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ITERATION THEORY AND INEQUALITIES 
FOR KLEINIAN GROUPS 

F. W. GEHRING AND G. J. MARTIN 

1. Introduction. An important problem in the theory of discrete groups 
is to decide when two Möbius transformations ƒ, g acting on the Riemann 
sphere C generate a Kleinian group, that is, a discrete group whose limit 
set contains more than two points. (See [Be and Ml] for further informa­
tion on such groups.) Solutions to the above problem have quite general 
applications, for example, to deformation theory, discreteness of limits 
[Jl] and universal constraints for Kleinian groups [Be], and lower bounds 
for the volume of hyperbolic manifolds [Me, W]. 

We report here on a connection between this problem and iteration 
theory [GM1]. In particular, by analyzing the stable region D for a certain 
quadratic polynomial R, we find inequalities which must be satisfied by 
the generators of a Kleinian group. These include a stronger form of 
Jorgensen's inequality and inequalities new even for the Fuchsian case. 

Our method is similar to that of Zassenhaus [Z], Shimizu [S], Leut-
becher [Le], Jorgensen [Jl], Brooks and Matelski [BM] and others. We 
examine a sequence of subgroups defined by iterating the commutator of 
the generators; after normalization the traces of the commutators of suc­
cessive subgroups are related by a quadratic polynomial R. If the trace of 
the commutator of the original group lies in the region D, then a detailed 
analysis yields a convergent sequence of elements contradicting discrete­
ness. The main difference in our approach is one of emphasis. Earlier 
results were obtained by looking for conditions which guarantee the ex­
istence of such a sequence. We study the region D and let its geometry 
dictate what the hypotheses should be. 

2. Main result. For ^ e C w e set Rp(z) = z2 - 0z and let Rnn denote 
the «th iterate of Rp. The filled in Julia set for Rp is the bounded perfect 
set 

D(P) = {z G C: {Rnp(z)} is a bounded sequence}, 

and the set of eventually periodic points which do not orbit onto 0 is 

p*(P) = {z eC: {Rnp(z)} is a finite set not containing 0}. 

(See the expository articles of [Bl and Ly] for further background on this 
subject.) 
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A Möbius transformation ƒ is elliptic, parabolic, hyperbolic or loxo-
dromic if ƒ is respectively conjugate to a rotation, a translation, a homoth-
ety or a homothety plus a possible rotation. Given Möbius transformations 
ƒ and g we introduce the parameters 

7 = y(ƒ, g) = tr([/, *]) - 2, 0 = /?(ƒ) = tr2(ƒ) - 4, 

where [ƒ,g] denotes the commutator fgf~lg~{ and tr(/) the trace of 
the matrix representing ƒ in SL(2,C). Then ƒ is elliptic if /? e [-4,0), 
parabolic or the identity if /? = 0, hyperbolic if fi e (0, oo) and loxodromic 
if p £ [-4,0]. (See [Be and Ml].) If we set 

®f(g) = gfg~\ en
f
+l(g) = ef(e}(g))9 yn = y{f,en

f{g)\ 
then yn+l = Rp{yn) and en

f(g)f~l = [... [[*, ƒ], ƒ] • • • ƒ]. 
The following is our main result for the case where ƒ is loxodromic; 

similar versions hold when ƒ is elliptic or parabolic. 

THEOREM 1. Suppose that (f,g) is Kleinian. If f is loxodromic, then 
y £ D(fi)\P*(fi). Moreover if y e P*(P), then there is a nontrivial relation 
in (ƒ> g) of one of the following types 

en
f(g) = ey(g), n>m + i or fken

f(g)f-k = ey(g), k^o. 

The polynomial Rp is conjugate by m(z) = z - /?/2 to p(z) = z1 + c 
where 

C = £(/?) = 1(1 - ( / ? + 1)2). 

The Mandelbrot set M is the set of c for which the filled in Julia set D(fi) 
has a connected boundary. Generically then, if c lies in M, int(Z>(/?)) will 
be nonempty and we obtain an inequality for (y,ft) which must be satisfied 
in order that ( ƒ, g) be Kleinian. 

