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CHAPTER 1 

The approximate solution of partial differential equations often leads 

to large sparse systems of linear equations that must be solved numeri­

cally. These systems can contain tens. or even hundreds of thousands 

of equations and require hours to solve on conventional mainframe com­

puters such as the CDC CYBER 7600 series. 

With the advent of parallel architectures found 10 vector computers 

such as the CRAY-l and CYBER 203/205 or arrays of microprocessors 

found In the ICL DAP (Cryer[l981D. the HEP (Smlth[l978]) and NASA 

Langley's Finite Element Machine (Jordan[l978]). It may be possible to 

solve these problems In a shorter time. Also. with the cost of hardware 

continually decreasmg. arrays of microprocessors may prove to be a 

cost-effective arChitecture for solVing these large problems. especially With 

the use of VLSI (Very Large Scale Integration) or WSI (Wafer Scale 

Integration) technology. 

A major use of these equations Is In structural engineering. Prob-

!ems SUCh as deflection of membranes - are described by second order 

elliptic partial differential equations. and beam or plate bending problems 

are governed by fourth order elliptic equations. The usual way to solve 

these problems approximately Is to first dlscretlze the spatial domain by 

finite elements and then to solve the resulting system of linear equations 

by a direct solution technique. usually some variant of Cholesky decom­

position (see e.g. Noor and Fulton[l974] and Reld[l980]) The linear sys­

tem Is otten too large to fit completely In the computer's main memory. 

1 
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especially after the fill-In due to the decomposition. Hence. these solu­

tion techniques must include the moving of data between main memory 

and the backing store. This data handling requires efficient memory 

management and can be very time consuming. 

In this thesis. we investigate iterative algorithms for solving. on 

parallel computers. the large sparse symmetric and positive definite linear 

systems that arise from elliptic partial differential equations such as those 

from structural engineering. Iterative methods have the advantage that 

minimal storage space Is required for Implementation since no fill-in of 

the zero positions of the coefficient matrix for the system of linear equa­

tIOns occurs during computation. Hence If many processors with 

memories are connected together and the data Is distributed among 

them. it may be possible to solve large problems without moving large 

amounts of data Another advantage of an iterative method Is that the 

process may converge In very few steps 11 a good initial guess IS 

known ThiS IS the case In some applications Also. for certain three 

dimensional elliptic problems. Fix and Larsen[l9711 show that iterative 

methods can outperform Cholesky decomposition on sequential computers 

Iterative methods seemingly parallellze better than direct methods and are 

therefore potentially viable techniques for solVing large sparse linear sys­

tems on parallel computers 

The thesis consists of eight chapters. Chapter 2 reviews the finite 

element method. pOints out aspects of It that are amenable to parallel 

computation and derives the system of linear equations for two example 

problems 
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Chapter 3 describes In detail the architecture of NASA Langley's 

Finite Element Machine. This machine 15 used to describe the imple-

mentation of the parallel Iterative algorithms. 

In Chapter 4. two algorithms are developed for the parallel assembly 

of the system of linear equations by the finite element technique for the 

Finite Element Machine. These assembly algorithms are then compared 

and their speedups relative to a single processor version are determined. 

The last section of this chapter describes how to perform a stress 

analysIs 10 parallel on the Finite Element Machine once the solution to 

the linear system for the displacements Is found. 

Chapter 5 describes several parallel linear stationary Iterative 

methods that can be implemented on either vector computers or parallel 

arrays. The Implementation of Jacobl's method is given In Section 5.1. 

Section 5.2 describes a new method. which we call Multi-color SOA. 

discusses its implementation on parallel machines. compares It to eXisting 

theory. and reports numerical comparisons to SOR without Multi-coloring. 

Section 5 3 describes a Multi-color SSOR method and Its efficient imple­

mentation on parallel architectures. Finally. Section 5 4 describes how to 

Implement block iterative methods such as block Jacobi and block SOR 

on these machines. 

Chapter 6 describes parallel conJugate gradient methods. The 

Implementation on the Finite Element Machine of the the standard conju­

gate gradient method is given in Section 6.1. Section 6.2 1 describes 

the Implementation considerations for parallel preconditioned conjugate 

gradient methods and Section 6.2 2 lists some common precondltloners 

and discusses the difficulty encountered In their Implementation on paral-
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lei machrnes. In Sections 6 2 3 and 6 2.4 we give preconditioners that 

are suitable for parallel machines. analyze when they can be applied. 

and relate them to the precondltloners of Dubois. Greenbaum. and 

Rodrlque[1979J and Johnson[l981 J. Section 6 2 5 gives numerical results 

for the precondltloners of Sections 6.2.3 and 6.2.4 on two example prob­

lems. 

In Chapter 7 we develop a detailed model for comparing parallel 

algorithms on an architecture like the Finite Element Machine. This 

model Is then used to analyze the algorithms In Chapters 5 and 6 as a 

function of the number of processors In the microprocessor array and 

also as a function of the machine's ratio of communication to arithmetic 

time. 

Chapter 8 summarizes the results of this work and describes areas 

for promising future research. 



CHAPTER 2 

The Finite Element Method 

This chapter gives a brief description of the finite element method. 

highlights the aspects of the method that are amenable to parallel com-

putatlon. and derives the finite element equations for two specific prob-

lems that are used in future chapters. 

2.1. Description of the Method 

The finite element method is a general technique for constructing 

approximate solutions to boundary value problems (Oden[l9811. Strang and 

Flx(1973». Suppose we want to solve the following second order nonho­

mogeneous elliptic partial differential equation with homogeneous Dirichlet 

boundary conditions' 

(2.1> 

where n is a bounded domain in R2 and the matrix ai/ <x) is symmetric 

and uniformly positive definite. 

To approximate the solution of (2.1> by the finite eiement method, 

we first write (2.1> In Its variational form: 

1 
Find u <x) €H 0 (fl) such that 

a(u,v) = (f,v) (2.2) 

where 

5 



and 

(w.v) = JWCx)VCx)dX 

n 

J 
2 a a 

a(u.v) = E aIICx)a-u Cx ) avCx) dx 
n /./=1 XI xI 

6 

Here H~ denotes the set of all functions v €H 
1 (m such that v=O on an 

where H 
1 em Is the set of all functions which together with their partial 

2 
distributional derivatives belong to L em. the space of square Integrable 

functions on n. 

If we choose the matrix all in (2.1> to be the identity matrix. we 

get Poisson's equation. 

-(u + u ) = f Cx .y) 
xx yy 

Cx .y) €n 
(2.3) 

u Cx .y) = 0 Cx .y) €an 

Likewise. the associated weak form of Poisson's equation can be 

obtained from (2.2). 

1 
Fmd u Cx .y) eHo (m such that 

for all 

S Vu Cx .y) • vv Cx .y)dxdy 

n 
= J f Cx .y)v Cx .y)dxdy 

n 

1 
vCx.y)eHo(O) 

where Vw is the gradient of w. 

(2 4) 

We now consider the approximation of the solution of (2.4) by the 

finite element method. A finite dimensional subspace ift CH~ (0) must 

first be chosen. This subspace typically consists of piecewise polynomi­

als defined over a trrangulatlon of n. called nh. where each trrangle IS 

called a finite element If the subspace V' IS spanned by the functions 
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.p I. i =1.2 .... n. called basis functions. we look for an approximate solution 

u
h <x ,y ) of the form 

n 
h 

u <x .y) = r: (X,.p,<x.y) 
J =1 

The substitution of (2.6) Into (2.4) yields 

f 'Vu
h 

<x .y) • 'Vl <x .y)dxdy = 

n
h 

for a/l v
h 

eV' . 

f f <x .Y)V
h 

ex .y)dxdy 

n
h 

(2.6) 

(2.7> 

h 
By choosing v =.pl' I =1.2 .... n in (2.7>. we get the following symmetric 

and positive definite system of linear equations for ~. 

KJ:1 = L (2.8) 

where 

(2.9) 

and 

The power of the finite element method lies In the choice 01 the basis 

functions .p r A linear polynomial IS uOlquely determined by its values at 

the three vertices of any triangle. Suppose.pl Is chosen to be that 

piecewise linear polynomial which has the value 1 at vertex V of the 
I 

triangulation and has the value zero at the rest of the vertices of the 

triangulation. Then PI IS a continuous function which belongs to H 
1 

(0) 

and is nonzero only on those triangles haVing V as a common vertex. 
I 

In addition. any CO -piecewise linear polynomial may be represented as a 
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linear combination of the ..p,·S. Functions belonging to are 

obtained by omitting those ..p/s that are defined to have the value 1 at 

h 
the VI'S on the boundary of n The points of nh 

for which ..pI is 

defined to be either 1 or 0 are often referred to as nodes. If the ..p·s 
I 

are linear as described above. the vertices VI will be the nodes. 

Alternatively. a quadratic polynomial is uniquely determined by its 

values at the vertices and at the midpoints of the sides of the triangle. 

Likewise. values given at ten nodes located two per side of the triangle. 

one at each vertex. and one In the center of the triangle uniquely 

determine a cubic polynomial. 

By choosing the .p /s to be piecewise polynomials with the value of 

either 1 or 0 at the points of the triangulation. the value of a, In equa­

tion (2.6) will be the value of u
h 

<x .y) at the nodal point ,. denoted 0 I' 

and we can write equation (2.8) as 

KA = L (2 10> 

The matrix K will be sparse due to the choice of the basis functions 

since the values of klJ will be zero If nodes I and i are not on a 

common finite element. In other words. row I will have at most as 

many nonzero off diagonal entries as node I has neighbor nodes (two 

nodes are called neighbor nodes if they share a common finite element). 

To illustrate this. Figure 1 shows a region dlscretlzed by triangular fiOlte 

elements. 



13~ (14 ~4"", (16 ~51~18 ~6 
(13~ (lS~ (17) 

9~(8/'1°~(lo~1~(12)2 -

(7)~ (9)~ (11~ 
578 

~
2) ",,(4) ",,(6) 

(1) (3)"" (5)"" 
134 

Figure 1. Region D1scretization 
18 elements; 16 nodes 
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Now. if linear piecewise polynomials are chosen for the basis functions. 

row 6 of K will have at most 6 off-diagonal entries; namely. k
62

• k
63

• 

k
65

• k
67

• k
69

• and k
6

•
10

. This sparsity will be a major consideration 

in the design of parallel algorithms for solving KJ1=L and will be 

addressed in Chapters 5 and 6. 

Each entry. kll' as defined by equation (29) is obtained by an 

integration over the domain nh. Since.p I and .p, in (2.9) are both 

nonzero only on finite elements that contain both nodes I and I. this 

Integration is only performed over these particular elements. Figure 1 

shows that the Integration Is performed ~ver six elements to calculate kif 

if i =1 and two elements otherwise. As an example. suppose i =6 and 1=7 

Then. from Figure 1 we obtain 

(2.11 ) 

Ukewlse. If I =6 and I =6 we get 

(2.12) 
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Lastly. If I =6 and J =8 then 

k68 = 0 (2 13) 

since nodes 6 and 8 have no finite element in common, These obser-

vatlons suggest a commonly used three step procedure for assembling 

the K matrix' 

(1) Zero out the storage that is to be used for K ThIs will usually 

be a symmetric storage structure In which the dIagonal and upper 

bands of K are stored, 

(2) Integrate over each element. one at a time. to calculate the 

element's contribution to the diagonal and upper bands of K 

For example. the integrations over element (1) In Figure , Yield 

the following contributions to K: 

kll J VP, 'VP, k'2' J VP, ' VP 2 
(1) (1) 

k22' f VP 2 'VP2 k,S fvp,'VPs 
(1) (1) 

kSS' + vps' VPs 
k
2S J VP

2
' VP

s 
( ) (1) 

These values comprise what IS commonly called the element 

matrix for element <l) and can be represented by 

2 s 

5 

(3) The values In each element matrix are added to the appropriate 

position In the global K matrix 
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This procedure can be adapted for a parallel computer with little 

modification since the Integrations over two different elements can be 

done simultaneously. This Is the topic of Chapter 4. 

Thus far only the solution of a scalar partial differential equation by 

the finite element method has been considered: however. the method can 

be applied to a system of equations as well. In particular. the equa­

tions that govern the static displacement of a body In plane stress will 

be a coupled sytem of two equations for the displacements of the body 

In the x and y directions respectively. The finite element method as 

applied to this problem will be described In the following section 

2.2. Plane Stress Equations 

The procedure for constructing the stiffness matrix K for a plane 

stress analysis of an IsotropIc linear elastic body n will be described in 

this section Similar descriptions may be found In Oden(1981]. Nome 

and deVrles(1978J. and Zlenklewicz(1971]. The problem IS to find the 

displacements In both the x and y coordinate directions of a 2-

dimenSional bOdy n that IS In plane stress. such as the membrane 

shown In Figure 2. 
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.. 
N.a=.a. 

an, n 

.. 
Na=a. 

