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We introduce and study some new classes of variational inequalities and the Wiener-Hopf
equations. Using essentially the projection technique, we establish the equivalence between these
problems. This equivalence is used to suggest and analyze some iterative methods for solving
the general multivalued variational in equalities in conjunction with nonexpansive mappings. We
prove a strong convergence result for finding the common element of the set of fixed points of a
nonexpansive mapping and the set of solutions of the general multivalued variational inequalities
under some mild conditions. Several special cases are also discussed.

1. Introduction

Variational inequality problems were initially studied by Stampacchia in 1964. Variational
inequalities have applications in diverse disciplines such as partial differential equations,
optimal control, optimization, mathematical programming, mechanics, and finance, see [1–
33] and the references therein. Variational inequalities have been extended and generalized
in several directions using novel and innovative techniques. It is a common practice to
study these variational inequalities in the setting of convexity. It has been observed that
the optimality conditions of the differentiable convex functions can be characterized by
the variational inequalities. In recent years, it has been shown that the minimum of the
differentiable nonconvex functions can also be characterized by the variational inequalities.
Motivated and inspired by these developments, Noor [19] has introduced a new type
of variational inequality involving two nonlinear operators, which is called the general
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variational inequality. It is worth mentioning that this general variational inequality is
remarkable different from the so-called general variational inequality which was introduced
byNoor [16] in 1988. Noor [19] proved that the general variational inequalities are equivalent
to nonlinear projection equations and the Wiener-Hopf equations by using the projection
technique. Using this equivalent formulation, Noor [19] suggested and analyzed some
iterative algorithms for solving the special general variational inequalities and further proved
these algorithms have strong convergence. In this paper, we introduce and consider a
new class of variational inequalities, which is called the general multivalued variational
inequality. Using essentially the projection technique, we establish the equivalence between
the multivalued variational inequalities and the multivalued Wiener-Hopf equations.

Related to the variational inequalities, we have the problem of finding the fixed points
of the nonexpansive mappings, which is the subject of current interest in functional analysis.
It is natural to consider a unified approach to these two different problems. Noor and Huang
[21] considered the problem of finding the common element of the set of the solutions of
variational inequalities and the set of the fixed points of the nonexpansive mappings. We use
the Wiener-Hopf technique to suggest and analyze some iterative methods for finding the
common element the common element of the set of fixed points of a nonexpansive mapping
and the set of solutions of the special general variational inequalities. We also consider the
convergence criteria of the proposed algorithms under suitable conditions. Several special
cases are also discussed.

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H. Let A : H → 2H be
a multivalued mapping. Let F, g : H → H be two nonlinear operators. We consider the
problem of finding u ∈ C and w ∈ A(u) such that

〈
F(u) +w, g(v) − u

〉 ≥ 0, ∀v ∈ H, g(v) ∈ C. (2.1)

Inequality of type (2.1) is called the general multivalued variational inequality. We will
denote the set of solutions of the special general variational inequality (2.1) by SGVI(F,A, g).
The general multivalued variational inequality (2.1) can be written in the following
equivalent form, that is, find u ∈ C, w ∈ A(u) and g(u) ∈ C such that

〈
ρ(F(u) +w) + u − g(u), g(v) − u

〉 ≥ 0, ∀v ∈ H, g(v) ∈ C. (2.2)

This equivalent formulation is very important and plays a crucial role in the development of
the iterative methods for solving the general multivalued variational inequalities.

We now discuss several special cases.

Special Cases

(A) If w = 0, then (2.1) reduces to: find u ∈ C such that

〈
F(u), g(v) − u

〉 ≥ 0, ∀v ∈ H, g(v) ∈ C, (2.3)
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which is called the general variational inequality, introduced and studied by Noor [19]. It has
been shown that the minimum of a class of differentiable functions can be characterized by
the general variational inequality of type (2.3).

(B) If g ≡ I, the identity operator, then (2.1) reduces to find u ∈ C and w ∈ A(u) such
that

〈F(u) +w,v − u〉 ≥ 0, ∀v ∈ C, (2.4)

which is known as the mildly nonlinear multivalued variational inequality and has been
studied extensively.

