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Summary. Transformations of attributed program trees form an essential 

part of compiler optimizations. A strategy of repeatedly applying alternate 

attribute evaluation and tree transformation phases is discussed. An attribute 

evaluation phase consists of a sequence of passes over the tree. A tree trans- 

formation phase consists of a single pass, which is never interrupted to carry 

out a re-evaluation. Both phases can be performed in parallel. This strategy 

requires a distinction between consistent (i.e., correct) and approximate attri- 

bute values. Tree transformations can be considered safe if they guarantee 

that the attribute values everywhere in the program tree will remain consis- 

tent or will become at least approximations of the consistent values, so 

that subsequent transformations can be applied correctly. 

This attribute evaluation and tree transformation strategy shows similari- 

ties with the evaluation methods for circular attribute grammars. 

1. Introduction 

Attribute grammars have proved to be a useful formalism for specifying the 

syntax and the static semantics of programming languages, as well as for imple- 

menting editors, compilers, translator writing systems and compiler generators. 
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Several methods have been developed to evaluate the semantic attributes 

within the derivation tree of a program. An overview is given in [7]. 

In this paper we restrict ourselves to the simple left-to-right multi-pass evalu- 

ation strategy [1, 4], where a fixed number of depth-first left-to-right traversals 

(called passes) are made over the derivation tree and all instances of the same 

attribute are evaluated during the same pass. 

Conditional tree transformations form an essential part of compiler optimiza- 

tions. For  the specification of such transformations the classical attribute gram- 

mar framework has to be extended with attributed tree transformation rules 

[11, 14, 16], where predicates on attribute values may enable the application 

of a transformation. Such a conditional tree transformation rule includes: an 

input template (describing the structure of the tree part to which the transforma- 

tion has to be applied), an output template (describing the structure of the 

transformed part of the tree), enabling conditions which are predicates on attri- 

bute instances of the input template, and, possibly, rules which define the values 

of the attribute instances that are normally available before the evaluation pro- 

cess starts, i.e., the synthesized attribute instances associated with the terminal 

symbols of the output template. 

Traditionally, before the application of a tree transformation rule all attribute 

instances attached to the derivation tree are assumed to have correct values. 

A tree transformation may cause the values of some of the attribute instances 

within the derivation tree to become incorrect, which means that a renewed 

application of the attribute evaluation instructions will result in different values. 

To make the attribution of a derivation tree correct again, a re-evaluation 

of the entire tree could be applied. However, a repeated computation of all 

the attribute instances after every transformation is inefficient and should be 

avoided. Several methods have been developed to minimize the number of 

recomputations and the number of visits to subtrees [2, 7, 13, 15, 17]. These 

methods have in common that they assume a re-evaluation of the affected attri- 

butes of the tree to be performed after every tree transformation. 

In this paper we consider a different approach in the sense that the re- 

evaluation process will be delayed until a sequence of tree transformations has 

been performed and the entire tree is expected to be affected. This approach 

requires a different view of the correctness of attribute values in a derivation 

tree. For  a non-circular attribute grammar, the classical theory defines one single 

value to be correct for each attribute instance. This is also called the consistent 
value of the attribute instance. For  the purpose of conditional tree transforma- 

tions we extend the classical attribute grammar framework by allowing a set 

of values to be correct for each attribute instance. Such a value is called safe. 
Every safe value should be an approximation of the consistent value. More 

precisely, for each attribute there is a partial order < on its possible values, 

and a value x of an attribute instance is safe iffx<y, where y is its consistent 

value. Thus, the consistent value is the optimal safe value. 

In this paper we study tree transformations which preserve the safety of 

the attribute values in the derivation tree. Our research was stimulated by the 

ideas stated in [9, 10]. 
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The safety of the conditional tree transformation rules is the responsibility 

of the writer of these rules, i.e., their safety is not checked at compiler generation 

time. However, we do provide some local criteria so that the writer can check 

the safety of his rules. 

The use of safe tree transformation rules allows a tree transformation and 

re-evaluation strategy with the following characteristics. 

1) Tree transformations are performed during a pass over the derivation 

tree. 

2) The re-evaluation of attribute instances in the derivation tree is delayed 

until a transformation pass has been finished. (Note that the attribute instances 

of the area corresponding to the output template receive a value as part of 

the tree transformation). 

3) The attribute evaluation phase (which consists of a fixed number of passes) 

and the tree transformation phase (which consists of one pass) are performed 

alternately, until it turns out that no more tree transformations are possible. 

4) The attribute evaluation phase and the tree transformation phase may 

also be combined, if required. 

The method of the alternate (or combined) application of attribute evaluation 

and tree transformation phases, presented in this paper, shows similarities with 

the evaluation methods for circular attribute grammars, presented by Babich 

and Jazayeri in [3] and Farrow in [8]. Each method, in its own way, improves 

the attribute values by repeatedly traversing the derivation tree. 

This paper is organized as follows: Section 2 provides an introduction to 

the classical theory of attribute grammars and summarizes the principles of 

simple left-to-right multi-pass evaluation. Conditional tree transformations are 

defined in Sect. 3. In Sect. 4 the safety criteria for conditional tree transformation 

rules are developed, which allow the delay of a re-evaluation phase, which con- 

cerns the entire derivation tree, after every tree transformation. In Sect. 5 the 

alternate or combined application of an attribute evaluation and a tree transfor- 

mation phase is compared to the evaluation method for circular attribute gram- 

mars. Both methods are applied to an example which concerns constant folding, 

constant propagation and dead code elimination in Sect. 6. Concluding remarks 

are made in Sect. 7. 

2. Basic Concepts 

An attribute grammar AG, as defined in 1-12], is a context-free grammar aug- 

mented with attributes and attribute evaluation rules. The underlying grammar 

G is a 4-tuple (VN, Vr, P, S). The finite sets VN of nonterminal and Vr of terminal 

symbols form the vocabulary V= VN u Vr. P is the set of productions and S t  VN 

is the start symbol, which does not appear in the right part of any production. 

The grammar G is assumed to be reduced in the sense that every nonterminal 

symbol is accessible from the start symbol and can generate a string of terminal 

symbols only. 

Each symbol X e V has a finite set A(X) of attributes, partitioned into two 

disjoint subsets I(X) and S(X) of inherited and synthesized attributes, respective- 

ly. The start symbol should not have inherited attributes. 



4 H. Alblas 

The set of all attributes will be denoted by A, i.e., A = Ux~v A(X). Attributes 

of different g rammar  symbols are considered as different. If  necessary we will 

denote an attribute a of symbol X by a of X. With each attribute a a set V(a) 

of possible values is associated. 

Let P consist of r productions, numbered from 1 to r and let the p-th produc- 

tion be 

Xpo ~ Xpl Xp2 ... Xpn 

where n>O, X v o e V  N and XvkeV for  1 <k<n .  
Production p is said to have the attribute occurrence (a, p, k) if aeA(Xpk ). 

The set of attribute occurrences of production p will be denoted by AO(p). 

This set can be parti t ioned into two disjoint sets of defined occurrences and 

used occurrences denoted by DO (p) and UO (p) respectively. 

These subsets are defined as follows: 

DO (p)= {(s, p, O)lse S(Xpo)} w {(i, p, k) l ieI(Xpk ) ^ 1 <_ k <- n}, 

UO(p)-- {(i, p, O) lieI(X,,o)} u {(s, p, k) lse S(X,,~) ^ 1 <_ k <- n}. 

Associated with each product ion p is a set of attribute evaluation rules which 

specify how to compute the values of the attribute occurrences in DO(p). The 

evaluation rule defining attribute occurrence (a, p, k) has the form 

(a, p, k),=f((al,  p, kl), (a2, p, k2) . . . . .  (a,,,, p, km)) 

where (a, p, k)~DO(p), f is a total function and (aj, p, kj)EUO(p) for l < j < m .  
We say that  (a, p, k) depends on (a j, p, k j) for 1 < j  < m. 

For  each sentence of G a derivation tree exists. For  the definition of a tree 

transformation rule we also need the concept of a "possibly incomplete"  deriva- 

tion tree where arbitrary symbols may label the root  and the leaves. Apar t  

from that, by a derivation tree we mean a "comple te"  derivation tree, i.e., a 

derivation tree whose root is labeled with the start symbol and whose leaves 

are labeled with terminal symbols only. By a subtree we mean a subtree of 

a complete derivation tree. 

The nodes of a (possibly incomplete) derivation tree are labeled with symbols 

from V. For  each inner node a product ion p: Xpo ~ Xpl Xp2 ... Xpn exists, such 

that the node is labeled with Xpo and its sons with Xpl ,  Xp2 . . . . .  Xpn, respective- 

ly. We say that p is the product ion (applied) at that node. 

Given a derivation tree, instances of attributes are attached to the nodes 

in the following way: if node N is labeled with g rammar  symbol X, then for 

each attribute a~A(X)  an instance of a is attached to node N. We say that 

the derivation tree has attribute instance a of N. 

Let N O be a node, p the production at N 0, and N~, N2 . . . . .  Nn its sons from 

left to right, respectively. An attribute evaluation instruction 

a of Nk,=f(al of Nk~, a2 of Nk . . . . . .  a,. of Nk,.) 
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is associated with attribute instance a of N k if the attribute evaluation rule 

(a, p, k):=f((al,  p, kl), (a2, p, k2), .. . ,  (am, p, kin)) 

is associated with product ion p. We say that a of N k depends on at of Nk, for 

l <_i<_m. 

For  each derivation tree T a dependency graph Dr can be defined by taking 

the attribute instances of T as its vertices. Arc (a of N~, b of N~) is contained 

in the graph if and only if attribute instance b of Nj depends on attribute instance 

a of N~. 

If DT is acyclic, its arcs specify a partial ordering of the attribute instances. 

The existence of arc (a of N/, b of Nj) indicates that attribute instance a of N~ 

must be computed before attribute instance b of Nj. 

A path  in a dependency graph will be called a dependency path, for which the 

following notat ion will be used: dp[al ofNt ,  a 2 o f N  2 , . . . ,  a n o f  Nn'] for n >  1 stands 

for a path composed of the arcs (al of N1, a2 of N2) , (a 2 of N2,  a 3 of Na) . . . . .  

(an- 1 of N n_ 1, an of Nn). A path dp [a I of N 1 . . . . .  a n of N n, a t of N1] will be called 

a circular dependency path. An attribute g rammar  is circular if it includes a 

derivation tree whose dependency graph contains a circular dependency path, 

otherwise the attribute g rammar  is non-circular. Unless stated otherwise, we 

assume an attribute g rammar  to be non-circular. 

An attributed derivation tree is a derivation tree where all attribute instances 

have a value (which is not necessarily consistent). A consistently attributed deriva- 

tion tree is a derivation tree where the execution of any evaluation instruction 

does not change the values of the attribute instances. 

