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Abstract—In this paper, we present an iterative soft-decision
decoding algorithm for Reed—Solomon (RS) codes offering both
complexity and performance advantages over previously known
decoding algorithms. Our algorithm is a list decoding algorithm
which combines two powerful soft-decision decoding techniques
which were previously regarded in the literature as competitive,
namely, the Koetter-Vardy algebraic soft-decision decoding al-
gorithm and belief-propagation based on adaptive parity-check
matrices, recently proposed by Jiang and Narayanan. Building
on the Jiang—Narayanan algorithm, we present a belief-propaga-
tion-based algorithm with a significant reduction in computational
complexity. We introduce the concept of using a belief-propaga-
tion-based decoder to enhance the soft-input information prior to
decoding with an algebraic soft-decision decoder. Our algorithm
can also be viewed as an interpolation multiplicity assignment
scheme for algebraic soft-decision decoding of RS codes.

Index Terms—Belief propagation, interpolation multiplicity, list
decoding iterative decoding, maximum-likelihood (ML) decoding,
Reed-Solomon (RS) codes, soft-decision decoding.

I. INTRODUCTION

EED-SOLOMON (RS) codes [1] are among the most cel-

ebrated forward error correcting codes. The RS codes are
currently used in a wide variety of applications, ranging from
satellite communications to data storage systems. RS codes have
been adopted as outer codes in the third-generation (3G) wire-
less standard, CDMA2000 high-rate broadcast packet data air
interface [2], and are expected to be used as outer codes in
concatenated coding schemes for future fourth-generation (4G)
wireless systems.

Maximum-likelihood (ML) decoding of linear codes, in gen-
eral, and RS codes, in particular, is NP-hard [3], [4]. It remains
an open problem to find polynomial-time decoding algorithms
with near ML performance. A soft-decision ML decoding algo-
rithm was proposed by Vardy and Be’ery [5]. Further modifi-
cations of this algorithm were also studied [6]. Guruswami and
Sudan (GS) [7], [8] invented a polynomial-time list decoding al-
gorithm for RS codes capable of correcting beyond half the min-
imum distance of the code. Koetter and Vardy (KV) [9] devel-
oped an algebraic soft-decision decoding (ASD) algorithm for
RS codes based on a multiplicity assignment scheme for the GS
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algorithm. Alternative ASD algorithms, such as the Gaussian
approximation algorithm by Parvaresh and Vardy [10] and the
algorithm by El-Khamy and McEliece based on the Chernoff
bound [11], [12], have better performance.

Jiang and Narayanan (JN) developed an iterative algorithm
based on belief propagation for soft decoding of RS codes
[13], [14]. This algorithm compares favorably with other
soft-decision decoding algorithms for RS codes and is a major
step toward message passing decoding algorithms for RS codes.
In the JN algorithm, belief propagation is run on an adapted
parity-check matrix, where the columns in the parity-check
matrix corresponding to the least reliable independent bits are
reduced to an identity submatrix [13], [14]. The order statistics
decoding algorithm by Fossorier and Lin [15] also sorts the
received bits with respect to their reliabilities and reduces the
columns in the generator matrix corresponding to the most
reliable bits to an identity submatrix. This matrix is then used
to generate (permuted) codewords using the most reliable
bits. Other soft-decoding algorithms for RS codes include the
generalized minimum distance (GMD) decoding algorithm
introduced by Forney [16], the Chase II algorithm [17], the
combined Chase II-GMD algorithm [18], and successive era-
sure-error decoding [19].

In this paper, we develop an algebraic soft-decision list
decoding algorithm based on the idea that belief propaga-
tion-based algorithms could be deployed to improve the
reliability of the symbols that is then utilized by an inter-
polation multiplicity assignment algorithm. Our algorithm
combines the KV and the JN algorithms. An outline of this
paper is as follows. Some preliminaries are given in Section II.
In Section III, we briefly review algebraic soft-decoding algo-
rithms, in general, and the KV algorithm, in particular. The JN
algorithm is explained in the context of this paper in Section IV.
Some modifications to the JN algorithm are introduced in
Section V. One of the main contributions in this paper, the
iterative algebraic soft-decision list decoding algorithm, is
presented in Section VI. Another main contribution, a low
complexity algorithm based on the JN algorithm, is presented
in Section VII. Some discussions, as well as some numerical
results are presented in Section VIII. Finally, we conclude this
paper in Section IX and suggest future research directions.

II. PRELIMINARIES

Throughout this paper, d = [dg, d1, .. ., dr—1] will denote a
k-dimensional vector over I, where I} is the finite field of ¢
elements. C will denote an (n, k) RS code. An (n, k) RS code-
word w = [ug, w1, ..., u,_1] could be generated by evaluating

the data polynomial D(z) = Zf;ol d;z® at n elements of the
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field composing a set, called the support set of the code. This
set is vital for the operation of the Guruswami-Sudan algo-
rithm. Let o be a primitive element in F;. Since the polynomial

U(z) = 2?2—01 u;x" associated with the codeword u € C gen-

erated by polynomial evaluation has o, a2, ..., a" % as zeros
[20], a valid parity-check matrix for C is [21]
1 « ... "t
1 a? ... o?(n=1)
H=1. : : : (1)
1 an—k k)1

The redundancy of the code’s binary image will be denoted
by 7, where 7 = n — k and 7 = mn and k = mk. The results in
this paper assume that the binary image and the corresponding
binary parity-check matrix are of the form described here. Let
p(z) be a primitive polynomial in F»[z] and C be its companion
matrix [22]. The companion matrix is an 7/ X m binary ma-
trix. Since the mapping o' « C¢, {i = 0,1,2,...} induces a
field isomorphism, an 7 X n binary parity-check matrix H is ob-
tained by replacing every element o’ in the parity-check matrix
H by its corresponding m x m matrix C*. The binary image b,
such that Hb" = 0, is obtained by representing each element
u; € Fom withuj = ujo+uj004 -+ uj7m_1am’1, where
Uji € Fs.

