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Fig. 1. Iterative 𝛼-blending and deblending. In this example, we map Gaussian noise to cat images. We use a neural network trained to deblend blended
Gaussian noise and cats. By deblending and reblending iteratively, we obtain a mapping between the Gaussian and cat densities.

ABSTRACT
We derive a minimalist but powerful deterministic denoising-diffusionmodel.
While denoising diffusion has shown great success in many domains, its
underlying theory remains largely inaccessible to non-expert users. Indeed,
an understanding of graduate-level concepts such as Langevin dynamics or
score matching appears to be required to grasp how it works. We propose
an alternative approach that requires no more than undergrad calculus and
probability. We consider two densities and observe what happens when
random samples from these densities are blended (linearly interpolated).
We show that iteratively blending and deblending samples produces ran-
dom paths between the two densities that converge toward a deterministic
mapping. This mapping can be evaluated with a neural network trained to
deblend samples. We obtain a model that behaves like deterministic denois-
ing diffusion: it iteratively maps samples from one density (e.g., Gaussian
noise) to another (e.g., cat images). However, compared to the state-of-the-
art alternative, our model is simpler to derive, simpler to implement, more
numerically stable, achieves higher quality results in our experiments, and
has interesting connections to computer graphics.
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1 INTRODUCTION
Diffusion models have recently become one of the most popular
generative modeling tools [Ramesh et al. 2022]. They have outper-
formed state-of-the-art GANs [Karras et al. 2021, 2020] and been
applied to many applications, such as image generation [Dhariwal
and Nichol 2021; Rombach et al. 2021], image processing [Kawar
et al. 2022; Saharia et al. 2021; Whang et al. 2022], text-to-image [Sa-
haria et al. 2022b], video [Ho et al. 2022] or audio [Kong et al. 2020].

First, there were stochastic diffusion models... These diffusion mod-
els can all be formulated as Stochastic Differential Equations (SDEs)
[Song et al. 2021b] such as Langevin dynamics. Langevin’s equation
models a random walk that obeys a balance between two operations
related to Gaussian noise: increasing noise by adding more noise,
and decreasing noise by climbing the gradient of the log density.
Increasing noise performs large steps but pushes the samples away
from the true density. Decreasing noise projects the samples back
onto the true density. Carefully tracking and controlling this bal-
ance allows one to perform efficient random walks and provides
a sampling procedure for the true density. This is the core of de-
noising diffusion approaches. Noise Conditional Score Networks
(NCSNs) [Song and Ermon 2019, 2020] use Langevin’s equation
directly by leveraging the fact that the score (the gradient of the
log density in Langevin’s equation) can be learnt via a denoiser
when the samples are corrupted with Gaussian noise [Vincent 2011].
Denoising Diffusion Probabilistic Models (DDPMs) [Ho et al. 2020;
Nichol and Dhariwal 2021] use a Markov chain formalism with a
Gaussian prior that provides an SDE similar to Langevin dynamics,
where the score is also implicitly learnt with a denoiser.
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...then came deterministic diffusion models. Langevin’s SDEs vari-
ants describe an equilibrium between noise injection and noise
removal. Nullifying the noise injection in these SDEs yields Or-
dinary Differential Equations (ODEs), also called Probability Flow
ODEs [Song et al. 2021b], that simply describe the deterministic
trajectory of a noisy sample projected back onto the true density.
For instance, Denoising Diffusion Implicit Models (DDIMs) [Song
et al. 2021a] are the ODE variants of DDPMs. These ODEs provide a
smooth, deterministic mapping between the Gaussian noise density
and the true density. Deterministic diffusion models have recently
been proposed because an ODE requires far fewer solver iterations
than its SDE counterpart. Furthermore, a deterministic mapping
presents multiple practical advantages because samples are uniquely
determined by their prior Gaussian noise. For instance, they can be
edited or interpolated via the Gaussian noise.

Is there a simpler approach to deterministic diffusion? The point of
the above story is that, in the recent line of work on diffusionmodels,
stochastic diffusion models came first and deterministic diffusion
models came after, framed as special cases of the stochastic ones.
Hence they inherited the underlying mindset and mathematical
framework. As a result, knowledge of advanced concepts such as
Langevin dynamics, score matching, how they relate to Gaussian
noise, etc., appears to be required to understand recent deterministic
diffusion models. We argue that this is an unnecessary detour for
something that can be framed in a much simpler and more general
way. We propose a fresh take on deterministic diffusion with an-
other mindset, using only basic sampling concepts.

• Simpler derivation. We derive a deterministic, diffusion-like
model based on the sampling interpretation of blending and de-
blending. We call it Iterative 𝛼-(de)Blending (IADB) in reference
to the computer graphics 𝛼-blending technique that composes
images with a transparency parameter [Porter and Duff 1984].
Our model defines a mapping between arbitrary densities (of
finite variance).

• Practical improvements. We show that, when the initial den-
sity is Gaussian, the mappings defined by IADB are exactly the
same as the ones defined by DDIM [Song et al. 2021a], but with
several benefits. First, our derivation leads to a more numeri-
cally stable sampling formulation. Second, our experiments show
that IADB consistently outperforms DDIM in terms of final FID
scores for several datasets and is more stable for a small number
of sampling steps.

• Theoretical improvements. A side effect of our derivation is
that, in contrast to DDIM, IADB does not require the assump-
tion that the initial density is Gaussian, which is a significant
generalization. Furthermore, our derivation leads to a stochastic
mapping algorithm that is reminiscent of computer graphics
applications.

2 BLENDING AND DEBLENDING AS SAMPLING
Initial densities. We consider two densities 𝑝0, 𝑝1 : R𝑑 → R+

represented, respectively, by the red triangle and the green square
in Figure 2. We denote their corresponding samples as 𝑥0 ∼ 𝑝0 and
𝑥1 ∼ 𝑝1. For independent samples 𝑥0 and 𝑥1, we use the notation
(𝑥0, 𝑥1) ∼ 𝑝0 × 𝑝1.

𝛼-blending 𝛼-deblending
(𝑥0, 𝑥1)︸   ︷︷   ︸
∼𝑝0×𝑝1

→ 𝑥𝛼︸︷︷︸
∼𝑝𝛼

𝑥𝛼︸︷︷︸
∼𝑝𝛼

→ (𝑥0, 𝑥1)︸   ︷︷   ︸
∼𝑝0×𝑝1

𝑥𝛼

𝑥1𝑥0 𝑥1𝑥0

𝑥𝛼

Fig. 2. Blending and deblending as sampling operations.

