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Abstract—Multiple-input multiple-output (MIMO) radar can
achieve superior performance through waveform diversity over
conventional phased-array radar systems. When a MIMO radar
transmits orthogonal waveforms, the reflected signals from scat-
terers are linearly independent of each other. Therefore, adaptive
receive filters, such as Capon and amplitude and phase estima-
tion (APES) filters, can be directly employed in MIMO radar
applications. High levels of noise and strong clutter, however,
significantly worsen detection performance of the data-dependent
beamformers due to a shortage of snapshots. The iterative
adaptive approach (IAA), a non-parametric and user parameter-
free weighted least-squares algorithm, was recently shown to offer
improved resolution and interference rejection performance in
several passive and active sensing applications. In this paper, we
show how IAA can be extended to MIMO radar imaging, in both
the negligible and non-negligible intra-pulse Doppler cases, and
we also establish some theoretical convergence properties of IAA.
In addition, we propose a regularized IAA algorithm, referred
to as IAA-R, which can perform better than IAA by accounting
for unrepresented additive noise terms in the signal model.
Numerical examples are presented to demonstrate the superior
performance of MIMO radar over single-input multiple-output
(SIMO) radar, and further highlight the improved performance
achieved with the proposed IAA-R method for target imaging.

Index Terms—MIMO radar, phased-array radar, iterative
adaptive approach (IAA), regularized IAA, radar imaging, intra-
pulse Doppler.

I. INTRODUCTION

A multiple-input multiple-output (MIMO) antenna array
system can be used in radar applications to provide higher
resolution and better sensitivity (for detecting slowly-moving

Copyright (c) 2008 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

This material is based upon work supported in part by the SMART
fellowship program, the Army Research Office under Grant No. W911NF-
07-1-0450, the National Science Foundation under Grant No. CCF-0634786,
the National Aeronautics and Space Administration (NASA) under Grant
No. NNX07AO15A, the Swedish Research Council (VR), and the European
Research Council (ERC). Opinions, interpretations, conclusions, and recom-
mendations are those of the authors and are not necessarily endorsed by the
United States Government.

William Roberts and Tarik Yardibi are with the Department of Electrical
and Computer Engineering, University of Florida, Gainesville, FL 32611-
6130, USA. Email: wroberts83@hotmail.com and ytarik@dsp.ufl.edu.

*Jian Li is with the Department of Electrical and Computer Engineering,
University of Florida, Gainesville, FL 32611-6130, USA. Phone: (352)
392-2642; Fax: (352) 392-0044; Email: li@dsp.ufl.edu. Please address all
correspondence to Jian Li.

Petre Stoica is with the Department of Information Technology, Uppsala
University, Uppsala, Sweden. Phone: 46-18-471-7619; Fax: 46-18-511925;
Email: ps@it.uu.se.

Firooz A. Sadjadi is with Lockheed Martin Corp, 3333 Pilot Knob Road,
Eagan, MN 55121, USA. Email: firooz.a.sadjadi@lmco.com.

targets) than a phased-array radar system (see, e.g., [1]-[12]
and the references therein). The waveform diversity afforded
by the MIMO radar can serve to increase the flexibility at
the transmitter [6]-[12]. For example, probing signals can be
designed to approximate a desired transmit beampattern and to
minimize undesirable cross-correlation terms (see, e.g., [13]-
[17] and the references therein). When orthogonal waveforms
are transmitted, the parameter identifiability of the radar,
meaning the maximum number of targets that can be uniquely
identified, is vastly improved. With careful construction of the
radar’s antenna structure, in fact, the parameter identifiability
can be increased by a factor of M , where M is the number
of transmitting antennas, over the corresponding phased-array
system [18]. Furthermore, when the radar transmits M or-
thogonal waveforms, the virtual array of the radar system is a
filled array with an aperture length up to M times that of the
receive array [10], [11]. This advantage of MIMO radar can
be exploited to achieve an M -fold improvement in the spatial
imaging resolution over the conventional phased-array radar
[10], [11].

In this paper, we consider MIMO radar imaging. The goal
of radar imaging is to provide an estimate of the radar cross
sections (RCS) of targets at precise angular locations and
distances relative to the radar. When motion (either of the
radar or of targets within a scene of interest) is present,
the relative speeds of objects can also be estimated through
Doppler considerations.

Irrespective of the array system, data-independent ap-
proaches, such as delay-and-sum (DAS) (or matched filtering),
can be used for radar imaging. However, DAS suffers from low
resolution and high sidelobe level problems. With a narrow-
band MIMO radar, orthogonal waveforms from the transmit
antennas hit targets in the scene of interest at different time
instants, thus undergoing different phase shifts. Therefore, the
reflected signals at the receiver are linearly independent of
each other when the number of targets per range and Doppler
bin is less than or equal to the number of orthogonal probing
waveforms. Due to this independence, adaptive beamform-
ing techniques, which fail to work with coherent or highly
correlated signals, can be effectively employed to estimate
target parameters with MIMO radar systems [19]. The existing
adaptive approaches, such as Capon [20] and amplitude and
phase estimation (APES) [21], can be used to mitigate clutter
effects and improve resolution over conventional DAS. When
noise (and clutter) levels in the received signal are high,
however, the performance of data-dependent approaches might
degrade significantly unless the number of snapshots is rather
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large.
Recently, a non-parametric and user parameter-free algo-

rithm, referred to as the iterative adaptive approach (IAA),1

was presented for applications including passive array pro-
cessing, multiple-input single-output (MISO) communication
channel estimation and single antenna radar systems [22] .
IAA was shown to perform well for cases of few or even a
single snapshot and closely-spaced sources, and it was shown
to outperform existing sparse signal reconstruction algorithms.
In [25], IAA was extended to the case of spectral analysis
for non-uniformly sampled real-valued data, and was shown
to attain significantly better performance than the traditional
periodogram approach to spectral estimation. IAA was further
adapted to single antenna range-Doppler imaging in [26],
specifically for the case when the transmitted signal is a
train of probing pulses. Improved resolution was achieved
using IAA compared to that obtained using a data-independent
instrumental variables (IV) filter.

Previous descriptions of IAA for radar imaging have been
restricted to the single antenna case. In this paper, we broaden
the application of IAA to include MIMO antenna arrays and
demonstrate the superior imaging performance of MIMO radar
over its phased-array counterpart. In Section II, we extend
IAA for MIMO radar applications in the negligible intra-
pulse Doppler case, and in Section III, we incorporate intra-
pulse Doppler effects into the algorithm. In Section IV, we
propose the regularized IAA algorithm, namely IAA-R, which
improves the robustness of IAA by explicitly accounting for
the additive noise terms. By assuming a statistical model
of the received signal, we derive the maximum likelihood
based version of IAA-R (IAA-R-ML) in Section V. We show
that IAA-R can be viewed as an approximation to IAA-R-
ML, which is guaranteed to be locally convergent. We also
provide a theoretical local convergence analysis of IAA (in
the appendix). Numerical simulations, which we present in
Section VI, demonstrate the superior performance of a MIMO
system over that of a single-input multiple-output (SIMO)
antenna array system, as well as the superior performance
of IAA-R over DAS and several data-adaptive beamforming
techniques. Also, the advantages of IAA-R over IAA, for
MIMO radar applications, are highlighted. Conclusions are
provided in Section VII.