FIgure 2. Plate In Plane Stress 

First. we Introduce the notation that wIll be usea In thIs discussion 

0, , 

~ex .r) = 0
22 

stress vector 

0'2 

£11 

,£.u.y) = £22 
stram vector 

€'2 

.u.. ex .r) = [:] dIsplacement vector 

a 
0 ax 

0 0 
a 

= 
c3r 

a a 
or ax 

1 v 0 E=Young's modulus 

E 
E 

1 0 = v 
v=Po/sson's l-v ratio 

1-v 
2 

0 0 
~ 
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nx .ny normal components a0
2 

body forces per Unit area 

surf ace tractIons applied on a0
2 

dIsplacements on an
1 

The conservation of linear momentum for the body 0 states that any 

portion w of the body must be In static eqUilibrium: 

J COT .a.+L)dxdy = .Q. 

w 
(2.14) 

For sufficiently smooth .a. and L we get the partial differential equations 

of equilibrium for the body o. 

(2 15) 

A material that is linearly elastiC. homogenous. and IsotropIc satisfies the 

constitutive equation which relates the stresses to the strainS 

(2 16) 

The strains and displacements are related by 

£.. = OiL (2 17> 

The substitution of £2.16) and (2 17> into (2 15) Yields the partial dlf-

ferentlal equations In terms of the displacements only 

(x .y) €o (2 18) 
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The boundary conditions for (2.18) are. 

A 

.u.(s) = M..(s) s €an
1 

(2.19a) 

(2.19b) 

The variational form of the problem In (2.18). (2.19a). and (2.19b) Is 

easily found to be 

r (~) T EO.u.dxdy = ry"T 
Ldxdy T J y"

T 
iLds 

'h t1 an
2 

(2.20) 

1 1 A 

for all VI €H (n>. U I €H (n>. 1= 1.2 and u. =M.. on an
1 

and Y.. =Q on an
1

· 

Before we Introduce the finite element approximation to (2.20) an 

alternate derivation of (2.20) will be given. This derivation comes from 

the minimization of the potential energy of the body. The potential 

energy functional X~) Is given by 

1J T J T J T .. X(w.) = 2' (O~) E<D~)dxdy - ~ Ldxdy - ~ JJ.ds 

n n an
2 

which is to be minimized among all 

1 
~f.H = ~ E 

(221) 

To find the value of M..€H~ that minimizes X. the first vanatlon c5(X<u..y..» 

Is formed and set to zero. 

1J T 1J T f T c5(X<u.;y»-2 (Ou.) E<DY..)dxdy~ (OY..) EOu.dxdy- Y.. Ldxdy 

n n n 

J 
T.. 1 

- Y.. Slds = 0 .for all V €H
E an

2 
0 

(2.22) 

where H ~o ={ Y..I VI c:H 
1 

(m ~=O on an1 } 

The boundary conditions (2 19b) are natural boundary conditions and do 
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not need to be explicitly Imposed. They will automatically be satisfied by 

the minimizer of (2.21>. Now. since E=ET. (2.22) becomes (2.20), 

The solution of (2.20) IS approximated by the same technique 

described in the last section for POlsson's equation. that IS. we choose 

a finite dimenSional subspace 0 CH' (n> and look for the approximation 

!J..h ex .y) of the following form: 

h 
!J. ex.y) = ~.d (2.23) 

where ~ IS a 2x2n matrix of piecewise continuous basIS functions and !i. 

Is a 2nx 1 vector containing the unknown values of the components of 

!J.h ex .y) at the n nodal points. In particular for linear basIs functions. if 

h 
we just conSider the value of !J. ex .y) where ex.y) is a pOint Inside a tri-

angular finite element (e) with nodes 1.2. and 3. (2.20) becomes 

where 

and 

h (e) 
!J. 

.d(e) 
= 

o 

u, 

v, 

u
2 

v
2 

u
3 

v3 

(224) 

The .p·s In (224) will be piecewise linear polynomlnals defined on tn­
I 

angular finite elements as In (2 9>' Note that the same baSIS functions 

h 
are used for both components of!J. In (2 24) since both components 
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are elements of the same subspace 1/1. 

The substitution of (2 24) Into <2 20> Yields the following element 

matrix and vectors: 

K(6) 
= f (1)>6) T E£»6 dxdy 

n6 

L(6) 
= f (4J6) T Ldxdy (225) 

n 

(6 ) j (lIIe)TNadS .a = 
an

2 

The equations that govern the solution at a particular node I are 

the global equations 

K~ = L T .a. (2.26) 

and must be assembled from (2 25) by adding the contributions over 

each element to the appropriate pOSition in K as was described In the 

last section. 

Suppose that once the displacements .Q. are found. the stresses .a. 

are to be calculated. From (2 16). (2.17>. and (2.23). the stress vector 

.a can be expressed as 

<227> 

Since the elements of III are linear. 04J will be a matrix of constants 

This Implies that the stresses will be constant over a given element. 

ThiS can be seen since on a particular element e. III will contain only 

three nonzero baSIS functions 10- each row that are associated with the 

three nodes of (e) Therefore. we may also write 

(228) 

~) ~) 
where III IS a 2x6 matrix and.o. IS a 6x1 vector 
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(e) (e) 
Hence. once.o. IS found the solution of.a only reqUires one matnx 

(e) 
multiplication. In fact. this stress matrix E04I can be saved from the 

calculation of K (e) 10 (2.25). 

As Illustrated above. the calculation of .a (e) requires only the values 

of .0. (e) and E[)4I (e). This suggests a parallel implementation of the 

stress calculation by elements is possible. A more detailed explanation 

of this is given in Chapter 4 for linear basis functions defined on a tri-

angulation of a plate under plane stress 



CHAPTER 3 

The Finite Element Machine 

This chapter gives a brief summary of parallel architectures that 

have been built or are under development and then desCribes In detail 

the architecture of the Finite Element Machine. 

3.1. Review of Parallel Architectures 

For our purposes. It Is convenient to classify parallel architectures 

into two categories. namely. vector computers and array computers. A 

vector computer will be considered to be a computer that has special 

hardware Instructions which accept vectors as operands. These instruc­

tions may be Implemented via hardware pipelines as was the case for 

the TI-ASC and the CDC STAR 100 In the early 1970's and currently for 

the CDC CYBER 203 and 205 and the CRAY-l Alternatively. the ele-

ments of the vector may be loaded Into separate processing elements as 

is the case for the ILLlAC-IV <The ILLlAC-IV may also be conSidered to 

be an array computer). A description of the architecture of these 

machines as well as the state of the art In 1977 of algOrithms for solv­

Ing partial differential equations on them IS given In Ortega and 

VOlgt£19771. 

An array computer conSists of an array of processing elements each 

of which may execute instructions. These elements may be Simple chips 

to perform speCific functions or they may be complete processors 

Array computers fall Into two classes depending on the manner In 

which they execute Instructions (Flynn[19761> In the first class. the pro-

18 
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cesslng elements either all execute the same instruction or no Instruction 

on different data. This class Is called SIMO (single Instruction. multiple 

data). The ILLIAC IV is an example of a SIMD machine Alternatively. 

the processors may execute different instructions In an asynchronous 

fashion on different data. This class is called MIMO (multiple instruction. 

multiple data). 

DUring the course of a computation these processing elements must 

commUnicate with each other. Since prOViding a commUnication link 

from a processor to every other processor becomes prohibitive as the 

number of processors increase. a particular connection strategy also 

Influences how we will further classify array architectures. Three major 

strategies as summarized by Ortega and VOIgt(l9831 are listed below 

(1) P processors are arranged In the form of a regular lattice. 

Each processor has Its own local memory and IS permanently 

connected to a small subset of other processors. called neigh­

bors. 

(2) P processors with local memory are connected to each other by 

a bus. 

(3) P processors and M memories are connected by an an elec­

tronic switch so that every processor has access to a subset. 

pOSSibly all. of the memories. 

Lattice arrays Include the ILLlAC-IV. the Distributed Array Processor 

(OAP) of International Computers Limited (Cryer[l981]). and the Systolic 

Arrays of Kung£l980] The ILLlAC-IV and the DAP are SIMD machines 
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The Systolic Arrays are special purpose computers on a chip with a 

group of processing elements working in a SIMO fashion to produce out­

put for other groups of processing elements. Hence. the Idea Is to 

have simple and cheap processors that calculate and transmit data In a 

regular fashion for a particular application. 

Examples of two MIMD bus arrays are the CMIt at Carnegie Meilon 

University (Swan[1977]) and ZMOB under development at the University of 

Maryland (Rleger.Trlgg. and Bane[1981]). 

Examples of two MIMD switched arrays are the C.mmp of Carnegie 

Mellon University (Fuller and Harblson[1978]) and the Hetrogeneous Ele­

ment Processor (HEP) bemg Implemented by Denelcor. Inc. 

(Smlth(1978]) . 

3.2. The Finite Element Machine Architecture 

Of particular Interest to us Is the architecture of the Finite Element 

Machine (FEM) at NASA Langley Research Center. The FEM Is an array 

of microprocessors that can operate asynchronously. and can be classi­

fied as an MIMD computer that Is arranged In a square lattice confi­

guration with dedicated local communication links between any processor 

and its eight nearest neighbors. However. it is not strictly a lattice type 

array since a bus connects all the processors. 

To summarize the motivation for FEM. consider the structure In Fig­

ure 1. 
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Figure 1. Example structure 

This structure IS composed of simple rod elements of two nodes each. 

Two nodes are said to be connected if they are on the same rod. For 

example. node 1 Is connected to nodes 2. 5. and 10 As was seen In 

Chapter 2. the finite element method produces a block stiffness matrix 

that has as many nonzero off-diagonal blocks In row I as node I has 

connected nodes. If an Iterative method Is used to solve the equations. 

the solution at node I Is only a function of the Information from node I's 

connected nodes. This suggests assigning a processor to each node and 

providing It with local communication links to processors containing con-

nected nodes. For FEM. the Idea was to provide a fixed number of 

local links per processor and to provide a global bus to handle the 

connectivltles that are not satisfied locally. For example. If eight nearest 

neighbor links are available. processor 7 can operate with local links 

only. but processor 1 must communicate globally with processor 10 

A detailed description of the machine Is given in the following para-

graphs. Most of this material can be found In Jordan. et al(1979). Jor-

dan[l9781. and [19791. Jordan and Sawyer[19781. and Podsladlo and Jor-

dan(198l). Additional hardware Information was obtained through personal 

discussions with Tom Crockett. Judson Knott. and David Loendorf at 

NASA A current status report on the hardware. system software. and 
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application software can be found in Storsaall. Peebles. Crockett. Knott. 

and Adams(1982). 

The FEM architecture as shown in Figures 2 and 3. consists of a 

controller and individual microprocessors. which we will call nodal pro­

cessors. The controller Is connected to the nodal processors via a glo­

bal bus. Each nodal processor of the FEM is connected to Its eight 

nearest neighbors via the two-way local communication links. These 

local links also connect the edges of the FEM In a toroidal wrap around 

fashion so that every processor has eight nearest neighbors Each pro­

cessor can also communicate globally to its non-nearest neighbor pro­

cessors by using the serial global bus. Each microprocessor has Its 

own operating system and memory. Once operation begins. each pro­

cessor executes its program independent of the controller. This archi­

tecture can be classified as an MIMD (multiple Instruction. multiple data) 

machine with no central shared memory. 

3.2.1. Controller Hardware 

The controller Is a Texas Instruments 990/10 mini-computer. It has 

128K words of memory and four 5-megabtye disk drives. A printer IS the 

output device for printing flies from the disk of the TI 990 That IS. 

output from the nodal processors is transferred over the global bus and 

placed on a file on the 990 disk. for printing when needed. 

The DX-10 full screen editor on the 990 is used by the applications 

programmer to edit. compile. and link the programs that are to be run 

on FEM The necessary data files for each processor can be created 

by the editor and stored on the 990 disk Alternatively. for complicated 

problem geometry. a program could be written to split a global data file 
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into appropriate data flies for each processor. Nevertheless. these data 

flies and the linked program file are stored on the 990 disk until time 

for downloading to FEM. This downloading Is accomplished by executing 

commands on the controller 

3.2.2. Nodal Processor Hardware 

The nodal processors are comprised of three hardware boards each. 

namely. the CPU board, the 10-1 board. and the 10-2 board. These 

components will be described in the following sections. 