Definition of 𝛼-blending. We use 𝑝𝛼 to refer to the density of
the blended samples 𝑥𝛼 = (1 − 𝛼) 𝑥0 + 𝛼 𝑥1 obtained by blending
random samples (𝑥0, 𝑥1) ∼ 𝑝0 × 𝑝1 with a parameter 𝛼 ∈ [0, 1].

Definition of 𝛼-deblending. We call the inverse sampling opera-
tion 𝛼-deblending, i.e., generating random 𝑥0 and 𝑥1 from the initial
densities that could have been 𝛼-blended to a point 𝑥𝛼 . Formally, it
means sampling random posteriors (𝑥0, 𝑥1) | (𝑥𝛼 ,𝛼) ∼ (𝑝0 × 𝑝1) | (𝑥𝛼 ,𝛼) .
The key property is that if 𝑥𝛼 ∈ R𝑑 is a fixed point, the posterior
densities are not the initial densities 𝑝0 × 𝑝1. However, if 𝑥𝛼 ∼ 𝑝𝛼
is a random sample, the posterior densities are the initial densities.
This follows directly from the law of total probability illustrated in
Figure 3. In other words, 𝛼-deblending a random sample 𝑥𝛼 ∼ 𝑝𝛼 is
equivalent to sampling (𝑥0, 𝑥1) ∼ 𝑝0 × 𝑝1.

(𝑝0 × 𝑝1) | (𝑥𝛼 ∈R𝑑 ,𝛼) ≠ 𝑝0 × 𝑝1

↘

(𝑝0 × 𝑝1) | (𝑥𝛼∼𝑝𝛼 ,𝛼) = 𝑝0 × 𝑝1

→

↗

Fig. 3. The law of total probability. Intuitively, deblending a fixed
𝑥𝛼 ∈ R𝑑 means sampling only in a subset of the initial densities. However,
if 𝑥𝛼 ∼ 𝑝𝛼 is random, all these subsets are merged and the sampling occurs
in the initial densities as if we had directly sampled (𝑥0, 𝑥1) ∼ 𝑝0 × 𝑝1.
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Definition of 𝛼-(de)blending. Let’s consider two blending pa-
rameters 𝛼1, 𝛼2 ∈ [0, 1]. Using the previous proposition, we can
chain 𝛼1-deblending and 𝛼2-blending to map a random sample
𝑥𝛼1 ∼ 𝑝𝛼1 to a random sample 𝑥𝛼2 ∼ 𝑝𝛼2 . Indeed, by sampling pos-
teriors for a random sample 𝑥𝛼1 ∼ 𝑝𝛼1 , we obtain random samples
(𝑥0, 𝑥1) ∼ (𝑝0 × 𝑝1) from the initial densities, and blending them
with parameter 𝛼2 provides a random sample 𝑥𝛼2 ∼ 𝑝𝛼2 . This is
illustrated in Figure 4.

𝑥𝛼1︸︷︷︸
∼𝑝𝛼1

→ (𝑥0, 𝑥1)︸   ︷︷   ︸
∼𝑝0×𝑝1

→ 𝑥𝛼2︸︷︷︸
∼𝑝𝛼2

𝑥𝛼1 𝑥𝛼2

𝑥1𝑥0

Fig. 4. 𝛼-(de)blending.

3 ITERATIVE 𝛼-(DE)BLENDING (IADB)
Our objective is to define a deterministic mapping such that i.i.d.
samples 𝑥0 ∼ 𝑝0 passed through the mapping produce i.i.d. samples
𝑥1 ∼ 𝑝1. We introduce Iterative 𝛼-(de)Blending (IADB), an iterative
algorithm that can be implemented stochastically or deterministi-
cally. Our main result is that both variants converge toward the same
limit, which yields a deterministic mapping between the densities
𝑝0 and 𝑝1, as shown in Figure 5.

𝑥0︸︷︷︸
∼𝑝0

→ .. → 𝑥𝛼︸︷︷︸
∼𝑝𝛼

→ .. → 𝑥1︸︷︷︸
∼𝑝1

Fig. 5. Iterative 𝛼-(de)blending

Algorithm 1: iterative 𝛼-(de)blending (stochastic). Let’s consider a
number of iterations 𝑇 and evenly distributed blending parameters
𝛼𝑡 = 𝑡/𝑇, 𝑡 = {0, ..,𝑇 }). This algorithm creates a sequence (𝑥𝛼𝑡 ∼
𝑝𝛼𝑡 , 𝑡 = {0, ..,𝑇 }) that starts with a random sample 𝑥0 ∼ 𝑝0 and ends
with a random sample 𝑥𝛼𝑇 = 𝑥1 ∼ 𝑝1 by applying 𝛼-(de)blending
iteratively. In each iteration, 𝑥𝛼𝑡 ∼ 𝑝𝛼𝑡 is 𝛼𝑡 -deblended by sampling
random posteriors, which are sampled and 𝛼𝑡+1-blended again to
obtain a new sample 𝑥𝛼𝑡+1 ∼ 𝑝𝛼𝑡+1 . End to end, this algorithm
provides a stochastic mapping between samples 𝑥0 ∼ 𝑝0 and sam-
ples 𝑥1 ∼ 𝑝1.

Algorithm 1 Iterative 𝛼-(de)blending (stochastic)

Require: 𝑥0 ∼ 𝑝0, 𝑇 , 𝛼𝑡 := 𝑡
𝑇

for 𝑡 = 0, ..,𝑇 − 1 do
sample (𝑥0, 𝑥1) ∼ (𝑝0 × 𝑝1) | (𝑥𝛼𝑡 ,𝛼𝑡 )
𝑥𝛼𝑡+1 = (1 − 𝛼𝑡+1) 𝑥0 + 𝛼𝑡+1 𝑥1

end for

Algorithm 2: iterative 𝛼-(de)blending (deterministic). This algo-
rithm is the same as Algorithm 1 except that, in each iteration, the
random posterior samples are replaced by their expectations. The
algorithm is thus not stochastic but deterministic.