Notation : We denote vectors and matrices by boldface
lowercase and uppercase letters, respectively. ‖·‖2 denotes the
Euclidean norm, ‖·‖2F denotes the matrix Frobenius norm, (·)T

denotes the transpose operation, (·)∗ denotes the conjugate
transpose operation, vec(·) refers to the vectorization operation
(i.e, stacking the columns of a matrix on top of each other),
tr(·) denotes the trace operation, ¯ denotes the Hadamard
(elementwise) matrix product, | · | refers to the determinant
operation, and IN represents the N × N identity matrix.
R ∈ R L×M and R ∈ C L×M denote a real and complex-
valued L×M matrix R, respectively. α̂ denotes the estimate
of the parameter α.

1Note that the algorithm was named as IAA-APES in [22]. Herein, we refer
to the algorithm as IAA for conciseness.

II. NEGLIGIBLE DOPPLER CASE

This section formulates the MIMO spotlight synthetic aper-
ture radar (SAR) [27] imaging problem and describes how
IAA can be extended to estimate the target parameters, specif-
ically the amplitude, range, and angle of each target present.
The targets are assumed to be stationary and therefore the
intra-pulse Doppler effects are neglected. The non-negligible
Doppler case will be analyzed in the next section.

A. Problem Formulation

Consider a MIMO radar system with M transmit antennas
and N receive antennas. Let

xm =
[

xm(1) . . . xm(L)
]T

, m = 1, . . . , M, (1)

represent the length L transmitted signal from the mth transmit
antenna. Let

X =
[

x1 x2 . . . xM

]
(2)

consist of the transmitted signals from all the transmit antennas
(X ∈ C L×M ). Further, let

X̃ =
[

X
0(P−1)×M

]
, (3)

where X̃ ∈ C (L+P−1)×M denotes the zero-appended trans-
mitted waveform matrix, 0(P−1)×M is a (P − 1)×M matrix
of zeros, and P −1 refers to the maximum delay (in sampling
intervals) between the reflected signals from various range bins
and the first received signal (from the closest range bin to
the radar). For a radar collecting data from Ñ positions, the
received signal from collection position n, that is synchronized
with the arrival of the first reflected signal, can be expressed
as:

D∗(n) =
P∑

p=1

K∑

k=1

αp,kak(n)bT
k (n)X̃∗Jp + E∗(n) ,

n = 1, . . . , Ñ , (4)

where the complex scattering coefficients of the targets,
which are directly proportional to their corresponding radar
cross section (RCS), are represented by {αp,k}, p denotes the
range index, k denotes the angle index, K is the number of
potential scatterers in each range bin and {E(n)} represents
the additive noise. The terms {ak(n)} and {bk(n)} refer to the
receive and transmit steering vectors, respectively. For uniform
linear arrays, they can be described by:

ak(n) =
[
e−

j2π((n−1)dn)sin(θk)
λ0 e−

j2π((n−1)dn+dr)sin(θk)
λ0

. . . e−
j2π((n−1)dn+(N−1)dr)sin(θk)

λ0

]T

, (5)

and

bk(n) =
[
e−

j2π((n−1)dn)sin(θk)
λ0 e−

j2π((n−1)dn+dt)sin(θk)
λ0

. . . e−
j2π((n−1)dn+(M−1)dt)sin(θk)

λ0

]T

, (6)
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where dt and dr refer to the distances between adjacent
transmitting and receiving antennas, respectively, λ0 represents
the carrier wavelength of the radar system, dn refers to the
separation between collection positions, and θk denotes the
impinging angle (relative to the array normal) of targets in the
kth angle bin. Finally, Jp ∈ R (L+P−1)×(L+P−1) is a shift
matrix used to describe the received signals from different
range bins, and it can be written as:

Jp =




p︷ ︸︸ ︷
1 0

. . .
1

0




. (7)

Note that

X̃∗Jp =




p︷ ︸︸ ︷
0 · · · 0 x∗1(1) · · · x∗1(L) 0 · · · 0

...
...

...
0 · · · 0 x∗M (1) · · · x∗M (L) 0 · · · 0


 ,

p = 1, . . . , P. (8)

To further simplify notation, we accumulate the received
signals from each of the look positions as:

d =




vec(D∗(1))
...

vec(D∗(Ñ))


 . (9)

In a similar way, we can define a matrix Y that contains the
known quantities (the steering vectors, the transmit waveforms
and the shift matrix) in the received signal as follows:

Y =
[

y1,1 . . . y1,K y2,1 . . . yP,K

]
, (10)

where

yp,k =




ỹp,k(1)
...

ỹp,k(Ñ)


 , p = 1, . . . , P, k = 1, . . . , K,

(11)
and

ỹp,k(n) = vec
[
ak(n)bT

k (n)X̃∗Jp

]
, p = 1, . . . , P,

k = 1, . . . ,K, n = 1, . . . , Ñ . (12)

Consequently, by using (10)-(11), (9) can be expressed as:

d = Yα + e , (13)

where

α =
[

α1,1 . . . α1,K α2,1 . . . αP,K

]T
, (14)

and

e =




vec(E∗(1))
...

vec(E∗(Ñ))


 . (15)

The problem of interest, then, is to accurately estimate the
target reflection coefficients α from the measurement vector
d and known matrix Y.

The DAS estimates of the target parameters are given by:

α̂p,k =
y∗p,kd

y∗p,kyp,k
, p = 1, . . . , P, k = 1, . . . , K. (16)

The basic assumption behind DAS is that y∗p,kyp,k is rela-
tively large compared to y∗p,kyp′,k′ , where (p′, k′) 6= (p, k),
p′ = 1, . . . , P and k′ = 1, . . . ,K, so that the signal-of-
interest is passed undistorted while the contribution from the
interfering signals is reduced. In other words, in order for
DAS to work properly, the columns of Y should be close to
being orthogonal. However, this condition is rarely satisfied
in practice and hence DAS usually suffers from high sidelobe
level and low resolution problems.

B. IAA

IAA iteratively refines the DAS target estimates to achieve
higher resolution and better interference suppression. Here,
we show how IAA can be extended to estimate the target
parameters in the MIMO radar problem defined in (13) (we
still refer to the extended algorithm as IAA for simplicity).