The task of an attribute evaluator is to compute the values of all attribute 

instances attached to the derivation tree, by executing their associated evaluation 

instructions. In general the order of evaluation is free, with the only restriction 

that an attribute evaluation instruction cannot be executed before the values 

of its arguments are available. Initially the values of all attribute instances 

attached to the derivation tree are undefined, with the exception of the instances 

of the imported attributes. For  simplicity we assume that the imported attributes 

are the synthesized attributes of the leaves of which the values are determined 

by the parser. The output  of the evaluator is a consistently attributed derivation 

tree. 

In this paper  the attribute instances are evaluated during a bounded number  

of passes over the derivation tree, where a pass is a depth-first left-to-right 

traversal of the tree. Note  that (for the sake of simplicity) we do not allow 

right-to-left traversals. We further restrict the evaluation strategy to be simple 

multi-pass [-1, 4], which means that with each attribute a fixed pass number  

can be associated so that  the evaluation of all its instances in any derivation 

tree of the g rammar  can be performed in that pass. 

We assume the reader to be familiar with attribute evaluation in passes. 

F rom I-1] we repeat some terminology and definitions concerning simple multi- 

pass evaluation. 

A partition of the set of attributes A into a sequence of mutually disjoint 

subsets will be denoted by (A o, A 1 . . . . .  A,.), where A o includes all synthesized 
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attributes of terminal symbols (whose values should be computed by the parser 

before the evaluator is started). 

A partition (Ao, A 1 . . . . .  Am) of the set of attributes A is correct if A o consists 

of the synthesized attributes of the terminal symbols and the instances of all 

attributes in set Ai(1 < i<m) can be evaluated during the i-th pass of the simple 

multi-pass evaluator. 

An attribute grammar is simple m-pass if a correct partition (Ao, A~, . . . ,  A m )  

of the set of attributes A exists. An attribute grammar is simple multi-pass if 

it is simple m-pass for some m. 

For  each partition (Ao, At, ..., Am) of the set of attributes A of an attribute 

grammar a pass function pass: A--*{0,1, . . . ,m} can be defined as pass(a) 

= i ifaeAi. The pass function is correct if the partition is correct. 

3. Conditional Tree Transformations 

We consider attributed tree transformations which preserve the syntax, i.e., all 

intermediate trees are derivation trees in the same context-free grammar. 

To define conditional tree transformations we first recall the definition of 

a purely syntactical tree transformation rule [6], composed of two tree templates. 

A tree template is a possibly incomplete derivation tree. Multiple occurrences 

of the same symbol as the label of a node are distinguished by indices. So, 

in general, node labels are of the form X [i], where X is a terminal or nonterminal 

and i an index. Nonterminal symbols (possibly with an index) labeling the leaves 

are the variables of the tree template. 

An instance of a tree template is created by substituting for each variable 

of the tree template a subtree whose root has the same nonterminal as the 

variable. 

A tree transformation rule is a pair (itt, ott) of tree templates, such that all 

variables occurring in ott also occur as variables in itt, (and if the roots of 

itt and ott are labeled by the same nonterminal, then these nonterminals should 

have the same index); itt and ott are called the input tree template and the 

output tree template, respectively. 

A tree transformation rule (itt, ott) is applicable to a subtree IT of a derivation 

tree T1, if 

1) itt matches the top of IT, i.e., IT is an instance of itt. 

2) ott fits in the surrounding tree, i.e., if A [i] and B [j]  label the roots of 

itt and ott, respectively, and X--* aAf leP is the production applied immediately 

above IT in T1, then also X ~ a B f l  must be in P (or A = B = S) .  

The application of tree transformation rule (itt, ott) consists of the creation 

of an instance OT of ott in which the relation between subtrees of OT and 

variables of ott is the same as established by matching itt with IT. The resulting 

subtree OT replaces subtree IT of T1, thus creating a new derivation tree T2. 

Note that by the definition of tree templates (the variables of ott must be differ- 

ent) duplication of a subtree of IT in OT is excluded. 

Syntactically (i.e., for attribute-free derivation trees), the applicability of a 

tree transformation rule to a subtree is confined by the above-mentioned criteria. 
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It may be further restricted by contextual information, collected and distributed 

by attributes. For this we need to associate attributes with tree templates. 

Let X [i] be the label of a node of a tree template tt where X is a grammar 

symbol and i denotes its index in tt. The index may be omitted in the case 

of a single occurrence of X in tt. We say that tree template tt has attribute 

instance (a, tt, X[i]) if aeA(X).  (a, tt, X[i]) is an inherited instance if aeI(X),  
and a synthesized instance if aeS(X).  

Let (itt, ott) be a tree transformation rule. Attribute instances in itt and 

ott are corresponding if they are the same attribute of identically labeled nodes, 

i.e., they are of the form (a, itt, Y) and (a, ott, Y). This notion is only relevant 

for attribute instances of the root and the leaves of itt and ott. 

Having associated attributes with tree templates in a natural way, the trans- 

formation rules can be extended by enabling conditions [11, 14, 16] which are 

predicates on attribute instances of the input template. 

Next, we focus on the attribution of a derivation tree ai~ter the application 

of a tree transformation rule. The difference between the original tree and the 

restructured tree is effected by the replacement of the input template by the 

output template and, in the event of differently labeled template-roots, by a 

change of the production applied immediately above the restructured subtree. 

No syntactical changes take place elsewhere in the tree (except for the case 

that an entire subtree is deleted). 

From the fact that the attribute evaluation rules are associated with the 

productions it follows that after every application of a tree transformation rule 

the attribute evaluator can be re-activated in order to execute (at least) the 

attribute evaluation instructions associated with the newly included productions, 

i.e., the productions of the output template and possibly the production immedi- 

ately above the restructured subtree. However, special actions have to be taken 

for the synthesized attribute instances associated with the new terminal nodes 

of the output template (new in the sense that the label of such a node does 

not occur in itt). We propose these attribute instances (normally set by the 

parser!) to be defined, as part of the tree transformation rule, by lecixal evaluation 
rules in terms of attribute instances of the input template. 

Let (itt, ott) be a tree transformation rule, and let (a, ott, Y) be an attribute 

instance, associated with a new terminal symbol Y of ott. A lexical evaluation 

rule for (a, ott, Y) has the form 

(a, ott, Y)..=f((ax, itt, Yx), (a2, itt, Y2) . . . .  , (a,,, itt, Y,.)) 

where f is a partial function and (a~, itt, Yj) is an attribute instance of itt, for 
1 <=j<m. 

The synthesized attribute instances of terminal symbols of the output tem- 

plate, for which a corresponding terminal symbol exists in the input template, 

are assumed to be copied from the input template. 

We assume tree transformations to be performed during a sequence of left-to- 

right transformation passes over the derivation tree (possibly interrupted by 

re-activations of the attribute evaluator) and distinguish two possibilities to 

apply a tree transformation during such a pass. 
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Consider a subtree which may be restructured by the application of a tree 

transformation rule. During a pass over the tree the root of the subtree will 

be visited twice: the first time during a downward move and the second time 

during an upward move. Visiting the root for the first time the transformation 

could be applied when entering the subtree (i.e., before visiting the descendants 

of the root). Visiting the root for the second time the transformation could 

be done when leaving the subtree. So, for each tree transformation rule we 

will specify when it has to be applied, either during a downward move or during 

an upward move. 

For  our pass-oriented approach we therefore use the following definition 

of a conditional tree transformation rule. 

Definition 3.1. A conditional tree transformation rule is a 5-tuple tr: (dir, itt, ott, 

cond, eval), where 

- dir is the direction of the move at the moment when the transformation 

has to be tried. The domain of dir is {up, down}. 
- itt and ott are the input and the output tree template, respectively. All 

variables occurring in ott also occur as variables in itt. If the roots of 

itt and ott are labeled by the same nonterminal, then these nonterminals 

have the same index. 

- cond is the enabling condition, a predicate on attribute instances of itt. 

- eval is the set of lexical evaluation rules which specify the computation 

of the synthesized attribute instances of the new terminal nodes of ott 

in terms of attribute instances of itt (in the case cond yields true). []  

Note that the lexical evaluation rules are only used in case the predicate 

cond is true. Thus, if (al, itt, Y1), " " ,  (an, itt, Y,) are all attribute instances of itt, 

cond is the predicate 

p((ai,, itt, Y~,) . . . . .  (aik, itt, Y~k)) 

and the lexical evaluation rule 

(a, ott, Y),=f((aj,,  itt, Y~I) . . . . .  (ajm, itt, Yim)) 

is in eval, then we require in Definition 3.1 that for all xl  . . . . .  xn with xie V(ai): 

if p(xi . . . . . .  xik) = true then f(xj~, ..., x j,,) is defined. 

A conditional tree transformation rule tr: (dir, itt, ott, cond, eval) is applicable 

to a subtree IT, if the following conditions are satisfied: 

- itt matches the top of IT; 

- ott fits in the surrounding tree; 

- the evaluation of cond yields true. 

Making a pass over an attributed derivation tree a tree transformation rule 

tr: (dir, itt, ott, cond, eval) can be applied to a subtree IT, after a downward 

or an upward move to the root of IT, if tr is applicable to IT and, if in addition 

the direction of the move corresponds with the value of dir. 

The application of transformation rule tr consists of the steps (1), (2), and 

(3), and possibly (4): 

(1) Creation of an instance OT of ott (in which the correspondence between 

subtrees and variables, established by IT, is maintained) and the replacement 

of IT by OT, thus creating a (partially attributed) derivation tree T2. 
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(2) Computation of the values of the synthesized attribute instances associat- 

ed with the terminal nodes of ott, using the rules specified by eval for the 

new terminal nodes. 

(3) Evaluation of the attribute instances in the restructured area of T2 (i.e., 

the area covered by ott and, in the case of differently labeled template roots, 

the production applied immediately above OT); 

(4) Re-evaluation of all attribute instances of T2 (except of course the synthe- 

sized attribute instances of the leaves). 

The full application of tr consists of (1), (2), (3), and (4) and the (partial) 
application of tr consists of (1), (2), and (3). Note that both types of application 

result in a (completely) attributed derivation tree. The full application results 

in a consistently attributed derivation tree, whereas the attributed derivation 

tree resulting from the (partial) application of tr may contain inconsistencies. 

Application of tr will be described in more detail in Sect. 4. 

Conditional tree transformation rule tr: (dir, itt, ott, cond, eval) will be written 

as follows: 

tr: transform dir itt cond cond into ott eval eval end. 

It is allowed to leave out the part "cond cond" if cond is true and the part 

"eval eval" if eval is empty. 

Conditional tree transformation rules with the same input template and 

the same direction may be combined as follows: 

tr: transform diritt eond condl into ottl eval evall 

eond cond, into ott. eval eval, 

end. 

We illustrate the application of tree transformations with two small examples, 

taken from a more comprehensive example which concerns data flow analysis, 

in particular constant folding, constant propagation and dead code elimination, 

in Sect. 6. 

For the specification of tree templates we use the following linear notation 

for trees: within angular brackets the root is followed by its sequence of subtrees. 

Comma symbols act as separators. We write a of Y for the attribute instance 

(a, tt, Y) of a tree template tt. To simplify our notation we allow indices of 

different occurrences of the same grammar symbol in itt and ott to be deleted 

if there is no need to distinguish these grammar symbols in cond and eval. 