Algorithm 2 Iterative 𝛼-(de)blending (deterministic)

Require: 𝑥0 ∼ 𝑝0, 𝑇 , 𝛼𝑡 := 𝑡
𝑇

for 𝑡 = 0, ..,𝑇 − 1 do
(𝑥0, 𝑥1) = E(𝑝0×𝑝1) | (𝑥𝛼𝑡 ,𝛼𝑡 )

[(𝑥0, 𝑥1)]
𝑥𝛼𝑡+1 = (1 − 𝛼𝑡+1) 𝑥0 + 𝛼𝑡+1 𝑥1

end for

Theorem: convergence of iterative 𝛼-(de)blending. If 𝑝0 and 𝑝1
are Riemann-integrable densities of finite variance, the sequences
computed by Algorithm 1 and Algorithm 2 converge toward the
same limit as the number of steps𝑇 increases, i.e., for any 𝛼 ∈ [0, 1]:

lim
𝑇→∞

𝑥𝛼 computed by Algorithm 1(𝑥0,𝑇 )

= lim
𝑇→∞

𝑥𝛼 computed by Algorithm 2(𝑥0,𝑇 ) . (1)

Proof. We provide a detailed proof in Appendix A of our supple-
mental. But intuitively, with each iteration, Algorithm 1 makes a
small step Δ𝑥𝛼 = (𝑥1 − 𝑥0) Δ𝛼 along the segment given by random
posterior samples. As the number of iterations increases, many small
random steps average out, and the infinitesimal steps are described
by an ODE that involves the expected posteriors, as in Algorithm 2:

d𝑥𝛼 = (𝑥1 − 𝑥0) d𝛼. (2)
Hence, as 𝑇 increases, the update rule of Algorithm 1 converges
toward that of Algorithm 2. This is shown in Figure 6.

𝑇 = 2 steps 𝑇 = 10 steps 𝑇 = 1000 steps

A
lg
.1

A
lg
.2

Fig. 6. Both algorithms step iteratively by moving the samples along seg-
ments defined by their posterior densities. The difference is that Algorithm 1
uses segments between random posterior samples, which creates stochastic
paths, while Algorithm 2 uses the segment between the average of the pos-
terior samples, which creates deterministic paths. As the number of steps𝑇
increases, the randomness of the stochastic paths averages out and they
converge toward the deterministic paths.
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Connection to computer graphics applications. Figures 7 and 8
show how the mapping behaves in 2D. The deterministic mapping
defined by the limit of the algorithm is a transport map (also called
an area-preserving parameterization) that could potentially be of
interest for common computer graphics applications such as pa-
rameterizing, sampling, and stippling. We believe that showing the
connection is interesting, but our point here is not to make com-
petitive claims for these applications. Instead, our focus is on using
this mapping for deterministic denoising diffusion, as presented in
Section 4.

𝑥0 ∼ 𝑝0 𝑥0
Alg. 1
−−−−−→
𝑇=32

𝑥1 𝑥0
Alg. 1
−−−−−−→
𝑇=512

𝑥1 𝑥0
Alg. 1
−−−−−→
𝑇=1𝑀

𝑥1

Fig. 7. Stochastic mapping with Algorithm 1.We map a uniform den-
sity on a square (𝑝0) and to a uniform density on a disk (𝑝1). The checker-
board pattern shows the randomness of the resulting mapping. The larger
the number of steps 𝑇 , the more the mapping converges and reveals a
smooth parameterization of the disk.

𝑥0 ∼ 𝑝0 𝑥0
Alg. 2
−−−−−→ 𝑥1 𝑥0

Alg. 2
−−−−−→ 𝑥1 𝑥0

Alg. 2
−−−−−→ 𝑥1

Fig. 8. Deterministic mapping with Algorithm 2.We use the determin-
istic mapping to warp blue-noise samples in the unit square to arbitrary
densities.

4 LEARNING ITERATIVE 𝛼-(DE)BLENDING
In this section, we explain how to use iterative 𝛼-(de)blending in a
machine learning context, where we train a neural network 𝐷\ to
predict the average posterior samples used in Algorithm 2.

4.1 Variant Formulations of Iterative 𝛼-(de)Blending
A direct transposition of Algorithm 2 means learning the averages
of both posterior samples 𝑥0 and 𝑥1. However, one is implicitly
given by the other such that it is not necessary to learn both, and
variants of Alg. 2 are possible. The fact that multiple, theoretically
equivalent, variants are possible is pointed out by Salimans and Ho
[2022]. However, they are not equivalent in practice. In Table 1, we
summarize four variants derived in Appendix B of our supplemental
and compare their practical properties. Variant (a) is the vanilla
transposition of Algorithm 2. It is highly unstable because instead
of being a numerical update of the current sample 𝑥𝛼𝑡 , the new
sample 𝑥𝛼𝑡+1 is computed from the outputs of the neural network.
The residual learning errors of the network accumulate at each

step and the larger the number of steps 𝑇 , the more this variant
diverges. Variants (b) and (c) consist of learning either only 𝑥0 or
𝑥1. The sampling suffers from numerical instability near 𝛼𝑡 = 0 and
𝛼𝑡 = 1 because of the respective divisions by 𝛼𝑡 and 1 − 𝛼𝑡 . We
recommend using variant (d), which consists of learning the average
difference vector 𝑥1 − 𝑥0. It is a direct transposition of the ODE
defined in Equation 2. This variant updates the current samples
at each iteration without any division, making it the most stable
variant for both training and sampling.

(a) learn 𝑥0 and 𝑥1 (b) learn only 𝑥0 (c) learn only 𝑥1 (d) learn 𝑥1 − 𝑥0

(𝑥0, 𝑥1) = 𝐷\

(
𝑥𝛼𝑡 , 𝛼𝑡

)
𝑥0 = 𝐷\

(
𝑥𝛼𝑡 , 𝛼𝑡

)
𝑥1 = 𝐷\

(
𝑥𝛼𝑡 , 𝛼𝑡

)
𝑥1 − 𝑥0 = 𝐷\

(
𝑥𝛼𝑡 , 𝛼𝑡

)
𝑥𝛼𝑡+1 = 𝑥𝛼𝑡+1 = 𝑥0 + 𝑥𝛼𝑡+1 = 𝑥1 + 𝑥𝛼𝑡+1 = 𝑥𝛼𝑡 +

(1 − 𝛼𝑡+1) 𝑥0 + 𝛼𝑡+1𝑥1
𝛼𝑡+1
𝛼𝑡

(𝑥𝛼𝑡 − 𝑥0) (1−𝛼𝑡+1)
(1−𝛼𝑡 ) (𝑥𝛼𝑡 − 𝑥1) (𝛼𝑡+1 − 𝛼𝑡 ) (𝑥1 − 𝑥0)

unstable unstable when 𝛼𝑡 → 0 unstable when 𝛼𝑡 → 1 stable

Table 1. Variant formulations of iterative 𝛼-(de)blending (equivalent
in theory but not in practice).