3.2.2.1. CPU Board 

The CPU board contains a TI 9900 16 bit microprocessor. 16K bytes 

of read only memory (ROM), 32K bytes of random access memory (RAM). 

and an Advanced Micro Devices AM9512 floating point Chip. An Illustra­

tion of a nodal processor is given In Figure 4. 

The ROM Is reserved for NODAL EXEC. the nodal executive operating 

system. and PASLIB. the PASCAL subroutine library that contains various 

basic routines such as SEND and RECEIVE for transmitting data. 

Approximately 4K of RAM Is also reserved for NODAL EXEC. The 

remaining 28K RAM is available for program code. run time data struc­

tures. and special user allocated data storage. called data areas. The 

user may request as many as 32 separate data areas of convenient 

sizes for a particular application program These areas will be used to 

store the problem data that Is downloaded from the 990 disk. In prac­

tice. the program code Is loaded at address 8000 hexadeCimal toward 

the bottom of the stack and the data areas are loaded directly above 

the NODAL EXEC towards the top of the stack as depicted below. 



STRUCTURAL 

MODEL 

MICROPROCESSOR 

MODEL 

FIGURE 2. THE FINITE ELEMENT MACHINE 

23a 



CONTROLLERI r ,7 , r, r, ?' ~ r ~ I 

, , 
, 

, , , 
" 

ARRAY 
LOCAL LINKS 

FIGURE 3. THE FINITE ELEMENT MACHINE ARCHITECTURE 

GLOOAL BUS 

N 
W 
0"' 



FROM 
NEIGHBORS 

STATUS 
rcbNDITION IMASK 

N ~ J- PROGRAM COUNTER 
r-i I 

GL 
B 

[\ 

" 

NE >: ~ WORKSPACE POINTER 
• 
· r 
· MEMORY 

NW~ J- ROM 

"-- CURRENT INSTRUCTION 

rmili//; FPU 

~ LOCAL IN Vim/II! 
~ BUS INTERFACES 

'/ / / / / / / / / / II I I 1// 
RAM 

~ 

REGISTER 0 .. 
• · · 

~ ~ REGISTER 15 

{t 

I-

f 

INTERRUPT 
CONTROL 

ICONTROL UN IT I 
INSTRUCTION REG.I 

FLOATING POINT 
UNIT 

POP/PUSH 

DATA 
STACK 

ARITHMETIC/LOGIC 
UNIT 

1ST OP. 2ND OP. 

1) ~ t-

f 
It 

DATA REGISTER J , 
'I I j} I 

" 

COMMUNICATIONS T~ 

REGISTER NEIGHBORS 
UNIT 

IN 

L C 
o 0 
C N 
A T 
L R 

0 
L 

B 
U 
S 

F 
L 
A 
G 
S 

'- PO 

• • · 

OUT 

0 
U 
T 
P I 
U 
T 

,.--. 
· · · It 

_ ...... 
'~ 

~ 

--7' 

SIG 
FLA 
NET 

N 

NE 

• 

NW 

NAL 
G 
WORK 

FIGURE 4. THE FEM NODAL PROCESSOR 
N 
W 
n 



24 

PGM address 8000 (hex.) 

t 
DATA 
AREAS 

NODAL 
EXEC address FFFE (hex,) 

The AM9512 floating point chip with a clock frequency of 2 MHz 

provides single precision (32-blt. 25 bit mantissa) and double precisIon 

(64-blt. 57 bit mantissa) add. subtract. multiply and divide operations. To 

use this capability. the operands must be loaded by software which 

requires approximately 358 microseconds for two single precision 

numbers. Once the operands are loaded. a single precIsion floating 

point add or subtract can be performed m approximately 29 

microseconds. a single precision floating point mUltiply In approximately 

99 microseconds. and a single precision floating pomt divide m approxl-

mately 114 microseconds. These times for loading the operands were 

provided by Tom Crockett at NASA Langley Research Center and the 

arithmetic times can be found In the Advanced Micro Devices 

Manua1[1979]. 

3.2.2.2. 10-1 Board 

The hardware circuits for the local communication links and the 

sum/max network are on the 10-1 board. As stated earlier. each pro-

cessor is connected locally to Its eIght nearest neighbors Each proces-
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sor has 12 a-bit by 32-bit FIFO hardware queues for receiving values 

from its neighbors. likewise. an output register IS available for sending 

values to neighbors. Software queues for synchronous and asynchronous 

data receiving are also Implemented. An Illustration of the local com­

munication links Is given In Figure 5. 

A separate hardware circuitry was designed by Jordan for calculating 

maximums and sums across processors (Jordan. Scalabrlm. and Cal­

vert[l979]). The sum/max hardware can be envisioned as a binary tree 

with each processor Initially at the leaves of the tree. The values from 

pairs of processors are added and passed to the next level In the tree. 

The procedure Is repeated until the final result IS obtained. This allows a 

sum to be calculated In 1092P time where P Is the total number of pro­

cessors. An algorithm for finding the maximum value when only local 

links and a global bus are available can be found In BokharI[1979]. 

3.2.2.3. 10-2 Board 

The hardware for the global bus connections. a signal flag network. 

to be described below. and the processor's self Identification tag is 

resident on the 10-2 board. 

In addition to serving as a connection between the controller and 

FEM. the global bus connects each processor to every other processor. 

The bus Is 16 bits wide; therefore. one single precision number requires 

two transmissions. Information to be sent on the bus Is tagged with a 

source. destination. and mode tag. The mode Indicates whether the data 

Is to be broadcast to all processors or if it IS to go to the destination 

processor. Since contention Is likely to occur for the bus. the outgoing 

data Is buffered Input from the bus Is detected by the address detector 
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and queued In an Imput buffer. An overview of the global bus is gIven 

In Figure 6. 

Each processor Is part of eight separate signal flag networks. flags 

o through 7. which can be used for synchronization or decision making. 

Each flag can be enabled Into or disabled from Its network by a PASLIB 

routine. Data area 0 contains a list of processors. both local and glo­

bal. among which Information must be shared during program execution. 

These processors will be called logically connected processors. The 

major function of the flags Is to answer the following questions. 

Any(k)? Is Flag k set ~n any enabled logically 
connected processor? 

All(k)? Is Flag k set 1n all enabled logically 
connected processors? 

Sync(k)? Was All(k) true prev10usly? 

Plag 0 has a FIRST bit. This Is used to determine If this processor 

was the first one to set the flag. An Illustration of the sIgnal flag net-

work is given In Figure 7 

The processor's self Identification number Is hardwIred on the 10-2 

board. A PASLIB routine Is used to return the value of the selt-Id as 

needed during program execution. Typical instances In which the self-Id 

Is necessary are decision making during computatIon and Interprocessor 

communrcatlon. 
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Presently at NASA. 4 processors are operational with 16 scheduled 

for the Immediate future and 36 scheduled for December 1982. The ini­

tial design was for 1024 processors configured In a 32 by 32 array. 
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CHAPTER 4 

Parallel Matrix Assembly and Stress Calculation 

4.1. Parallel Matrix Assembly 

This section describes how to assemble in parallel the nonzero 

coefficients of the stiffness matrix K. as described In Chapter 2. on an 

array computer like the Finite Element Machine A description and 

anaiysis of the assembly process with and without communication between 

processors will be given. 

Figure 1 shows a region that Is dlscretized by eight triangular finite 

elements which are comprised of three nodes each. 

p Q 

(0,2) (2,2) 

( 0,0) R 01~=~~=~O (2,0) 

Figure 1. Region Discret1zed by F1nite Elements 

If there are d unknowns at each of the nine nodes. the resulting stiff­

ness matrtx K will have dimension 9dx 9d . These nine nodes (and asso­

ciated data) are partitioned to the three processors (P.Q.A> so that dur­

ing the solution of K!l.=L each processor will calculate exactly 3d unk­

nowns. 

The coefficients of K that are reqUired by processor P for the solu­

tion of the unknowns at nodes 4.5. and 7 must either be calculated by 

28 
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P or calculated by processors R or Q and communicated to P before 

the dtsplacement calculation begins. In both cases. storage must be 

allocated In P's memory for these coefficients. The amount of storage 

depends on the number of nodes aSSigned to p, the number of equa-

tlons at each node. and the number of nodes that share a common fln-

Ite element with P's nodes. In particular. for d equations at each node. 

a dxd coeffiCient matrix must be calculated for every pair of nodes on 

the same finite element if at least one of these nodes IS assigned to 

processor P. 1n addition. one dxd symmetric matrix must be found for 

each node that Is aSSigned to P. The matrices that must be stored In 

P's memory for the region In Figure 1 are Indicated in Table 1. The 

nodes (4,5.7) are labeled Interior and the nodes in other processors that 

share a common finite element with any of these nodes are labelled 

Exterior and [xl represents a dxd matrix. 

4 

5 

7 

Interl.or 

457 

[x] [x] [x] 
[x] [x] [x] 
[x] [x] [x] 

Exterl.or 

1 2 3 6 8 

[x] [x] 

[x] [x] [x] [x] 
[x] 

Table 1. K Matrl.x Coeffl.cl.ents for Processor P 

For an Iterative solution of KJJ..=L. Table 1 contains all the coefficients 

needed for processor P to solve for the displacements at nodes 4. 5. 

and 7. If a direct method such as Cholesky factorization were used 

Instead. extra storage must be allocated for the coefficients that wIll "fill 

In" the band of the upper triangular factor of K dUring the decomposl-

tlon process For Figure 1. space must be reserved In processor P for 

the 4-3. 4-6. 7-6, and 7-9 dxd fill In matrices. In particular, space 
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must be allocated in Table 1. for the fill in coefficients 4-3. 4-6. and 

7-6 

We now describe how to assemble the coefficients In Table 1 by 

considering node 5. To find the (xl coefficients In the second row and 

second column of Table 1 (denoted by 5-5). the coordinates of nodes 

2.3.6. and 8 In addition to those of nodes 4 and 7 must be available to 

processor P since node 5 is on elements E1. E2. E3. E4. E5. and E6 

as shown In Figure 1. Hence. the 5-5 (xl coefficients can not be found 

Without coordinate Information that resides In other processors In fact. 

the same conclusion holds for every [xl In Table 1. ",(his observation 

leads us to consider the following strategy: 

(1) Load each processor's memory at the outset with all problem data 

necessary for the calculation of the coefficients that are required 

In the solution of the displacement equations at its collection of 

nodes. 

(2) Implement one of the following two policies. 

POllcy.l Each processor will calculate the upper triangular and 

diagonal coefficients associated with its collection of nodes as 

well as the coefficients associated with the connection between 

the processor's Interior and exterior nodes. Communication 

between processors will not be required for this policy. 

Policy g. Each processor will calculate the upper triangular and 

diagonal coefficients associated with ItS collection of nodes The 

coefficients that are associated With the connection between the 

processor's Interior and exterior nodes Will be sent and received 
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between processors. In particular. the lower triangular coefficients 

must be received and the upper tnangular ones sent This com-

munlcatlon can be done on the Finite Element Machine via the 

local neighbor links or the global bus. 

In either case. all the coefficients that are necessary for the dls-

placement calculation will be stored In the memory of the proces-

sor. 

Both strategies can be Implemented by providing each processor wIth 

a table of elements and their associated properties (type. thickness. etc.). 

coordinates of Intenor and exterior nodes. and associated processors for 

the exterior nodes for use In data communication. Typical problem data 

for processor P Is given in Table 2. 

Global Node Node 
Elements Numbe-r-- Coordl.nates Processor 

8 7 5 4 (0,1 ) 

5 6 8 5 (1,1 ) 

6 5 3 7 (0,2 ) 

2 3 5 1 (0,0) R 

5 4 2 2 (1,0 ) R 

4 5 7 3 (2,0) R 

1 2 4 6 (2,1 ) Q 

8 (1,2 ) Q 

Table 2. Problem Data for Processor P 

Durtng the assembly prDcess. integratIons are performed over the e/e-

ments (one at a time) In a processor's element table and the resulting 
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contributions are added to the appropriate global coefficients For exam-

pie. integrations over element 4-5-7 (E6) Yields contributions to the 

coefficients shown below. 

4 

5 

7 

4 5 

(x] 

[x] 

7 

(x]~ [x] 

[x] 

Now consider the element 5-4-2 (E5). Processor P calculates the 

following contributions for the cases of commmunacation (Policy 2) and 

no communacatlon (Policy 1> between processors respectively while pro-

cessor R calculates the same contributions regardless of the policy. 