For example, the two fixed points for Rp are 0 and fi + 1. If |/?| < 1, 
then 0 is attracting, all eventually periodic fixed points in int(D(/?)) must 
eventually orbit onto 0 and hence P*(fi) n int(Z)(/?)) = 0. Next 

Rp(B2(0,1 - \fi\)) C £2(0,1 - \fi\) whence B2(0,1 - \fi\) c D(fi). 

The symmetry of Rp about its critical point fi/2 implies that z e D(fi) if 
and only if fi - z e D(fi). These facts yield the following result. 

COROLLARY 1. Suppose that (f,g) is Kleinian. Then 

\y\ + \fi\>l and |y - / ? | + |/?| > l. 

Both inequalities are due to Jorgensen, who obtained the first by itera­
tion and the second from the first using the Lie product [Jl, J2]. Indeed, 
the symmetry property of Rp about fi/2 can, in turn, be used to define 
this product [GM1]. 

When ƒ is not parabolic, the set £2(0,1 - \fi\) UB2(/3,1 - \0\), excluded 
for y in Corollary 1, generally constitutes only a small portion of the set 
£>(/?). See, for example, Figure 1. 
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FIGURE 1 

The filled in Julia sets D(0) for (a) fi = 0.8 and (b) 
P = 1.048. The banding indicates the iteration scheme. 
In (a) P*(fi) consists only of a countable dense subset of 
the boundary. The cross hatched disks are those given 
by Jorgensen's inequalities. Notice the symmetry about 
the critical point. In (b) P*(fi) consists of a countable 
dense subset of the boundary together with those points 
at which the banding accumulates. The set (b) comes 
from the (2,3,7) Triangle group whose parameters are 
those of the period two attracting cycle. Notice in (b) 
Jorgensen's inequality yields no information as \fi\ > 1. 
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The inequalities in Corollary 1 are sharp [JK]; they hold with equality 
2 

only when B (0,1 - \f}\) meets the Julia set dD(fi) in an eventually pe­
riodic point. This fact yields a conceptually simple proof of the stability 
and structure of groups for which either of these inequalities holds with 
equality [GM2]. 

Theorem 1 does not exclude the possibility that y e P*(fi) c D(/3); 
hence there are exceptions to a general analysis about the attractive peri­
odic cycles. We say that a Kleinian group (ƒ, g) is extremal if y e P*(P) 
and exceptional if y e P*(fi) fl int(D(fi)). Both classes of groups exist. 
Since the eventually periodic points are isolated in int(Z>(/?)), we see for 
purely combinatorial reasons that these groups are quite isolated in the 
space of all discrete groups [GM3]. Maiié, Sad and Sullivan show that 
generically the structure of the filled in Julia set is stable under pertur­
bation [MSS]; this also implies certain rigidity properties of exceptional 
groups. 

The relations in Theorem 1 yield algebraic and geometric properties 
of extremal groups and show this apparently combinatorial property is a 
homomorphic invariant of the group. For example, the only exceptional 
Fuchsian groups are the (2,3,7) and (2,4,5) triangle groups. Among the 
extremal groups are the (3,3,4) and (2,3,/?) triangle groups, some knot 
complements and some compact hyperbolic three manifolds that fiber over 
the circle [J3]. 

When |/J + 2| < 1, /? + 1 is an attracting fixed point for Rp. An analysis 
of the exceptional groups yields the following result. 

COROLLARY 2. Suppose that ( ƒ, g) is Kleinian. Then 

| y - j 8 - l | + |j8 + 2 | > l and \y + 1| + \fi + 2| > 1 

unless y = /? + 1 in the first inequality or y = -1 in the second. 

This result was also discovered recently by Tan [T]. The following in­
equalities result from a study of the critical point fi/2. 

COROLLARY 3. Suppose that (ƒ, g) is Kleinian. If\/l(P + 2)| < 1 and if 
y ̂  /? + 1 and y ^ - 1 , then 

| 2 y - / ? | > l + ( l - | / ?0»+ 2)|)1/2. 