An g x n array of real numbers will be denoted by W =
[Wi(B)], where ¢ = 0,1,...,n — 1 and 8 € F,. If u is trans-
mitted and the corresponding channel output is y, then we de-
note the a posteriori probabilities Pr{u; = S|y;} by IL;(5).

III. ALGEBRAIC SOFT DECODING

An algebraic soft decoder makes use of the soft informa-
tion available from the channel. Given the a posteriori proba-
bility matrix II, a multiplicity assignment algorithm generates
an ¢ X n multiplicity matrix M = [M;(/3)] of nonnegative
integers. The interpolation cost of M is defined to be!| M| £
1/2 Z?:_Ol > ser, Wi(B) (Wi(B) + 1) and the score of u with
respect to M is (u, M) £ Z;‘:}} M; (u;). This multiplicity ma-
trix is then passed to a (modified) GS algorithm consisting of
two main steps [7], [23].

Step 1) Interpolation: Construct a bivariate polynomial

Q(z,y) of minimum (1,k — 1) weighted degree
that passes through each of the points (7}, ()
with multiplicity M;(3), where § € F, and
1 =0,1,...,n— 1.
Factorization: Find all linear factors (y —
G(2))|Q(z,y), where G(z) is a polynomial of
degree less than k. Each such polynomial G(z) is
placed on the list.

Step 2)

A solution to the interpolation problem exists if | M| is strictly
less than the number of monomials in @) such that @ is of min-
imal (1,%k — 1) weighted degree Aj_1(|M]) [24]. A sufficient
condition for a codeword u to be on the GS generated list is

(71, [9]

(u, M) > Ap_1(|M|) 2)

ITo prevent notational ambiguity, ||| will denote the magnitude of .

where A,(y) = |y/m+ov(m—-1)/2] for m =

L«/2ry/v +1/4+ 1/2J [11]. In case the cost tends to infinity,
the sufficient condition is [9], [11]

(u, M)
1M1l

In this paragraph, we briefly review well-known ASD algo-
rithms. For more details, we refer the readers to the given ref-
erences. The KV algorithm maximizes the mean of the score.
A reduced complexity KV algorithm constructs the multiplicity
matrix M as follows [9], [25]:

M;(B) = [ML(B)) “4)

where A > 0 is a complexity parameter determined by |M].
For |M| = +, it can be shown that A = (=1 + /1 + 8y/n)/2.
Other algorithms of [10] and [11] minimize the error probability
directly. The algorithm of [10] (Gauss) assumes a Gaussian dis-
tribution of the score, while that of [11] (Chernoff) minimizes
a Chernoff bound on the error probability. The later appears to
have the best performance.

k—1. 3)

IV. ADAPTIVE BELIEF PROPAGATION

Gallager devised an iterative algorithm for decoding his low-
density parity-check (LDPC) codes [26]. This algorithm was
the first appearance in the literature of what we now call be-
lief propagation (BP). Recall that H is the parity-check matrix
associated with the binary image of the RS code. It has 7 rows
corresponding to the check nodes and n columns corresponding
to the variable nodes (transmitted bits). H; ; will denote the el-
ement in the sth row and jth column of H. Define the sets,
J@) & {j| Hij =1}and I(§) = {i | H;; = 1}. Define
Q; ; to be the log-likelihood ratio (LLR) of the jth symbol, u;,
given the information about all parity-check nodes except node
1 and R; ; to be the LLR that check node ¢ is satisfied when u;
is fixed to 0 and 1, respectively. Given the vector A™ of initial
LLRs, the BP algorithm outputs the extrinsic LLR’s A* as de-
scribed below [27], [28].

Algorithm 1: Damped Log Belief Propagation (LBP)
For all (7, j) such that H; ; = 1:
Initialization: Q; ; = A"
DO

Horizontal Step:

1+ [Ty (i tanh (Q;-k)

Ri j= log
’ Qi,k
1-— erj(i)\j tanh ( 2’”)
=2tanh™! H tanh (Qék > . 5)
keJ(i)\j

Vertical Step:
Q,L'J' = A;n + 46 Z Rkﬂ'.
keI(i)\i

While stopping criterion is not met.
Extrinsic Information: A7 = 3, ;) Ri ;.
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The factor @ is termed the vertical step damping factor and
0 < 6 < 1. The magnitude of # is determined by our level of
confidence about the extrinsic information. In our implementa-
tions, 6 is 0.5. Equation (5) is specifically useful for fast hard-
ware implementations, where the tanh function will be quan-
tized to a reasonable accuracy and implemented as a lookup
table. In our implementation, damped LBP is run for a small
number of iterations on a fixed parity-check matrix, so the stop-
ping criterion is the number of iterations. In case that only one
LBP iteration is run on the parity-check matrix, the vertical step
is eliminated.