Let the target parameter of interest be αp,k. Treating the
possible targets corresponding to {αp′,k′}, where (p′, k′) 6=
(p, k), p′ = 1, . . . , P and k′ = 1, . . . , K, as interferences, we
define the interference covariance matrix as:

Qp,k =
P∑

p′=1

K∑

k′=1

|αp′,k′ |2yp′,k′y∗p′,k′ ,

(p′,k′)6=(p,k)

p = 1, . . . , P, k = 1, . . . ,K. (17)

The data covariance matrix is defined as:

R =
P∑

p=1

K∑

k=1

|αp,k|2yp,ky∗p,k , (18)

where R ∈ C (NÑ(L+P−1))×(NÑ(L+P−1)).
IAA minimizes the following weighted least-squares cost

function (see, e.g., [28], [29]) with respect to the reflection
coefficient, αp,k, of the target of interest:

(d− αp,kyp,k)∗Q−1
p,k(d− αp,kyp,k) . (19)

The minimization of (19) yields the following estimate for the
target parameters:

α̂p,k =
y∗p,kQ

−1
p,kd

y∗p,kQ
−1
p,kyp,k

, p = 1, . . . , P, k = 1, . . . , K. (20)

Noting that

Qp,k = R− |αp,k|2yp,ky∗p,k , (21)

and applying the matrix inversion lemma to (21) (see, e.g.,
[29]) yield,

y∗p,kQ
−1
p,k =

y∗p,kR
−1

1− |αp,k|2y∗p,kR−1yp,k
. (22)



4

TABLE I
IAA FOR MIMO SAR IMAGING.

initialize

α̂p,k =
y∗p,kd

y∗
p,k

yp,k
, p = 1, . . . , P , k = 1, . . . , K

repeat

R =

P∑
p=1

K∑
k=1

|α̂p,k|2yp,ky∗p,k

α̂p,k =
y∗p,kR−1d

y∗
p,k

R−1yp,k
, p = 1, . . . , P , k = 1, . . . , K

until (a certain number of iterations is reached)

Consequently, Q−1
p,k in (20) can be replaced with R−1, which

needs to be computed only once. The IAA estimate of αp,k

then becomes:

α̂p,k =
y∗p,kR

−1d

y∗p,kR−1yp,k
, p = 1, . . . , P, k = 1, . . . , K. (23)

Since R depends on {αp,k}, which are unknown, IAA is
implemented as an iterative algorithm and the DAS estimates
are used for initializing IAA. For most practical applications,
convergence occurs after typically no more than 10 iterations
[22]. The algorithm is summarized in Table 1. A local conver-
gence analysis of IAA is provided in the appendix. Note that R
in IAA (see (18)) is computed using the previous estimates of
the target parameters {αp,k} and not from the measurements d
as done in adaptive array processing algorithms. Note also that
setting R = INÑ(L+P−1) in (23) results in the DAS estimate.

C. Incorporating BIC

To produce sparsity in the IAA result, the Bayesian in-
formation criterion (BIC), a model order selection tool [30],
can be used. Given the IAA estimate for a scene, the BIC
approach selects a target with range-angle indices (p̃, k̃), which
minimizes the following criterion:

BIC(p̃,k̃)(η) = 2NÑ(L + P − 1)

× ln




∥∥∥∥∥∥∥
d−

∑

(p,k)∈{J (η)
⋃

(p̃,k̃)}
yp,kα̂p,k

∥∥∥∥∥∥∥

2

2




+ 4ηln(2NÑ(L + P − 1)) , (24)

where η denotes the number of targets currently selected (η =
1 for the first iteration). The value of 4 in the penalty term
of (24) is chosen to reflect the number of unknowns for each
target: amplitude (complex valued), range, and angle. Also,
J (η) refers to the set of target indices already selected at the
current iteration (J (1) = {∅}, where {∅} denotes the empty
set), and (p̃, k̃) represents a remaining target point in the scene
(i.e., (p̃, k̃) /∈ J (η)). At each iteration of the algorithm, a new
target point (p̃, k̃) is selected such that, along with the set
of indices J (η) currently selected, BIC(p̃,k̃)(η) is minimized.
This procedure is repeated until the function in (24) does not
decrease anymore. Reflection coefficients not present in J (η)
at the end of this procedure are set to zero and are assumed not

to represent true targets in the scene. Note that the second term
on the right side of (24) does not matter to peak selection; it
matters only when (24) is used to select the number of peaks
to retain.

III. NON-NEGLIGIBLE DOPPLER CASE

This section considers the case of a stationary vertical
MIMO array and mobile targets, and further extends IAA to
deal with Doppler considerations in a multiple antenna system.
In this case, the signal model incorporates Doppler shifts on
the received signals and the target parameters of interest are
now amplitude, range, angle and Doppler.

A. Problem Formulation

In order to describe IAA for the Doppler-present case, the
received signal model has to be reformulated. Denote the
received data as Z∗ ∈ C N×(L+P−1), which is synchronized
with the arrival of the first reflected signal. Z can be expressed
as:

Z∗ =
P∑

p=1

K∑

k=1

H∑

h=1

αp,k,hakbT
k X̃∗

D(ωh)Jp + E∗D , (25)

where “D” is used to denote Doppler, p is the range index,
k is the angle index, h is the Doppler index, H denotes the
number of bins in the Doppler interval of interest and ωh

denotes the angular Doppler frequency corresponding to the
hth Doppler bin, h = 1, . . . , H . The steering vectors, {ak}
and {bk}, and the noise term, E∗D, are defined similarly to
their corresponding terms in (4), except that the dependency
on n is removed since the radar is assumed to be stationary (let
n = 1 in (5) and (6)). The complex scattering coefficients of
the targets, {αp,k,h}, now include a third dimension (indexed
by h) to model the targets’ speeds. We let

x̃m(ωh) = xm ¯ d(ωh) , m = 1, . . . , M, h = 1, . . . , H,
(26)

with xm defined in (1), and

d(ωh) =
[

1 ejωh . . . ejωh(L−1)
]T

, h = 1, . . . , H.
(27)

We then define X̃D(ωh) similarly to (3) by letting

X̃D(ωh) =
[

XD(ωh)
0(P−1)×M

]
, (28)

where X is replaced by the Doppler shifted signal XD(ωh) ∈
C L×M :

XD(ωh) =
[

x̃1(ωh) x̃2(ωh) . . . x̃M (ωh)
]

. (29)

To write the signal model given in (25) more compactly, let
z = vec(Z∗). z can then be represented in the following form:

z = YDαD + eD , (30)

where

YD =
[

y1,1,1 y1,1,2 . . . yP,K,H

]
, (31)

αD =
[

α1,1,1 α1,1,2 . . . αP,K,H

]T
, (32)
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with

yp,k,h = vec
[
akbT

k X̃∗
D(ωh)Jp

]
, p = 1, . . . , P,

k = 1, . . . ,K, h = 1, . . . , H. (33)

The complex noise in (30) is simply defined as eD = vec(E∗D).
Similarly to (16), the DAS estimate of the target parameters

is given by:

α̂p,k,h =
y∗p,k,hz

y∗p,k,hyp,k,h
, p = 1, . . . , P,

k = 1, . . . ,K, h = 1, . . . , H. (34)

In order for DAS to show good performance, y∗p,k,hyp,k,h

should be large relative to y∗p,k,hyp′,k′,h′ , where (p′, k′, h′) 6=
(p, k, h), p′ = 1, . . . , P , k′ = 1, . . . , K, and h′ = 1, . . . ,H ,
which is hardly possible in practice.