If F and A are single-valued nonlinear operators, then problem (2.1) is equivalent to
finding u ∈ C such that

〈F(u) +A(u), v − u〉 ≥ 0, ∀v ∈ C, (2.5)

which is known as the mildly nonlinear variational inequality, the origin of which can be
traced back to Noor [15].

(C) If w = 0 and g ≡ I, then (2.1) reduces to: find u ∈ C such that

〈F(u), v − u〉 ≥ 0, ∀v ∈ C, (2.6)

which is wellknown as the variational inequality, originally introduced and studied by
Stampacchia [24] in 1964. It is clear from the above discussion that general multivalued
variational inequality is quite general one. It has been shown that a wide class of problems
arising in various discipline of mathematical and engineering sciences can be studied via the
general multivalued variational inequalities (2.1) and its special cases.

In the sequel, we need the following well-known lemma.

Lemma 2.1. For a given z ∈ H, u ∈ C satisfies the inequality

〈u − z, v − u〉, ∀v ∈ C, (2.7)

if and only if

u = PCz, (2.8)

where PC is the projection ofH into the closed convex set C.

By using Lemma 2.1, one can prove that the general multivalued variational inequality
(2.1) is equivalent to the following fixed point problem.

Lemma 2.2. u ∈ C is a solution of the special general variational inequality (2.1) if and only if u ∈ C
satisfies the relation

u = PC

[
g(u) − ρ(F(u) +w)

]
, (2.9)

where ρ > 0 is a constant.
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Related to the general multivalued variational inequality (2.1), we consider the
problem of solving theWiener-Hopf equations. Let F, g : H → H be two nonlinear operators
and A : H → 2H be a multi-valued relaxed monotone operator. Let QC = I − gPC, where I is
the identity operator. We consider the problem of finding y ∈ H : w ∈ A(y) such that

FPCy +w + ρ−1QCy = 0, (2.10)

which is called the special general multivalued Wiener-Hopf equations. We use
SGWH(F,A, g) to denote the set of solutions of the special general multivalued Wiener-Hopf
equations. For different and suitable choice of the operators F,A, we can obtain various forms
of the Wiener-Hopf equations, which have been studied by Noor [17], Shi [22], and others.

Using essentially the technique of Noor [17, 18] and applying Lemma 2.2, one can
establish the equivalence between the Wiener-Hopf equations and the general multivalued
variational inequalities (2.1). To convey an idea of the technique and for the sake of
completeness, we include its proof.

Lemma 2.3. If u ∈ SGVI(F,A, g), then y ∈ H and w ∈ A(y) satisfy the general Wiener-Hopf
equations (2.10), where

y = g(u) − ρ(F(u) +w),

u = PCy,
(2.11)

where ρ > 0 is a constant.

Proof. Let u ∈ SGVI(F,A, g). Then, from Lemma 2.2, we have

u = PC

[
g(u) − ρ(F(u) +w)

]
. (2.12)

Let

y = g(u) − ρ(F(u) +w), ∀w ∈ A(u). (2.13)

Then, we have

u = PCy. (2.14)

Therefore, from (2.13), we obtain

y = gPCy − ρ
(
FPCy +w

)
. (2.15)

It follows that

FPCy +w + ρ−1QCy = 0, ∀w ∈ APCy, (2.16)
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where QC = I − gPC, which is exactly the general Wiener-Hopf equations (2.10). This
completes the proof.

Remark 2.4. Let S : C → C be a nonexpansive mapping. If u ∈ F(S) ∩ SGVI(F,A, g), then one
can easy to see

u = Su = SPC

[
g(u) − ρ(F(u) +w)

]
, (2.17)

which is implies that

u = (1 − αn)u + αnSPC

[
g(u) − ρ(F(u) +w)

]
, (2.18)

where {αn} is a sequence in (0, 1).

Using Remark 2.4 and Lemma 2.3, we can suggest the following algorithm for finding
the common element of the solutions set of the variational inequalities and the set of fixed
points of a nonexpansive mapping.

Algorithm 2.5. For a given x0 ∈ H arbitrarily, let the sequence {xn} be generated by

yn+1 = (1 − αn)xn + αn

[
g(xn) − ρ(F(xn) +wn)

]
,

xn = SPCyn,
(2.19)

where {αn} is a sequence in (0, 1) and ρ > 0 is some constant.