Next, we describe the JN algorithm [13], [14], which builds
on the BP algorithm. In the JN algorithm, BP is run on the
parity-check matrix after reducing its independent columns cor-
responding to the least reliable bits to an identity submatrix. We
will refer to such a class of algorithms, that adapt the parity-
check matrix before running BP, by adaptive belief propagation
(ABP).

Algorithm 2: The JN Algorithm
Initialization: AP := A®
DO
1) Sort AP in ascending order of magnitude and store the
sorting index. The resulting vector of sorted LLRs is
Am = (AP AR AR

HA}J1 |1 < ||Aik,“+1H1 fork=1,2,...,nm—1and A™ =
PAP, where P defines a permutation matrix.

2) Rearrange the columns of the binary parity-check matrix
H to form a new matrix Hp, where the rearrangement is
defined by the permutation P.

3) Perform Gaussian elimination (GE) on the matrix Hp
from left to right. GE will reduce the first independent
(n — k)m columns in Hp to an identity submatrix. The
columns which are dependent on previously reduced
columns will remain intact. Let this new matrix be H p.

4) Run log BP on the parity-check matrix Hp with initial
LLR’s A™ for a maximum number of iterations Itz and
a vertical step damping factor #. The log BP algorithm
outputs extrinsic LLR’s A*.

5) Update the LLR’s, A7 = A™ 4 a; A and AP := P~ A4,
where 0 < a7 < 1is called the ABP damping factor and
P~ is the inverse of P.

6) Decode using AP as an input to the decoding algorithm D.

While Stopping criterion not satisfied.

The JN algorithm assumed that the decoder D is one of the

following hard-decision decoders:

e HD: Perform hard-decisions on the updated LLR’s, u =
(1 — sign(AP))/2.If Ha" = 0, then a decoding success
is signaled.

*  BM: Run a bounded minimum distance decoder such as
the Berlekamp—Massey (BM) algorithm on the LLRs after
hard-decisions. If the BM algorithm finds a codeword, a
decoding success is signaled.

The performance largely depends on the decoder D and the
stopping criterion used. This is discussed in Section V.

V. MODIFICATIONS TO THE JN ALGORITHM

The stopping criterion deployed in the JN algorithm is as fol-
lows [14].

* Stop if a decoding success is signaled by the decoder D
or if the number of iterations is equal to the maximum
number of iterations Nj.

We propose a list-decoding stopping criterion in which a list

of codewords is iteratively generated. The list-decoding stop-
ping criterion is as follows.

e Ifadecoding success is signaled by the decoder D, add the
decoded codeword to a global list of codewords. Stop if
the number of iterations is equal to the maximum number
of iterations, Nj.

If more than one codeword is on the global list of codewords,
then the list-decoder’s output is the codeword which is at the
minimum Euclidean distance from the received vector. Alterna-
tively, one could only save the codeword with the largest con-
ditional probability, given the received vector. This codeword
would be the candidate for the list decoder’s output when the
iteration loop terminates.

The advantage of our proposed list-decoding stopping crite-
rion over the stopping criterion in the JN algorithm is empha-
sized in the case of higher rate codes, where the decoder error
probability is relatively high. Given a decoding algorithm D, the
JN ABP algorithm may result in updating the received vector to
lie in the decoding region of an erroneous codeword. However,
running more iterations of the JN ABP algorithm may move the
updated received vector into the decoding sphere of the trans-
mitted codeword. The decoding algorithm D should also be run
on the channel LLRs before any ABP iteration is carried out. If
the decoder succeeds to find a codeword, it is added to the list.

Jiang and Narayanan [13] proposed running N> parallel de-
coders (outer iterations), each with the JN stopping criterion
and a maximum of /Ny inner iterations. Each one of these N,
iterations (decoders) starts with a different random permuta-
tion of the sorted channel LLRs in the first inner iteration. The
outputs of these Ny decoders form a list of at most No code-
words. If each of these Ny decoders succeeds to find a code-
word, the closest codeword to the received vector is chosen. We
also run N, parallel decoders (outer iterations), each with the
list-decoding stopping criterion, to form a global list of at most
N7 N5 codewords. We propose doing the initial sorting of the
channel LLRs in a systematic way to ensure that most bits will
have a chance of being in the identity submatrix of the adapted
parity-check matrix. The improved performance achieved by
these restarts could be explained by reasoning that if a higher
reliability bit is in error, then it has a higher chance of being
corrected if its corresponding column in the parity-check ma-
trix is in the sparse identity submatrix.

Let z = | /N2, then at the (j + 1)th outer iteration, j > 0,
the initial LLR vector at the first inner iteration is

(A A AT AT AR ©)

where A™ is the vector of sorted channel LLRs. The columns of
Hp will also be rearranged according to the same permuatation.
If ( + 1)z < 7, then it is less likely that this initial permutation
will introduce new columns into the identity submatrix other
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than those which existed in the first outer iteration. After the
first outer iteration, it is thus recommended to continue with the
( + 1)th outer iteration such that (j + 1) > 7/z.