B. IAA

To describe IAA for a MIMO angle-range-Doppler imaging
radar, a similar approach to the one taken in Section II-B will
be used. As in (18), we can model the covariance matrix of
the received signal by:

RD =
P∑

p=1

K∑

k=1

H∑

h=1

|αp,k,h|2yp,k,hy∗p,k,h , (35)

where RD ∈ C (N(L+P−1))×(N(L+P−1)). We represent the
covariance matrix of the interference to the particular target,
αp,k,h, as:

Qp,k,h = RD − |αp,k,h|2yp,k,hy∗p,k,h . (36)

We again consider the weighted least-squares cost function:

(z− αp,k,hyp,k,h)∗Q−1
p,k,h(z− αp,k,hyp,k,h) . (37)

Minimization of (37) with respect to the RCS related ampli-
tude of the target of interest αp,k,h yields the update formula:

α̂p,k,h =
y∗p,k,hQ

−1
p,k,hz

y∗p,k,hQ
−1
p,k,hyp,k,h

, p = 1, . . . , P,

k = 1, . . . ,K, h = 1, . . . , H. (38)

The matrix inversion lemma can again be used to replace
Q−1

p,k,h in (38) with R−1
D to decrease computation time. The

resulting algorithm is summarized in Table 2.

C. Incorporating BIC

Sparsity can be incorporated by following the methodology
described in the negligible Doppler case in Section II-C. The
criterion in (24) can be rewritten for the revised signal model
as:

BIC(p̃,k̃,h̃)(η) = 2N(L + P − 1)

× ln




∥∥∥∥∥∥∥
z−

∑

(p,k,h)∈{J(η)
⋃

(p̃,k̃,h̃)}
yp,k,hα̂p,k,h

∥∥∥∥∥∥∥

2

2




+ 5ηln(2N(L + P − 1)). (39)

TABLE II
IAA FOR ANGLE-RANGE-DOPPLER IMAGING WITH A MIMO ARRAY.

initialize

α̂p,k,h =
y∗

p,k,h
z

y∗
p,k,h

yp,k,h
, p = 1, . . . , P

k = 1, . . . , K, h = 1, . . . , H
repeat

RD =

P∑
p=1

K∑
k=1

H∑
h=1

|α̂p,k,h|2yp,k,hy∗p,k,h

α̂p,k,h =
y∗

p,k,h
R−1

D z

y∗
p,k,h

R−1
D yp,k,h

, p = 1, . . . , P,

k = 1, . . . , K, h = 1, . . . , H
until (a certain number of iterations is reached)

The peak selection procedure is identical to the one described
in Section II-C with the only difference being the inclusion of
the Doppler dimension in the analysis. We use 5 in the penalty
term of (39) to account for the unknown target parameters:
amplitude (complex valued), range, angle, and Doppler.

IV. REGULARIZED IAA (IAA-R)

In practice, a radar system may illuminate only a restricted
angular region (for example, −30◦ to 30◦) relative to the
radar by adjusting the transmit beampattern of each transmit
antenna. Then the scanning grid does not need to cover the
entire region (−90◦ to 90◦), and it could be limited to the
angular region of interest (−30◦ through 30◦, for example)
only. Even though the reflected power at locations not cor-
responding to illuminated targets is small, these estimates
still contribute to the rank of the covariance matrix used
in IAA. As the size of the scanning grid, K, decreases,
the condition number of R in (18) and RD in (35) could
increase to unfavorable levels. In the negligible Doppler case,
R is invertible only if PK ≥ NÑ(L + P − 1). For the
non-negligible Doppler case, invertibility of RD requires that
PKH ≥ N(L + P − 1). Moreover, R in (18) and RD in
(35) do not explicitly consider the contribution of the noise
terms e and eD, respectively. To resolve these issues, we
regularize the R and RD with diagonal matrices Σ and ΣD,
respectively, whose diagonal elements represent the unknown
noise powers and are computed automatically. The regularized
IAA approach, referred to hereafter as IAA-R, fits naturally
within the user parameter-free framework of the existing IAA
algorithm.

When intra-pulse Doppler effects are neglected, we can
write the regularized version of (18) as:

R =
P∑

p=1

K∑

k=1

|αp,k|2yp,ky∗p,k + Σ , (40)

where the noise power estimates along the diagonal of Σ are
denoted by {σ2

l }NÑ(L+P−1)
l=1 . IAA-R is implemented as in

Table 1, except that the number of unknowns is now increased
to KP + NÑ(L + P − 1) from KP . The “steering vector”
corresponding to σl is the lth column of INÑ(L+P−1), which
we denote as vl. Consequently, the update estimate for σl is
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given by:

σ̂2
l =

∣∣∣∣
v∗l R

−1d
v∗l R−1vl

∣∣∣∣
2

, l = 1, . . . , NÑ(L + P − 1). (41)

The noise power estimates can be initialized as all zeros or as a
small (relative to the strength of the targets) constant number.

In the non-negligible Doppler case, very similarly, we can
write the regularized version of (35) as:

RD =
P∑

p=1

K∑

k=1

H∑

h=1

|αp,k,h|2yp,k,hy∗p,k,h + ΣD , (42)

where the noise power estimates, {σ̄2
l }N(L+P−1)

l=1 , are again
contained along the diagonal of ΣD. The IAA-R estimate for
σ̄l is then:

ˆ̄σ2
l =

∣∣∣∣
v̄∗l R

−1
D z

v̄∗l R
−1
D v̄l

∣∣∣∣
2

, l = 1, . . . , N(L + P − 1), (43)

where v̄l denotes the lth column of IN(L+P−1).
IAA-R performs well with irregularly sampled scanning

grids and with arbitrary sensor spacings, whereas the inversion
of R in (18) and RD in (35) without the regularizing term
might be problematic in such cases. Certainly, the technique
could be similarly applied to other active and passive sensing
applications considered in [22] if desired.

V. MAXIMUM LIKELIHOOD BASED IAA-R (IAA-R-ML)

In the previous sections, we developed an extension to the
IAA algorithm which used a deterministic model for the signal
of interest. We now adopt a stochastic interpretation of the sig-
nal model and use maximum likelihood (ML) techniques to es-
timate the target parameters. Again performing regularization
on the covariance matrix, we identify this approach as IAA-
R-ML. Like IAA-R, IAA-R-ML is non-parametric and user
parameter-free. For conciseness, we formulate the algorithm
for the non-negligible Doppler case, as the negligible Doppler
version of the algorithm can be similarly synthesized.

We assume the received signal, z, to have a complex mul-
tivariate Gaussian distribution with zero mean and covariance
matrix, RD, given in (35), so that the likelihood of z has the
form:

p(z|RD) =
1

πN(L+P−1)|RD|
e−z∗R−1

D z . (44)

Maximization of the logarithm of the likelihood with respect
to the unknown terms in RD is equivalent to minimization of
the following cost function:

z∗R−1
D z + ln|RD| . (45)

Using the matrix inversion lemma, the relationship in (36),
and the properties of the determinant operation (specifically,
that |I + AB| = |I + BA|), we obtain:

|RD| = |Qp,k,h|(1 + |αp,k,h|2y∗p,k,hQ
−1
p,k,hyp,k,h) , (46)

and

R−1
D = Q−1

p,k,h −
|αp,k,h|2Q−1

p,k,hyp,k,hy∗p,k,hQ
−1
p,k,h

1 + |αp,k,h|2y∗p,k,hQ
−1
p,k,hyp,k,h

, (47)

where (p, k, h) represents any target of interest. For notational
convenience, let βp,k,h = |αp,k,h|2. By using (46) and (47), the
minimization of (45) with respect to βp,k,h (for fixed Qp,k,h)
becomes equivalent to minimizing:

f(βp,k,h) = ln(1 + βp,k,hy∗p,k,hQ
−1
p,k,hyp,k,h)