Observe that the notation a of Y for attribute instance (a, itt, Y) and (a, ott, Y) 

leads to the same notation for corresponding attribute instances in itt and ott. 

Example 3.1. The conditional tree transformation rule 

transl : transform up (whilestat, while, (cond, boolconst), do, stats, od) 

eond boolval of boolconst = true 

into (loop-forever, forever, do, stats, od) 

eond boolval of boolconst = false 

into (no-operat ion) 

end 
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whilestat loop-forever 
11/1\~ .  / i l k " .  x 

/ / / / / /  / \\  ~'~'N / / /  // \\ \ \  
i / i  i I \ \ \  ...I. ~i ii ] \ " .~ .~ .  ~ \ ".. 

I -  / I \ .~, / /  I ~ \ 

while cond do stats od forever do stats od 
I 
I 
I 
I 

boolconStboolva~ =~ no-operation 

Fig .  1 R e p l a c e m e n t  of  a w h i l e  s t a t e m e n t  by  a l o o p - f o r e v e r  o r  a n o - o p e r a t i o n  

expr expr 
/ / / 1 " ~  I 

t t I "" ~-- .  I 

expr + expr =*- I I 

I I I 
I I I 
I I I 

intconst [ 1 ]intva~ intconst [2]intva~ intconst~ntval 

Fig .  2. C o m p i l e - t i m e  e v a l u a t i o n  o f  a c o n s t a n t  e x p r e s s i o n  

describes the replacement of a while statement by a loop-forever or a no-opera- 

tion, as illustrated in Fig. 1, in the form itt=*-ott. Note that stats is the only 

variable of itt (boolconst is a terminal). [] 

Example 3.2. The unconditional tree transformation rule 

trans2: transform up (expr, (expr, intconst [1]), + ,(expr, intconst [2 ] ) )  

into (expr, intconst) 

evai intval of intconst..=intval of intconst [1] + 

intval of intconst 1-2] 

end 

describes the compile-time evaluation of constant expressions. The input tem- 

plate in Fig. 2 shows two instances of synthesized attribute intval of terminal 

symbol intconst. The sum of these values is assigned to the instance of intval 

in the output template. [] 

4. Iteration of Evaluation and Tree Transformation Phases 

Steps (1) and (2) of the application of a tree transformation rule tr: (dir, itt, 

ott, cond, eval) to an attributed derivation tree T 1 result in a partially attributed 

derivation tree T2. To make the attribution of T2 complete again step (3), and 

possibly also step (4), could be performed. We repeat the purpose of both steps: 
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(3) The local re-evaluation phase, restricted to the restructured part of T2 

(i.e., the area associated with ott and, if necessary, the production applied imme- 

diately above ott). 

(4) The global re-evaluation phase, for the whole of T2. 

To describe the local re-evaluation phase in detail, we extend the occurrences 

of the input and the output template in T1 and T2, if necessary, such that 

the resulting templates have identically labeled roots and consist of more than 

one node. Identically rooted versions of the input and the output template, 

both consisting of more than one node, whether an extension took place or 

not, will be called complete input and output templates and will be denoted 

by compl-itt and compl-ott, respectively. 

No extension is needed if itt and ott already have roots with the same 

label and already consist of more than one node, i.e., in this case compl-itt = itt 

and compl-ott = ott. 

Otherwise, itt and ott need to be extended with an extra production as 

follows: Let production Xpo ~ Xp ~ ... Xpk ... Xp, be applied immediately above 

itt in T1, with Xpk labeling the root of itt and let production Xqo 

X~ ~ ... Xqk ... Xq, be applied immediately above ott in T2, with Xqk labeling 

the root of ott. Clearly Xp~=Xqi for O<i<n, i+k .  The extensions compl-itt 

and compl-ott of itt and ott, respectively, are constructed as follows: Consider 

an incomplete derivation tree, composed of a node labeled Xpo and n sons 

labeled Xp 1 . . . . .  Xpk . . . . .  Xp,, respectively. Now, replace the node labeled Xpk 

by itt to form compl-itt. Observe that the leaves of compl-itt are both new 

leaves labeled with grammar symbols X p i ( l < i < n , i + k )  from the right part 

of production p and old leaves from itt. A similar approach is followed to 

construct compl-ott from production q and ott. 

The set of attribute instances of a complete tree template can naturally be 

partitioned into three disjoint subsets of input, output and inner attribute 

instances. 

Definition 4.1. For a complete tree template, the input attribute instances are 

the inherited attribute instances of its root and the synthesized attribute instances 

of its leaves; the output attribute instances are the synthesized attribute instances 

of its root and the inherited attribute instances of its leaves; the inner attribute 

instances are the attribute instances of the inner nodes. [] 

We now come back to the attribution of the restructured area of the deriva- 

tion tree. To start with, it is assumed that in step (1) the attribute instances 

of the subtrees substituted for the variables of compl-itt and compl-ott have 

kept their values after the transformation. The same holds for the attribute 

instances of the tree part surrounding compl-itt and compl-ott (including their 

roots). 

Moreover, the evaluation of attribute instances of compl-ott is preceded 

by step (2), i.e., by the computation of the synthesized attribute instances of 

the new terminal nodes of ott, as specified by eval. Also, the synthesized attribute 

instances of the identically labeled terminal nodes of itt and ott are assumed 

to keep their values. The same holds for the synthesized attribute instances 

of the terminal nodes of the productions above itt and ott. So, when starting 
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the local re-evaluation process, all the input attribute instances of compl-ott  

have a value. This implies that the attribute evaluator, suitably adapted, is 

able to compute the inner and output  attribute instances of compl-ott, using 

the ordinary attribute evaluation instructions. 

In general, the values of some of the output attribute instances of compl-ott  

in T2 will differ from the values of their corresponding output attribute instances 

of compl-itt in T 1. Let a of N1 be an output  attribute instance of compl-ott  

whose new value differs from its old value. Then, in T2 every attribute instance 

b of N: ,  such that the dependency graph Dr2 includes a dependency path 

dp[a of N1, ..., b of N2], may have an incorrect value. A tree transformation 

may even cause the values of the input attribute instances of compl-ott  to be 

incorrect (and hence the inner and the output instances as well). 

Hence, if a correct value is required for every attribute instance in the deriva- 

tion tree, then the local re-evaluation phase has to be followed by a global 

re-evaluation phase, unless for every output attribute instance of compl-ott  in 

T2 its value is equal to the value of its corresponding output attribute instance 

of compl-itt in T1. 

We now discuss a strategy where the re-evaluation process after each tree 

transformation may be confined to the local re-evaluation phase, and where 

the global re-evaluation phase may be delayed. Thus, in the following we always 

assume the partial application of a tree transformation. 

The classical theory on attribute grammars defines one single value to be 

correct for each attribute instance of any derivation tree (of which the values 

of the synthesized attribute instances of the leaves are given). For  our tree trans- 

formation strategy, where re-evaluations may be restricted to the restructured 

area, we extend the classical attribute grammar framework by allowing a set 

of values to be correct for each attribute instance. Each value of such a set 

should be an approximation of the correct value according to the classical attri- 

bute grammar definition [5, 8-10, 14]. 

In [9, 10] the new correct values are called safe, whereas the old correct 

values are called consistent. We also use this terminology. 

Assumption 4.1. Hereafter, we asume that for each attribute a the set V(a) of 

possible values of a is partially ordered, and we denote this partial order by 

____ (in fact, this is ambiguous, because we should write ---<a, but we want to 

keep our notation as simple as possible). For  x, y e  V(a), if x<=y, we say that 

x is an approximation of y, or that y is better (> )  than x. For  synthesized 

attributes of terminals we assume the partial order to be trivial, i.e., x < y iffx = y. 

This is necessary, because these attributes are imported attributes for which 

no evaluation rules are defined. For  all other attributes we assume that the 

partial order has a smallest element, denoted (again ambiguously) by _L. []  

As an example, V(a) may be the set of all finite sets of identifiers, ordered 

by set-inclusion, with the empty set as the smallest element. 

Informally, the value x of an attribute instance is called safe if x < y, where 

y is its consistent value. 

For  the comparison of safely and consistently attributed derivation trees, 

and for the expression of the requirements that guarantee the reliability of trans- 
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formations based on safe derivation trees, we introduce the following notations 

and concepts. 

Notation. Let T be an attributed derivation tree, then T c denotes the result 

of a global re-evaluation of T. More precisely, T r is the unique consistently 

attributed tree with the same underlying derivation tree as T, and the same 

values for the corresponding synthesized attribute instances of the leaves. []  

Notation. For  attributed derivation trees T1 and T2, subtree IT  of T1 and 

tree t ransformation rule tr, T1 [-IT] t r  T2 means that tr is applicable to IT  

of T I ,  with T2 the result of the (partial) application. Note  that T2 ~ is the 

result of the full application. []  

The purpose of a set C of conditional tree t ransformation rules, for a given 

consistently attributed derivation tree T, is to produce another  consistently at- 

tributed derivation tree T'  such that T'  is obtained from T by a sequence of 

full applications of rules of C. This is formalized as follows. T '  is consistently 

derivable from T by C if 

either T '  = T 

or there is a subtree IT  of T, a rule t r e  C, and an attributed derivation 

tree T1 such thatT[-IT] t~ ~ T1 and T'  is consistently derivable 

from T 1 ~ by C. 

Of course, one would normally continue applying the rules of C until no 

rule of C is applicable anymore.  

Note  that  if T '  is consistently derivable from T then this can always be 

realized by a number  of tree t ransformation passes, during which the rules 

are applied in their proper  direction. 

We now want to define a condition on the transformation rules so that 

their partial application can be used rather than their full application. The 

idea is to use approximat ions  of the consistently derivable trees rather than 

those trees themselves. 

Notation. For  attributed trees T and T '  with the same underlying syntax tree, 

T <  T'  means that the value of every attribute instance of T is an approximat ion 

(in the sense of Assumption 4.1) of the value of the corresponding attribute 

instance of T'. Note  that  if T <  T'  then T c = T 'c (using the triviality of the partial 

order of the values of synthesized attributes of terminals). []  

We are now ready to formally define the safety of (the values of the attribute 

instances of) a derivation tree, and the safety of a tree t ransformation rule. 

Definition 4.2. T is safe iff T <  T c. [ ]  

Note  that Tis  consistent iff T = TO; hence a consistent tree is safe. 

Definition 4.3. A conditional tree t ransformation rule tr is safe if: 

If  T1 [-IT] t r  T2, and T l i s s a f e ,  

then a) TI~[-IT] t r  T2 ' , and  

b) T2 < T2  '~, 

for some T2'.  []  
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Part a) of this definition says that if tr is applicable to a subtree of a safely 

attributed tree, then tr is also applicable to that subtree of the corresponding 

consistently attributed tree. Part b) says that the result of the first (partial) 

application is an approximation of the result of the second (full) application. 