2 4 5 2 4 5 2 4 5 

2 

[ 
2 :[[Xl [x] [X

J 
4 [x] [X~ 4 UXl [x] [X~ 
5 [x] 5 [x] [x] 

Processor P Processor P Processor R 
(Pohcy 1) (Pohcy 2) 

This IS possible because processor R also has element 5-4-2 In ItS 

element table For PoliCY 2. the 4-2 and 5-2 contributions must be 

sent by processor R to processor P and received by processor P. 

whereas for Policy 1. the 4-2 (or 2-4) and the 5-2 (or 2-5) contrlbu-

tlons are calculated by both processors P and R thereby resulting In a 

duplication of effort Similar arguments hold for the 5-5 contributions 

from the Integrations over elements El.E2.E3. and E4 In Figure 1. The 

amount of communacatlon overhead and effort duplication are analyzed an 

section 42 
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The output of the assembly process will be the data structures 

KCOEFF and CONNECTED_TO which descnbe the K matnx coefficients 

necessary for the calculation of displacements at processor p's nodes. 

and the data structure SEND_TO which descnbes the processors to which 

values from P must be sent dUring displacement calculation. These 

structures are Illustrated below for the region of Figure 1 

Node KCOEFF Node CONNECTED_TO 

4 [4] [5] [7] [1] [2] 4 5 7 1 2 

5 [5] [4] [7] [2] (3] [6] [8] 5 4 7 2 3 6 8 

7 [7] [4] [5] [8] 7 4 5 8 

Node SEND_TO 

4 R 

5 R Q 

7 Q 

It IS possible to use more space effiCient storage structures since both 

the upper and lower nonzero parts of the symmetnx K matrix are stored. 

However. these structures were Implemented to allow for ease In the 

computation required by the Iterative solution algorithm for the dlsplace-

ments Also. If many processors are available so that a small number 

of nodes may be assigned to each processor. thiS extra storage Will not 

be prohibitive 

A routine that uses Policy and the data structures described 

above was written for a FEM of any number of processors and Imple-

mented on a 4 processor FEM for the equations of plane stress on a 

region dlscretlzed by linear triangular elements as shown In Figure 2b 

The same Ideas can be used for other partial differential equations and 

finite elements as well since the Influence of a particular partial 

-
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differential equation and finite element IS contained In a subprocedure 

that sets the value of the coefficients after performing integrations over 

the element 

4.2. Speedup for Parallel Matrix Assembly 

The speedup for the matrix assembly process IS the time to assem­

ble the matrix on a uniprocessor machine divided by the time to assem­

ble the matrix on an array with p processors. The processor efficiency 

Is defined to be the speedup divided by the number of processors: 

Speedup (p) = Time (1)/Tlme (p) 

Ef f IClency (p) = Speedup (p )/p 
(4.1) 

For a rectangular domain the speedup is easily calculated and will be 

described below for the symmetric stiffness matrix that results from a 

plane stress analysIs of a plate that has been dlscretlzed by linear tn­

angular finite elements. however. the same type of analysIs can be done 

for other problems and finite elements as well 

Let the plate be dlscretlzed so that N nodes are arranged In r 

rows and c columns as shown In Figure 2a 
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c k 

I 

r 

r=6.c=6.N=36 I =3.k =3.p =4 
F1gure 2a. Ciscreti%at10n Figure 2b. Four Processors 

k k 

I 
I 

I =2.k =3.p =6 I =l.k =3.p =12 
F1gure 2c. Six Processors Figure 2d. TWelve Processors 

First. the time required for a uniprocessor matnx assembly will be 

derived. Since K is symmetric. only the upper tnangular and the dlago-

nal part of K will be calculated. If each node In the plate represents 

d unknowns (d=2 for the plane stress problem). the K matnx can be 

partitioned such that each partitioned row represents the equations at a 

single node In the problem grid. Then for the discretization shown In 

Figure 2a there Will be.at most 3 dxd matrices In the stnctly upper tn-

angular part of each partitioned row and the diagonal entry Will be a 
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dxd symmetric matrix. These four matrices can be visualized as the 

contributions from a node's northwest. north. and east neighbor nodes as 

well as the contribution from the node Itself. The connectivltles of these 

neighbor nodes to the particular node C are shown in Figure 3. 

NW."J~ 
.~.E 

F1gure 3. upper Triangular Connections to Node C 

Now because of symmetry only (d
2 

td)/2 elements of the dxd matrix on 

the diagonal must be calculated. The off diagonal matrices on the other 

hand are not necessarily symmetric and also may be full so that all d
2 

elements must be formed. The total number of entries that must be 

calculated for the diagonal matrices and the matrices In the upper trl-

angular part of K are Itemized In (42). 

N (d
2 

td)/2 for the diagonal matrices 

(N-c)d2 
for the north matrices 

(4.2) 

(N-r)d
2 

for the east matrices 

(N -r-c tl)d
2 

for the northwest matrices 

Hence. the total time (In Units of the number of entries) needed to 

assemble the K matrix on a uniprocessor machine is 

Time (1) = (3.5N -2r -2c + 1)d
2 to 5Nd (4.3) 

Next. the time to assemble K In parallel will be given for three dlf-

ferent array processor arrangements first. for the speCial case of all 

boundary processors. that IS. 4 processors arranged In a 2x2 grid. 

secondly. for p >4 processors arranged In a p/2 x 2 grid. and lastly for 
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P >4 processors arranged In a .fi!i x-fP grid. The p/2 x 2 grid IS 

only considered here for the purpose of analyzing the cases shown In 

Figure 2. In practice the problems of Interest will be large enough to 

utilize a processor grid that contains interior processors For all three 

cases. assume N nodes are partitioned to p processors with each pro-

cessor receiving an Jxk grid of nodes as Illustrated In Figures 2b. 2c. 

and 2d 

The number of upper triangular and diagonal coefficients that must 

be calculated by the lower right corner processor when processors are 

arranged In a 2x2 grid is Itemized in (4.4). This lower right corner 

processor IS the limiting processor In the sense that It has more data 

communIcatIon to perform. 

Jk (d
2 

+d)/2 for the dIagonal matrices 

Ikd
2 

for the north matrices 
(4 4) 

Ikd
2 

for the northwest matrices 

J(k-1)d 
2 

for the east matrices 

For Policy 1. extra time must be added to (44) to account for the 

redundant calculation of the west matrices for the non-interior nodes of 

the processor For POliCY 2. these values must be received Instead of 

calculated and the non-interior upper triangular values sent The 

number of duplications for Polley and the number of sends and 

receives for Policy 2 are given by (4 5) 

DuplicatIon (4) = Id
2 

ReceIVe (4) = Id
2 

(4 5) 

Send (4) 
2 

= (2k't/-Ud 

Let a and b represent the number of coeffiCient calculations reqUired to 
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equal the time of one send and one receive ope rattan respectively 

Then. the total time for the parallel matrix assembly Is given by (4 6a) 

and (4.6b) for Policies 1 and 2 respectively. 

Time 1 (4) = 3 5ikd
2 

+0 5,kd 

(4.6a) 

Time 2 (4) = [3 5,k -I foa (2k +1-1 >+b/ld
2 

+0.5,kd 

The speedup and efficiency can now be calculated by uSing (4 1> 

These values are given In (4 7a) and (4 7b) for Polley 1 and 2 res pec-

tlvely. 

SpeeduPl (4) = 

Ef f IC/sney, (4) = 

(3. 5N -2, -20 + l>d
2 

+0.5Nd 

3.5ikd
2 

+0 5,kd 

(3.5N -2, -2c + 1 )d
2 

+0.5Nd 

3 5Nd
2 

+0.5Nd 

(3.5N -2, -2c + 1 )d
2 

+0 5Nd 
SpeeduP2

(4) = 

Ef f IClency 2 (4) = 

[3 5,k +Cb,-i foa (2k +1-1»]d
2 

foO 5,k 

(3.5N -2, -2c + 1 )d
2 

+0.5Nd 

(4.7a) 

(47b> 

If P >4 processors are arranged In a p/2 x 2 grtd so that each 

processor IS on the grtd boundary. the number of upper trtangular and 

diagonal coefficients that must be calculated by the limiting processors 

on the left boundary of the processor array IS Itemized In (4 8) 

ik (d
2 

+d)/2 for the diagonal matrices 

/kd
2 

for the north matrices 
(4 8) 

J Uc-1>d
2 

for the northwest matflces 

/kd
2 

for the east matrices 



39 

For Policy 1. the redundant calculation of the south and southeast 

border matnces must be added to (4.8). This duplication and the 

receive and send communications that are necessary to Implement Policy 

2 are given In (49). 

Dupllcat/on(p) = (2k-t/-l>d
2 

Send(p) = (2k-ti-lld
2 

Rece/ve(p) = (2k-ti-lld
2 

(4 9) 

The total time to assemble In parallel the K matrix for Policies 1 and 2 

IS given In (4.10a) and (4.10b) respectively. 

Time 1 (p) = (3.slk -t2k -l>d
2 

-to.slkd (4.10a) 

(4.10b) 

The speedup and efficiency are given by (4.11 a) (4.11 b) for Policy 1 and 

Policy 2 respectively. 

Speedup 1 (p) = 

Ef f /c/ency 1 (p) = 

SpeeduP2(P) = 

(3.sN -2r-2c -t 1M2 -to.sNd 

(3.5Ik -t2k - /ld
2 

-to s,kd 

(3 SN -2r -2c -t 1 )d
2 

-to SNd 

(3.SN -tp (2k -1 »d
2 

-to.SNd 

(3 sN -2r -2c -t l>d
2 

-to sNd 

(3.SN -2r -2c + 1 )d
2 

-to.5Nd 
Ef f IC/ency 2 (P) = 2 

[3.SN -PI +p <a -tb )(2k +/ -l>]d -to SNd 

(4 11 a) 

(4 11 b) 

Lastly. assume that p >4 processors are arranged In a square 

grtd so that there Will be one or more processors com-

pletely inside the processor grtd For this case. the upper trtangular 

and diagonal coeffiCients calculated by a limiting Intertor processor are 
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Itemized In (4.12>' 

jJ«d
2 

+d )/2 for the dIagonal matrices 

ikd
2 

for the north matflces 
(4 12) 

/kd
2 

for the northwest matrices 

/kd
2 

for the east matrices 

For Policy 1. the duplicated calculations for this processor arrangement 

are due to the calculation In each processor of the west. south. and 

southeast matrices associated with the connection between the interior 

and exterior nodes and IS given In (4 13). The sends and receives 

necessary to Implement Policy 2 are also given in (4 13). 

DuplIcation (p) = (2k +2/ -l>d
2 

Send (p) = (2k +2/ -l>d
2 

Receive (p) = (2k +2/-l>d
2 

(4.13) 

The total time to calculate the K matrix for Policy 1 and 2 IS given In 

(4.14a) and (4.14b) respectively 

2 
Tlme

1 
(p) = (3.5,k +2k +2/-l>d +0.5/kd (4 14a) 

(4 14b) 

The associated speedups and effiCienCies are given by (4 15a) and 

(4.15b) 

SpeeduP1 Cp) = 

EfficlencY1 Cp) = 

(3.SN -2r -2c + 1 )d
2 

+0 5Nd 

(3 S/k +2k +2/-l>d
2 

+0 S/kd 

(3 SN-2r-2c +l>d
2 

+O.SNd 

(3 SN +P (2k +2/ -1 »d
2 

+0 5Nd 

(4.15a) 



SpeeduP2(p) = 

lEt f Iclency 2 (p) = 

(3.SN -2r -2c + 1 )d
2 

+O.SNd 

[3 S/k +<a +b )(2k +2/-l)ld
2 

+0 S/kd 

(3.5N -2r -2c + l>d
2 

+0.5Nd 

[3.5N +p Ca +b) (2k+2/-1)ld
2 

+0.5Nd 
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(4.15b) 

The values of the total assembly time. the time due to duplication. 

the speedup. and the efficiency are given for Policy 1 In Table 3. for 

the particular p. I. and k values correspondang to Figures 2b. 2c. and 

2d. 

e. l k Total Duplication Speedup Efficiency 

1 6 6 448 o 

433 135 12 3.32 

623 110 28 4.07 

12 1 3 65 24 6.89 

Table 3. Assembly T1mes for Figure 2. 

(Policy 1. ) 

83\ 

68% 

57% 

Equations (4.9) and (4 13) show that the duplication Is a decreasang 

function of the number of processors when p >4 but the efficiency also 

decreases since the duplication comprises a larger percentage of the 

parallel time. This Is also seen from Table 3. 