− βp,k,hz∗Q−1
p,k,hyp,k,hy∗p,k,hQ

−1
p,k,hz

1 + βp,k,hy∗p,k,hQ
−1
p,k,hyp,k,h

. (48)

To minimize (48), we set the first derivative of (48) with
respect to βp,k,h to zero and solve for βp,k,h:

β̃p,k,h =
y∗p,k,hQ

−1
p,k,h(zz∗ −Qp,k,h)Q−1

p,k,hyp,k,h

(y∗p,k,hQ
−1
p,k,hyp,k,h)2

. (49)

Taking the second derivative of (48) and inserting the above
estimate of βp,k,h, we find that

f ′′(β̃p,k,h) =
(y∗p,k,hQ

−1
p,k,hyp,k,h)2

(1 + β̃p,k,hy∗p,k,hQ
−1
p,k,hyp,k,h)2

, (50)

which is strictly positive. Hence, the estimate of βp,k,h in (49)
is the global minimizer of (48). Though unlikely, it is possible
that the estimate for βp,k,h given in (49) could be negative. To
enforce nonnegativity of the power estimates, the IAA-R-ML
estimate is then given by:

β̂p,k,h = max
(

0, β̃p,k,h

)
. (51)

Since β̃p,k,h is the unique minimizer of f(βp,k,h) and since
the first derivative of f(βp,k,h) is greater than zero for
βp,k,h > β̃p,k,h, we can conclude that β̂p,k,h minimizes
f(βp,k,h) subject to βp,k,h ≥ 0.

As we did in the previous sections, we replace Q−1
p,k,h in

(49) and (51) with R−1
D via the matrix inversion lemma (to

reduce computation):

β̂p,k,h = max

(
0,

y∗p,k,hR
−1
D (zz∗ −RD)R−1

D yp,k,h

(y∗p,k,hR
−1
D yp,k,h)2

+ βp,k,h

)
. (52)

Since this estimate depends on RD and βp,k,h = |αp,k,h|2,
we must again adopt an iterative approach; {αp,k,h} can be
initialized using DAS. Furthermore, we recalculate RD after
each αp,k,h is updated.

We can rewrite the estimate in (52) as:

β̂p,k,h = max

(
0,

y∗p,k,hR
−1
D (zz∗)R−1

D yp,k,h

(y∗p,k,hR
−1
D yp,k,h)2

+βp,k,h − 1
y∗p,k,hR

−1
D yp,k,h

)
. (53)

The term on the far right of (53) is just the estimate for
βp,k,h attained with a standard Capon beamformer (SCB) [29]
(assuming RD is invertible). If βp,k,h is close to the SCB
estimate (which should be the case at least locally around the
true values), then the estimate given in (53) is approximately
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equal to the IAA-R estimate. In this way, we may view IAA-R
as an approximation to IAA-R-ML.

IAA-R-ML is a cyclic algorithm that maximizes the log-
likelihood function, and is therefore locally convergent. Since
IAA-R is an approximation to IAA-R-ML, we expect that it
shares similar convergence properties. A local convergence
analysis for IAA-R, like the one for IAA presented in the
appendix, is not possible since IAA-R takes into account the
noise covariance matrix, whereas the analysis in the appendix
is concerned with the convergence to the true parameters in
the noise-free case.

VI. NUMERICAL RESULTS

This section uses numerical examples to demonstrate the
superior performance of IAA-R over that of conventional DAS
and of several adaptive beamforming algorithms as well as
of the extended IAA algorithm without regularization. The
advantage of a MIMO radar over a SIMO radar will also
be illustrated. The MIMO radar under consideration contains
M = 5 transmit antennas spaced at dt = 2.5λ0 and N = 5
receive antennas spaced at dr = 0.5λ0. In this way, i.e., with
a sparse transmit array and filled receive array, we effectively
create a filled virtual array with NM = 25 antennas [10],
[11], [18]. The SIMO system under consideration, on the other
hand, contains N = 5 receive antennas spaced at dr = 0.5λ0

and M = 1 transmit antenna. The total transmitted power of
the MIMO radar is the same as that of the SIMO system.

For each of the figures shown in these examples, we fix
the amplitude scale used to represent the targets; we perform
thresholding to the targets that fall outside of these boundaries.
In this way, we are able to accurately compare and illustrate
the sidelobe levels that result from the different estimation
approaches.

A. MIMO SAR Imaging with Negligible Doppler

A MIMO array for spotlight SAR imaging in the negligible
intra-pulse Doppler case is considered. In other words, we
assume that the scene of interest is stationary and that the
radar platform is moving; we neglect the intra-pulse Doppler
shifts that result from the radar’s motion (as done most often
in practice [31], [32]). If the motion of the radar cannot be
neglected, then we could adjust the signal model to account for
the radar’s velocity. The true response consists of 29 targets
spread randomly across P = 24 range bins with at least 2◦

separation between target scatterers. The amplitudes of the
targets are selected independently from a uniform distribution
on the unit interval [0, 1]. We provide the true target image
in Figure 1(a). The angular interval of interest ranges from
−30

◦
to 30◦, with 1◦ angular grid size, i.e., K = 61. We

will assume circularly symmetric independent and identically
distributed (i.i.d.) additive complex Gaussian noise with zero-
mean and variance σ2. We let dn, the separation between
collection positions, be 12.5λ0.

1) Example 1: For the first example, we restrict the number
of data collection positions, Ñ , to one and the length of the
transmit waveform is fixed at L = 64. The signal-to-noise

ratio (SNR), which is defined as 10 log10

(
tr(X∗X)

Lσ2

)
, is set at

20 dB.

Figures 2(a)-(b) demonstrate the performance of DAS and
IAA-R with a SIMO radar. In Figure 2(a), a widely used
pseudo-noise (PN) sequence [33], which has reasonably good
auto-correlation properties, is transmitted and the target pa-
rameters are estimated at the receiver using DAS. The same
PN sequence is transmitted for the case in Figure 2(b), but now
IAA-R is used for estimating the target parameters instead of
DAS. The results obtained using a MIMO radar are shown
in Figures 2(c)-(e). For each of these examples, orthogonal
Hadamard waveforms, scrambled with a PN sequence to
improve the waveforms’ merit factors, are transmitted [33].
In Figures 2(c)-(d), DAS and IAA-R, respectively, are used to
estimate the target parameters. The IAA-R estimate when the
BIC algorithm is applied is shown in Figure 2(e).

From Figure 2, we observe that the MIMO system offers
much improved resolution over the SIMO system, even when
using DAS as the receive filter. On the other hand, it is
observed that IAA-R successfully refines the DAS estimates
in both the SIMO and MIMO cases to effectively reduce the
sidelobe levels. IAA-R shows quite good estimation accuracy
in the MIMO case. To evaluate the performance of IAA-R
with BIC for the SIMO and MIMO systems, we compare the
probability of detection (PD) and the probability of false alarm
(PFA) for each case; we let PD = (number of targets detected)
/ (total number of true targets) and PFA = (total number of
false positives) / (total number of grid points not occupied
by targets). We classify a target as successfully identified if
BIC chooses a point within 1◦ of the true target location (and
within the same range bin). For the SIMO result in Figure
2(c), PD = 65.5% and PFA = 1.0%. For the MIMO result
in Figure 2(f), PD = 96.6% and PFA = 0%. As BIC does
not provide satisfactory results for the IAA-R result from the
SIMO system, we ommit these images in the next examples.
We furthermore neglect to show the results of applying BIC to
the DAS results, as the poor resolution of these images, with
BIC applied, would lead to an unacceptably low PD [25].