Another modification that could improve the performance
of the JN algorithm is to run a small number of iterations of
damped log belief propagation on the same parity-check matrix.
Although belief propagation is not exact due to the cycles in the
associated Tanner graph, running a very small number of itera-
tions of belief propagation is very effective [29]. Observing that
the complexity of belief propagation is much lower than that of
Gaussian elimination, one gets a performance enhancement at a
slightly increased complexity.

Throughout the remaining of this paper, we will refer to the
modified JN algorithm with a list decoding stopping criterion,
as well as with the other modifications introduced in this sec-
tion, by ABP-BM if the decoding algorithm D is BM. Similarly,
if the decoding algorithm was HD, the algorithm is referred to
by ABP-HD. One of the main contribution in this paper, the uti-
lization of the a posteriori probabilities at the output of the ABP
algorithm as the soft information input to an ASD algorithm, is
presented in Section VI.

VI. HYBRID ABP-ASD LIST DECODING ALGORITHM

Koetter and Vardy [9] point out that it is hard to maximize
the mean of the score with respect to the to the true channel
a posteriori probabilities. Previous multiplicity assignment al-
gorithms [9]-[11] assumed approximate a posteriori probabili-
ties. The problem is simplified by assuming that the transmitted
codeword is drawn uniformly from F’ ;’. Also, the n received
symbols are assumed to be independent and, thus, be assumed
to be uniformly distributed. In such a case, the a posteriori prob-
abilities are approximated to be a scaling of the channel transi-
tion probabilities

B > Priyiu; = W}.
weF,

)

However, from the maximum distance separable (MDS) prop-
erty of RS codes, any k£ symbols (only) are k-wise indepen-
dent and could be treated as information symbols and, thus, uni-
formly distributed. Thus, these assumptions are more valid for
higher rate codes and for memoryless channels. It is well known
that belief propagation algorithms improve the reliability of the
symbols by taking into account the geometry of the code and the
correlation between symbols (see, for example, [27].) Due to the
dense nature of the parity-check matrix of the binary image of
RS codes, running belief propagation directly will not result in
a good performance. Because the Tanner graph associated with
the parity-check matrix of the binary image of RS codes has
cycles, the marginals passed by the (log) belief propagation al-
gorithm are no longer independent and the information starts to
propagate in the loops.

Jiang and Narayanan [14] proposed a solution to this problem
by adapting the parity-check matrix after each iteration. When
updating the check node reliabilities R;; [see (5)] corre-
sponding to a pivot in a single weight column, the information
Q; ; from any of the least reliable independent bits does not

enter into the summation. One reason for the success of ABP
is that the reliabilities of the least reliable bits are updated by
only passing the information from the more reliable bits to
them. An analytical model for belief propagation on adaptive
parity-check matrices was recently proposed [30].

Our ABP-ASD algorithm is summarized by the following
chain:

w— I 2B0 0 A v g ®)
ASD

where u is the transmitted codeword, A is a multiplicity assign-
ment algorithm, M is the multiplicity matrix and @ is the de-
coder output. In particular, the ABP-ASD list decoder is imple-
mented by deploying the list decoder stopping criterion, pro-
posed in the previous section, with an ASD decoding algorithm
D (see Alg. 2).

e ASD: Using AP, generate an ¢ X n reliability matrix I
which is then used as an input to an multiplicity assign-
ment algorithm to generate multiplicities according to
the required interpolation cost. This multiplicity matrix
is passed to the (modified) GS list decoding algorithm.
If the generated codeword list is not empty, the list of
codewords is augmented to the global list of codewords.
If only one codeword is required, the codeword with the
highest reliability with respect to the channel LLR’s A®
is added to the global list.

In this paper, the KV algorithm is used as the multiplicity
assignment scheme. More efficient but more complex multi-
plicity assignment schemes could also be used [11]. The joint
ABP-ASD algorithm corrects decoder failures (the received
word does not lie in the decoding region centered around any
codeword) of the ASD decoder D, by iteratively enhancing the
reliabilities of the received word and, thus moving the received
word into the decoding region around a certain codeword. The
decoding region in turn depends on the algorithm D and the de-
signed interpolation cost. Furthermore, it attempts to eliminate
decoder errors (the decoded codeword is not the transmitted
codeword) by iteratively adding codewords to the global list of
codewords and choosing the most probable one.

Since ASD is inherently a list decoding algorithm with a
larger decoding region, it is expected that ABP-ASD outper-
forms ABP-HD and ABP-BM. Since our algorithm transforms
the channel LLRs into interpolation multiplicities for the GS al-
gorithm, then, by definition, it is an interpolation multiplicity
assignment algorithm for ASD.

The ABP-ASD algorithm has a polynomial-time complexity.
The ABP step involves o(7i?) floating point operations, for
sorting and BP, and o(min(k?,72)7) binary operations for GE
[13]. As for ASD, the KV MA algorithm [see (4)] has a time
complexity of O(n?). An efficient algorithm for solving the
interpolation problem is Koetter’s algorithm [23] with a time
complexity of O(n?A*). A reduced complexity interpolation
algorithm is given in [24]. Roth and Ruckenstein [31] proposed
an efficient factorization algorithm with a time complexity
O((1log® I)k(n + llog q)), where [ is an upper bound on the
ASD’s list size and is determined by A.
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VII. Low COMPLEXITY ABP ALGORITHM

Most of the complexity of adaptive belief propagation lies in
row reducing the binary parity-check matrix (after rearranging
the columns according to the permutation P). To reduce the
complexity one could make use of the columns already reduced
in the previous iteration.