Note that, if S ≡ I, then Algorithm 2.5 reduces to the following iterative method for
solving the general variational inequalities.

Algorithm 2.6. For a given x0 ∈ H arbitrarily, let the sequence{xn} be generated by

yn+1 = (1 − αn)xn + αn

[
g(xn) − ρ(F(xn) +wn)

]
,

xn = PCyn,
(2.20)

where {αn} is a sequence in (0, 1) and ρ > 0 is some constant.

If {wn} = 0, then Algorithm 2.5 reduces to the following iterative method for solving
the general variational inequalities (2.3), which was considered by Noor [19].

Algorithm 2.7. For a given x0 ∈ H arbitrarily, let the sequence {xn} be generated by

yn+1 = (1 − αn)xn + αn

(
g(xn) − ρF(xn)

)
,

xn = SPCyn,
(2.21)

where {αn} is a sequence in (0, 1) and ρ > 0 is some constant.



6 Abstract and Applied Analysis

If g = S ≡ I and {wn} = 0, then Algorithm 2.5 reduces to the following iterative
method for solving the variational inequalities (2.6).

Algorithm 2.8. For a given x0 ∈ H arbitrarily, let the sequence {xn} be generated by

yn+1 = (1 − αn)xn + αn

(
xn − ρF(xn)

)
,

xn = PCyn,
(2.22)

where {αn} is a sequence in (0, 1) and ρ > 0 is some constant.

We recall the well-known concepts. The multivalued mapping A is said to be γ-
Lipschitzian if there exists a constant γ > 0 such that

‖w1 −w2‖ ≤ γ‖u − v‖, ∀w1 ∈ A(u), w2 ∈ A(v). (2.23)

Recall that a mapping S : C → C is called nonexpansive if

∥∥Sx − Sy
∥∥ ≤ ∥∥x − y

∥∥, ∀x, y ∈ H. (2.24)

We will use F(S) to denote the set of fixed points of S.
A mapping F : C → H is called α-strongly monotone if there exists a constant α > 0

such that

〈
F(x) − F

(
y
)
, x − y

〉 ≥ α
∥∥x − y

∥∥2
, ∀x, y ∈ H, (2.25)

and β-Lipschitz continuous if there exists a constant β > 0 such that

∥∥F(x) − F
(
y
)∥∥ ≤ β

∥∥x − y
∥∥, ∀x, y ∈ H. (2.26)

3. Main Results

Now we state and prove our main result.

Theorem 3.1. LetC be a nonempty closed convex subset of a real Hilbert spaceH. Let F : C → H be
an α-strongly monotone and β-Lipschitz continuous mapping, g : C → H an σ-strongly monotone
and δ-Lipschitz continuous mapping and A : H → 2H be a γ-Lipschitz continuous mapping. Let
S : C → C be a nonexpansive mapping such that F(S) ∩ SGVI(F,A, g)/= ∅. Assume that

∣∣∣∣ρ − α − γ(1 − k)
β2 − γ2

∣∣∣∣ <

√(
α − γ(1 − k)

)2 − (
β2 − γ2

)
k(2 − k)

β2 − γ2
,

α > γ(1 − k) +
√(

β2 − γ2
)
k(2 − k), γρ < 1 − k, k < 1,

(3.1)
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where

k =
√
1 − 2σ + δ2,

∞∑

n=0

αn = ∞,
(3.2)

then the approximate solution {yn+1} obtained from Algorithm 2.5 converges strongly to y ∈
SGWH(F,A, g).

Proof. Let x∗ ∈ F(S) ∩ SGVI(F,A, g). Then, from Remark 2.4, we have

x∗ = SPCy,

y = (1 − αn)x∗ + αn

[
g(x∗) − ρ(F(x∗) +w)

]
,

(3.3)

where y ∈ H and w ∈ A(y) satisfy the general Wiener-Hopf equations (2.10).
From (2.19) and (3.1), we have

‖xn+1 − x∗‖ =
∥∥SPCyn − SPCy

∥∥ ≤ ∥∥yn − y
∥∥. (3.4)

From (2.19), we have

∥∥yn+1 − y
∥∥ ≤ (1 − αn)‖xn − x∗‖

+ αn

∥∥g(xn) − ρ(F(xn) +wn) −
[
g(x∗) − ρ(F(x∗) +w)

]∥∥

≤ (1 − αn)‖xn − x∗‖ + αn

∥∥xn − x∗ − (
g(xn) − g(x∗)

)∥∥

+ αn

∥∥xn − x∗ − ρ(F(xn) − F(x∗))
∥∥ + ραn‖wn −w‖.

