U., Weisgerber, B., Wilhelm, R.: How to implement a system for manipulation of attrib-

uted trees. In: Informatik Fachberichte 77, pp. 112-127. Berlin Heidelberg New York: Springer

1984
14. Nestor, J.R., Mishra, B., Scherlis, W.L., Wulf, W.A.: Extensions to attribute grammars. Techn.

Rep. TL 83-36, Tartan Laboratories 1983

15. Reps, T., Teitelbaum, T., Demers, A.: Incremental context-dependent analysis for language based

editors. ACM Trans. Progr. Lang. 5, 449-477 (1983)

16. Wilhelm, R.: Computation and use of data flow information in optimizing compilers. Acta Inf.

12, 209-225 (1979)
17. Yeh, D.: On incremental evaluation of ordered attribute grammars. BIT 23, 308-320 (1983)

Received December 3, 1987 / April 10, 1989