We will use the same notation as in Alg. 2 with a subscript j to
denote the values at iteration j. For example, the vector of sorted
LLRs at the jth iteration is A%, Define P;(H) to be the matrix
obtained when the columns of the parity-check matrix H are
permuted according to the permutation P; at the jth iteration.
GE(H) will be the reduced matrix (with an identity submatrix)
after Gaussian elimination is carried out on the matrix H.

Let R; £ [t : tth column of H was reduced to a column
of unit weight in GE(P;(H))}. It is clear that the cardinality
of I; is 7. Now, assume that log BP is run and that the LLRs
are updated and inverse permuted to get A;f (step 5 in Alg.
2). The set of indices of the 7 (independent) LLRs in 11;3 with
the smallest magnitude will be denoted by S;;,. By defini-
tion, Pj4, is the permutation that sorts the LLRs in A;f in as-
cending order according to their magnitude to get Aij‘jrl. The set
Ujt1 = R; (1 Sj41 is, thus, the set of indices of bits which are
among the least reliable independent bits at the (j+1)th iteration
and whose corresponding columns in the reduced parity-check
matrix at the previous iteration were in the identity submatrix.

The algorithm is modified such that GE will be run on the ma-
trix whose left most columns are those corresponding to Uj 4.
To construct the identity submatrix, these columns may only re-
quire row permutations for arranging the pivots (ones) on the
diagonal. Note that these permutations may have also been re-
quired when running GE on Pj41(H ). Only a small fraction of
the columns will need to be reduced to unit weight leading to a
large reduction in the GE computational complexity. Also, note
that what matters is that a column corresponding to a bit with
low reliability lies in the identity (sparse) submatrix and not its
position within the submatrix. This is justified by the fact that
the update rules for all the LLRs corresponding to columns in
the identity submatrix are the same. Thus, provided that the first
7 columns in P;yq(H) are independent, changing their order
does not alter the performance of the ABP algorithm. To sum-
marize the proposed reduced complexity ABP algorithm can be
stated as follows.

Algorithm 3: Low Complexity Adaptive Belief Propagation
Initialization: AP := A® j =1
DO
Ifj=1
Proceed as in the first iteration of Alg. 2; AP = Ay, 0, P =
Plaig.2, Hi = Hp|alg.2 and A? = A9|y, 5.
Ify>1
1) Sort the updated LLR vector A;I-_lin ascending order
of the magnitude of its elements. Let W} be the asso-
ciated sorting permutation matrix.
2) Rearrange the columns of the binary parity-check ma-
trix H j—1 to form a new matrix

Q) = WiH, ).

3)  Rearrange the most left 7 columns of the binary
parity-check matrix Q; such that the columns of unit
weight are the most left columns. Let W' be the cor-
responding permutation matrix. (This could be done
by sorting the first 7 columns of Q} in ascending order
according to their weight.) Let the resulting matrix be

Qf = W(@)).
4) Permute the LLR vector;
in _ p/

AJ- = PJ»A;’-_1

where P; = WIW.
5)  Update the (global) permutation matrix;

P;=P}P;_,.

6) Run Gaussian elimination on the matrix Q;-’ from left
to right;

Hj = GE(Q)).

7)  Rundamped LBP on H ; withinitial LLR’s Aij“ for Ity
iterations. The output vector of extrinsic LLRs is A7 .
8) Update the LLRs;

in T _ p-1
A‘JI- = 11]- + alA]- and 11? = Pj A;I-.

9) Decode using 11;-’ as an the input to the decoding algo-
rithm D.
10) Increment j.
While Stopping criterion not satisfied.

The algorithm as described above iteratively updates a global
permutation matrix and avoids inverse permuting the row-re-
duced parity-check matrix in each iteration. The implementation
of the algorithm also assumes for simplicity that the columns in
the parity-check matrix corresponding to the 7 least reliable bits
are independent and could, therefore, be reduced to unit weight
columns. Itis also noticed that in practice the cardinality of U; 41
is close to 7 which means that the GE elimination complexity
will be significant only in the first iteration.

We will assume the favorable condition in which the most left
7 columns of an parity-check matrix are independent. Taking
into account that the parity-check matrix is a binary matrix, the
maximum number of binary operations required to reduce the
first 7 columns to an identity submatrix in the JN algorithm
(Alg. 2) can be shown to be

Oce =2 (F-a)(i—a+1)<Pa—ik (9

a=1

(It is assumed that the two GE steps, elimination and back sub-
stitution are symmetric). Row permutation operations were ne-
glected. Now, assume that the cardinality of Uj; is 67, where
6 < 1. For the modified algorithm, only row permutations may
be required for the first 67 columns to arrange the pivots on the
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diagonal of the identity submatrix. These permutations may also
be required for the JN algorithm. Then, the relative reduction in
complexity is

Ogr in Alg. 2 — Oggr in Alg. 3

GGE n Alg 2
o7
(F-a)(n—a+1)
T —

a=1

(

a=1
201)(26 — 82) — 67k

72 — 7k

)i —a+1)

7

26 — 82,

(10)

Q

For example, if we assume that on average 6 = 0.5, a simple
calculation for the (255,239) code over Fy56 shows that the
relative reduction in the complexity of the GE step is about 75%.
In practice 6 is close to one. Note that Alg. 3 does require sorting
7 columns of Q;» [see step (3)] according to their weight but the
complexity is relatively small.