In Figure 3, we show the results of using IAA without
regularization for the MIMO case. For Figure 3(a), the radar
scans an angular interval of interest ranging from −30

◦
to

30◦, with 1◦ angular grid size, as in the previous images.
Since, in this case, the condition number of R in (18) reaches
unfavorable levels (due to K being small relative to the entire
angular region), IAA suffers from poor performance. In Figure
3(b), on the other hand, the scanning region is increased to
−90

◦
through 90◦ (the entire scanning region), again with 1◦

angular grid size. In this image, however, only the angular
region of interest (−30

◦
to 30◦) is shown. The condition

number of R in (18) is significantly reduced in this case (since
K is much larger), and the performance of IAA improves
drastically. Thus, we conclude that IAA works well when the
entire angular region is considered. If the targets are known
to exist within a smaller region relative to the whole scanning
grid, then the actual scanning grid can be decreased to reduce
computational costs by using IAA-R instead to avoid problems
that might arise with the inversion of R.
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2) Example 2: In the second example, we consider the per-
formance of IAA-R when the noise level is raised. We restrict
our attention to the MIMO array due to its better performance
in the previous example compared to a SIMO system. For
this example, the SNR was set at 15 dB, L = 32, and Ñ = 3.
We again transmit orthogonal Hadamard waveforms scrambled
with a PN sequence.

Figures 4(a)-(c) show the DAS, Capon, and APES estimates
of the scene, respectively. To form a MIMO radar image using
these techniques, we first form a synthetic aperture using
the returns from the Ñ positions, and then perform range
compression to form the matrix D̃p:

D̃p =
[

D∗
p(1)YMF, D∗

p(2)YMF, . . . , D∗
p(Ñ)YMF

]
,

p = 1, . . . , P , (54)

where YMF represents the matched filter (YMF = X(X∗X)−1)
and D∗

p(n) ∈ C N×L denotes the portion of the received
signal (from position n) synchronized with the return from
the pth range bin. We can then apply Capon or APES to
D̃p to obtain an estimate for targets at the pth range bin
[19], [34]. Data-adaptive methods, such as Capon and APES,
perform poorly when the number of data snapshots, which
is represented by the number of columns in (54) (for this
example, MÑ = 15), is not significantly greater than the
number of array sensors (N = 5) [21]. In this case, the
estimated signal covariance matrix, which depends directly on
the number of data snapshots, can differ significantly from the
true covariance matrix. When only a single snapshot is attained
(M = Ñ = 1 in (54)), adaptive beamforming methods fail,
since the sample covariance matrix becomes singular. IAA-R
(and IAA), on the other hand, can perform well even when the
number of snapshots is one. For this example, we see much
better results using IAA-R and IAA-R with BIC (compared
to Capon and APES), as shown in Figures 4(d) and 4(e),
respectively.

In Figure 4(f), a plot of the mean-squared error (MSE)
of IAA-R versus the iteration number is shown, with MSE
defined as:

‖B0 −B(i)
IAA-R‖2F

‖B0‖2F
, (55)

where i denotes the iteration number, B0 denotes the ground
truth and B(i)

IAA-R denotes the IAA-R range-angle image es-
timate at iteration i. Iteration 0 denotes the MSE of DAS
(as IAA-R is initialized with DAS). Note that the MSE value
decreases monotonically with the iteration number and appears
to converge after only a few iterations of IAA-R.

B. MIMO Range-Angle-Doppler Imaging with Non-negligible
Doppler

This subsection considers the non-negligible intra-pulse
Doppler case; the antenna array (with the same structure as
before) is assumed vertical and stationary, and the targets
are assumed mobile. The ground truth consists of 4 targets
placed within P = 24 range bins. We represent the Doppler
shift, in degrees, of a target in a particular Doppler bin as
Φh = ωhL(180◦/π), h = 1, . . . , H . The Doppler interval of

interest, which ranges from −90◦ to 90◦, is divided into 181
bins resulting in 1◦ Doppler grid size. All of the scatterers
are located at a Doppler angle of 1◦, which corresponds to
a target moving at approximately 40 m/s for X-band radar
(a faster object, which would have a larger Doppler angle,
would be easier to detect). We again let K = 61 and the
angular interval range from −30◦ to 30◦ with 1◦ grid size.
L is set at 32. The targets are positioned at an angle of 1◦

relative to the array normal. We provide the true target image
in Figure 1(b). As before, i.i.d. circularly symmetric complex
Gaussian noise is assumed with a 20 dB SNR. The stationary
ground clutter return is 20 dB stronger than the targets and
is placed at a Doppler angle of 0◦ and at −9◦ relative to the
array normal. In the following examples, the dynamic range
is chosen to extend from -25 dB to 25 dB and the amplitude
estimates were coerced into this interval through hard limiting.

1) Example 1: The DAS and IAA-R estimates using a
SIMO array and a PN transmit signal are shown in Figures
5(a)-(b). In these figures, we examine a range-Doppler slice
of the target estimates taken at 1◦ relative to a broadside
scan. The results obtained using a MIMO array are shown
in Figures 5(c)-(e), using DAS, IAA-R, and IAA-R with BIC,
respectively. For these images, we again transmit Hadamard
waveforms scrambled with PN sequences. From the range-
Doppler results, we can observe that the DAS images for
both the SIMO and MIMO arrays have significantly lower
resolution than the corresponding IAA-R images, and none of
the targets can be identified using DAS. Furthermore, the IAA-
R image obtained using a MIMO array demonstrates superior
performance over that obtained using a SIMO array; the IAA-
R with BIC algorithm produces a sparse result and identifies
all of the targets in the scene.

2) Example 2: In the second example, the angle-range slice
(chosen at a certain Doppler shift) of the estimated target
parameters is considered. Particularly, the slice corresponding
to the 1◦ Doppler bin, which corresponds to the Doppler shift
of our target responses, is selected. For each image shown,
the transmit waveforms used correspond to their respective
images shown in Figure 5. The DAS and IAA-R results with
a SIMO array are shown in Figures 6(a)-(b), respectively. For
the MIMO radar case, the DAS and IAA-R results are shown
in Figures 6(c)-(d), respectively. Due to the strong presence of
the ground return in this angle-range slice, the BIC result was
not satisfactory and thus the result is not shown. As evidenced,
the poor resolution and accuracy of DAS is further emphasized
from the angle-range perspective. In addition, the improved
angular resolution that results from using the MIMO array, as
compared to the SIMO antenna array, is demonstrated in the
IAA-R result. The IAA-R result again shows notably better
performance than DAS.

In Figures 6(a) and 6(c), a null (approximately zero ampli-
tude) occurs in the amplitude estimates at 14◦, across all range
bins. When we apply a DAS receive filter matched to 14◦,
a zero occurs in the filter response at precisely −9◦. Thus,
the contribution from the clutter ground return is removed
from target estimates at 14◦. In Figure 6(e), we show the
beampattern response of the DAS filter, which is steered
to 14◦. As evidenced, the ground clutter return offers no
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contribution to these target estimates.