Note that it is also a safe approximation. In fact, from part b) we know that 

T2< T2 '~, and from this it follows that T2C= T2 'c, and so, T 2 <  T2 ~. Thus 

we obtain the following fact: a safe transformation rule preserves safety of trees; 

this guarantees the reliability of subsequent transformations. 

Using safety rather than consistency as the new definition of correctness 

we may conclude that during a pass over a derivation tree, after the application 

of a tree transformation rule and during the continuation of the pass, the attri- 

bute instances may not have their best values, although their values are always 

safe. This means that during a pass where no global re-evaluations are performed, 

every tree transformation is correct, although an interrupt of the pass in order 

to make extra tree traversals for re-evaluation purposes (i.e., to compute the 

best values for all attribute instances) might have disclosed further opportunities 

for transformations during the continuation of the pass [9, 10]. 

A tree T2 is safely derived from a consistently attributed input tree T1 

if T2 is the result of a sequence of safe tree transformations applied to T1. 

It can simply be shown from Definition 4.3 that by a global re-evaluation of 

the safely derived tree T2 an output  tree T2 c is obtained which is consistently 

derivable from the input tree T1. This leads to the following evaluation and 

transformation algorithm for a simple m-pass attribute grammar. First, m evalua- 

tion passes are made to compute the consistent value for every attribute instance 

in the derivation tree. Second, a tree transformation pass is made in which 

as many tree transformations are applied as possible. This process of making 

a sequence of evaluation passes followed by a single transformation pass is 

repeated until no more tree transformations are possible. 

Algorithm 4.1. Attribute evaluation and conditional tree transformations for 

a simple m-pass attribute grammar with partially ordered attribute domains, 

and a set of safe conditional tree transformation rules. 

Input: A derivation tree T of which only the values of the synthesized 

attribute instances of the leaves are available (more formally an 

attributed derivation tree T of which the values of all attribute 

instances are 1 ,  except the values of the synthesized attribute 

instances of the leaves). 

Output: An attributed derivation tree, consistently derivable from T c, to 

which no conditional tree transformation rule is applicable. 

Algorithm: 

repeat 

for i from 1 to m 

do perform the i-th evaluation pass od; 
perform a transformation pass during which as many tree transforma- 

tions are applied as possible 

until no tree transformations were applied during the last pass. [ ]  
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Fig. 3. Derivation trees with safe and consistent attribute values 

We now want to show that local restrictions can be imposed on the attribute 

evaluation and tree t ransformation rules that guarantee the safety of the tree 

t ransformation rules. For  this we need the monotonici ty of the evaluation rules 

and the enabling conditions. 

A function f ( x l ,  x2 . . . . .  x,)  of attribute values, whose result is an attribute 

value, is monotonic if: 

if ai<bi ( l  <i<=n ), and 

f (al , a2, . . . ,  a,), f (bl , b2 . . . . .  b,) are defined, 

then f (al ,  a2, ..., a , )< f (bl , bz,  . . . ,  b,). 

An attribute evaluation rule or a lexical evaluation rule is monotonic if the 

function in its right part  is monotonic.  Note  that the monotonici ty of a lexical 

evaluation rule means that  if ai<bl  then f ( a l , a 2  . . . . .  a , ) = f ( b l , b 2  . . . . .  b,) (if 

they exist). 

An enabling condition f ( x l ,  x2, . . . ,  x,)  of a tree t ransformation rule is mono- 

tonic if: 

i fai<__bi(l<i<n) and f ( a l , a 2  . . . . .  a , )= t rue ,  

then f ( b l ,  b2, ... ,  b,) = true. 

(i.e., for false < true f is monotonic).  

Statement  4.1. In the following we restrict ourselves to attribute grammars  whose 

attribute evaluation rules are monotonic.  [ ]  

Note  that, in general, the execution of monotonic  attribute evaluation rules 

preserves the safety of trees, but does not necessarily improve their attribute 

values. Indeed, the attribute values may even become worse. This is shown 

in the following (unrealistic) example. 

Example  4.1. Figure 3 shows two attributed versions of the same derivation 

tree. The attribute values are non-negative integers with the usual ordering 

and 0 as the bo t tom element. The attribute instances and their values are shown 

in the trees. Let the (monotonic) evaluation rule s of A .'=s of B + s of  C be asso- 

ciated with product ion A--*BC,  and let the rules s of B..=5 and s of C..=6 be 

associated with productions B ~ b and C--* c, respectively. Thus, the left tree 

is safely attr ibuted (because T <  TO and the right tree is consistently attributed 

(and is, in fact, T 0. Application of the evaluation rule for s of A in the context 

of the left tree delivers the value 7 for s of  A which is still safe, but not an 

improvement,  compared  to the current safe value. []  



16 H. Alblas 

Consider a tree transformation rule tr: (dir, itt, ott, cond, eval). What  happens 

locally to compl-itt and compl-ott during application of tr to a consistent tree, 

is determined completely by the values of the input attribute instances of compl- 

itt (by consistency, all attribute instances of compl-itt are determined by the 

attribute evaluation rules; the attribute instances of compl-ott are determined 

by the lexical evaluation rules, the attribute evaluation rules, and the attribute 

instances taken over from compl-itt, as indicated by steps (2) and (3) of the 

application of tr). We say that compl-ott is better than compl-itt if for every 

possible choice of values for the input attribute instances of compl-itt, the values 

of the output attribute instances of compl-itt are approximations of the values 

of the corresponding output attribute instances of compl-ott (if they exist). Intui- 

tively, this means that application of tr "increases the amount of information". 

Definition 4.4. A tree transformation rule tr: (dir, itt, ott, cond, eval) is locally 
safe, if: 

(a) cond is monotonic, 

(b) all lexical evaluation rules in eval are monotonic, 

(c) for every possible compl-itt and compl-ott (extensions of itt and ott) 

compl-ott is better than compl-itt. [] 

Definition 4.5. An attributed tree T is locally safe if, for every attribute evaluation 

instruction of T, its execution leads to a better (>)  value for the attribute instance 

that is computed. [] 

This means that attribute evaluation improves the tree. Two facts are impor- 

tant. 

(i) The execution of one attribute evaluation instruction to a locally safe 

tree leads again to a locally safe tree (by monotonicity of the attribute evaluation 

rules). 

(2) If a tree is locally safe, then it is safe. 

(Proof of (2): Call the attribute evaluator for a locally safe tree T. By Definition 

4.5 and by (1), the attributed trees obtained after each step of the evaluator 

form an ascending chain. The output of the evaluator is T c. Hence T=< TO.) 

The following theorem states a local criterion for the safety of a tree transfor- 

mation rule. 

Theorem 4.1. A locally safe conditional tree transformation rule tr is safe. 

Proof. Requirement a) of Definition 4.3 is implied by condition (a) of Definition 

4.4 and the safety of T 1. 

To prove requirement b) of Definition 4.3, consider the transformations 

T1 [-IT] t r  T2, where T1 is safe, and 

TV [IT] tr, T2'. 

The monotonicity of the attribute evaluation rules, condition (b) of Definition 

4.4, and the safety of T1 imply: T2__< T2'. 
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,<  ,c The next step to prove is: T2 _ T2 . Condition (c) of Definition 4.4 says 

that, in the application TIC[IT]  t r  T2', every output attribute instance of 

compl-ott  has a better value than the corresponding output attribute instance 

of compl-itt. Observe however, that the smaller values from compl-itt have been 

used as arguments in attribute evaluation instructions for T I  c . Also observe, 

that the values of all attribute instances in the context of compl-ott  in T2' 

have been copied from T I  c. So, by monotonicity, the execution of an attribute 

evaluation instruction leads to a better value for any attribute instance that 

depends directly on output  attribute instances of compl-ott, and (since T1 c is 

consistent) to the same value for any other attribute instance. This means that 

T2'  is locally safe and hence, by (2) above, safe. 

Finally, T 2 < T 2 '  and T 2 ' < T 2  'c imply (by transitivity of < )  that T2 

<T2 'C  []  

In the proof  above we have shown that application of a locally safe tree 

transformation rule to a consistent tree yields a locally safe tree. Similarly, we 

can prove the important  fact: 

(3) Application of a locally safe tree transformation rule to a locally safe 

tree yields again a locally safe tree. 

We now investigate whether it is useful to perform attribute evaluations 

during the transformation pass. 

Recall that monotonic  attribute evaluation rules and safe tree transformation 

rules preserve the safety of trees, but do not always guarantee better values 

for the attribute instances that are recomputed. However, by (1) and (3) above, 

the use of both monotonic  attribute evaluation rules and locally safe tree trans- 

formation rules preserves the local safety of trees and thus yields an improvement 

at any execution of an attribute evaluation instruction. 

Intuitively, such an improvement is desirable because it may lead to the 

earlier applicability of transformation rules. (We have not pursued this formally; 

informally we will assume in what follows that the improvement of attribute 

values has a positive effect on tree transformation algorithms). Thus, for a simple 

m-pass attribute grammar with monotonic attribute evaluation rules, the follow- 

ing kind of combination of attribute evaluations and locally safe tree transforma- 

tions is attractive. 

Algorithm 4.2. Attribute evaluation and conditional tree transformations for 

a simple m-pass attribute grammar with partially ordered attribute domains 

and monotonic  attribute evaluation rules, and a set of locally safe conditional 

tree transformation rules. 

Input: 

Output: 

A derivation tree T of which only the values of the synthesized 

attribute instances of the leaves are available (more formally an 

attributed derivation tree T of which the values of all attribute 

instances are _L, except the values of the synthesized attribute 

instances of the leaves). 

An attributed derivation tree, consistently derivable from T c, to 

which no conditional tree transformation rule is applicable. 
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Algorithm: 

repeat 

for i from 1 to m 

do perform the i-th evaluation pass od; 

perform a pass during which some attribute instances are evaluated, 

and as many tree transformations are applied as possible 

until no tree transformations were applied during the last pass. []  

One could also think of a complete mixture of attribute evaluations and 

tree transformations, as follows (note that the tree in which all attribute instances, 

except the synthesized attribute instances of the leaves, have the value _1_ is 

locally safe). 

Algorithm 4.3. 

Initialize all attribute instances of the derivation tree with _L, except the 

synthesized attribute instances of the leaves; 

repeat 

perform a pass during which all attribute instances are evaluated, and 

as many tree transformations are applied as possible 

until no tree transformations were applied during the last m + ! passes. []  

Practical examples show that, in general, a subsequent transformation pass 

is productive only after a complete re-evaluation of the entire derivation tree. 

From this it follows that preference should be given to Algorithm 4.1, or to 

Algorithm 4.2 on the condition that the attributes to be computed during the 

transformation pass are selected carefully. 

In the following algorithms we keep the requirements that the attribute 

evaluation rules are monotonic  and the tree transformation rules are locally 

safe. 

In Algorithms 4.1 and 4.2 every transformation pass (except the last one) 

is preceded by the m-th pass of the previous evaluation phase and followed 

by the first pass of the next evaluation phase. In the remainder of this section 

we will investigate whether Algorithm 4.2 can be sped-up by moving the evalua- 

tions of the attributes with pass number 1 and pass number m to the tree 

transformation pass. 