VIII. NUMERICAL RESULTS AND DISCUSSIONS

In Section VIII-A, a fast simulation setup is described for
ABP list decoding. Bounds on the error probability of the ML
decoder are then discussed. We then show simulation results for
our algorithm.

A. Fast Simulation Setup

We describe a fast simulation setup for ABP with a list de-
coding stopping criterion. One could avoid running the actual
decoder D at each iteration and instead check whether the trans-
mitted codeword is on the list generated by the decoder D. The
stopping criterion would be modified such that the iterative de-
coding stops if the transmitted codeword is on the list or if the
maximum number of iterations is reached. A decoding success
is signaled if the transmitted codeword is on the list.

It is easy to see that this simulation setup is equivalent to
running the actual ABP list decoder for the maximum number
of iterations. Suppose that the received sequence results in an
ML error, then it is very unlikely that the decoder D will cor-
rectly decode the received word at any iteration. In case of an
ML decoder success and the transmitted codeword is added to
the global list at a certain iteration, which presumably could be
checked, then it would be the closest codeword to the received
word and, thus, the list decoder’s choice. Thus, for a fast im-
plementation, a decoding success is signaled and iteration stops
once the transmitted codeword appears on the global list.

In case that D is a bounded minimum distance decoder such
as the Berlekamp—Massey (BM) algorithm, the transmitted
codeword would be on the global list if it is at a Hamming
distance of < |n — k/2| from the hard-decisioned (modified)
LLRs. If D is an ASD algorithm that assigns the multiplicity
matrix M, the transmitted codeword is on the ASD’s list (and,
thus, the global list) if it satisfies the sufficient conditions of (2)
and (3) for finite and infinite interpolation costs, respectively. It
was shown in [9], that simulating the KV algorithm by checking
the sufficient condition of (2) results in accurate results. This is
partially justified by the fact that on average, the ASD’s list size

is one [32]. This is also justified by observing that if the ASD’s
list is empty (a decoding failure), the condition (2) will not be
satisfied. However, if the list is nonempty but the transmitted
codeword is not on the list (a decoding error), the condition
will still not be satisfied for the transmitted codeword and a
decoding error/failure is signaled. However if the condition is
satisfied, then this implies that the transmitted codeword is on
the ASD’s list and, thus, a decoding success.

B. Bounds on the ML Error Probability

As important as it is to compare our algorithms with other
algorithms, it is even more important to compare it with the ul-
timate performance limits, which is that of the soft-decision ML
decoder. When transmitting the binary image of RS codes over
a channel, the performance of the ML decoder depends on the
weight enumerator of the transmitted binary image. The binary
image of RS codes is not unique, but depends on the basis used
to represent the symbols as bits. An average binary weight enu-
merator of RS codes could be derived by assuming a binomial
distribution of the bits in a nonzero symbol [33]. Based on the
Poltyrev tangential sphere bound (TSB) [34] and the average bi-
nary weight enumerator, average bounds on the ML error proba-
bility of RS codes over additive white Gaussian noise (AWGN)
channels were developed in [33] and were shown to be tight.
We will refer to this bound by ML-TSB. Alternatively the av-
eraged binary weight enumerator could be used in conjunction
with other tight bounds such as the Divsalar simple bound [35]
to bound the ML error probability.

C. Numerical Results

In this section, we give some simulation results for our algo-
rithm. As noted before, the multiplicity assignment algorithm
used for ABP-ASD in the these simulations is the KV algorithm.
N2 denotes the number of outer iterations (parallel decoders)
and N1 is the number of inner iterations in each of these outer
iterations.

1) (15,11) RS Code Over an AWGN Channel: A standard
binary input AWGN channel is assumed where the transmitted
codewords are BPSK modulated. In Fig. 1, we compare the per-
formance of different decoding algorithms. HD-BM refers to the
performance of a hard decision bounded minimum distance de-
coder such as the BM algorithm. The ABP-BM list decoding
algorithm with N1 = 5 iterations and one iteration of LBP
on each parity-check matrix, Ity = 1 (see step 4 in Alg. 2)
has a coding gain of about 2.5 dB over HD-BM at a codeword
error rate (CER) of 10~°. Increasing the number of iterations
to N1 = 20 iterations, we get a slightly better performance.
JN-BM refers to the JN algorithm with the JN stopping crite-
rion and a BM decoder. Due to the high decoder error proba-
bility of the (15, 11) code, ABP-BM, with the list decoder stop-
ping criterion, yields a much better performance than JN-BM.
The ABP-ASD list decoding algorithm outperforms all the pre-
vious algorithms with only 5 ABP iterations and with Ity = 3.
Comparing its performance with soft-decision ML decoding of
the RS code, we see that ABP-ASD has a near ML performance
with a performance gain of about 3 dB over HD-BM at a CER
of 107°%. (ML decoding was carried out by running the BCJR
algorithm on the trellis associated with the binary parity-check
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Fig. 1. Performance of iterative ASD of (15,11) RS code, which is BPSK

modulated and transmitted over an AWGN channel, is compared with that of
other ASD algorithms and ABP-BM list decoding.

matrix of the RS code [36].) Moreover, the averaged TSB on the
ML codeword error probability is shown to confirm that it is a
tight upper bound and that the ABP-ASD algorithm is near-op-
timal for this code.