If\(y + 2){y + 4)| < 1 and ify^p + landfi^ - 3 , then 

| 2 ^ - y + 4 | > l + ( l - | ( y + 2)(7 + 4)|)1/2. 

3. Totally real polygon. Theorem 1 and its analogues exclude a region 
of C2 for the parameters of nonexceptional Kleinian groups. When y and 
p are real, precise calculations can be made; this does not mean restricting 
ourselves to the Fuchsian case. In particular, if /? e [-4,2], then c = c(fi) 
lies in the Mandelbrot set M and the intersection of D(jf) with the real 
axis is the interval ƒ(/?) = [min(-l,/?),max(0,/? 4-1)]. Hence the polygon 

n = {(y,P):yeI(P),fie[-4,2]} 

contains no parameters for ( ƒ, g) unless it is extremal. See Figure 2. 
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The Real Polygon 
There are no parameters for discrete groups in the polygon 
except those that are eventually one of the groups indicated. 

F I G U R E 2 

THEOREM 2. Suppose that ( ƒ, g) is Kleinian and that (y, fi) lies in int(Q). 
If ƒ is hyperbolic, then 

/? = 2(cos(27T/7) + cos(7r/7)-l) or fi = y/5 - 1 or fi = 2y/2-l9 

in which case (ƒ, gfg~l) is respectively the (2,3,7), (2,4,5), (3,3,4) trian­
gle group. Iff is elliptic, then 

fi = -2 or /? = —3 or fi =-(5 ±y/S)/2 

in which case (f,gfg~l) is respectively S4,A4 or A5,A5. 

REMARK 1. With these exceptions, no Kleinian group ( ƒ, g) has param­
eters in int(Q). On the other hand, there are many groups with parameters 
in <9Q. For example, each integer lattice point in dQ, corresponds to a dis­
crete group which is also nonelementary whenever 7 ^ 0 . Moreover, the 
(2,3,/?) triangle groups correspond to points in dQ, which accumulate at 
the point (0,-1) corresponding to the (2,3,00) group. That the groups 
with {y,fi) = (-n,-n), n = 1,2,3,4, are discrete follows from recent 
results of Maskit [M2]. 

REMARK 2. Theorems 1 and 2 yield necessary conditions for the pa­
rameters (y,/?) of a Kleinian group (f,g). Other conditions result from 
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looking at parameters corresponding to subgroups, new generators or the 
Lie product [T]. For example, let o be an element of the group generated 
by the reflections 

<Kv, fi) = (v,v-fi- 4), y(y, fi) = (fi- y, fi), 
a group isomorphic to S3. Then the parameters (y>fi) are admissible for 
a discrete group (ƒ, g) if and only if the parameters o(y, fi) are. This fact 
yields four additional pairs of inequalities, equivalent to those in Corol­
laries 1 and 2, and a larger excluded region in Theorem 2. 

5. Geometric estimates. The inequalities above contain geometric infor­
mation about the Kleinian group (f,g). For example, those in Corollary 
1 imply that ƒ and g cannot both be close to the identity. We conclude 
with two explicit estimates which quantify this fact. (See also [W].) The 
first is given in terms of the matrices A and B, which represent ƒ and g in 
SL(2,C), and the norm ||C|| = tr(CC)1/2 . The second estimate involves 
the metric 

d(f9g) = supq(f(z),g(z))€ [0,2], 
zee 

where q denotes chordal distance in C. 

THEOREM 3. Suppose that (ƒ, g) is a Kleinian group with identity ele­
ment id. Then 

\\A -A~l\\ \\B -B-{\\> c0, mz*(d{fAd)9d(g9id)) > d0, 

where Co and d0 are absolute constants, 

4(\/2 - 1) = 1.65.. < c0 < 1.98.. = 4(2COS(2TT/7) - l)1/2 = cu 

2(V5 - 1) = .828.. < * < .911.. = 2 ( £ 2 5 g ? E Z n ± Ç 0 5 ^ 7 ^ N ^ = 

\cos(27r/7) + cos(7r/7) + 1 / 
REMARK 3. The lower bounds for the constants Co and do result from 

Jorgensen's inequality and inequalities relating l /^ to l l^-^ - 1 ! ! and |y| to 
\\A - A~{ || \\B - B~l || [GM4]. The upper bounds C\ and d\ come from the 
(2,3,7) triangle group. When (ƒ, g) is Fuchsian, Theorem 3 holds with 
Co = c\ and do — d\ and hence is sharp for this case. 