C. Complexity Analysis

The per iteration computational complexity of IAA-R in the
negligible and non-negligible Doppler cases is O((NÑ(L +
P−1))2(PK)) and O((N(L+P−1))2(PKH)), respectively,
whereas the total complexity of DAS is O(NÑ(L + P −
1)(PK)) and O(N(L + P − 1)(PKH)) for the negligible
and non-negligible Doppler cases, respectively. The superior
performance of IAA-R over all the other considered methods
justifies its increased computational cost, especially in view of
the fact that IAA-R can be used to update all grid points of
interest and noise variances in parallel in each iteration.

VII. CONCLUSIONS

In this paper, we have presented a user parameter-free and
non-parametric iterative adaptive approach, namely IAA, for
MIMO radar imaging applications with both negligible intra-
pulse Doppler (e.g., spotlight SAR stationary target imaging)
and with non-negligible intra-pulse Doppler (mobile target
imaging). We further provided a local convergence analysis
of IAA. A regularized version of IAA, IAA-R, was proposed
in order to improve the performance of IAA and to make it
work with incomplete scanning regions, which is usually the
case in radar applications. Compared to a SIMO phased-array
radar, application of a MIMO radar system resulted in higher
angular resolution as well as higher Doppler resolution. Fur-
thermore, IAA-R demonstrated superior performance for both
array systems, as compared to DAS, adaptive beamforming
techniques, and the IAA algorithm with incomplete scanning
regions and without regularization. By incorporating the BIC
algorithm, we were able to produce further sparsity in the
IAA-R result. Finally, we also derived the maximum likelihood
based IAA-R-ML, which assumes a statistical model on the
received signal and is guaranteed to be locally convergent.
We showed how IAA-R can be viewed as an approximation
to IAA-R-ML.

APPENDIX
LOCAL CONVERGENCE ANALYSIS OF IAA

Consider a generic data model, similar to the one in (13):

d = Aα + e , (56)

where d ∈ CM̄×1, A ∈ CM̄×N̄ (N̄ > M̄ ), α ∈ CN̄×1,
e ∈ CM̄×1, and

A =
[

a1 . . . aN̄

]
. (57)

The analysis below assumes that e is negligible. In the absence
of noise, d is assumed to have the form:

d = Ãα̃ , (58)

where Ã ∈ CM̄×K̄ , (K̄ < M̄ ), rank(Ã) = K̄, and

α̃ =
[

α̃1 . . . α̃K̄

]T
, (59)

with α̃k 6= 0 ∀k. Let

Ã =
[

ã1 . . . ãK̄

]
. (60)

We assume that there exist n1, . . . , nK̄ such that ãk = ank
,

k = 1, . . . , K̄. Also, we assume that the columns of A that
are different from those of Ã do not belong to the range space
of Ã, i.e., an 6∈ Range(Ã) for n 6= nk, k = 1, . . . , K̄. These
assumptions are typical of the sparse estimation approaches
[35].

Consider the following regularized IAA algorithm (to avoid
numerical ill-conditioning, see below for details). Let (simi-
larly to (18))

R = APA∗ + ρI , (61)

where ρ > 0 is a small scalar and

P =



|α1|2 0

. . .
0 |αN̄ |2


 . (62)

Let i denote the iteration index. Then (see (20) and (21)), for
n = 1, . . . , N̄ ,

αi+1
n =

a∗n(Qi
n)−1d

a∗n(Qi
n)−1an

, (63)

and
Qi

n =
∑N̄

k=1,k 6=n |αi
k|2aka∗k + ρI

= Ri − |αi
n|2ana∗n .

(64)

Remarks: (a) The regularization parameter ρ in (61) can be
chosen only slightly larger than the value needed to avoid an
ill-conditioning message during the numerical implementation.
In practical applications, one may choose ρ = 0 first until
the ill-conditioning warning occurs, at which point one may
replace the ρ = 0 with a small ρ > 0. (b) Using the matrix
inversion lemma, we can show that (Qi

n)−1 in IAA can be
replaced by (Ri)−1 (see (22) and (23)). However, as suggested
by the calculations below, the computational advantage that
follows from this replacement is offset by the fact that, close
to convergence, the use of (Qi

n)−1 in IAA turns out to lead to
a numerically more stable algorithm. In practical applications,
one may use (Ri)−1 at the beginning of the iterations until
the first ill-conditioning warning occurs, at which point one
may replace (Ri)−1 with ρ(Qi

n)−1 (see (71) below).
Consider first the stationary points of IAA. These points

satisfy the equation:

αn =
a∗nQ−1

n d
a∗nQ−1

n an

, n = 1, . . . , N̄ . (65)

Note first that αn = 0, n = 1, . . . , N̄ , is not one of the
stationary points. To see this, note that setting αn = 0 in
the right hand side of (65) yields

αn =
a∗nd
‖an‖2 = 0 , n = 1, . . . , N̄ , (66)

which is generally a contradiction. This result starkly contrasts
what happens for most sparse algorithms (such as FOCUSS,
etc.), for which αn = 0 is a stationary point [35]. More
importantly, we note that the true α̃ gives a stationary point
(as ρ → 0), i.e.,

αn =
{

α̃k , n = nk , k = 1, . . . , K̄
0 , n 6= nk , k = 1, . . . , K̄ .

(67)
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To see this, first observe that the matrices Qn corresponding
to (67) are given by:

Qn =
{

ÃkP̃kÃ∗
k + ρI , n = nk , k = 1, . . . , K̄

ÃP̃Ã∗ + ρI , n 6= nk , k = 1, . . . , K̄ ,
(68)

where Ãk is the matrix Ã without the kth column,

P̃ =



|α̃1|2 0

. . .
0 |α̃K̄ |2


 , (69)

and P̃k is the above matrix without the kth row and column.
Next, let us consider a general matrix having the form of

(68):
Q = BB∗ + ρI , (70)

where B∗B > 0. For ρ → 0, we have that

ρQ−1 = I− 1
ρB(I + 1

ρB
∗B)−1B∗

= I−B(ρI + B∗B)−1B∗
ρ→0−−−→ I−B(B∗B)−1B∗ = P⊥B ,

(71)

where P⊥B is the orthogonal projector onto the null space of
B∗.

It follows from (68) and (71), as well as the assumptions
made, that (for ρ tending to zero):

αn =





a∗nk
P⊥

Ãk
Ãα̃

a∗nk
P⊥

Ãk
ank

= α̃k , n = nk , k = 1, . . . , K̄

a∗nP⊥
Ã
Ãα̃

a∗nP⊥
Ã
an

= 0 , n 6= nk , k = 1, . . . , K̄ .

(72)
Note that a∗nk

P⊥
Ãk

ank
6= 0 because ank

6∈ Range(Ãk), and
similarly for a∗nP⊥

Ã
an. With these observations, the proof that

(67) is a stationary point of IAA (for ρ → 0) is concluded.
Remark: If we replaced Qn with R in the IAA algorithm,

then the denominator in the first equation of (72) would have
been a∗nk

P⊥
Ã
ank

= 0, which points to the ill-conditioning that
might be caused by such a replacement as briefly mentioned
in Remark (b) following (64).