Results on a 2x2 FEM for the 36 node plane stress problem with 2 

equations per node and 9 nodes per processor (Illustrated In Figure 2b) 

show a speedup of 3.2 over the corresponding uniprocessor algorithm for 

Policy 1. This number compares quite well with the value of 3.32 In 

Table 3 

The values of the sequential assembly time. the parallel assembly 

time. the time due to communication overhead. the speedup. and the 
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efficiency are given for Policy 2 In Tables 4a. 4b. and 4c for the par-

tlcular p. J. and k values corresponding to Figures 2b. 2c. and 2d 

e. L k Total --- Overhead speedup EfficJ.ency 

1 6 6 448 0 

4 3 3 167 44 2.68 67\ 

6 2 3 138 56 3.25 54\ 

12 1 3 89 48 5.03 42\ 

Table 4a. Assembly TJ.mes for Figure 2. 

a=l:b=l (PolJ.cy 2) 

e. L k Total Overhead Speedup EfficJ.ency ---
1 6 6 448 0 

4 3 3 145 22 3.09 77\ 

6 2 3 110 28 4.07 68\ 

12 1 3 65 24 6.89 57\ 

Table 4b. Assembly Times for FJ.gure 2. 

a =0 S.b =0 S (Policy 2) 

e. L k Total Overhead Speedup EffJ.cJ.ency 

1 6 6 448 0 

4 3 3 134 11 3.34 84\ 

6 2 3 96 14 4.67 78\ 

12 1 3 53 12 8.45 70\ 

Table 4c. Assembly TJ.mes for FJ.gure 2. 

a =0.25.b =0.25 (PolJ.cy 2) 
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The values In Tables 3 and 4a. 4b. and 4c are for either a 2x2 or 

a p/2 x 2 processor grid Equations (4.13). (4 14). and (4 15) were 

used to predict the corresponding times for a plate with 768 nodes 

arranged In 16 rows and 48 columns In order to to investigate the effect 

of completely Interior processors when p >4. The results are given In 

Table 5 for Policy 1 and Table 6a. 6b. 6c. for Policy 2 

e. L k Total Overhead sl2eedul2 Effl.cl.enCl 

1 16 48 11012 0 

4 8 24 2880 32 3.82 96\ 

16 4 12 844 124 13.05 82\ 

64 2 6 240 60 45.88 72\ 

256 1 3 73 28 150.95 59\ 

Table 5. Assembly Times for 16x48 Plate 

(Pol.l.cy 1) 

e. L k Total Overhead Sl2eedul2 Effl.cl.enq 

1 16 48 11012 0 

4 8 24 3100 252 3.55 89\ 

16 4 12 968 248 11.38 71\ 

64 2 6 300 120 36.71 57\ 

256 1 3 101 56 109.03 43\ 

Table 6a. Assembly T.l.mes for 16x48 Plate 

a=l;b=l (Policy 2) 
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e. L k Total Overhead Speedup Eff.1.c.1.ency 

1 16 48 11012 0 

4 8 24 2972 126 3.70 93% 

16 4 12 844 124 13.05 82% 

64 2 6 240 60 45.88 72% 

256 1 3 73 28 150.85 59% 

Table 6b. Assembly T.1.mes for 16x48 Plate 

a =0 5;b =0 5 (Pol.1.cy 2) 

e. L k Total Overhead Speedup Effic.1.ency 

1 16 48 11012 0 

4 8 24 2911 63 3.78 95% 

16 4 12 782 62 14.08 88% 

64 2 6 no 30 52.44 82% 

256 1 3 59 14 186.00 73% 

Table 6c. Assembly T.l.mes for 16x48 Plate 

a=0.25;ba O.25 (Pol.1.cy 2) 

The results In Tables 3. 4. 5. and 6 show that for values of a and 

b below 0 5 the best policy for assembling the stIffness matrix K on an 

array of p >4 processors wIll be Policy 2. that IS. communIcation between 

the processors IS warranted. For the specIal case of 4 processors. the 

values of a and b must be lower than 025 before PolIcy 2 IS recom-

mended The condItions that must be satIsfIed for Policy 2 to be the 

best polIcy are eaSIly found from equations 4 6a and 4 6b. 4 lOa and 

4 lOb. 414a and 414b for the cases of a 2x2 processor grid. a 

pl2 x 2 grtd. and a ,yp x..yp grid respectively These condItIons 



are given In (4 16) below. 

a (21< +j -lHj (b -1) < 0 

<a +b) < 1 

for p=4 

for p >4 
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(4 16) 

When the problem of Figure 2a. IS solved with 4 processors. I =3 and 

k =3 so that the conditions in (4.16) become the following: 

For the problem of 

are used so that the 

Recall that a and b 

8a + 3b < 3 

(a +b) < 1 

the 16x48 plate. 1=8 

conditions in (4.16) 

55a + 8b < 8 

(a +b) < 1 

are the number of 

for p=4 

for p >4 

and k=24 

become the 

for p=4 

for p>4 

(4.17> 

when 4 processors 

follOWing: 

(4.18) 

K matrix coeffiCient calculations 

that comprise the time to send and receive a vaiue between processors 

respectively. Equation (4.16) shows that Policy 2 is more likely to be the 

optimal policy when the values of a and b are small The values 01 a 

and b Will decrease for two reasons. First. If the communication 

between processors is made faster a and b Will necessarily be less. 

Secondly. If higher order elements or more complicated integration rules 

are used the time to calculate one coefficient Will Increase which will In 

effect make a and b less For these situations. the assembly process 

should Include communication between processors. 

4.3. Parallel Stress Calculation 

The purpose of this section Is to deSCribe the stress calculation. 

ana aemonstrate that It can be made with no communication between 

processors. 
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After the system of displacement equations has been solved (the solution 

algorithms will be discussed in Chapters 5. and 6'>. the displacements at 

the nodal points in processor P's CONNECTED_TO data structure are in 

processor P's local memory since these values were either calculated by 

processor P or were passed to it during execution. Hence, the nodal 

displacement values on the elements In processor P's element table are 

resident In processor P's memory. As an Illustration, consider the pro­

cessor assignment In Figure 5. 

P Q 

Figure 4. Processor Assignment 

Displacements at the nodes 2. 3. 4. and 5 are in processor P'S local 

memory after the displacement calculation is complete. likewise. the 

same values are in processor a's memory. 

For the case of linear basis functions on the triangular elements. 

the stresses are constant across the triangles. The obvious question is 

whether processor P or a should calculate the stresses on a given tri­

angle. Define as the first node of the triangles In Figure 5 the node 

associated with the right angle and then number the remaining two 

nodes In a counterclockwise fashion. A good rule would be to require 

the processor that has the first node of the element as an Interior node 

to calculate the stresses on that element since this will require no 

duplication of effort. For example. processor P calculates stresses on 

element 1-3-2 and element 3-5-4 whereas processor a calculates 
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stresses on element 6-4-5 and element 4-2-3. 

Recall from Chapter 2 that the actual stress calculation. In the 

linear element case. Involves the pre-multiplication of the element's nodal 

displacement vector by a stress matrix that is a function of the coordi­

nates of the element's nodal POints. If the coordinate Information tn 

Table 2. is available to the stress procedure. this matrix IS rapidly cal­

culated. 

Stress calculation results for a 36 node plane stress problem (50 

elements) run on a 2x2 FEM showed a speedup of 4 over a uniproces­

sor version for the stress calculation. These results Indicate that a 

speedup of O(P) can be expected when p processors are used to cal­

culate the stresses. This perfect speedup Is a consequence of the 

absence of both commUnication between processors and redundant calcu­

lations. 

The use of higher order baSIS functions Will not produce constant 

stresses over an element. but the stresses can be calculated from the 

element's nodal displacements and nodal coordinate values Without any 

duplication of effort among the processors Hence. for these basis func­

tions. O(p) speedup IS also predicted 



CHAPTER 5 

Parallel Unear Stationary Iterative Methods 

In this chapter we consider the implementation of linear stationary 

Iterative methods for the solution ot 

K1L=L (5.1> 

on both vector computers and parallel arrays. For concreteness. we Will 

use the CYBER 203/205 as an example of the former and NASA 

Langley's Finite Element Machine as an example of the latter. The 

implementation of Jacobi's method is discussed In Section 5.1. the 

description and Implementation of a new method. Multi-color SOR, is 

given m Section 5.2. a Multi-color SSOR method Is discussed In Section 

5 3, and Implementation conSiderations for block lteratlve methods IS 

addressed in Section 5 4 

5.1. The Jacobi Iterative Method 

Let the matrix K With elements k be split as 
II 

K = D-L-U (52) 

where 0 IS the diagonal part of K and -L and -U are the strictly 

lower and upper triangular parts of K respectively Then the Jacobi 

iterative method for solvmg (5.1) IS given by 

(5 3) 

or 

k 1'1 k 
!L = B!L 1'.k. (5 4) 

where 

48 



-1 
~= 0 L 

B= 0-1 (L+U) 
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(5.5) 

and the matrix B is called the Jacobi iteration matrix. The conditions 

for the iteration (5.4) to converge are given below (Young[l971». 

Jacobi Convergence Theorem 

let K be a real symmetric positive definite matrix. Then the 

Jacobi iteration converges If and only If 0 +L +U is posItive 

definite. 

This theorem shows that the Jacobi method Is not guaranteed to con-

verge for all symmetric and positive definite matrices K such as those 

arising from finite element dlscretlzatlons as discussed In Chapter 2 

Closely related to the Jacobi method is the simultaneous overrelaxa-

tlon method (JOR method) defined by 

where 

1<+1 I< 
!J. = BJL + wa. 

B = wB + (l-w)J 
w 

(5.6) 

(5.7> 

and B IS called the JOR Iteration matrix. 
w 

The conditions for this iteration to converge are given below <Young 

[1971): 

JOR Convergence Theorem 

let K be a real symmetric posItive definite matrix Then the 

JOR I f d I If 2w-1D -K t Iterat on converges I an on y IS pOSI Ive 

definite. The condition that 2w -1 0 -K IS positive deflnue may 
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2 
be replaced by O<w<, <2 where u

mln 
~O Is the smallest 

-u
min 

eigenvalue of B. 

This theorem Implies that by appropriately choosing w. the JOR method 

can be made to converge If u min (0. However. this choice of w 

depends on knowledge of the smallest eigenvalue of B. In fact. Hayashi 

and Yokomana [1977) report that JOR diverged for finite element discreti-

zatlons of typical structural problems such as cantilevered beams and 

simply supported plates unless the relaxation parameter w was carefully 

chosen. Hence. for problems of interest to us. the JOR or Jacobi 

methods are not suitable because the eigenvalues of 

in advance and convergence is not guaranteed for 

B are rarely 

2 '-u . <w<2. 
mm 

known 

How-

ever. the Implementation of these methods on vector computers or paral-

lei arrays Is of Interest to us since these methods may successfully be 

used as precondltloners for the conjugate gradient method as discussed 

In Chapter 6 or In the Implementation of an SOR method as Will be dls-

cussed In Section 5.2. 

We now describe how Jacobl's method can be Implemented on a 

parallel computer For concreteness. we consider an elliptic equation of 

the form 

(5.8) 

on the unit square with Dirichlet boundary conditions where a Is a given 

constant and f is a given function of x and y. We dlscretize (5.8) with 

the usual second-order finite difference approximations <see. e g. For-

sythe and Wasow [1960]) which give the difference equations 
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(5.9) 

a 2 
~u/-t1./'tl-ul-1./-t1-tul-l./-1-u/-t1.1-11 = h'iI 

where h Is the spacing between grid points. 1./=1.2 ..... N. h (N-t1)=l. u,/ 

denotes the approximate solution at the I.lth grid point. and 1 =1 (Ih .Ih). 
II 

--
Now. the Jacobi method (5.4) for (5.9) can be written In the form 

used for Implementation as 

(k-tl> 1 (k) (k) (k) (k) 1 2 
u/j = t UIT1./-tui - 1./-t

u
l./'t1 -t

u
l./_1 1--];h '" 

a (k) (k) (k) (k) 

+fg£u/ -tl./'t1-ul-1./'t1 -tu1-l. i - 1 -u/ -t1./'t1 1 (5.10> 

First. we consider the Implementation of (5.10> on the CDC CYBER 

203/205 where vectors consist of contiguous storage locations and the 

efficiency of the vector operations Is strongly dependent on vector length 

with the maximum effiCiency achieved for very long vectors For vectors 

of length 1000 around 90% effiCiency Is obtained. but this drops to 

approximately 50% or less for vectors of length 100 and less than 10% 

for vectors of length 10 Hence. we would like to keep vector lengths 

on the order of 1000 or more whenever possible Now for (5 9) sup-

pose that h= a 1 so that N=99 and n =N
2 

_10
4 

If we conSider the boun-

dary values of the square region to be unknowns and order the grid 

points. Including the boundary points. from left to right. bottom to top. 

the unknown vector .!L In (5.4) Will have length (N +2)2 and the new 

Iterate !J..k + 
1 

can be completely vectonzed as a matrix vector product fol-

lowed by the addition of two vectors Also note that the relaxation 

parameter '" (5 6) causes no problem and hence the JOR method IS 
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implemented In the same fashion However. the boundary values must 

not be changed by the iteration and this IS prevented by use of the 

control vector feature on the CYBER 203/205 which allows suppression of 

storage of updated values into the boundary locations. (See. e.g. Lam­

biotte (1975) or Ortega and Voigt (1977) for more details on this pro-

cedureJ Since the calculation of new values corresponding to the boun-

dary points is superfluous. an inefficiency of approximately 4% for N=99 

is introduced: however. almost full efficiency of the vector operations 

results. 