The performance of different ASD algorithms are com-
pared for infinite interpolation costs, the KV algorithm [9],
the Gaussian approximation (Gauss) [10], and the Chernoff
bound algorithm (Chernoff) [11]. It is noted that the Chernoff
bound algorithm has the best performance, especially at the
tail of error probability. It is also interesting to compare the
performance of ABP-ASD with other ASD MA algorithms. It
has about 2 dB coding gain over the KV algorithm at a CER
of 1075, As expected, the Chernoff method has a comparable
performance at the tail of the error probability.

The ABP algorithm used in the simulations shown in Fig. 1
is Alg. 2. The performance of Alg. 3 was identical to that of
Alg. 2. However, the complexity is much less. The average 6
[see (10)] averaged over all iterations was calculated versus the
signal-to-noise ratio (SNR). It was observed that the ratio of the
number of columns to be reduced in Alg. 3 to that in Alg. 2 is
about 0.1 (6 = 0.9). This gives about a 99% reduction in the
Gaussian elimination complexity. Thus, only the first iteration
or restart suffers from an Gaussian elimination complexity if
Alg. 3 is used.

Near ML decoding for the same code is also achieved by the
ABP-ASD algorithm with a finite cost of 103, as shown in Fig. 2.
Comparisons are made between the possible coding gains if the
number of iterations is limited to N1 = 1,2, 5. With five iter-
ations, the performance gain over the KV algorithm, with the
same interpolation cost, is nearly 1.8 dB at a CER of 1075,
Comparing the ABP-ASD performance to that of Fig. 1, with
infinite interpolation costs, we observe that a small loss in per-
formance results with reasonable finite interpolation costs. Un-
less otherwise stated, the remaining simulations in this paper
will assume infinite interpolation costs to show the potential of
our algorithm.

It is to be noted that in simulating the ABP-BM list decoder,
the simulations using a real BM decoder were identical to the

Iterative Algebraic Soft Decoding of (15,11) RS code, ItH=3. Cost=10°

T
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—9—KV, Cost=10"
—*— KV, Cost=o
—— ABP-ASD, N1=1|.
—6— ABP-ASD, N1=2.
—— ABP-ASD, N1=5'
—&— ML Simulation
- - MLTSB

Codeword Error Rate

5
E/N, (dB)

Fig. 2. Performance of iterative ASD of (15,11) RS code, which is BPSK
modulated and transmitted over an AWGN channel, is shown for a finite
interpolation cost of 10% and different iteration numbers.
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Fig. 3. ABP-ASD list decoding of the (31,25) RS code transmitted over an
AWGN with BPSK modulation.

simulations using the fast simulation setup described in this
section. To save simulation time, the curves shown here for
ABP-ASD are generated using the fast simulation setup. As is
the case for ABP-BM, running the real ABP-ASD decoder will
yield the same results.

2) (31,25) RS Code Over AWGN Channel: The arguments
for the (15,11) RS code also carry over for the (31,25) RS
code when BPSK modulated and transmitted over an AWGN
channel, as shown in Fig. 3. With only five iterations, the
ABP-BM list decoding algorithm outperforms previous ASD
algorithms. The performance of ABP-ASD with 20 inner iter-
ations (N1) and 10 outer iterations (N2) is better than the ML
upper bound and has more than 3 dB coding gain over the BM
algorithm at an CER of 10™*. A favorable performance is also
obtained by only three restarts (outer iterations). By comparing
with Fig. 2 of [18], our ABP-ASD algorithm has about 1.6 dB
gain40ver the combined Chase II-GMD algorithm at an CER of
1077,
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Required Iterations for Successful Decoding of (31,25) RS Code, SNR=3.5 dB
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Fig.4. Histogram shows the percentage of transmitted codewords successfully
decoded versus the iteration number at which the transmitted codeword was first
successfully added to the ABP-ASD list with N1 = 20 and N2 = 10. The
(31,25) RS code is transmitted over an AWGN channel at an SNR of 3.5 dB.
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Fig.5. Performance of the ABP-ASD decoding of the (31, 25) RS code over a

Rayleigh-fading channel with AWGN when the channel information is unknown
at the decoder.

To show the effectiveness of the restarts or outer iterations,
we kept track of the iteration number at which the ABP-ASD
list decoder was first capable to successfully decode the received
word. In other words, this is the iteration when the transmitted
codeword was first added to the ABP-ASD list. The percentage
of transmitted codewords which were first successfully decoded
at a certain iteration is plotted versus the iteration number in the
histogram of Fig. 4. This is shown at an SNR of 3.5 dB and for
N1 =20 N2 = 10 with a total of 200 iterations. At the begin-
ning of each restart (every 20 iterations), there is a boost in the
number of codewords successfully decoded and this number de-
clines again with increasing iterations. The zeroth iteration cor-
responds to the KV algorithm. This histogram is also invaluable
for decoder design and could aid one to determine the designed
number of iterations for a required CER.