Next, we prove the local convergence of IAA to the true
values. Let us denote the true values in (67) by {α0

n}:

α0
n =

{
α̃k , n = nk , k = 1, . . . , K̄
0 , n 6= nk , k = 1, . . . , K̄ .

(73)

Assume that IAA is initialized as follows:

αn =
{

ck , n = nk , k = 1, . . . , K̄
O(ε) , n 6= nk , k = 1, . . . , K̄ ,

(74)

where O(ε) denotes a term that tends to zero as ε, when ε → 0,
and {ck} are arbitrary non-zero constants. Also, assume that
the regularization parameter is given by ρ = ε2. We will show,
under these assumptions, that one step of IAA yields, for ε
approaching zero:

α̂n = α0
n + O(ε2) , (75)

which implies that IAA is locally convergent with at least a
quadratic rate (note that the attribute “local” here refers to
the initialization of the zero components of {α0

n}; the non-
zero components of this vector can be initialized arbitrarily!)
.

To prove (75), first observe from (74) that:

|αn|2 = O(ε2), n 6= nk , k = 1, . . . , K̄ . (76)

Let

Qn =
N̄∑

k=1,k 6=n

|αk|2aka∗k + ρI , (77)

let S denote an orthonormal basis of Range(Ãn), and let G
comprise an orthonormal basis of the null space of Ã∗

n. (We
omit the dependence of S and G on n to simplify the notation.)
Using this notation, we can write (under the assumptions
made):

Qn = ÃnCÃ∗
n + BnDB∗

n + ε2I , (78)

where Ãn = Ã for n 6= nk (k = 1, · · · , K̄) by convention,
Bn is the matrix whose columns are equal to the vectors
{ak}k 6=n in (77) that do not appear in Ã, C is a diagonal
matrix with diagonal elements {ck}K̄

k=1,k 6=n corresponding to
the {ak} in Ãn, and D is a diagonal matrix made from
the terms {|αk|2} corresponding to the {ak} in Bn; hence
D = O(ε2) (see (76)).

Next, we note that there exist constant matrices E, F and
H such that:

Ãn = SH , (79)

and

Bn =
[

S G
] [

E
F

]
. (80)

Inserting (79) and (80) into (78), we can rewrite the expression
for Qn as:

Qn = SHCH∗S∗ +
[

S G
] [

EDE∗ EDF∗

FDE∗ FDF∗

]

×
[

S∗

G∗

]
+ ε2

[
S G

] [
S∗

G∗

]

=
[

S G
] [

W1 W3

W∗
3 W2

] [
S∗

G∗

]
,

(81)
where

W1 = HCH∗ + EDE∗ + ε2I = HCH∗ + O(ε2) (82)

tends to a nonsingular matrix, namely HCH∗, as ε → 0,

W2 = FDF∗ + ε2I = O(ε2) (83)

is a nonsingular matrix for any ε > 0, and

W3 = EDF∗ = O(ε2) . (84)

[
W1 W3

W∗
3 W2

]−1

=
[

(W1 −W3W−1
2 W∗

3)
−1 −(W1 −W3W−1

2 W∗
3)
−1W3W−1

2

−W−1
2 W∗

3(W1 −W3W−1
2 W∗

3)
−1 (W2 −W∗

3W
−1
1 W3)−1

]
. (85)
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For any ε2 > 0, the inverse of the partitioned matrix in (81)
exists and is given by (85) at the bottom of the previous page.
Observe that the (1,1), (1,2), and (2,1) blocks of the above
matrix tend to constant matrices as ε → 0, whereas the (2,2)
block tends to infinity as 1/ε2. It follows from this observation
along with (81) and (85) that:

ε2Q−1
n =

[
S G

] [
O(ε2) O(ε2)
O(ε2) ∆

] [
S∗

G∗

]

= G∆G∗ + O(ε2) , (86)

where

∆ = ε2(W2 −W∗
3W

−1
1 W3)−1

=
[
I + F

(
1
ε2

D
)

F∗
]−1

+ O(ε2) (87)

tends to a constant positive-definite matrix as ε2 → 0.
Making use of (86) in the main equation of the IAA

algorithm yields:

α̂n =
a∗nε2Q−1

n d
a∗nε2Q−1

n an

=
a∗nG∆G∗d
a∗nG∆G∗an

+ O(ε2) , (88)

from which we can obtain (75) by a calculation similar to (72).
The proof of (75) is thus concluded.

In Figures 7(a)-(b), we provide an example to illustrate the
convergence behavior of IAA and its dependence on ρ, as
discussed above. We simulate a 1-D passive array with N = 10
receiving antennas separated at dr = 0.5λ0 and with only a
single data snapshot. This antenna array scans from −90◦ to
90◦, relative to the array normal, with 1◦ separation between
adjacent scanning points. Two target signals, each with unit
power, are located at 7◦ and 14◦, respectively. We neglect noise
in this example. In Figure 7(a), we show the DAS estimate for
this case. In Figure 7(b), we show the result of IAA after 10
iterations. When applying IAA, we use ρ = 0 until the first
ill-conditioning message for R occurs in MATLAB. At that
point, we switch to using the minimum ρ needed to avoid ill-
conditioning. For this case, we do not need ρ until the very
last iteration, at which point we chose ρ = 10−14, which was
approximately the minimum value needed to avoid an error
message. As shown, IAA provides a much improved result
over the DAS image, which serves to illustrate the convergence
analysis in this appendix.
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Fig. 2. Spotlight SAR images for Ñ=1, L = 64 and SNR = 20 dB: (a) DAS with a SIMO array, (b) IAA-R with a SIMO array, (c) IAA-R with a SIMO
array and BIC applied, (d) DAS with a MIMO array, (e) IAA-R with a MIMO array and (f) IAA-R with a MIMO array and BIC applied. All levels shown
are in dB. ‘O’ denotes a true target and ‘X’ represents a target estimate.

Angle(deg)

R
an

ge
 B

in

 

 

−20 0 20

5

10

15

20

−35

−30

−25

−20

−15

−10

−5

0

Angle(deg)

R
an

ge
 B

in

 

 

−20 0 20

5

10

15

20

−35

−30

−25

−20

−15

−10

−5

0

(a) (b)

Fig. 3. MIMO SAR images for Ñ=1, L = 64 and SNR = 20 dB: (a) IAA without regularization and with a scanning grid from −30◦ to 30◦ and (b) IAA
without regularization and with a scanning grid from −90◦ to 90◦. All levels shown are in dB. ‘O’ denotes a true target and ‘X’ represents a target estimate.
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iteration number for IAA-R. The levels shown in (a)-(e) are in dB. ‘O’ denotes a true target and ‘X’ represents a target estimate.
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Fig. 5. Range-Doppler images at 1◦ relative to a broadside scan for L = 32 and SNR = 20 dB: (a) DAS with a SIMO array, (b) IAA-R with a SIMO array,
(c) DAS with a MIMO array, (d) IAA-R with a MIMO array and (e) IAA-R with a MIMO array and BIC applied. All levels shown are in dB. ‘O’ denotes
a true target and ‘X’ represents a target estimate.
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