4.2 Training and Sampling
Following variant (d) of Table 1, we train the neural network 𝐷\ to
predict the average difference vector between the posterior samples.
Our learning objective is defined by

min
\

E
𝛼,𝑥𝛼


𝐷\ (𝑥𝛼 , 𝛼) − E

(𝑥0,𝑥1) | (𝑥𝛼 ,𝛼 )
[𝑥1 − 𝑥0]

2 . (3)

Note that minimizing the 𝑙2 norm of the average of a distribution is
equivalent to minimizing the 𝑙2 norm of all of the samples of the
distribution. We obtain the equivalent objective

min
\

E
𝛼,𝑥𝛼 ,(𝑥0,𝑥1) | (𝑥𝛼 ,𝛼 )

[
∥𝐷\ (𝑥𝛼 , 𝛼) − (𝑥1 − 𝑥0)∥2

]
. (4)

Finally, as explained in Section 2, sampling 𝑥𝛼 ∼ 𝑝𝛼 first and then
(𝑥0, 𝑥1) | (𝑥𝛼 ,𝛼) is equivalent to sampling (𝑥0, 𝑥1) ∼ (𝑝0, 𝑝1) and
blending them to obtain 𝑥𝛼 ∼ 𝑝𝛼 . With this, we obtain our final
learning objective

min
\

E
𝛼,𝑥0,𝑥1

[
∥𝐷\ ((1 − 𝛼) 𝑥0 + 𝛼 𝑥1, 𝛼) − (𝑥1 − 𝑥0)∥2

]
, (5)

which we use to optimize \ in Algorithm 3. In Algorithm 4, we
iteratively map samples 𝑥0 ∼ 𝑝0 to samples 𝑥1 ∼ 𝑝1 in the same
way as in Algorithm 2, where we use the neural network 𝐷\ to
obtain the average posterior difference.

Algorithm 3 Training
Require: 𝑥0 ∼ 𝑝0, 𝑥1 ∼ 𝑝1, 𝛼 ∼ U[0,1]
𝑥𝛼 = (1 − 𝛼) 𝑥0 + 𝛼 𝑥1
𝑙 = ∥𝐷\ (𝑥𝛼 , 𝛼) − (𝑥1 − 𝑥0)∥2
backprop from 𝑙 and update \

Algorithm 4 Sampling

Require: 𝑥0 ∼ 𝑝0, 𝑇 , 𝛼𝑡 := 𝑡
𝑇

for 𝑡 = 0, ..,𝑇 − 1 do
𝑥𝛼𝑡+1 = 𝑥𝛼𝑡 + (𝛼𝑡+1 − 𝛼𝑡 ) 𝐷\

(
𝑥𝛼𝑡 , 𝛼𝑡

)
end for

4
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5 EXPERIMENTS WITH ANALYTIC DENSITIES
Experiments with 1D densities. In Figure 9, we experiment with an-

alytic 1D densities, where the expectation 𝑥1 − 𝑥0 can be computed
analytically rather than being learnt by a neural network 𝐷\ . The
experiment confirms that the analytic version matches the reference
and that the neural network trained with the 𝑙2 norm approximates
the same mapping. We also tested training the neural network with
the 𝑙1 norm, which makes the neural network approximate the me-
dian of 𝑥1 − 𝑥0 rather than its average. The resulting mapping does
not match the reference. This confirms that learning the average
via 𝑙2 training is a key component of our model, as explained in
Section 4.2.

Experiments with 2D densities. Figure 10 shows that the interme-
diate blended densities 𝑝𝛼 computed by our mapping match the
reference blended densities. Figure 11 shows how our algorithm
maps the samples of 𝑝0 to samples of 𝑝1. These results demonstrate
that IADB computes valid mappings between arbitrary densities.

6 EXPERIMENTS WITH IMAGE DENSITIES

6.1 Gaussian sampling: comparison against DDIM
The state-of-the-art deterministic denoising diffusionmodel is DDIM
[Song et al. 2021a]. The derivation of DDIM is based on the assump-
tion that the first density is Gaussian. In this section, we show that
if 𝑝0 is Gaussian then IADB produces the same mapping as DDIM
but with a different parameterization (a given 𝑥0 is mapped to the
same 𝑥1 but the trajectory is different).

Proposition. If 𝑝0 is a Gaussian density, IADB and DDIM define
the same deterministic mapping.

Proof. In Appendix C of our supplemental, we show that, with
a simple change of parameterization, the update rule of DDIM cor-
responds to variant (b) in Table 1.

IADB consistently outperforms DDIM in FID scores. In Figure 12,
we experiment under the same conditions (architecture, training
time, 1st-order solver, uniform schedule, Gaussian 𝑝0) and measure
the FID score [Heusel et al. 2017] for a varying number of sampling
steps on 3 image datasets: LSUN Bedrooms (64x64), CelebA (64 x
64) and AFHQ Cats(128x128). We use a U-Net architecture from the
HuggingFace Diffusers library1. The model has 6 downsampling
blocks, 6 upsampling blocks, and a self-attention middle block. We
trained the model with the AdamW optimizer (Learning rate=0.0001,
Weight decay=0.01, betas=(0.9,0.999)) and we set the batch size to
64 for Celeba, 8 for AFHQ Cats, 64 for bedrooms, and 128 for Cifar.
All models are trained for 120 hours of training (approx. 800k steps
on the CelebA dataset) on a single NVIDIA Titan RTX. We observe
a consistently better performance with IADB compared to DDIM.

Discussion. The improved performance of IADB compared to
DDIM is due to multiple factors. The formulation generally used in
DDIM corresponds to variant (b) presented in Table 1: they train a
denoiser to predict the Gaussian noise present in the noisy image
samples, i.e., their model learns to predict 𝑥0. However, we explain
that this variant makes the sampling less stable because of the
1https://github.com/huggingface/diffusers

division near 0. As a matter of fact, in their implementation, the
sampler starts at some 𝜖 > 0 precisely to avoid dividing by 0. Our
variant (d) does not suffer from this problem. Another factor is
that the learning objective defined by variant (d) provides a better
optimization landscape than variant (b). For instance, the effort to
learn 𝑥0 in variant (b) is imbalanced over 𝛼 because the 𝑙2 norm
is small near 𝛼 = 0 and large near 𝛼 = 1. In contrast, the effort to
learn 𝑥1 − 𝑥0 in variant (d) is more balanced over 𝛼 .

6.2 Non-Gaussian sampling
In contrast to DDIM, IADB does not make the assumption that 𝑝0 is
Gaussian. Indeed, IADB is theoretically proven to produce a correct
sampling of 𝑝1 for any 𝑝0 (as long as they are Riemann integrable
and of finite variance). In this section, we experiment with how
IADB behaves with non-Gaussian densities for 𝑝0.