We first adapt Algorithm 4.2 such that the attributes with pass number 

m are both computed during the m-th evaluation pass and during the transforma- 

tion pass. This is expressed by Algorithm 4.4. 

Algorithm 4.4. 

repeat 

for i from 1 to rn 

do perform the i-th evaluation pass od; 

perform a pass during which all attribute instances with pass number 

m are evaluated, and as many tree transformations are applied as possible 

until no tree transformations were applied during the last pass. []  
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Recall that the monotonicity of the attribute evaluation rules and the local 

safety of the tree transformation rules guarantees that every recomputation of 

an attribute instance during the transformation phase yields an improvement. 

Thus, intuitively, Algorithm 4.4 is an attractive alternative to Algorithm 4.1. 

We now skip the m-th evaluation pass. 

Algorithm 4.5. 

repeat 

for i from 1 to m -  1 

do perform the i-th evaluation pass od; 

perform a pass during which all attribute instances with pass number 

m are evaluated, and as many tree transformations are applied as possible 

until no tree transformations were applied during the last pass. []  

In what follows, we investigate the conditions which guarantee Algorithms 

4.4 and 4.5 to have the same input/output  behavior and to need the same 

number of repetitions. Note that in Algorithm 4.4 each tree transformation 

pass starts with a consistently attributed tree, whereas this is not guaranteed 

in Algorithm 4.5. 

The applicability of tr: (dir, itt, ott, cond, eval) depends on the values of 

the attribute instances of itt needed as arguments for cond. The separate m-th 

evaluation pass may be skipped if, during the transformation pass, the necessary 

attribute instances with pass number m are guaranteed to be evaluated before 

the applicability of tr is taken into consideration. Observe that no restrictions 

have to be imposed on the synthesized attribute instances of the new terminals, 

because condition (b) of Definition 4.4 requires all lexical evaluation rules in 

eval to compute "correc t"  values. 

Consider the application of a tree transformation rule tr: (down, itt, ott, 

cond, eval) to a subtree with root N. Visiting node N for the first time during 

the combined m-th evaluation and tree transformation pass the following steps 

are taken. The first step is the computation of the inherited attribute instances 

of N (with pass number m). The second step is the possible application of tr. 

At the beginning of the second step the attribute instances of itt, already comput- 

ed during this repetition, are: 

1) all attribute instances (a, itt, X), for X an arbitrary node of itt, such that 

pass (a of X) ~ m-- 1 ; 

2) all inherited attribute instances (b, itt, Y), for Y the root of itt, such that 

pass(b of Y) = m. 

Hence, with respect to downward tree transformation rule tr, the activities 

of the m-th evaluation pass may be delayed until the transformation pass, if 

for every attribute instance (c, itt, Z), not being an inherited attribute instance 

of the root of itt, and needed as an argument for cond, the following holds: 

pass(c of Z) =< m-- 1. 

We now consider a tree transformation rule tr: (up, itt, ott, cond, eval) to 

be applied to a subtree with root N. During the second visit to node N during 

the combined m-th evaluation and tree transformation pass the following steps 

are taken. First, the synthesized attribute instances of N (with pass number 
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m) are computed. Secondly, the possible applicability of tr is investigated. At 

the beginning of the second step the values of all attribute instances of itt have 

a value which was computed during the current repetition. 

From these observations we conclude the following theorem. 

Theorem 4.2. Given a simple m-pass attribute grammar with monotonic attribute 

evaluation rules, and a set of locally safe conditional tree transformation rules. 

Algorithms 4.4 and 4.5 have the same input/output behavior and need the same 

number of repetitions, if: 

for every tree transformation rule (down, itt, ott, cond, eval), for every attribute 

instance (a, itt, X) not being an inherited attribute instance of the root of itt, 

and needed as an argument for cond, the following holds: pass (a of X) __< m -  1. [] 

Next, we investigate the combination of the transformation pass and the 

first subsequent re-evaluation pass, by comparing Algorithms 4.6 and 4.7. 

Algorithm 4.6. 

perform the first evaluation pass; 

repeat 

for i from 2 to m 

do perform the i-th evaluation pass od; 

perform a pass during which all attribute instances with pass number 

1 are evaluated, and as many tree transformations are applied as possible; 

perform the first evaluation pass 

until no tree transformations were applied during the last transformation 

pass. [] 

Algorithm 4.7. 

perform the first evaluation pass; 

repeat 

for i from 2 to m 

do perform the i-th evaluation pass od; 

perform a pass during which all attribute instances with pass number 

1 are evaluated and as many tree transformations are applied as possible 

until no tree transformations were applied during the last pass. [] 

Both algorithms should have the same input/output behavior and need the 

same number of repetitions. 

Observe that the local re-evaluation phase, associated with each tree transfor- 

mation, includes the recomputation of all the output attribute instances of the 

complete output template, which may imply that some subtrees, already visited 

during the combined tree transformation and first re-evaluation pass of Algo- 

rithm 4.7 should be visited again to recompute attribute instances with pass 

number 1. 

First, we discuss the consequences of the application of a tree transformation 

rule tr: (down, itt, ott, cond, eval) to a subtree with root N during a downward 

move. 

Assume that ott was extended to compl-ott. Let Xqo--,Xql ... X~k ... Xq~ 

be the production applied immediately above ott and let Xqk label the root 
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of ott. The subtrees already visited during the combined transformation and 

first re-evaluation pass are the subtrees with root Xqj( I<j<k ,  XqjeVN). The 

local re-evaluation of compl-ott  as part of the application of tr implies a renewed 

evaluation of the inherited attribute instances (a, compl-ott, Xqj) (1 <j<k,  pass 

(a of Xq~)= 1), already computed in this pass. This requires another first pass 

visit to all subtrees with root Xqj(1 <=j<k, XqjeVN) if the local re-evaluator 

computes for at least one attribute instance (a, compl-ott, Xqj) another value 

than for the corresponding attribute instance (a, compl-itt, Xqj). No such prob- 

lems arise if no extension of ott took place to form compl-ott. 

Next, we discuss the consequences of the application of a tree transformation 

rule tr: (up, itt, ott, cond, eval) to a subtree with root N during an upward 

move. 

Again, we consider the case that compl-ott  contains an additional production 

Xqo~Xq l  ... Xqk ... Xq,,, such that Xqk labels the root of ott. The subtrees 

already visited during the combined pass are the subtrees with root Xqj(1 <j  

<k, Xqj~VN). Observe that, contrary to the downward case, now also a visit 

to the restructured subtree has been made. New values for the output attribute 

instances of compl-ott, being different from the values of the corresponding 

attribute instances of compl-itt, may require additional first pass visits to both 

the subtrees with root  Xq~(l <j<k ,  X ~ V N )  and the subtrees substituted for 

the variables of ott. Of course, the revision of the first re-evaluation pass may 

be restricted to the subtrees substituted for the variables of ott if no extension 

of ott was needed to form compl-ott. 

The above-mentioned comparison of corresponding inherited attribute 

instances of compl-itt and compl-ott  has to be done for every possible extension 

of itt to compl-itt in any derivation tree T i and ott to compl-ott in a derivation 

tree T2 such that T1 [IT] - -~  T2. 

It should be emphasized, however, that only different values for inherited 

attribute instances may forbid the deletion of a separate first re-evaluation pass. 

Synthesized attribute instances never cause any problem. 

Taking the easy case, with only synthesized attribute instances involved in 

the first pass, we conclude the following theorem. 

Theorem 4.3. Given a simple m-pass attribute grammar with monotonic attribute 

evaluation rules, and a set of locally safe conditional tree transformation rules. 

Algorithms 4.6 and 4.7 have the same input/output behavior and need the same 

number of repetitions, if: 
all attributes with pass number 1 are synthesized attributes. [] 

It is easy to see that for attribute grammars and conditional tree transforma- 

tion rules which obey both criteria formulated in Theorems 4.2 and 4.3 Algo- 

rithms 4.8 and 4.9 have the same input/output behavior and need the same 

number of repetitions. 

Algorithm 4.8. 

perform the first evaluation pass; 

repeat 

for i from 2 to m 

do perform the i-th evaluation pass od; 
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perform a pass during which all attribute instances with pass numbers 1 

and m are evaluated, and as many tree transformations are applied as 

possible; 

perform the first evaluation pass 

until no tree transformations were applied during the last transformation 

pass. []  

Algorithm 4.9. 

perform the first evaluation pass; 

repeat 

for i from 2 to m -  1 

do perform the i-th evaluation pass od; 

perform a pass during which all attribute instances with pass numbers 1 

and m are evaluated, and as many tree transformations are applied as 

possible 

until no tree transformations were applied during the last pass. []  

For  a simple 2-pass attribute grammar and a set of conditional tree transforma- 

tion rules, which obey the above-mentioned criteria, Algorithm 4.9 simplifies 

to: 

Algorithm 4.10. 

perform the first evaluation pass; 

repeat 

perform a pass during which all attribute instances are evaluated and 

as many tree transformations are applied as possible 

until no tree transformations were applied during the last pass. []  

An application of the last algorithm will be presented in Sect. 6.2, where tree 

transformation rules are defined for constant folding, constant propagation and 

dead code elimination. 

5. Comparison with the Evaluation Method for Circular Attribute Grammars 

The method of iterating transformation passes over attributed derivation trees, 

presented in Sect. 4, shows similarities with the evaluation methods for circular 

attribute grammars, presented by Babich and Jazayeri in [3] and Farrow in 

[8]. 

The problem of circular attribute grammars is the impossibility to find for 

every derivation tree an evaluation order of its attribute instances such that 

at the moment  of execution of every attribute evaluation instruction all the 

necessary arguments are available. 

Babich and Jazayeri [3] solved this problem by supplying assumptions for 

the instances of certain attributes before the evaluation process is started. We 

will call these attributes the "key"  attributes. An assumption is a value for 
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an instance of a key attribute to be used by the evaluator before it can compute 

its own value. Every attribute instance, for which no assumption is supplied, 

should have the property that its value will always be computed before it is 

needed as an argument in an attribute evaluation instruction. 

For  circular attribute grammars our solution will be similar to that of Sect. 4. 

For  each attribute a the set V(a) is assumed to be partially ordered with / 

as smallest element. We also assume the attribute evaluation rules to be mono- 

tonic. 

We initially supply the key attributes with Z as assumption. Then we may 

as well assign the value _1_ to all attribute instances in the derivation tree, except, 

of course, to the synthesized attribute instances of the terminals. 

Since T• the tree where each attribute instance has its " b o t t o m "  value) 

is locally safe, attribute evaluation will improve the values of the attribute 

instances in the derivation tree and yield a locally safe tree again (by monotoni-  

city of the evaluation rules). Thus, for any algorithm that repeatedly applies 

all attribute evaluation instructions, the attributed tree gets better at each step. 

Hence, if in the domains of the key attributes all ascending chains are finite, 

the algorithm has to stop, and moreover it will stop with a fixpoint, i.e., with 

a consistent tree. It is easy to see (by monotonicity again) that it must be the 

smallest fixpoint. 