Next. we describe the Implementation of (5.10) on the Finite Element 

Machine. Now. the grid point stencil for (5 9) is given In Figure 1. 

Figure 1. Stencil for (5 9> 

and matches exactly the eight local neighbor connections of the FEM 

that was discussed In Chapter 3. Hence. If we have as many FEM pro-

cessors as the N interior grid points. each interior pOint and Its aSSOCI-

ated row of K matrix coefficients and L vector component could be 

assigned to one processor. The boundary nodes would not be assigned 

to processors. but instead their values are stored In the processors 

which need them. The data communication between processors can be 

done completely With the local communication links and the convergence 

flag In all processors is checked by the Signal flag network Let JL
p 

and ~ denote the portions of JL that are aSSigned to processor p and 
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the logical neighbors of processor p respectively: then. the algorithm that 

Is executed In each central processor Is given below: 

For k=1.2 •..• k
max 

do 

(1) Solve for k + 1 

~ 

k+l 
(2) Send ~ to the logical neighbors 

via the local links and global bus If needed. 

(3) If II k+l - uk II < 
1Lp -p 00 

€ raise the convergence flag. 

(4) If the convergence flag Is raised In all processors then stop 
else continue. 

k+l 
(5) Receive 1Ln from the logical neighbor 

processors via the local links and global bus if needed. 

Algorithm 1. Parallel Jacobi (One pOint/processor) 

However. In practice it will most certainly be the case that the 

number of Interior grid points N will greatly exceed the number of pro­

cessors p. For this situation. we simply assign eN /p] points .per pro-

cessor In such a way as to take advantage of the local links of FEM 

For example. suppose that N =4p . Then we assign the grid POints to 

the processors as shown In Figure 2. 
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o o o o o o 

o o o o o o 

o o o o o o 

o o o o o o 

Figure 2. Processor Assignment for Jacobi's Method 

and note that each processor must be connected only to its eight 

nearest neighbors since each point is connected to its eight nearest grid 

points as shown in Figure 1. Hence. only the local communication links 

will be required for communication. Algorithm 1 Is then modified as fol-

lows. 

For k=1.2 .... k
max 

do 

(1) 

(2) 

(3) 

(4) 

(5) 

k +1 
Sol ... e for each component of JL

p 
10-- sequence 

k +1 
Send the necessary components of JL to the local neighbors 
via the local links (Only local links Pare needed for the stencil 
of Figure 1) 

If II "kp+1 k II 
>&. -~ CD 

< E raise the convergence flag. 

If the convergence flag Is raised in all processors then stop 
else continue. 

Receive k + 1 
from the logical neighbor processors via the local 

links. (O~ local links are needed for the stencil of Figure 1) 

Algorithm 2 Parallel Jacobi (Multiple pOints/processor) 
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For processors on the border of the processor array. values Will not 

be sent to and received from all eight of the neighbor processors and 

consequently. the algprlthms in these processors may be different to 

reflect this; or alternatively. the same algorithm could be used In all 

processors with a test included to determine a processor's position in 

the array. A third option would be to maintain the same algorithm In 

each processor and provide each processor with the appropriate lists of 

unknowns and associated processors to send data to and receive data 

from. This was the approach taken in Chapter 4 where the connectiVity 

of the grid points was determined by the assembly process If this con­

nectivity data were coupled with an algorithm that assigns the points to 

the processors. the appropriate Information for communication would be 

available to each processor and the algorithms In all processors would 

be the same 

AlgOrithm 2 will allow each processor to run without waiting on other 

processors with the exception of the synchronization In step (5) and the 

convergence test In (4). Because the processors may complete the 

up'dating of 1,L1< ... 1 In different times due to a number of factors. slightly 

different clock times In the processors. different memory access times. 

espeCially for those processors connected to the boundary. different 

number of unknowns per processor If p does not evenly diVide N. syn­

chronization of the processors to some degree is realized by the syn­

chronous RECEIVE command which causes processors to wait until the 

value to be received IS available before computation continues ThiS. In 

effect. allows the slower processors to catch up and also ensures that 

the same answer will be obtained for the problem on the processor 

array as on a single processor Note that the processors are not 
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required to operate In a SIMO or lockstep fashion. but the information 

for the next Iteration must be obtained from neighbor processors before 

the iteration continues. If we relax this requirement and use an asyn­

chronous RECEIVE. the processors may run asynchronously and the delay 

times will be reduced. The numerical iterates will however deViate from 

the true mathematical iteration but Baudet [1978] shows that this may be 

beneficial 

The second source of delay Is the convergence test for the Iterative 

process. The local convergence test In (3) of Algorithm 2 can be done 

in all processors simultaneously and therefore Incurs no delay. However. 

at the end of each Iteration. the convergence flag must be checked In 

all processors as Indicated by (4) of Algorithm 2. If all the flags are 

not set. the processor continues with the next Iteration. Hence. the 

entire process will not terminate until all unknowns have satisfied the 

convergence criterion and towards the end Of the process a portion of 

the processors may be doing unnecessary work. ThiS seems to be an 

unavoidable Inefficiency. 

In the absence of these delays. If p evenly diVides N. and If the 

processors operate at the same speed. the Jacobi method on the Finite 

Element Machine will have speedup 0 <p) The actual speedup. however. 

will be a function of the ratio of the communication to calculation times 

of the processors and is discussed in Chapter 7. 
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5.2. The Multi-Color SOA Method 

5.2.1. Motivation 

Let the matrix K be split as given by (5.2>' Then the SOR Iteration 

applied to (5.1> Is given by 

or 

where 

.l(D -wL )JJ..k + 1 

w 

-1 
Q,=w(D-wL> L 

-1 
L =(D-wL> (wU+(l-w)D) 
w 

(5.11> 

(5.12) 

(5.13) 

L is called the SOR Iteration matrix and w Is the relaxation parameter 
w 

chosen to enhance convergence. 

The conditions for (5.11) to converge for symmetric matrices with 

positive diagonal elements IS given by the Ostrowski-Reich Theorem 

(Varga(1962» . 

Ostrowski-Reich Theorem 

Let K be a symmetric matrix with positive diagonal elements. 

Then the SOR method converges if and only If K is positive 

definite and O<w<2. 

Since the problems of interest to us are symmetric and positive definite. 

SOR is guaranteed to converge if we choose O<w<2 
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The SOR Iteration (5.12) can be written for Implementation as 

k+l k w /-1 k+1 n k 
U (1 w)u +.;::..(k f. - ~ k u - ~ k u ] 

I = - i I t.. II I t.. II I 
II /=1 1=/1'1 

(5.14) 

This form shows that the SOR Iteration Is sequential In nature since the 

values of u I' 1=1.2 ..... ; -1 must be computed before u,an Iteration k +1. 

This was not true for the Jacobi Iteration of (5.1 Q) where only previously 

computed values were required for the update of a given component of 

JL. Despite this sequential nature. several authors (e.g. Hayes(19741. 

Lamblotte[197Sl> have observed that If (5.1> arises from a five-point 

difference discretization of Poisson's equation and the equations are 

ordered according to the classical Red/Black partitioning of the grid 

points then an SOR sweep may be carried out. In essense. by two 

Jacobi sweeps. one on the equations corresponding to the red points 

and one for the equations corresponding to the black POints. Thus. In 

this case. the SOR method can be effectively Implemented on vector or 

parallel computers. 

On vector computers. all the unknowns associated With the red grid 

points would be combined Into one long vector and similarly for the 

unknowns associated With the black grid POints For parallel arrays. an 

equal number of red and black equations would be aSSigned to each 

processor. The SOR Iteration would be comprised of two Jacobi sweeps. 

one Red sweep followed by one Black sweep with each sweep performed 

Simultaneously by the processors. After each sweep. the updated values 

of the respective color would be communicated between processors 

After the Black sweep. and hence one SOR Iteration. the convergence 

test would be performed as described In the last section 
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This strategy does not work. however, for higher order finite differ­

ence or for finite element dlscretlzatlons for more general elliptic equa­

tions which contain cross partial derivative terms. In these cases, It Is 

necessary to generalize the Red/Black partitioning of the grid points to a 

"Multi-color" partitioning: for example, a three color partitioning. say 

Red/Black/Green, might give the desired result. In general. the number 

of colors necessary will depend on the connectivity pattern of the grid 

points. If p colors are used, an SOR sweep can be Implemented by p 

Jacobi sweeps. one for each set of equations assolcated with a given 

color For vector computers, this reduces the effective vector length to 

o (n /p > while for parallel arrays It Is necessary that each processor hold 

a multiple of p equations where this multiple Will be determined by the 

particular discretization. Clearly. there will be a point of diminishing 

returns as p Increases. but for most differential equations and dlscretiza­

tlons of Interest It seems that no more than 6 colors Will suffice and for 

the size of n we have 10 mind (n ... 10.000 +>. the Multi-color strategy 

can be very effective. 

We note that the Multi-color orderings for SOR have been used 

before ('(oung[l9711. Hackbush[19771. Hotovy and Dlckson[l979]) but not in 

context of parallel computation for finite element dlscretlzatlons. 

In the next section, we describe the method In more detail and give 

the appropriate coloring (ordering) of the grid points for several finite 

difference and finite element dlscretlzatlons and discuss how to Implement 

- the resulting Multi-color SOR method on parallel computers. In Section 

5 2 3 we compare the Multi-color SOR method to eXisting theory, and In 

Section 5 2.4 we give numerical comparisons of the Multi-color ordering 
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with the lexlographlcal (rowwlse) ordering of the grid points. 

5.2.2. Multl-Color Orderings 

As a first example. we consider the elliptic equation (5.8) that Is 

dlscretlzed as given In (5.9) and partition the grid points by the 

Red/Black scheme as shown In Figure 3. We then number the Red grid 

points from left to right. bottom to top followed by the Black grid points 

in the same fashion. 

o R o B o R o B 

o B o R o B o R 

o R o B o R o B 

o B o R o B o R 

Figure 3. Red/Black Ordering 

Now if a=O. so that (58) is Just Poisson's equation. then (59) represents 

the usual five-star discretization of (5.8). It is well-known (see e.g. 

Young [1971]) that the difference equations (5.9) may be written in the 

partitioned matrix form 

(5.15) 

- where 0 Is a diagonal matrix and 1L, and -"-b denote the vectors of 

unknowns associated with the red and black grid points respectively. 

The Gauss-Seidel Iteration for (5.15) may be written as 
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DJ;tl k = -B~ t L, 

(5.16) 

and each part of (5.16) can then be effectively Implemented In a parallel 

fashion. with the Introduction of the SOR parameter causing no problem. 

If a "0. the form (5.15) of the difference equations is stili valid 

although 0 is no longer a diagonal matrix. Hence. the unknowns 

corresponding to the red points are coupled to each other in (5.16) and 

likewise for the black pOints: whereas for a =0 they completely uncouple. 

The result is that (5.16) is no longer implementable in a parallel fashion. 

This is illustrated by the grid point stencil for (5.9) With the Red/Black 

ordering as shown In Figure 4. 

Figure 4. Stenc11 for (5.9) 

The center Red pOint can be seen from Figure 4 to be connected to 

the Red points at the four corners. and a similar stencil IS obtained for 

the Black center POints. 

We wish to Introduce another partltlonmg of the grid POints for 

which unknowns within each subset of the partitioning are uncoupled. 