REMARK 4. A Möbius group G is discrete if there exists a constant 
d = d(G) > 0 such that d( ƒ, g) > d for each distinct pair ƒ, g in G. In this 
case, Theorem 3 implies there exists a Möbius transformation h such that 
d(hfh~l, hgh~{) > do for each distinct pair ƒ, g in G, where do is as above. 
Thus each discrete Möbius group is conjugate to one in which distances 
between distinct elements are bounded below by a universal constant. 

REFERENCES 

[Be] A. F. Beardon, The geometry of discrete groups, Springer-Verlag, Berlin and New 
York, 1983. 

[Bl] P. Blanchard, Complex analytic dynamics on the Riemann sphere, Bull. Amer. Math. 
Soc. (N.S.) 11 (1984), 85-141. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ITERATION THEORY AND INEQUALITIES 63 

[BM] R. Brooks and J. P. Matelski, The dynamics ofl-generator subgroups ofPSL(2,C), 
Riemann surfaces and related topics, Ann. Math. Studies 97, Princeton Univ. Press, Princeton, 
N.J., 1981. 

[GM1] F. W. Gehring and G. J. Martin, Discreteness in Kleinian groups and the iteration 
theory of quadratic mappings (to appear). 

[GM2] , Stability and extremality in Jorgenserts inequality, Complex Variables (to 
appear). 

[GM3] , On the rigidity of certain triangle groups (to appear). 
[GM4] , Inequalities for Möbius transformations and discrete groups (to appear). 
[Jl] T. Jorgensen, On discrete groups of Möbius transformations, Amer. J. Math. 98 

(1976), 739-749. 
[J2] , Comments on a discreteness condition for subgroups of SL(2,C), Canad. J. 

Math. 31 (1979), 87-92. 
[J3] , Compact 3-manifolds of constant negative curvature fibering over the circle, Ann. 

of Math. (2) 106(1977), 61-72. 
[JK] T. Jorgensen and M. Kiikka, Some extreme discrete groups, Ann. Acad. Sci. Fenn. 1 

(1975), 245-248. 
[Le] A. Leutbecher, Über Spitzen diskontinuierlicher Gruppen von lineargebrochenen 

Transformationen, Math. Z. 100 (1967), 183-200. 
[Ly] M. Yu. Lyubich, The dynamics of rational transforms: the topological picture, Rus­

sian Math. Surveys 41:4 (1986), 43-117. 
[MSS] R. Mané, P. Sad and D. Sullivan, On the dynamics of rational maps, Ann. Sci. 

École Norm. Sup. (4) 16 (1983), 193-217. 
[Ml] B. Maskit, Kleinian groups, Springer-Verlag, Berlin and New York, 1988. 
[M2] , Some special 2-generator Kleinian groups, Proc. Amer. Math. Soc. (to appear). 
[Me] R. Meyerhoff, A lower bound for the volume of hyperbolic 3-manifolds, Canad. J. 

Math. 39(1987), 1038-1056. 
[S] H. Shimizu, On discontinuous groups operating on the product of the upper half planes, 

Ann. of Math. 77 (1963), 33-71. 
[T] D. Tan, On two generator discrete groups of Möbius transformations, Proc. Amer. 

Math. Soc. (to appear). 
[W] P. L. Waterman, An inscribed ball for Kleinian groups, J. London Math. Soc. 16 

(1984), 525-530. 
[Z] H. Zassenhaus, Beweis eines Satzes über diskrete Gruppen, Abh. Math. Sem. Univ. 

Hamburg 12 (1938), 289-312. 

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MICHIGAN 

48109 

DEPARTMENT OF MATHEMATICS, YALE UNIVERSITY, NEW HAVEN, CONNECTICUT 06520 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