(3.5)

Since g is an σ-strongly monotone and δ-Lipschitz continuous mapping, we have

∥∥xn − x∗ − (g(xn) − g(x∗))
∥∥2

= ‖xn − x∗‖2 − 2〈g(xn) − g(x∗), xn − x∗〉 + ∥∥g(xn) − g(x∗)
∥∥2

≤ ‖xn − x∗‖2 − 2σ‖xn − x∗‖2 + δ2‖xn − x∗‖2

=
(
1 − 2σ + δ2

)
‖xn − x∗‖2 = k2‖xn − x∗‖2,

(3.6)

where k =
√
1 − 2σ + δ2.



8 Abstract and Applied Analysis

At the same time, we note that F is an α-stronglymonotone and β-Lipschitz continuous
mapping, so we have

∥
∥xn − x∗ − ρ(F(xn) − F(x∗))

∥
∥2

= ‖xn − x∗‖2 − 2ρ〈F(xn) − F(x∗), xn − x∗〉 + ρ2‖F(xn) − F(x∗)‖2

=
(
1 − 2ρα + ρ2β2

)
‖xn − x∗‖2.

(3.7)

From (3.5)–(3.7), we have

∥
∥yn+1 − y

∥
∥ ≤ (1 − αn)‖xn − x∗‖ + αn

(
k + ργ +

√
1 − 2ρα + ρ2β2

)
‖xn − x∗‖

= (1 − αn)‖xn − x∗‖ + αnθ‖xn − x∗‖,
(3.8)

where

θ = k + γρ +
√
1 − 2ρα + ρ2β2. (3.9)

Using (3.1), we see that θ < 1. Substituting (3.4) into (3.8), we have

∥∥yn+1 − y
∥∥ ≤

[
(1 − αn) +

(
k + γρ +

√
1 − 2ρα + ρ2β2

)
αn

]∥∥yn − y
∥∥

= [1 − (1 − θ)αn]‖xn − x∗‖

≤
n∏

i=0

[1 − (1 − θ)αi]
∥∥y0 − y

∥∥.

(3.10)

Since
∑∞

n=0αn diverges and 1 − θ > 0, we have
∏n

i=0[1 − (1 − θ)αi] = 0. Consequently, the
sequence {yn} converges strongly to y inH, the required result.

4. Conclusion

One of the most difficult and important problems in variational inequalities is the
development of an efficient numerical methods. One of the technique is called the projection
method and its variant forms. Projection method represent an important tool for finding
the approximate solution of various types of variational inequalities. The projection type
methods were developed in 1970s. The main idea in this techniques is to establish the
equivalence between the variational inequalities and the fixed point problem using the
concept of projection. These methods have been extended and modified in various ways. Shi
[22] considered the problem of solving a system of nonlinear projections, which are called
the Wiener-Hopf equations. It has been shown by Shi [22] that the Wiener-Hopf equations
are equivalent to the variational inequalities. It turns out that this alternative formulation
is more general and flexible. It has been shown that the Wiener-Hopf equations provide
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us a simple, natural, elegant, and convenient device to develop some efficient numerical
methods for solving variational and complementarity problems. In this paper, we introduce
and study some new classes of variational inequalities and Wiener-Hopf equations. Using
essentially the projection technique, we establish the equivalence between these problems.
This equivalence is used to suggest and analyze some iterative methods for solving the
general multivalued variational inequalities in conjunction with nonexpansive mappings. We
prove a strong convergence result for finding the common element of the set of fixed points
of a nonexpansive mapping and the set of solutions of the general multivalued variational
inequalities under some mild conditions. Several special cases are also discussed. The ideas
and techniques of this paper may be a starting point for a wide range of novel and innovative
applications in various fields.
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