This Is possible only if the graph associated With the dlscretlzed domain 

can be colored With p colors so that nodes of a given color have no 

edge between them A graph With thiS property will be called p-partlte 

which IS formally defined below 
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DefinItion 1 

A graph G(V.E) wIth a set of vertIces V and edges E IS p-

partite If ItS vertices form p dIsJoint subsets Sl' S2' .... Sp' 

P 
with U SI =V such that If uv €E (G) then u €SI and v €S I for 

1=1 

some j "i. 

Examples of a bl-partlte and a 3-partlte graph are gIven below: 

BI-partlte 3-partlte 

Definition 1 requires that nodes within the same subset are not con-

nected by an edge: however. no restrictions are made on the number of 

nodes In a subset Sj that can have edges to nodes In subset S . In 
I 

fact. all (:) pairs of subsets could be connected by an edge from any 

node In one subset to any node In another 

graph would consist of (:) bl-partlte graphs. 

In thIs case. a p-partlte 

For example. for the stencil of Figure 4. if we use four colors. we 

can partition the grid POints Into four subsets labeled Red. Black. White. 

Orange so that each center point connects wIth only POints of different 

colors. A suitable coloring for the stencil in FIgure 4 IS illustrated in 

Figure 5. We note that the coloring repeats beyond the given subregion. 
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0 R 0 B 0 R 0 
B 

0 R 0 
B 

o W 0 a o w 0 a o w 0 a 

0 R 0 B o R 0 B 0 R 0 
B 

o W o a o w 0 a o w 0 a 

0 R o B 0 R 0 B o R o B 

o W 0 a o w 0 a o w 0 a 

Pigure 5. Pour color part1tioning of the gr1dpoints 

In this case. the system (5.9) can be written In a partitioned form 

analogous to (5.15) as 

°1 B12 B
13 B14 JL,. 1-, 

B21 °2 
B

23 B24 fLt, ~ 
= (5.17> 

B31 B32 °3 B34 Yw 4, 

B41 B42 B43 0
4 1Lo 

f 
-0 

where °
1

, °
2

, °
3

, and 0
4 

are diagonal matrices. The Gauss-Seidel 

Iteration In terms of (5.17> Is then 

o k-tl 
,JL,. 

o k +1 
t'-b 

k+1 k+1 
with similar equations for flw and 11.0 • 

(5 18) 

Now. since the 0/ are diagonal, (5.15) Is easily Implementable on 

parallel architectures by taking four sweeps of Jacobi's method to 

comprise one Gauss-Sledel deration. In particular, for vector computers. 

the vectors are of length 0 (n /4) and the update of the vectors JL,. 14,' 

1lw' and 1Lo must occur In sequence With each vector update being fully 
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vectonzed Into matrix-vector multiplications and vector additions For 

parallel arrays. the grid points must be partitioned Into subsets and each 

subset assigned to a processor. The primary goal of this assignment 

for a machine such as the Finite Element Machine. or on a similar 

array with perhaps many more processors but limited processor to pro­

cessor interconnections. Is to keep as many processors as possible run­

ning at a given time. This. In turn. requires maximum use of the pro­

cessor Interconnections and minimum use of the global bus since con­

tention for the bus will tend to Introduce delays which cause processors 

to be Idle. 

This objective can be achieved by ensuring that each processor 

holds at least as many unknowns as a certain multiple of the number of 

colors where the multiple Is the number of rows above the center pOint 

In the grid pOint interconnection stencIl. Also. we would like to ensure 

as much as possible that all processors hold the same number of each 

color of grid points. thereby increasing the likelihood that all processors 

finish each Jacobi sweep on a particular color at the same time so as 

to reduce delays In data communication between sweeps. 

Figure 6 shows the assignment of the grid points of Figure 5 to the 

processors. 
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• R • B • R • B • R • B 

• R • B • R • B • R • B 

• W • a • W • a • W • a 

Figure 6. Processor Ass1gnment for (5.19) 

Each processor in Figure 6 holds an equal number of Red. Black. 

Orange. and White points. If fewer processors are available. we can 

assign a 2b2/ block (instead of a 2x2 block) of points to each proces-

sor since the same number of each color of points will be In any two 

disjoint blocks. During the solution of (S 18). the processors In the Inte-

rlor of the processor array communicate with all their eight compass 

point neighbors as can be seen from Figure 6 above and the grid point 

stencil In Figure 1. On the Finite Element Machine this communication 

can be done via the local communication links and no use of the global 

bus will be necessary Each boundary processor Will communicate with 

fewer than eight neighbor processors. the exact number depending on its 

location. 

Let 1Lc.P and 1Lc.n denote the portion of nodes of color c assigned 

to processor p and the portion of nodes of color c that are needed by 

processor p for the calculation Of.lL but reside In other (perhaps 
c.p 

neighbor) processors respectively. The Multi-color SOR algorithm that Is 

executed by processor p IS given below: 



For k=1.2 ....• k
max 

do 

(1) For c=1.2 .... nc do 

ktl 
(1) Solve for Y..

c
.
P 

k+l 
(2) Send necessary portion of Y.. to logical neighbors. 

c.p 

(3) Receive y"
k 

t 
1 

from logical neighbors. 
c.n 

(2) if " Y..~ ~~ - Y..~.P II CD < € set the convergence flag. 

(3) If all processors have convergence flag set then stop. 

Algorithm 3. Multi-color SOR 
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We now give the coloring of the grid points and the associated pro-

cessor assignment for some common finite difference and finite element 

dlscretlzatlons. First. consider the nine-point discretization illustrated by 

the stencil in Figure 7 

i 
i O_o-j-_O 
o 

I 
o 

Figure 7. 9-po1nt D1scret1zat1on 

The grid points are partitioned Into three subsets by using the three 

colors Red. Black. and Green as shown In Figure 8. 
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o B o G o R o B o G o R o B o G o R 

o G o R o B o G o R o B o G o R o B 

o R o B o G o R o B o G o R o B o G 

o B o G o R o B o G o R o B o G o R 

o G o R o B o G o R o B o G o R o B 

Figure 8. 3-Colorl.ng for Figure 7. 

The points can be assigned to processors In blocks of size Icc 3; with a 

minimum block size of Ix 3 as shown In Figure 9. 

F1gure 9. Processor Ass1gnment for Fl.gure 8. 

With this assignment the North. South. East. and West local links of FEM 

can be used but the global bus is needed to commUnicate values to the 

next North. next South. next East. and next West neighbor processors. If 

the blocks were instead sized with k > 1. only the eight local communica­

tion links are required. 

Secondly. conSider the thlrteen-pomt discretization that IS often used 

for the bl-harmonlc equation and IS illustrated by the grid pomt stenCil 



In Figure 10. 

r 
o',J/o 

o_o-r--o 
·/1"'· 

° 

Figure 10. 13-point Discret1zation 
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The grid points are partitioned into six disconnected subsets by the use 

of the six colors Red. Black. White. Orange. Yellow. and Purple as shown 

in Figure 11. 

o W ° B ° P o W ° B ° P o W ° B o P 

° R ° Y 0 0 0 R o Y 0 0 ° R o Y 0 0 

to P o W ° B o P o W ° B o P o W ° B 

° a 0 R ° Y o a o R ° Y o 0 ° R 0 R 

o B o P o W ° B o P o W 0 B o P o W 

o y 0 
0 ° R ° Y o 0 ° R ° Y 0 a o R 

o W 0 
B o P o W o B o P o W ° B o P 

° R ° Y o 0 0 R ° Y o a o R ° Y o 0 

Figure 11. 6-Coloring for Figure 10. 

In order to maintain the same number of each color in two distinct pro-

cessors. the points must be assigned in blocks of 2kx 3/ with the 

minimum block size being 2x3 as shown in Figure 12. Note that only 

the eight local communication links of FEM are required. 
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0 w 0 B 0 P 0 W 0 B 0 P o W 0 B 0 P 

0 R 0 Y 
0 0 0 R 0 Y 0 0 0 R 0 Y 0 0 

0 P 0 W 0 B 0 P o W 0 B 0 P 0 W 0 B 

0 0 0 R 0 Y 0 0 0 R 0 Y 0 0 0 R 0 R 

0 B 0 P 0 W 0 B 0 P 0 W 0 B 0 P 0 W 

0 Y 0 0 0 R 0 Y 0 0 0 R 0 Y 0 0 0 R 

0 
W o W 0 

B 
0 P 0 W 0 

B 
0 P 

0 
R 

0 Y 0 0 0 R o Y 0 0 0 R 0 Y 0 0 

F1gure 12. Processor Assignment for F1gure 11. 

We now consider rectangular domains that have been dlscretlzed by 

finite elements. Triangular elements with associated piecewise continuous 

(Co) linear basis functions defined at the three vertices and their asso-

clated grid point stencil are shown in Figure 13. 

:~. 
Figure 13. Linear Tr1angular Element and Gr1d P01nt Stenc1l 

The center point of the stencil is connected to the six points that share 

a common triangle. For this discretization. the grid points can be partl-

tloned Into three disconnected subsets by using the colors Red. Black. 

and Green as shown In Figure 14. 
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Figure 14. 3-Co1oring for Figure 13. 

The grid points are then assigned to processors In blocks of size kx 3/ 

with the minimum block being of size lx3 as shown In Figure 15. 

o B 0 
G o R o B 0 

G o R o B 0 
G 0 R 

0 
G 

0 
R o B 0 G 0 R 0 B 0 G 0 R 0 

B 

0 R 0 B 0 G 0 R 0 B 0 
G o R 0 

B 0 
G 

0 B 0 
G 

0 R 0 B 0 G 
0 R o B 0 

G 
0 

R 

o G o R 0 B 0 
G 

0 R 0 B 0 G 0 
R 0 B 

0 R 0 B 0 G o R 0 B 0 G 0 R 0 
B 0 

G 

Figure 15. Processor Assignment for Figure 14. 

The local communication links of each FEM processor that are needed 

for this assignment are the North. South. East. West. Northwest. and 

Southeast links. 

Next. consider a triangular element with CO -piecewise quadratic 

basis functions defined at the vertices and midpoints of the triangle 
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This element and Its associated grid point stencil are Illustrated In Fig-

ure 16. 

Quadratic Element stenc1l for Nodes ~,2, and 3 

·~I~ 
o 0 0 

stenc1l for Node 4 stencil for Node 5 stenc1l for Node 6 

F1gure ~6. Quadratic Element and Grid Point stenci~s 

For this stencil. the grid points may be partitioned Into six disjoint subsets 

wIth the colors Red. Black. Green. Orange. Yellow. and Purple as shown 

in Figure 17. 
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F1gure 17. 6-Color1ng for CO Quadratic Elements 

The grid points are then assigned to processors in blocks of size 2kx 6/ 

with the minimum block of size 2x 6 as shown In FIgure 18 All eIght 

local links are required for this processor assignment. 

0 G 0 R 0 
G 

0 R 0 G 0 R 0 G 0 R 0 G 
0 R 0 G 0 R . 

0 0 
0 

B 
0 P 0 

B 0 Y 0 
B 

0 0 0 
B 

0 P 0 
B 

0 Y 0 
B 

0 
G 

0 R 0 
G 

0 
R 0 

G 
0 

R 
0 

G 
0 

R 
0 

G 
0 

R 0 G 0 
R 

0 P 0 
B 

0 Y 0 B 0 0 0 
B 

0 P 0 
B 

0 Y 0 
B 0 0 0 

B 

0 
G 

0 R 0 G 
0 

R 0 
G 

0 R 0 G 
0 

R 0 
G 

0 
R 0 G 0 R 

0 Y 0 B 0 a 0 B 0 P 0 B 0 Y 0 B 0 0 0 
B 0 P 0 

B 

Figure 18. Processor Ass1gnment for Figure 17. 

We now consider two examples of higher order finIte elements that 

are used to discretize 4th order partial differential equations. The first 

example IS the C 
1 

(function and its fIrst partIals are continuous) bl-cublc 

rectangle (see Becker and Oden[l981]) A cubIc In x and y can be 

unIquely 
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determined by 16 constants. Therefore. If we prescribe the values of 

aU
h 

aU
h 

the unknown at a grid point. U h' Its partials In x and y. ax' and ay 

and Its second 
a2

U
h 

partial ax ay at the four corners of the rectangular ele-

ment as shown In Figure 19. 

l=-_~ 
Figure 19. Bi-Cubic Rectangle and Gr1d Point Stencil 

the basis functions at each grid point will be bl-cubic polynomials which 

h 
will have continuous partials a:

n 
across element boundaries where n Is 

the normal to a common side. The stencil In Figure 19 Is the same 

stencil as the stencil of Figure 4. therefore Figures 5 and 6 give the 

appropriate coloring and processor assignment for grids that are dlscre-

tlzed by this element. 