3) (31,25) RS Code Over a Rayleigh Fading Channel: As
expected from the discussion in Section VI, the coding gain of
ABP-ASD is much more if the underlying channel model is not
memoryless. This is demonstrated in Fig. 5, where an (31, 25)

o Iterative ASD of (255,239) RS Code over an AWGN channel, N1=20, N2=50
g T T T T T
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—6— ABP-ASD, #1 |
—&— ABP-BM, #20
—&— ABP-ASD, #20*25
.| —&— ABP-ASD, #20"50 -
-+—-Averaged ML TSB

Codeword Error Rate

6
E/N, (dB)

Fig. 6. Performance of the ABP-ASD decoding of the (255,239) RS code
over an AWGN channel with BPSK modulation.
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Fig. 7. ABP-ASD list decoding of the (31,15) RS code, of rate 0.48,
transmitted over an AWGN with BPSK modulation.

code is BPSK modulated over a relatively fast Rayleigh-fading
channel with AWGN. The Doppler frequency is equal to
50 Hz and the codeword duration is 0.02 s. The coding gain of
ABP-ASD over the KV algorithm at an CER of 1074 is nearly
5 dB when the channel is unknown to both decoders.

4) (255,239) RS Code Over AWGN Channel: The perfor-
mance of the ABP-ASD algorithm is also investigated for rel-
atively long codes. The (255, 239) code and its shortened ver-
sion, the (204, 188) code, are standards in many communica-
tion systems. The performance of the (255, 239) code over an
AWGN channel is shown in Fig. 6. By 20 iterations of ABP-BM,
one could achieve a coding gain of about 0.5 dB over the KV
algorithm. At an CER of 1076, after a total of 25 outer itera-
tions (restarts), the coding gain of ABP-ASD over BM is about
1.5 dB. An extra 0.1 dB of coding gain is obtained with 25 more
outer iterations. Moreover, the performance of the ABP-ASD
decoder is within 1 dB of the averaged ML TSB.

5) (31,15) RS Code Over AWGN Channel: The perfor-
mance of our algorithm is studied for the (31, 15) RS code over
an AWGN channel. The rate of this code is 0.48. Because this
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code is of relatively low rate, the HD-GS algorithm does im-
prove over the HD-BM bounded minimum distance decoding
algorithm. As seen from Fig. 7, ML soft-decision decoding
offers about 4 dB coding gain over the hard decision GS
algorithm and about 2.8 dB coding gain over the soft-decision
KV ASD algorithm at an CER of 10~ °. With 20 iterations,
ABP-BM list decoding improves over the KV algorithm. As
expected, ABP-ASD has a better performance for the same
number of iterations. With 10 restarts, ABP-ASD has a reason-
able performance with about a 3 dB coding gain over the BM
algorithm. Another 0.5 dB of coding gain could be achieved by
increasing the number of iterations.

6) General Observations: It is noticed that the coding gain
between iterations decreases with the number of iterations. It
is also to be noted that the ABP-ASD list decoder requires
running the KV ASD algorithm in each iteration. Running a
number of “plain-vanilla” ABP iterations without the ASD
decoder and then decoding using the ASD decoder (to reduce
the complexity) will yield a worse performance for the same
number of iterations. The same arguments also hold for the
ABP-BM list decoding. A reasonable performance is achieved
by ABP-BM list decoding. By deploying the KV ASD algo-
rithm, ABP-ASD list decoding has significant coding gains
over the KV ASD algorithm and other well known soft-decision
decoding algorithms.

IX. CONCLUSION

In this paper, we proposed a list decoding algorithm for
soft-decision decoding of RS codes. Our algorithm is based
on enhancing the soft reliability channel information be-
fore passing them to an algebraic soft-decision decoding
algorithm. This was achieved by deploying the Jiang and
Narayanan algorithm, which runs belief-propagation on an
adapted parity-check matrix. Using the Koetter—Vardy algo-
rithm as the algebraic soft-decision decoding algorithm, our
algorithm has impressive coding gains over previously known
soft-decision decoding algorithms for RS codes. By comparing
with averaged bounds on the performance of ML decoding of
RS codes, we observe that our algorithm achieves a near op-
timal performance for relatively short, high-rate codes. We
introduced some modifications over the JN algorithm that re-
sulted in better coding gains. We presented a low complexity
adaptive belief-propagation algorithm, which results in a sig-
nificant reduction in the computational complexity. The per-
formance of our algorithm was studied for the cases when
the interpolation cost of the algebraic soft-decision decoding
algorithm is both finite and infinite. A small loss in coding
gain results when using manageable interpolation costs. The
coding gain of the presented algorithm is larger for channels
with memory. Our proposed algorithm could also be viewed
as an interpolation multiplicity assignment algorithm for alge-
braic-soft decoding.

The question remains whether the JN algorithm is the op-
timum way to process the channel reliabilities before algebraic
soft-decision decoding. The KV algorithm was our ASD de-
coder of choice due to its low complexity. Further investigations
would be required to determine the best ASD algorithm or, in

general, soft-decision decoding algorithm for joint belief-prop-
agation list-decoding with an eye on both the performance and
computational complexity.
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