Impact on sampling quality. In the experiment of Figure 13, we
use IADB to sample face images (𝑝1) using different densities for 𝑝0.
We observe that IADB does indeed generate faces regardless of the
choice of 𝑝0. However, while we observe a similar sampling quality
for analytic 𝑝0 (Gaussian, uniform and bi-Gaussian noises), we see a
significant drop in quality when 𝑝0 is not an analytic primitive but
a real-image dataset such as the pebble textures. This observation
does not invalidate the theory: IADB effectively defines a valid
mapping between the pebble density 𝑝0 and the face density 𝑝1, but
the quality achieved is lower in practice. We conjecture that this
is because the learning task is more difficult. Indeed, the analytic
noise primitives provide a simple and smooth landscape for 𝑝0 such
that the learning capacity of the neural network can be entirely
spent on learning the 𝑝1 manifold. In contrast, when 𝑝0 is also a
complex image manifold, the learning capacity of the network is
spent on both 𝑝0 and 𝑝1. This might explain the lower quality when
generating samples from 𝑝1.

Correct but unfaithful mappings. Figure 14 shows an experiment
where we use IADB to sample color face images (𝑝1) using grayscale
face images (𝑝0). We observe that IADB successfully accomplishes
this task: it effectively maps grayscale faces to color faces. Unfor-
tunately, the output color images are not colorizations of the input
grayscale images, which rules out some user applications. However,
this is not the promise of the theory. Indeed, the theory predicts
that the mapping produces a valid sampling of 𝑝1 using 𝑝0 (which
is the case in the experiment) but not that the mapping will be what
a user expects (which is not the case in the experiment).

Faithful mappings with conditional IADB. Previous works show
that conditioning the diffusion process seems to be necessary for
achieving faithful image-to-image translations. For instance, adding
an energy guide during the ODE integration [Zhao et al. 2022] by
progressively injecting features [Meng et al. 2021] or by sampling
conditional densities Saharia et al. [2022a, 2021]. In Figure 15, we
experiment with the latter using Gaussian noise for 𝑥0, clean images
for 𝑥1, and a corrupted version of 𝑥1 for the condition 𝑐 passed as an
additional argument to the neural network: 𝐷\ (𝑐, 𝑥𝛼 , 𝛼) = 𝑥1 − 𝑥0.
The experiment shows that IADB can be successfully used to obtain
faithful image-to-image translations with additional conditioning.
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7 DISCUSSION
Improved sampler. We experimented with IADB in its vanilla

setting with a uniform blending schedule and a first-order ODE
solver. It readily benefits from orthogonal improvements brought to
denoising diffusion, such as better blending schedules and higher-
order ODE solvers [Karras et al. 2022]. For instance, Algorithm 5
provides an improved version of Algorithm 4 with a 2nd-order
Runge-Kutta integration and a cosine schedule.

Algorithm 5 Sampling (2nd-order Runge-Kutta, cosine schedule)

Require: 𝑥0 ∼ 𝑝0, 𝑇 , 𝛼𝑡 := 1 − cos
(
𝑡
𝑇

𝜋
2

)
for 𝑡 = 0, ..,𝑇 − 1 do
𝑥𝛼

𝑡+ 1
2

= 𝑥𝛼𝑡 +
(
𝛼𝑡+ 1

2
− 𝛼𝑡

)
𝐷\

(
𝑥𝛼𝑡 , 𝛼𝑡

)
𝑥𝛼𝑡+1 = 𝑥𝛼𝑡 + (𝛼𝑡+1 − 𝛼𝑡 ) 𝐷\

(
𝑥𝛼

𝑡+ 1
2

, 𝛼𝑡+ 1
2

)
end for

Stochastic Differential Equations (SDEs). The random sequence
computed by the stochastic version of IADB presented in Algo-
rithm 1 is a Markov chain. This algorithm might therefore appear
reminiscent of stochastic diffusion models [Song et al. 2021b] based
on SDEs. However, IADB is not related to an SDE. Indeed, SDEs
model stochastic behaviors at the infinitesimal scale while our map-
ping is stochastic for discrete steps and becomes a deterministic
ODE in the infinitesimal limit.

Non-Gaussian denoising diffusion. Some previous works have
focused on replacing Gaussian noise with other noise distribu-
tions, such as the generalised normal (exponential power) distribu-
tion [Deasy et al. 2021] or the Gamma distribution [Nachmani et al.
2021]. Our more general derivation works with any finite-variance
density rather than specific noise alternatives. Peluchetti [2022]
proposes a more general SDE framework. Our ODE can be derived
from his SDE by nullifying the stochastic component and following
its aggregation method. In this respect, our ODE is not entirely new.
However, our derivation is new and incomparably simpler, which is
the main point of this paper.

8 CONCLUSION
The objective of this work was to find a simple and intuitive way
to approach deterministic denoising diffusion. Using only simple
sampling concepts, we derived Iterative 𝛼-(De)Blending (IADB), a
deterministic diffusion model based on a sampling interpretation
of blending and deblending. We have seen that our model defines
exactly the same mapping as DDIM [Song et al. 2021a], the state-of-
the-art competitor in deterministic denoising diffusion. This yields
a positive answer to the question asked in the introduction “Is there
a simpler approach to deterministic diffusion?”. Indeed, it is possible
to derive the same result without leveraging any knowledge about
Langevin dynamics, score matching, SDEs, etc. Getting there was
the whole point of this paper. Furthermore, our simpler IADB deriva-
tion provides both practical and theoretical gains. It has led to a
more numerically stable formulation that produces better FID scores
than DDIM and has revealed that DDIM’s Gaussian assumption is
theoretically unnecessary.
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IADB with analytic expressions or neural networks (nn) for 𝐷\

analytic average 𝐷\ (𝑙2 training) analytic median 𝐷\ (𝑙1 training)
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IADB with analytic expressions or neural networks (nn) for 𝐷\
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Fig. 9. Experiments with 1D densities. (top) We blend a bi-Normal dis-
tribution with modes `1|2 = {−0.5, 0.5} and 𝜎1|2 = 0.1 (in red) with
a Normal distribution of unit variance (in blue). (bottom) We blend a bi-
Normal distribution with modes `1|2 = {−0.9, 0.9} and 𝜎1|2 = 0.3 (in red)
to a tri-Normal distribution with `1|2|3 = {−1, 0, 1} and 𝜎1|2|3 = 0.1 (in
blue). The reference shows analytically convolved densities 𝑝𝛼 . The other
densities are the histograms of the samples 𝑥𝛼 computed in Algorithm 4
using either analytic expressions or neural networks for 𝐷\ . The neural
network is an MLP with 5 hidden layers of 64 filters trained with the Adam
optimizer with a learning rate of 10−5 for 10k iterations.