In general, the evaluation algorithm for a circular attribute grammar may 

be as follows. 

Algorithm 5.1. Evaluation algorithm for a circular attribute grammar with par- 

tially ordered attribute domains (such that all ascending chains are finite for 

the key attributes), and monotonic attribute evaluation rules. 

Input: A derivation tree where only the values of the synthesized attri- 

bute instances of the leaves are available. 

Output: The same derivation tree where all attribute instances have their 

smallest consistent value. 

Algorithm: 
assign the value _1_ to all instances of the key attributes; 

new assumptions :=values of all instances of the key attributes; 

repeat 

old assumptions..=new assumptions; 

invoke the evaluator; 

new assumptions :=values of all instances of the key attributes 

until new assumptions = old assumptions. []  

In this paper it is assumed that the circular attribute grammars under consid- 

eration have the simple multi-pass property after the deletion of dependencies 

(a, p, j ) ~ ( b ,  p, k), where a is a key attribute. So, the evaluator to be invoked 

in Algorithm 5.1 may be a simple multi-pass evaluator. 

For  compiler optimization purposes a circular attribute grammar may be 

specified, just to collect all the information necessary for optimization, but with- 

out performing any syntactical transformation. This evaluation (information col- 
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lection) process is repeated until convergence occurs. Subsequently, a single 

pass over the original derivation tree is made to perform all the possible tree 

transformations. 

The method of iterating transformation and evaluation passes in Sect. 4 

resembles this evaluation method for circular attribute grammars for two rea- 

sons: 

1) The lexical evaluation rules of a tree transformation rule permit the specifi- 

cation of synthesized attribute instances of terminal symbols, which have pass 

number 0, in terms of attribute instances with pass number > 0. In a traditional 

attribute grammar the inclusion of such a dependency brings along with it 

a circularity very often. 

2) A tree transformation may degrade the consistent value of an attribute 

instance in a derivation tree to a safe, non-optimal value in a restructured 

derivation tree, making this attribute instance a candidate for improvement 

during a subsequent evaluation phase. 

In the next section, both the method of iterating mixed transformation and 

evaluation passes, and the method based on iterative approximations of attribute 

values (using a circular attribute grammar), followed by a single transformation 

pass, are applied to the problem of constant folding, constant propagation and 

dead code elimination for a small programming language. 

6. An Example: Constant Folding and Propagation, and Dead Code Elimination 

The following example describes constant folding, constant propagation and 

dead code elimination for a small grammar including assignment, conditional 

and while statements. The example is borrowed from [16], where global data 

flow information is collected, used in determining the applicability of optimizing 

tree transformations, and updated after invalidation of the flow information 

by tree transformations. The optimization algorithm described in [16] operates 

on abstract syntax trees, whereas the variants described in this section are defined 

in terms of concrete derivation trees. 

The main topic of this paper is the mixing of attribute evaluation and tree 

transformation phases, based on the safety of attribute values. However, the 

evaluation of attribute instances in an unchangeable tree seems more natural. 

For this reason we first tackle the problem of finding the values of all constant 

variables and constant expressions everywhere in a derivation tree, by using 

a traditional yet circular attribute grammar. Having available this information, 

it can be used to restructure the tree, i.e., to replace all constant variables and 

constant expressions by constants and to eliminate all dead code. 

This approach starts by making passes over the derivation tree to collect 

data flow information until no more information becomes available. Finally, 

one transformation pass is performed devoted to the replacement of constant 

variables and constant expressions by constants and the elimination of dead 

code. These transformations turn out to keep the derivation tree consistent. 

This can be checked locally (and also statically) by verifying that compl-itt 

and compl-ott define the same values for the output attribute instances (cf. 
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Definition 4.4(c)). So, there is no need to worry about the safety of the tree 

transformation rules. 

Next to this approach, where an attribute evaluation phase is followed by 

a final and conclusive tree transformation phase, we demonstrate the mixing 

of attribute evaluation and tree transformation phases. 

In Sect. 6.1 the circular attribute grammar approach is discussed. Section 6.2 

illustrates the main topic of this paper. 

6.1 Specification by a Circular Attribute Grammar 

The grammar specifying the collection of data flow information has the following 

attributes. Associated with each statement is a synthesized attribute mod, which 

is a finite set of identifier numbers. Attribute mod of a statement includes the 

identifier numbers of all variables possibly modified by the statement. Attribute 

mod is computed in bot tom up order, first for assignment statements and then 

for structured statements. 

For  constant propagation attributes /-pool (i for inherited) and s-pool (s 

for synthesized) are used. A pool is a finite set of (idno, val) pairs, where idno 

is the number of an identifier and val its associated value. Inherited attribute 

/-pool of a statement contains the variables which have the same value whenever 

the execution of the statement is started. Synthesized attribute s-pool of a state- 

ment includes the variables which have the same value whenever the execution 

of the statement is finished. 

For  each assignment statement the following holds. Let idno be the identifier 

number of the variable in the left part. If the right part is known to be a 

constant expression with value val, then the pair (idno, val) is inserted into 

the pool of available constant variables, replacing a pair with the same idno 

if it exists. If it is unknown whether the right part is a constant expression, 

then the pair with first component  idno (if it exists) is deleted from the pool 

of available constant variables. In both cases, attribute mod is initialized with 

a set being composed of idno only. 

When leaving a conditional statement an s-pool has to be returned which 

includes those (idno, val) pairs that occur identically in both the s-pool of the 

then part and the else part, unless the value of the condition is known. In 

this case the s-pool of the then part or the else part has to be returned. A 

similar approach is followed for the computation of mod. The difference is 

that in case of an unknown condition, the mod values of the then part and 

the else part are joined. 

When entering a while statement, all variables assigned within the while 

statement have to be deleted from its associated /-pool, unless the value of 

the condition is known to be false, which means that the while statement behaves 

as a no-operation. The value false for the condition also means that attribute 

mod must be an empty set. In any other case the value of mod of the while 

body is passed up. 

Associated with every expression and every condition are synthesized attri- 

butes intval and boolval, respectively. Both attributes consist of a status field, 



26 H. Alblas 

indicating whether the expression or condition is known to be constant. If yes, 

then the second field represents the associated value. 

Finally, synthesized attributes idno, intconstval and boolconstval, associated 

with terminal symbols ident, intconst and boolconst, respectively, are set by 

the scanner. These attributes are of type number, integer and boolean, respective- 

ly. 

Attribute grammar AG1 below enumerates the nonterminal and terminal 

symbols, the start symbol, the attribute descriptions (specifying the attribute 

types, the association of attributes with grammar symbols and the nature of 

the attributes, i.e., inh for inherited and syn for synthesized) and the semantic 

functions to be used in attribute evaluation rules. The description ends with 

the productions of the grammar, each followed by its associated set of attribute 

evaluation rules, enclosed in square brackets. Copy rules between identical attri- 

butes of the left-hand side and the right-hand side are deleted in the event 

of a single nonterminal as the right-hand side of a production. 

Attribute Grammar AG1 : 

nonterminals: program, compound, stats, stat, assignment, condstat, whilestat, 

cond, expr. 

terminals: begin, end, if, then, else, fi, while, do, od, :=, + ,  = ,  ;, ident, intconst, 

boolconst. 

start symbol: program. 

attribute types: 

const max = ... {maximal number of identifiers allowed in any program to be 

compiled}; 

empty-set-of-ident = I- ]; 

empty-pool = [ ]; 

type number= 1. .max; 

unknown-or-known = (unknown, known); 

inttype = record 

case status: unknown-or-known of 

unknown: ( ); 

known: (val: integer) 

end; 

booltype = record 

case status: unknown-or-known of 

unknown: ( ); 

known: (val: boolean) 

end; 
set-of-ident = set of number; 

pool = set of pool-entry; 

pool-entry = record 

idno: number, 

val: integer 

end. 

attributes: 
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idno: 
intconstval: 

boolconstval: 

intval: 
boolval: 
mod: 

/-pool: 

s-pool: 

functions: 
function 

number, syn of ident; 

integer, syn of intconst; 

boolean, syn of boolconst; 
inttype, syn of expr; 
booltype, syn of cond; 
set-of-ident, syn of compound, stats, stat, assignment, 

condstat, whilestat; 
pool, iuh of compound, stats, stat, assignment, condstat, 

whilestat, cond, expr; 

pool, syn of compound, stats, stat, assignment, condstat, 
whilestat. 

initialize-mod-with (idno: number) delivers set-of-ident: 
begin {returns the singleton set [idno]} end; 

function insert (idno: number, intval: inttype) into: (p: pool) delivers pool: 
begin {inserts a new pair (idno, intval.val) into the pool p, replacing a 

pair with the same idno, if existing} 
end; 

function 
begin 

end; 
function 

begin 

end; 
function 

begin 
end; 

function 

begin 

delete (idno: number) from: (p: pool) delivers pool: 

{deletes the pair with first component idno, if existing, from the 
pool p} 

intersect (p 1, p 2: pool) delivers pool: 

{returns the pool which is the intersection of the pools p 1 and 
p2} 

delete-all-identifiers-in (mod: set-of-ident) from: (p: pool) delivers 
pool: 

{deletes all pairs (idno, val) from pool p for which idno is in mod} 

element (idno: number) in: (p: pool) delivers boolean: 

{checks, whether a pair with first component idno is in pool p 
or not} 

end; 

function value-of (idno: number) in: (p: pool) delivers integer: 
begin {returns the value associated with idno in pool p} end. 

production rules and semantic rules: 

(1) program ~ compound. 

[/-pool of compound :=empty-pool] 

(2) compound ~ begin stats end. 
[mod of compound :=mod of stats; 
/-pool of stats :=/-pool of compound; 
s-pool of compound :=s-pool of stats 

] 
(3) stats [1] ~ stats [2]; stat. 

[mod of stats [1] :---mod of stats [2] + mod of stat; 
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/-pool of stats [2] :=/-pool of stats [1]; 

/-pool of stat,=s-pool of stats [2]; 

s-pool of stats [1] :=s-pool of stat 
] 

(4) stats --* stat. 

(5) stat ~ assignment. 

(6) stat ~ condstat. 

(7) stat ~ whilestat. 

(8) stat --* compound. 

(9) assignment --* ident.-=expr. 

[mod of assignment :=initialize-mod-with (idno of ident); 

/-pool of expr :=/-pool of assignment; 

s-pool of assignment := 

if (intval of expr).status = known 

then insert (idno of ident, (intval of expr).val)) into: 

(/-pool of assignment) 

else delete (idno of ident) from: (/-pool of assignment) 

fi 
] 

(10) condstat--* if cond then stats [1] else stats [2] ft. 

[mod of condstat := 

if (boolval of cond).status --- unknown 

then mod of statst [1] + mod of stats [2] 

else if (boolval of cond).val = true 

then mod of stats [1] 

else mod of stats [2] 

fi 

fi; 
/-pool of stats [2] :=/-pool of stats [1] ..=/-pool of cond := 

/-pool of condstat; 

s-pool of condstat := 

if (boolval of cond).status = unknown 

then intersect (s-pool of stats [1], s-pool of stats [2]) 

else if (boolval of cond).val = true 

then s-pool of stats [1] 

else s-pool of stats [2] 

fi 

fi 
] 

(11) whilestat ~ while cond do stats od. 