Gaussian
reference

S-shape

Gaussian
IADB

S-shape

Swiss roll
reference

S-shape

Swiss roll
IADB

S-shape

Fig. 10. Experiments with 2D densities: intermediate distributions.
We show samples of the intermediate densities 𝑝𝛼 . References are com-
puted by 𝛼-blending random samples from 𝑝0 and 𝑝1. IADB intermediate
distributions are computed with Algorithm 4 using an MLP with 5 hidden
layers of 64 filters for 𝐷\ trained with the Adam optimizer with a learning
rate of 10−5 for 10k iterations.
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Fig. 11. Experimentswith 2Ddensities:mappings.We show samples of
the reference densities 𝑝0 and 𝑝1 and themapping computed by Algorithm 4
using an MLP with 5 hidden layers of 64 filters for 𝐷\ trained with the
Adam optimizer with a learning rate of 10−5 for 10k iterations. The final
samples computed by the algorithm (green) match the reference samples
𝑥1 (red).
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𝑇 = 2 𝑇 = 4 𝑇 = 8 𝑇 = 16 𝑇 = 32 𝑇 = 128

Cats DDIM 200.89 39.32 22.98 18.12 13.66 9.26
IADB 86.68 39.40 17.50 11.15 8.06 6.69

CelebA DDIM 177.86 46.58 19.50 11.91 9.23 6.93
IADB 108.13 51.79 22.68 12.15 7.52 5.56

Bedrooms DDIM 307.76 104.55 38.58 24.26 20.34 16.82
IADB 238.45 57.60 18.55 14.12 14.57 15.93

CIFAR DDIM 174.54 58.53 20.92 11.01 7.74 6.20
IADB 157.32 50.69 16.74 8.73 6.45 5.61

Fig. 12. Comparing IADB andDDIM.We use the same Gaussian noise to
sample images with IADB and DDIM. We obtain very close images because
the underlying theoretical mappings are the same. IADB achieves better
FID scores w.r.t. the number of steps𝑇 than DDIM most of the time.

Gaussian CelebA

Uniform CelebA

Bi-Gaussian CelebA

Pebble CelebA

Fig. 13. Mapping arbitrary image densities. We use the same exper-
imental set up as in Figure 12 except that we also try uniform noise, bi-
Gaussian noise and a pebble-texture dataset for 𝑝0.

CelebA gray CelebA color

Fig. 14. Image restoration with IADB. In this experiment, we use IADB
to map grayscale images to color images. The mapping creates a clean image
but it does not match the grayscale one.

condition
generations

Fig. 15. Conditional image restoration with IADB. From a corrupt im-
age (the condition), either decolorization (top) or downscaling (down), we
create various restorations using different Gaussian noises 𝑥0.
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A CONVERGENCE OF ITERATIVE 𝛼-(DE)BLENDING

A.1 Preliminaries
We first recall some properties that are required in the derivation of
the limit of Algorithm 1.

The posterior distributions have finite variance. The theorem re-
quires that 𝑝0 and 𝑝1 are of finite variance, such that their respective
posterior densities 𝑝0 | (𝑥,𝛼) and 𝑝1 | (𝑥,𝛼) are also of finite variance.
This is because the idea of the proof is that averaging many small
random steps (provided by the posterior distributions) converges
toward their expectations and it is true only if their variance is finite.
We use this between Equation (21) and Equation (22).

The expectations of the posterior distributions are continuous. If
𝑝0 and 𝑝1 are classic Riemann-integrable densities, then they are
continuous almost everywhere. Since the blended distributions are
essentially convolutions of 𝑝0 and 𝑝1, it follows that the posterior
densities 𝑝0 | (𝑥,𝛼) and 𝑝1 | (𝑥,𝛼) are also continuous almost every-
where, and the expectation of their samples 𝑥0 | (𝑥,𝛼) ∼ 𝑝0 | (𝑥,𝛼) and
𝑥1 | (𝑥,𝛼) ∼ 𝑝1 | (𝑥,𝛼) are continuous everywhere (the expectation can-
cels out the null set where they are not continuous). In summary,
for any 𝑥 ∈ R𝑑 and 𝛼 ∈ [0, 1] we have:
lim
𝑥 ′→𝑥

E
[
𝑥0 | (𝑥 ′,𝛼)

]
= E

[
𝑥0 | (𝑥,𝛼)

]
, lim
𝑥 ′→𝑥

E
[
𝑥1 | (𝑥 ′,𝛼)

]
= E

[
𝑥1 | (𝑥,𝛼)

]
,

(6)
lim
𝛼′→𝛼

E
[
𝑥0 | (𝑥,𝛼′)

]
= E

[
𝑥0 | (𝑥,𝛼)

]
, lim
𝛼′→𝛼

E
[
𝑥1 | (𝑥,𝛼)

]
= E

[
𝑥1 | (𝑥,𝛼)

]
.

(7)

We use this between Equation (22) and Equation (23).

A.2 Objective of the proof
To prove that Algorithm 1 and Algorithm 2 converge toward the
same limit as the number of steps𝑇 increases, we need to show that
the trajectories of the samples are the same. This is the case if, in
the limit, the derivatives d𝑥𝛼

d𝛼 are the same with both algorithms.
The discrete update at step 𝑡 is:

Δ𝛼𝑡 = 𝛼𝑡+1 − 𝛼𝑡 =
1

𝑇
, (8)

Δ𝑥𝛼𝑡 = 𝑥𝛼𝑡+1 − 𝑥𝛼𝑡 , (9)

and we want to prove that for any 𝛼 ∈ [0, 1] and at point 𝑥𝛼 ∈ R𝑑
the continuous limit exists and is the same with both algorithms:

d𝑥𝛼
d𝛼

= lim
Δ𝛼→0

Δ𝑥𝛼
Δ𝛼

. (10)

A.3 Limit of Algorithm 2.
In step 𝑡 of Algorithm 2, we use the average of the posterior samples
that are such that

𝑥𝛼𝑡 = (1 − 𝛼𝑡 ) 𝑥0 | (𝑥𝛼𝑡 ,𝛼𝑡 ) + 𝛼𝑡 𝑥1 | (𝑥𝛼𝑡 ,𝛼𝑡 ) , (11)
𝑥𝛼𝑡+1 = (1 − 𝛼𝑡+1) 𝑥0 | (𝑥𝛼𝑡 ,𝛼𝑡 ) + 𝛼𝑡+1 𝑥1 | (𝑥𝛼𝑡 ,𝛼𝑡 ) , (12)

where Equation (11) is a property of the average posteriors of 𝑥𝛼𝑡
and Equation (12) is true by definition in Algorithm 2. We thus have
the discrete difference