[mod of whilestat := 

if (boolval of cond).status = unknown 

then mod of stats 

else if (boolval of cond).val = true 

then mod of stats 

else empty-set-of-ident 

fi 
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fi; 

s-pool of whilestat :=i-pool of stats:=i-pool of cond ..= 

if (boolval of cond).status = unknown 

then delete-all-identifiers-in (mod of stats) from: (/-pool of whilestat) 

else if (boolval of cond).val = true 

then delete-all-identifiers-in (mod of stats) from: 

(/-pool of whilestat) 

else/-pool of whilestat 

fi 
fi 

] 

(12) cond ~ expr [11 = expr [21. 

[/-pool of expr [2] ..=/-pool of expr [1]. '=/-pool of cond; 

if (intval of expr [1]).status = known and 

(intval of expr [2]). status = known 

then (boolval of cond).status :=known; 

(boolval of cond).val := 

((intval of expr [1]).val = (intval of expr [2]).val) 

else (boolval of cond).status:=unknown 

fi 
] 
3(13) cond ~ boolconst. 

[(boolval of cond).status :=known; 

(boolval of cond).val :=boolconstval of boolconst 

1 
(14) expr [11 ~ expr [21 + expr [3]. 

[/-pool of expr [31 :=/-pool of expr [2] :=/-pool of expr [1]; 

if (intval of expr [2]).status = known and 

(intval of expr [31).status = known 

then (intval of expr [11).status=: known; 

(intval of expr [1]).val := 

(intval of expr [2]).val + (intval of expr [3]).val 

else (intval of expr [11).status :=unknown 

fi 

1 
(15) expr ~ ident. 

[if element (idno of ident) in: (/-pool of expr) 

then (intval of expr).status,=known; 

(intval of expr).val := 

value-of (idno of ident) in: (/-pool of expr) 

else (intval of expr).status :=unknown 

fi 

1 
(16) expr ~ intconst. 

[(intval of expr).status :=known; 

(intval of expr).val .'=intconstval of intconst 

1 
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i-pool whi~stat mad s-pool 

i-pool cond boolval i-pool stats[ l l  mad s-pool 
l l j / l  

i-pool st,at mad s-pool 

/ 
i-pool, whi lestot  mod s-pool 

i-pool co nd boolval i-pool stats[2] mad s-pool 

i-pool expr intval i-pool expr intval 

1 ' , I 

1 1 

ident idno ident idno 

Fig. 4. Circular attribute dependencies 

This grammar is ambiguous because of production rule (14). The ambiguity 

may be resolved by requiring the plus operator to be left associative. 

The tree part in Figure 4 shows several circular dependency paths. These 

circularities can be removed by cutting, for instance, the dependencies between 

on the one hand attribute occurrence boolval of cond and on the other the 

occurrences of attributes mod and s-pool of grammar symbols condstat and 

whilestat in productions (10) and (11), respectively, and the occurrences of attri- 

bute /-pool of grammar symbols cond and stats in production (11), i.e., by 

replacing the used occurrences of (boolval of cond).status in the attribute evalua- 

tion rules associated with productions (10) and (11) by unknown. 

Now the attribute grammar becomes simple 2-pass [1] with the distribution 

of the attributes over the passes, as shown in Table 6.1. 

The synthesized attribute instances of terminal symbols, i.e., intconstval of 

intconst, boolconstval of boolconst and idno of ident, are assumed to be set 

by the parser. 

The above-mentioned change in the semantic rules of productions (10) and 

(11) prevents the evaluator from ignoring data flow information from statements 

which will never be executed. This is a serious loss for constant propagation. 

So, we return to the original circular attribute grammar, where we are faced 

with the problem of needing attribute values which are not yet available. If 
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Table 6.1. Distribution of the attri- 

butes over the passes 

Attribute Pass number  

mod 1 

intval 2 

boolval 2 

/-pool 2 

s-pool 2 

we take the above-mentioned distribution of the attributes over the passes, then 

the only situation where this will happen is in productions (10) and (11). 

For  circular attribute grammar AG1 the following theorem is important. 

Theorem 6.1. For the following partial orders: 

-- set inclusion (~_) on the set of pool values, with the empty set as the 

smallest element, 

- its converse (~_) on the set of rood values, with the set { 1 . . . . .  max} including 

all identifier numbers as the smallest element, 

- unknown _< (known, x) on the sets of inttype and booltype values, 

the attribute evaluation rules of  attribute grammar AG1 are monotonic. 

Proof. From an inspection of the evaluation rules of AG1 it becomes evident 

that they are monotonic. []  

Observe that in the value set of attribute boolval of cond all ascending 

chains are finite (they are of the form: unknown < (known, x)). 

To solve the circularity problem of attribute grammar AG1 we supply the 

assumption "unknown"  for all instances of boolval of cond in the derivation 

tree before the evaluation process is started. Every other used attribute occur- 

rence has the property that its value will always be computed before it is needed. 

The following theorem gives a fixed upper bound for the number of invoca- 

tions of the evaluator before the tree is consistently attributed. 

Theorem 6.2. For any program of attribute grammar AG1, including W while 

statements and C conditional statements, each enclosed by a while statement, at 

most W + C + 2 invocations of  the evaluator are needed to find all possible constant 

expressions. 

Sketch of proof. In general, the number of invocations is at most: (number 

of key attribute instances) �9 (length of longest chain - 1) + 1. 

For  attribute grammar AG1 the chain for attribute boolval of cond has 

length 2. The additional invocation is included to establish convergence. So, 

the number of invocations is at most: the number of while and conditional 

statements + 1. 

However, it depends on the embedding of structured statements in while 

statements whether this number of invocations is really necessary. 
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The change of status of a conditional or while statement, not enclosed by 

a while statement, will affect the conditions of other statements during the cur- 

rent execution. 

Generally, this is not the case for statements embedded in a while statement. 

The non-left-to-right dependency between attribute occurrences rood of stats 

and /-pool of stats of production (11) may cause the effect of the change of 

the condition of a statement forming part of a while body on the conditions 

of other statements within the same body to be delayed until the next invocation 

of the evaluator; a possible effect on the condition of the enclosing while state- 

ment will certainly be postponed until the next invocation. 

From this we conclude that the number of invocations of the evaluator 

is at most: 1 {for outer structured statements, i.e., not enclosed by a while 

statement} + (W + C) {for structured statements embedded in a while statement} 

+ i {for convergence} = W + C + 2. [] 

Notice that the non-left-to-right dependencies between on the one hand attri- 

bute occurrence rood of stats and on the other the occurrences/-pool of cond 

and /-pool of stats in production (11) force the distribution of the attributes 

over two passes, as shown in Table 6.1, i.e., the execution of the second pass 

may start as soon as the first pass has been finished. However, there is no 

non-left-to-right dependency between attributes of the second pass and attributes 

of the first pass. This means that the (n+ 1)-th execution of the first pass may 

be performed simultaneously with the n-th execution of the second pass, for 

any n __> 1. This observation will be used in the constant folding and propagation 

part of Algorithm 6.1. 

Having found the constant expressions in a derivation tree a single pass 

over the tree suffices to do all possible transformations. 

The following tree transformation rules specify the replacement of a constant 

expression by a single constant and the elimination of dead code. 

transformation rules: 
transl : transform down (expr)  

eond (intval of expr).status = known 

into (expr, intconst) 

eval intconstval of intconst.-=(intval of expr).val 

end; 

trans2: transform down (condstat, if, cond, then, stats [1], else, stats [2], fi)  

eond boolval of cond = (known, true) 

into (compound, begin, stats [1], end) 

eond boolval of cond = (known, false) 

into (compound, begin, stats [2], end) 

end; 

trans3: transform down (whilestat, while, cond, do, stats, od) 

eond boolval of cond = (known, true) 

into (loop-forever, forever, do, stats, od) 

cond boolval of cond = (known, false) 

into (no-operation) 

end. 
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The execution of these transformations during a downward move causes 

the transformation of a complicated expression or a structured statement to 

be executed in a single step, whereas bottom up transformations might need 

several steps. 

It is easily verified that for transl and trans2 compl-itt and compl-ott define 

the same values for the output attribute instances. This keeps the tree consistent. 

Observe, that any application of rule trans3 will put the derivation tree 

out of the language defined by the above-mentioned attribute grammar. Of 

course, a warning should be given if such a tree transformation occurs. To 

keep the tree in the language one could think of additional productions (and 

associated attributes and attribute evaluation rules) for a loop-forever and a 

no-operation. This will be demonstrated in Sect. 6.2. 

We are now ready for the complete algorithm that first collects the necessary 

data flow information and then performs the possible transformations. 

Algorithm 6.1. Constant folding and propagation, and dead code elimination 

according to attribute grammar AG1 and its associated set of tree transformation 

rules. 

Input: A derivation tree where only the synthesized attribute instances 

of ident, intconst and intbool are available. 

Output: A consistently attributed derivation tree where all constant 

expressions have been replaced by constants and all dead code 

has been eliminated. 

Algorithm: 

initialization 

assign the value unknown to all instances of attribute boolval of 

cond; 

new assumptions..=values of instances of attribute boolval of cond; 

pre evaluation pass 

perform a pass during which the instances of attribute mod are com- 

puted; 

iteration of evaluation passes 

repeat 

old assumptions .'=new assumptions; 

perform a pass during which the instances of all attributes are 

computed; 

new assumptions.-=values of instances of attribute boolval of cond 

until new assumptions = old assumptions; 

transformation pass 

perform a pass during which all possible transformations are applied. [] 

The maximal number of passes in this algorithm is expressed in the following 

corollary. 

Corollary 6.1 [of Theorem 6.2] For any program of  attribute grammar AG1, 

including W while statements and C conditional statements, each enclosed by a 

while statement, at most W + C + 4  passes in Algorithm 6.1 are needed to do 

all possible constant folding, constant propagation and dead code elimination. [] 
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6.2 Specification by Tree Transformation Rules 

In this section we first describe the collection of data flow information by a 

traditional non-circular attribute grammar AG2, and then enrich this grammar 

with attributed tree transformation rules to specify constant folding, constant 

propagation and dead code elimination as well. 

Attribute grammar AG2 has attributes idno, intconstval, boolconstval, mod, 

/-pool and s-pool, which have the same meaning as the corresponding attributes 

of AG1. The attribute grammar itself takes a dark view of constant folding 

and constant propagation in the sense that the values of expressions and condi- 

tions are assumed to be unknown, which in fact disallows constant folding 

and constant propagation. These optimizations are as yet realized by the exten- 

sion of the attribute grammar with conditional tree transformation rules. 

Attribute Grammar AG2: 

nonterminals: see AG1, plus: loop-forever and no-operation. 

terminals: see AG 1, plus: forever. 

start symbol: program. 

attribute types: see AG1, without: unknown-or-known, inttype and booltype. 

attributes: see AG1, without: intval and boolval, and 

plus: the association of attributes mod,/-pool  and s-pool with loop- 

forever and no-operation. 

functions: see AGI.  

production rules and semantic rules: 

(1) program -~ compound. 