Δ𝑥𝛼𝑡 = 𝑥𝛼𝑡+1 − 𝑥𝛼𝑡 = Δ𝛼𝑡
(
𝑥1 | (𝑥𝛼𝑡 ,𝛼𝑡 ) − 𝑥0 | (𝑥𝛼𝑡 ,𝛼𝑡 )

)
. (13)

We obtain the discrete ratio
Δ𝑥𝛼
Δ𝛼

= 𝑥1 | (𝑥𝛼 ,𝛼) − 𝑥0 | (𝑥𝛼 ,𝛼) , (14)

which is independent of Δ𝛼 . The limit hence exists and is defined
by

d𝑥𝛼
d𝛼

= lim
Δ𝛼→0

Δ𝑥𝛼
Δ𝛼

=
Δ𝑥𝛼
Δ𝛼

= 𝑥1 | (𝑥𝛼 ,𝛼) − 𝑥0 | (𝑥𝛼 ,𝛼) . (15)

A.4 Limit of Algorithm 1.
In step 𝑡 of Algorithm 1, we sample random posterior samples
𝑥0 | (𝑥𝛼𝑡 ,𝛼𝑡 ) and 𝑥1 | (𝑥𝛼𝑡 ,𝛼𝑡 ) that are such that

𝑥𝛼𝑡 = (1 − 𝛼𝑡 ) 𝑥0 | (𝑥𝛼𝑡 ,𝛼𝑡 ) + 𝛼𝑡 𝑥1 | (𝑥𝛼𝑡 ,𝛼𝑡 ) , (16)
𝑥𝛼𝑡+1 = (1 − 𝛼𝑡+1) 𝑥0 | (𝑥𝛼𝑡 ,𝛼𝑡 ) + 𝛼𝑡+1 𝑥1 | (𝑥𝛼𝑡 ,𝛼𝑡 ) , (17)

where Equation (16) is a property of the posteriors of 𝑥𝛼𝑡 and Equa-
tion (17) is true by definition in Algorithm 1. We thus have the
discrete difference

Δ𝑥𝛼𝑡 = 𝑥𝛼𝑡+1 − 𝑥𝛼𝑡 = Δ𝛼𝑡
(
𝑥1 | (𝑥𝛼𝑡 ,𝛼𝑡 ) − 𝑥0 | (𝑥𝛼𝑡 ,𝛼𝑡 )

)
. (18)

We obtain the discrete difference for any parameter 𝛼 ∈ [0, 1] and
any location 𝑥𝛼 ∈ R𝑑

Δ𝑥𝛼 = Δ𝛼
(
𝑥1 | (𝑥𝛼 ,𝛼) − 𝑥0 | (𝑥𝛼 ,𝛼)

)
. (19)

Furthermore, increasing the number of steps is equivalent to de-
composing each step Δ𝛼 into 𝑁 smaller steps Δ𝛼/𝑁 . We rewrite
the discrete difference as

Δ𝑥𝛼 =
Δ𝛼

𝑁

𝑁−1∑︁
𝑛=0

(
𝑥1 | (𝑥𝛼+𝑛Δ𝛼/𝑁 ,𝛼+𝑛Δ𝛼/𝑁 ) − 𝑥0 | (𝑥𝛼+𝑛Δ𝛼/𝑁 ,𝛼+𝑛Δ𝛼/𝑁 )

)
.

(20)

With this modification, if the derivative exists, it is defined by the
limit
d𝑥𝛼
d𝛼

= lim
Δ𝛼→0

lim
𝑁→∞

Δ𝑥𝛼
Δ𝛼

= lim
Δ𝛼→0

lim
𝑁→∞

1

𝑁

𝑁−1∑︁
𝑛=0

(
𝑥1 | (𝑥𝛼+𝑛Δ𝛼/𝑁 ,𝛼+𝑛Δ𝛼/𝑁 ) − 𝑥0 | (𝑥𝛼+𝑛Δ𝛼/𝑁 ,𝛼+𝑛Δ𝛼/𝑁 )

)
.

(21)

Thanks to the finite-variance condition of 𝑝0 and 𝑝1, the normal-
ized average sum converges toward the average of the posterior
samples over 𝛼 ′ ∈ [𝛼, 𝛼 + Δ𝛼] as 𝑁 increases.

d𝑥𝛼
d𝛼

= lim
Δ𝛼→0

E
𝛼′∈[𝛼,𝛼+Δ𝛼 ]

[
𝑥1 | (𝑥𝛼′ ,𝛼′)

]
− E

𝛼′∈[𝛼,𝛼+Δ𝛼 ]

[
𝑥0 | (𝑥𝛼′ ,𝛼′)

]
.

(22)

Finally, because the expectations of the posterior densities are
continuous, we obtain that the expectations over [𝛼, 𝛼 + Δ𝛼] con-
verge toward the expectation in 𝛼 , such that

d𝑥𝛼
d𝛼

= E
[
𝑥1 | (𝑥𝛼 ,𝛼)

]
− E

[
𝑥0 | (𝑥𝛼 ,𝛼)

]
= 𝑥1 | (𝑥𝛼 ,𝛼) − 𝑥0 | (𝑥𝛼 ,𝛼) . (23)

This is the same result as in Equation (15) with Algorithm 2.
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B VARIANT FORMULATIONS
We derive the variant formulations introduced in Section 4.

Blended samples. A blended sample is by definition the blending
of its posterior samples

𝑥𝛼𝑡 = (1 − 𝛼𝑡 ) 𝑥0 + 𝛼𝑡 𝑥1 . (24)

Since blending is linear, a blended sample is also the blending of the
average of its posterior samples:

𝑥𝛼𝑡 = (1 − 𝛼𝑡 ) 𝑥0 + 𝛼𝑡 𝑥1 . (25)

We can thus rewrite its average posteriors samples 𝑥0 and 𝑥1 in the
following way:

𝑥0 =
𝑥𝛼𝑡

1 − 𝛼𝑡
− 𝛼𝑡 𝑥1

1 − 𝛼𝑡
, (26)

𝑥1 =
𝑥𝛼𝑡

𝛼𝑡
− (1 − 𝛼𝑡 ) 𝑥0

𝛼𝑡
. (27)

Variant (a): In the vanilla version of the algorithm, a blended
sample of parameter 𝛼𝑡+1 is obtained by blending 𝑥0 and 𝑥1:

𝑥𝛼𝑡+1 = (1 − 𝛼𝑡+1) 𝑥0 + 𝛼𝑡+1 𝑥1 . (28)