[/-pool of compound ,=empty-pool] 

(2) compound --* begin stats end. 

[mod of compound :=mod of stats; 

/-pool of stats,=/-pool of compound; 

s-pool of compound,=s-pool of stats 
] 

(3) stats 1-1] ~ stats 1.2]; stat. 

[mod of stats [1] ..=mod of stats 1.2] + mod of stat; 

/-pool of stats 1.2] ,=/-pool of stats [1]; 

/-pool of stat,=s-pool of stats 1.2]; 

s-pool of stats [1] .-=s-pool of stat 
] 

(4) stats ~ stat. 

(5) stat ~ assignment. 

(6) stat ~condsta t .  

(7) stat ~ whilestat. 

(8) stat ~ compound. 

(9) stat ~loop-forever. 

(10) stat ~no-operat ion.  
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(11) assignment --, ident ,=expr. 

[mod of assignment ,=initialize-mod-with (idno of ident); 

/-pool of expr :=/-pool of assignment; 

s-pool of assignment,=delete (idno of ident) from: 

(/-pool of assignment) 
] 

(12) assignment -~ ident ,=intconst. 

[mod of assignment :=initialize-mod-with (indo of ident); 

s-pool of assignment.'=insert (idno of ident, intval of intconst) into: 

(/-pool of assignment) 
] 

(13) condstat ~ if cond then stats [1] else stats [2] ft. 

[mod of condstat,=mod of stats [1] + mod of stats [2]; 

/-pool of stats [2] :=i-pool of stats [1] :=/-pool of cond ,= 

/-pool of condstat; 

s-pool of condstat :=intersect (s-pool of stats [1], 

s-pool of stats [2]) 
] 

(14) whilestat -~ while cond do stats od. 

[mod of whilestat ,=mod of stats; 

s-pool of whilestat.-=i-pool of stats,=/-pool of cond.'= 

delete-all-identifiers-in (mod of stats) from: (/-pool of whilestat) 
] 

(15) loop-forever --, forever do stats od. 

[mod of loop-forever :=mod of stats; 

s-pool of loop-forever :=/-pool of stats.-= 

delete-all-identifiers-in (mod of stats) from: (/-pool of loop-forever) 
] 

(16) no-operation ~ .  

[mod of no-operation..=empty-set-of-ident; 

s-pool of no-operation .'=/-pool of no-operation 
] 

(17) cond ~ expr [1] -- expr [2]. 

[/-pool of expr [2] :=i-pool of expr [1] :=/-pool of cond] 

(18) cond ~ boolconst. 

(19) expr [1] ~ expr [2] + expr [3]. 

[/-pool of expr [3] :=/-pool of expr [2] :=/-pool of expr [1]] 

(20) expr ~ ident. 

(21) expr ~intconst. 

This grammar is ambiguous, not only on account of production rule (19), 

which allows different derivation trees for the same expression, but also because 

of productions (11), (12) and (21) which allow two derivations for a single integer 

constant as the right part of an assignment statement. 

As for grammar AG1, the first problem can be solved by requiring the 

plus operator to be left-associative. The second problem will be solved by giving 

priority to the combination of productions (11) and (21) in the case of the 

assignation of a constant value. In fact, the parser does not know production 
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rule (12). This rule has been included for optimization purposes only and the 

integer constant in the right part of production (12) is assumed to be compiler- 

made. As a matter of fact, the integer constant has to be hoisted into a production 

for the assignment statement to make its attribute intconstval visible, because 

one of the basic concepts of attribute grammars is that the evaluation rules 

are associated with productions only. Instances of attributes farther away in 

the tree are invisible. 

Attribute grammar AG2 is simple 2-pass [1] with the same distribution 

of the attributes rood,/-pool and s-pool over the passes, as shown in Table 6.1. 

Again the instances of idno, inconstval and boolconstval are assumed to be 

set by the parser. 

The following tree transformation rules specify the conditional replacement 

of a variable by a constant, constant folding, and dead code elimination. 

transformation rules: 
transl : transform up (expr, ident) 

eond element (idno of ident) in: (/-pool of expr) 

into (expr, intconst) 

eval intconstval of intconst :=value-of (idno of ident) in: 

(/-pool of expr); 

end; 

trans2: transform up (expr, (expr, intconst [1]), +,(expr, intconst [2] ) )  

into (expr, intconst) 

eval intconstval of intconst :=intconstval of intconst [1] + 

intconstval of intconst [2] 

end; 

trans3: transform up (cond, (expr, intconst [1 ]) ,  = ,(expr, intconst [2] ) )  

into (cond, boolconst) 

eval boolconstval of boolconst..=(intconstval of intconst [1] 

intconstval of intconst [2]) 

end; 

trans4: transform up (assignment, ident,..=,(expr, intconst)) 

into (assignment, ident, ,=,intconst) 

end; 

trans5: transform up (condstat, if, (cond, boolconst), 

then, stats [1], else, stats [2], fi) 

eond boolconstval of boolconst = true 

into (compound, begin, stats [1], end) 

eond boolconstval of boolconst = false 

into (compound, begin, stats [2], end) 

end; 
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trans6: transform up (whilestat, while, (cond, boolconst), do, stats, od) 

eond boolconstval of boolconst = true 

into (loop-forever, forever, do, stats, od) 

eond boolconstval of boolconst = false 

into (no-operation) 

end. 

For safety considerations the following theorems are important. 

Theorem 6.3. For the following partial orders: 

- set inclusion (~_) on the set of  pool values, with the empty set as the 

smallest element, 

- its converse (~_) on the set of  rood values, with the set { 1, ..., max} including 

all identifier numbers as the smallest element, 

the attribute evaluation rules of  attribute grammar AG2 are monotonic. 

Proof. Easily verified by checking the evaluation rules of AG2. [] 

Theorem 6.4. The tree transformation rules transl through trans6 are locally 

safe. 

Proof. The tree transformation rules meet all the conditions of Definition 4.4. 

Take, for example, transformation rule trans5. We check condition (c). To 

form compl-itt and compl-ott, itt and ott have to be extended with the produc- 

tions stat ~condstat  and stat ~compound, respectively. We discuss the case 

that boolconstval of boolconst has the value true. Observe that mod of stat 

will decrease,/-pool of stats [1] will stay the same and s-pool of star will increase 

as a result of the transformation. Hence, the values of all the output attribute 

instances of compl-ott improve. [] 

Every tree transformation may open up the applicability of further transfor- 

mations. To let each tree transformation rule benefit from earlier transformations 

as soon as possible, the rules are applied in bottom up order. Transformation 

rule transl is the only one where the direction makes no difference (because 

the transformation happens at the bottom of the tree). 

Notice that for the extended attribute grammar AG2 the n-th execution 

of the transformation pass may be combined with the n-th execution of the 

second evaluation pass (since the direction of all tree transformations is up) 
and the (n+ 1)-th execution of the first evaluation pass (since this pass works 

strictly bottom up), for any n > 1 (Theorems 4.2 and 4.3, and Algorithm 4.10). 

This observation leads to the following algorithm for constant folding and 

propagation, and dead code elimination according to attribute grammar AG2. 

Algorithm 6.2. Constant folding and propagation, and dead code elimination 

according to attribute grammar AG2 and its associated set of tree transformation 

rules. 

Input: A derivation tree T where only the synthesized attribute instances 

of ident, intconst and intbool are available. 
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Output: An attributed derivation tree, consistently derivable from T c, 

where all constant expressions have been replaced by constants 

and all dead code has been eliminated. 

Algorithm: 

pre evaluation pass 

perform a pass during which the instances of attribute mod are computed; 

iteration of evaluation and transformation passes 

repeat 

perform a pass during which all attribute instances are evaluated 

and as many tree transformations are applied as possible 

until no tree transformation rules were applied during the last pass. []  

The maximal number of passes in this algorithm is expressed in the following 

theorem. 

Theorem 6.5. For any program of attribute grammar AG2, including W while 

statements and C conditional statements, each enclosed by a while statement, at 

most W + C + 3  passes in Algorithm 6.2 are needed to do all possible constant 

folding, constant propagation and dead code elimination. 

Proof. See Theorem 6.2 and Corollary 6.1. []  

6.3 An Example of the Example 

The following program shows an example where the repetition of the combined 

tree transformation and attribute evaluation pass leads to further improvements. 

begin 

a:=2;b:=l;c:=l; 

while a = b do if b = c then d..= 1 else a'.= 1 fi od 

end. 

In Algorithm 6.2, the first execution of the combined tree transformation 

and attribute evaluation pass results in the replacement of the conditional state- 

ment by its then part. During the second execution the while statement is re- 

placed by a no-operation. No more tree transformations are performed during 

the third execution. 

The resulting program is 

begin a.-=2; b.-= 1; c~=l;  end. 

The same number of iterations is needed if the circular attribute grammar 

is applied. In Algorithm 6.1, the first iteration produces the value true for the 

condition of the conditional statement. The second iteration results in the value 

false for the while condition. The third iteration establishes convergence. 
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Having available all the necessary data flow information, a single pass over 

the derivation tree is now sufficient to do all the possible tree transformations, 

giving rise to the same program as found by the method where tree transforma- 

tions and re-evaluations are performed in parallel. 

7. Discussion 

An implementation of compiler optimizations is discussed where conditional 

tree transformations are performed during a pass over a derivation tree, which 

is never interrupted for re-evaluation purposes. This is certainly allowed for 

transformations which guarantee the attribute instances in the derivation tree 

to remain unaffected. If not, then a distinction is made between consistent and 

safe attribute values, both correct and excluding incorrectly applied tree transfor- 

mations. This allows the transformation algorithm to proceed, possibly at the 

price of missing some transformations during the current pass. Safe attribute 

values also allow the combination of attribute evaluation and tree transforma- 

tion phases. 

An alternative is the formulation of a circular attribute grammar which 

specifies a complete evaluation of both the original derivation tree and the 

tree as it should be after its reconstruction. After the completion of all precompu- 

tations a single final pass suffices to do all transformations. 

The advantage of the circular attribute grammar approach is that less unnec- 

essary pattern matching and computat ion of enabling conditions has to be done. 

The disadvantage is that generally more space and time are needed for additional 

attributes and associated computations. Moreover, an additional pass is needed. 

A different approach is the application of an optimal global re-evaluation 

phase after every tree transformation, which minimizes the number of recompu- 

tations and the number of tree traversals (cf. [2]). The advantage of taking 

full profit of consistent attribute values is that generally less transformation 

passes are needed. The disadvantage is the need of additional attributes for 

bookkeeping purposes. 

Machine-independent optimizations form an essential part of a compiler 

writing system being developed at the University of Twente. Each of the three 

above-mentioned strategies is being implemented. Comparative experiments 

have to show whether one of these should be given preference above the others. 

Acknowledgements. Thanks go to Joost Engelfriet for his valuable and critical comments, which 
considerably improved this paper. 
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