Variant (b): By expanding 𝑥1 from Equation (28) using Equa-
tion (27), we obtain

𝑥𝛼𝑡+1 = (1 − 𝛼𝑡+1) 𝑥0 + 𝛼𝑡+1 𝑥1,

= (1 − 𝛼𝑡+1) 𝑥0 + 𝛼𝑡+1

(
𝑥𝛼𝑡

𝛼𝑡
− (1 − 𝛼𝑡 ) 𝑥0

𝛼𝑡

)
,

=

(
1 − 𝛼𝑡+1 −

𝛼𝑡+1 (1 − 𝛼𝑡 )
𝛼𝑡

)
𝑥0 +

𝛼𝑡+1
𝛼𝑡

𝑥𝛼𝑡 ,

=

(
1 − 𝛼𝑡+1

𝛼𝑡

)
𝑥0 +

𝛼𝑡+1
𝛼𝑡

𝑥𝛼𝑡 ,

= 𝑥0 +
𝛼𝑡+1
𝛼𝑡

(
𝑥𝛼𝑡 − 𝑥0

)
. (29)

Variant (c): By expanding 𝑥0 from Equation (28) using Equa-
tion (26), we obtain

𝑥𝛼𝑡+1 = (1 − 𝛼𝑡+1) 𝑥0 + 𝛼𝑡+1 𝑥1,

= (1 − 𝛼𝑡+1)
(

𝑥𝛼𝑡

1 − 𝛼𝑡
− 𝛼𝑡 𝑥1

1 − 𝛼𝑡

)
+ 𝛼𝑡+1 𝑥1,

=

(
𝛼𝑡+1 −

(1 − 𝛼𝑡+1) 𝛼𝑡
1 − 𝛼𝑡

)
𝑥1 +

1 − 𝛼𝑡+1
1 − 𝛼𝑡

𝑥𝛼𝑡 ,

=

(
1 − 1 − 𝛼𝑡+1

1 − 𝛼𝑡

)
𝑥1 +

1 − 𝛼𝑡+1
1 − 𝛼𝑡

𝑥𝛼𝑡 ,

= 𝑥1 +
1 − 𝛼𝑡+1
1 − 𝛼𝑡

(
𝑥𝛼𝑡 − 𝑥1

)
. (30)

Variant (d): By rewriting 𝛼𝑡+1 = 𝛼𝑡+1 + 𝛼𝑡 − 𝛼𝑡 in the definition
of 𝑥𝛼𝑡+1 , we obtain

𝑥𝛼𝑡+1 = (1 − 𝛼𝑡+1) 𝑥0 + 𝛼𝑡+1 𝑥1,

= (1 − 𝛼𝑡+1 + 𝛼𝑡 − 𝛼𝑡 ) 𝑥0 + (𝛼𝑡+1 + 𝛼𝑡 − 𝛼𝑡 ) 𝑥1,
= (1 − 𝛼𝑡 ) 𝑥0 + 𝛼𝑡 𝑥1 + (𝛼𝑡+1 − 𝛼𝑡 ) (𝑥1 − 𝑥0) ,
= 𝑥𝛼𝑡 + (𝛼𝑡+1 − 𝛼𝑡 ) (𝑥1 − 𝑥0) . (31)

C RELATION TO DDIM
In this section, we follow the notation of [Song et al. 2021a]: 𝑥0 is a
sample of a target density and 𝜖 is a random Gaussian sample. The
denoiser of DDIM is defined such that, for an input 𝑥𝑡 =

√
𝛼𝑡𝑥0 +√

1 − 𝛼𝑡𝜖 , it learns 𝜖 (𝑡 ) (𝑥𝑡 ) = 𝜖 . We define

𝑦𝑡 =
𝑥𝑡√

𝛼𝑡 +
√
1 − 𝛼𝑡

= 𝛽𝑡𝑥0 + (1 − 𝛽𝑡 ) 𝜖, (32)

where 𝛽𝑡 =
√
𝛼𝑡

√
𝛼𝑡 +

√
1 − 𝛼𝑡

. 𝑦𝑡 is an alpha-blended sample such as

the one we defined in Section 3. It follows that we have
𝑥𝑡√
𝛼𝑡

=
𝑦𝑡

𝛽𝑡
. (33)

We now turn to Equation (13) of [Song et al. 2021a]:

𝑥𝑡+1√
𝛼𝑡+1

=
𝑥𝑡√
𝛼𝑡

+
(√︂

1 − 𝛼𝑡+1
𝛼𝑡+1

−
√︂

1 − 𝛼𝑡

𝛼𝑡

)
𝜖 (𝑡 ) (𝑥𝑡 ) , (34)

By injecting the scaled coordinate from Equation (33) into this ex-
pression, we obtain:

𝑦𝑡+1
𝛽𝑡+1

=
𝑦𝑡

𝛽𝑡
+

(√︂
1 − 𝛼𝑡+1
𝛼𝑡+1

−
√︂

1 − 𝛼𝑡

𝛼𝑡

)
𝜖

⇒ 𝑦𝑡+1 = 𝑦𝑡
𝛽𝑡+1
𝛽𝑡

+ 1

𝛽𝑡
𝛽𝑡 𝛽𝑡+1

(√︂
1 − 𝛼𝑡+1
𝛼𝑡+1

−
√︂

1 − 𝛼𝑡

𝛼𝑡

)
𝜖. (35)

Since

𝛽𝑡+1𝛽𝑡

(√︂
1 − 𝛼𝑡+1
𝛼𝑡+1

−
√︂

1 − 𝛼𝑡

𝛼𝑡

)
= 𝛽𝑡 (1 − 𝛽𝑡+1) − (1 − 𝛽𝑡 ) 𝛽𝑡+1,

= 𝛽𝑡 − 𝛽𝑡+1 (36)
we can simplify Equation (35) to

𝑦𝑡+1 = 𝑦𝑡
𝛽𝑡+1
𝛽𝑡

+ 𝛽𝑡 − 𝛽𝑡+1
𝛽𝑡

𝜖 = 𝜖 + 𝑦𝑡
𝛽𝑡+1
𝛽𝑡

− 𝛽𝑡+1
𝛽𝑡

𝜖,

= 𝜖 + 𝛽𝑡+1
𝛽𝑡

(𝑦𝑡 − 𝜖) . (37)

This last form is exactly variant-(b) of IADB (see Table 1).We confirm
this experimentally in Figure 16.

a) IADB b) DDIM c) DDIM rescaled (Equation 33)

Fig. 16. We trained an MLP with 5 hidden layers of 64 filters to learn 𝐷\

for IADB (a) and the same architecture to learn 𝜖\ for DDIM (b) and (c). For
(c), we convert points generated by DDIM using the scaling equation. The
trajectories of the samples for IADB (a) and DDIM rescaled (c) match.
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