Lastly. we consider the C 
1 

quintic triangle. Oden [19811. which Is 

shown In Figure 20. 

Figure 20. Quintic Triangle 

A quintic basis function Is defined at each grid point by speclfymg 21 

2 2 2 
aU

h 
aU

h a2
u

h a u
h 

a u
h 

and 
~ uh 

at values; the six values uh • . . -2-' -2-' axay' al ax ay ax ay 
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aU
h 

each vertex of the triangle and the value of the normal derivative an at 

the midpoints of each side of the triangle. The nodes In Figure 20 

have the same connectivity as those of the CO quadratic triangular ele-

ment and the stencils of Figure 16. Therefore. Figures 17 and 18 give 

the appropriate coloring and processor assignment for grids that are 

dlscretlzed by this element. 

5.2.3. Comparison to ExIsting Theory 

In this section we explain what Is meant by a p-Colored matrix and 

show how matrices of this type relate to the consistently ordered (CO>. 

the q-r consistently ordered (CO(q.r». and the q-r generally consistently 

ordered (GCOCq.r» matrices of Young[19711 and the p-cycllc matrices of 

Varga[19621. For these matrices of Young and the p-cycllc consistently 

ordered matrices of Varga a well known theory exists for determining the 

optimum relaxation factor w for the associated SOA Iterative method. We 

show. In general, that p-Colored matrices do not fit Into any of these 

classifications; however. CO, COCq.r). and certain p-cycllc matrices can 

easily be permuted Into a p-Colored matrix. 

The notion of a p-Colored matrix Is directly related to that of a p­

partite graph as was given by Definition 1. Recall that nodes within the 

same subset of a p-partlte graph are not connected by an edge; how-

ever. no restrictions are made on the number of nodes In a subset 51 

that can have edge connections to nodes In subset 5/. 

By numbering the equatIons associated with nodes In subset 51' In 

any order. followed by the equations associated with nodes In subset 52' 

53' ... • and finally subset 5 p' the result Is a p-Colored matrix K which 

has the following form: 
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X
1P 

X
2P 

K = (5.19) 

Opp 

where the Oil are block diagonal matrices. 

with each entry E, being a square matrix representing the equations at 

only one grid point of the associated problem domain that has been 

colored with p colors and nc, nodes of color i 

For the special case of one equation per grid POint. say Laplace's 

equation for example. the 0,1 Will be diagonal matrices. As was noted 

In Chapter 2. the plane stress problem has two unknowns per grid point; 

consequently for this problem. the E will be 2x2 matrices and the 2 
I 

equations at the same node will have the same color. 

We now compare p-Colored matrices with diagonal 011 blocks to the 

CO(q.r) matrices of Young. Now. a test for determining whether a matrix 

K Is a CO (q .r) matrix Is given by the following definitions and theorem 

by Young. 

Definition 2. (Young> 

For given positive Integers q and r. the matrix K of order N 

Is a (q .r)-conslstently ordered matrix (CO(q .r)-matrlx) if for 
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some t. there exists disjoint subsets S 1 ,S2' ••• ,St of 

t 

W={1.2 ..... N} such that r: Sk=W and such that: if kll~O and 
k=l 

subset containing 

I €S q 1'1 1'S q 1'2 l' 

containing I. 

Definition ~. <Young) 

The vector 

I; 

1'St 

1'St_f and I €Sk1'f' where Sk is the 

if kll ~O and 1 >1. then 

and I €Sk_q where Sk is the subset 

where 'Y I .1 =1.2 ..... N are 

integers. Is a (q .f) compatible ordering vector for K If for any 

I and j such that k
1j 

"0 then 

f if I (j 

and 

'1 - '1 = -q 
I I 

if I) I 

A con.l) matrix is called CO. or consistently ordered. 

Theorem 1. <Young) 

The matrix K is a COCq.r) matrix if and only If there eXists a 

compatible odering vector for K 

By using Theorem 1 It is very easy to conclude that the p-Colored 

matrix in C5.19) is in general not a COCq.r) matrix. In particular. let 

(5.20> 

Then If a compatible ordering vector eXists for (5.19). we must have 
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from Theorem 1 that 

or 

= ° (5.21> 

But. since X
32 

"0. we must require 

"13 - "1 2 = -q (5.22) 

Since (5.22) conflicts with (5.2U. (5.19) is in general not a CO(q.r) 

matrix. The same technique can be used to show that the 4-Colored 

matrix for Figure 6. the 3-Colored matrix for Figure 7. the 6-Colored 

matrix for Figure 11. the 3-Colored matrix for Figure 14. the 6-Colored 

matrix for Figure 17. the 4-Colored matrix for the stencil of Figure 19. 

and the 6-Colored matrix for the stencil of Figure 22 are not CO(q.r) 

matrices. 

On the other hand. If the matrix K is a CO(q.r) matrix. we show In 

the next theorem that K Is permutation ally similar to a p-Colored matrix. 

Before proving the theorem. we recall the following definitions of Young 

and Varga 

Definition 4 (Young) 

Given the positive Integers q .r. and t. the matrix K is a 

T<q ., .t) matrix If it can be partitioned into the txt block form 

K=<KIj) where. for each I. Ku=DI Is a square diagonal matrix 

and where all other blocks vanish except possibly for the blocks 

K t' 1=1.2 ..... t-'. and K j • i=qt1.qt2 ... t 
1.1 , I. -q 

The matrix In (5.23) IS an example of a TO.s.r> matrix. 
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D1 H1+S 

K1 D2 H2+S 
" (5.23) 

K2 "H 
t 

Kt - 1 
D

t 

where the Kif matrices are diagonal matrices. 

Definition 5. (Varga) 

Let K be partitioned as 

Kll K12 K
1P 

K21 K22 K
2P 

K = (5.24) 

K p1 Kp2 K 
PP 

If the Jacobi matrix 
-1 

B =I-(dlag (K» K Is permutatlonally similar 

to a T<l.p-1.p) matrix. then K is p-cycllc relative to the partl-

tlonlng (5.24). 

Theorem 2. 

Proof. 

Let K be a CO(q.r) matrix and let P '=(q +r)/d where d is the 

largest common factor of q and r. Then there exists a per­

mutation matrix P such that p-
1 

KP is a 

• 
(1) p -Colored matrix 

(2) 2-Colored matrix If p Is even 

(3) 3-Colored matrix If p Is odd 

Since K IS a CO(q.r) matrix. K has Property A (see Young). 
q .r 
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, 
Therefore K also has Property A"P -,. Now. there exists a 

permutation matrix P such that P-'KP is a CO<1.p '-1) matrix. 

Furthermore, Young shows that a COO.s) matrix Is also permu-

tatlonally similar to a TO.s.U matrix with possibly certain rows 

and corresponding columns of blocks deleted. Now. the adJa-

cency graph associated wIth the Jacobi matrix for the T<1.s .t) 

matrix of (5.23) Is shown below. where we denote all the vari-

abies associated with D, by 1. the vartables associated with D 2 

by 2, ... , and finally those associated with D
t 

by t. 

If we color these t blocks with p' colors from right to left as 

. C, /C
2

/o 0 o/C
p 

'/C, /C
2

/o 0 o/Cp '/C, / etc. and group together all 

the blocks of the same color and then order the matrix by 

groups. the resulting matrix will have the form 

D, X,p, 

~2' D2 

K = X
32 

, 
which Is easily seen to be p -Colored as well as p-cycllc and 

(1) follows. 

We next prove statement (2) of the theorem. If S IS Odd. these 

t blocks can be colored RlB/RlB.. from rtght to left All the R 

blOCks can be grouped together and the same for the B blocks 
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so that the resulting matrix has the form 

which shows that K is 2-Colored. 

If s Is even. the t blocks are colored R/B/G/R/B/G .. from right 

to left. Furthermore. if p' is a multiple of three. K has the 

form 

which Is 3-Colorable and also 3-cycllc whereas. If p' IS not a 

multiple of three. K has the form 

°1 X
13 

K = X
21 °2 X

23 
X

32 °3 
whiCh is not 3-cyclic but is 3-Colored. Hence. statement (3) of 

the theorem follows 

We now compare p-Colored matrices to the p-cycllc matrices of 

Varga for the case where the 0 .. 
/I 

matrices In (5.19) are diagonal. From 

the form of a T matrix given In (5.23). it Is readily seen that a p-

Colored matrix Is not In general p-cycllc. On the other hand. If the 

matrix of (5.24) is p-cycllc It Is also p-Colored In fact. we can use 

Theorem 1 to show that a p-cycllc matrix IS permutatlonally similar to 

either a 2 or a 3 Colored matrix 
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Corollary ,1. 

Proof: 

Let K be a p-cycllc matrix with the KII matrices being diagonal 

matrices. Then there exists a permutation matrix P such that 

P-'KP is a 

(1) 2-Colored matrix if p Is even 

(2) 3-Colored matrix if p is odd 

Since K Is p-cycllc it Is permutatlonally similar to a T<l.p- 1 .p) 

matrix. The conclusion follows directly from the proof of 

Theorem 2 after noting that s =p - 1 and t =p . 

Corollary 1 Implies that p-cycllc matrices for which the diagonal 

blocks are diagonal can be reordered to Yield 2 or 3 diagonal blocks on 

the diagonal. This means that for a vector implementation of the Multi­

color SOR method. the assoCiated vector !J.. for the solution of (5.1) can 

be partitioned Into 2 or 3 long vectors rather than p shorter ones. 

However. we note that the resulting 3-Colored matrix in (2) of Corollary 

1 may not be 3-cycllc and hence no known theory exists to aid in the 

selection of the optimal relaxation factor w. This fact IS possIbly offset 

by the much longer vectors that will result If p > >3. Barlow and 

Evans[19821 mentions that p-cycllc matrices may be colored WIth p 

colors but does not mention the possibility of fewer colors. 

Lastly. we discuss the relatIonship of p-Colored matrices (again with 

the D/I In (1) being diagonal blocks) to Young's generally consistently 

ordered. GCOCq.r). matrices. First. we give the deflnttlon of a GCO(q.r) 

matrax. 
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Definition ~ (Young> 

A matrix K Is a GCO(q.r) matrix It 

q -r 
detCa Lta U-kD) 

is independent of a for all a"O and for all k where D .-L .-U 

are the diagonal. strictly lower and strictly upper parts of K 

respectively 

Definition Z. CYoung) 

A real matrix K of order N is an L- matrix if 

and 

k. 1>0. 
I • 

kl (0. . / 

I =1.2 ..... N 

I" / . /./ =1.2 ..... N 

Young also gives the relationship between GCOCq.r) and CO(q.r) matrices 

in the follOWing theorem 

Theorem ~ (Young) 

If K Is an Irreducible GCOCq.r) matrix which IS an L matrix then 

K IS a CO(q.r) matrix. 

Hence. matrices which are both Land GCO(q.r) matrices are permutatlo-

naly Similar to either a 2 or a 3-Colored matrix by Theorem 2 The 

2-Colored matrix will be consistently ordered but the 3-Colored matrix 

may not be q-r consistently ordered as was shown In the proof of 

Theorem 2. 

Since the matrix K IS symmetric for our problems. we are Interested 

10 the relationship of symmetric GCO matrices to CO(q.r) matrices. 
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If K IS a symmetric CGO(q.r) matrix then q =r and K is a--

GCO<1.1> matrix. 

q -r 
Since K is a CGO(q.r) matrix. deHa L +a U -kD) Is independent 

of a for all a"O and for all k. Recall that the determinant of 

an NxN matrix is the sum of NI terms of the form 

(525) 

where s (a) IS 1 if the sequence a(1).a(2). ... a(N) can be put en 

the form 1.2 ..... N by an even number of interchanges of any 

pair of elements In the sequence and -1 otherwise. 

q-r 
Now. all the terms that are multiplied by a are of the form 

(526) 

where d, IS the Ith entry of the diagonal of K and only k,j 

need to be Interchanged for the sequence 

a(1)a(2>...a(N) to be In the order 1.2 ..... N. Hence. all these 

terms have s (a)=- 1. In addition. Since k" =k,l' all these terms 

are of the same sign and their sum can only be independent 

q-r 
of a if a is Independent of a which is true only If q =r . 

Now. detca
r 
L ta -r U -kD) can be written as 

r 1 r -1 
det«a) L -t(a) U -kD) 

and IS also Independent of a for all a"O and for all k 

Therefore. we conclude that K is a GCO<1.1> matrix. 
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Definition 8. 

A symmetric GCO<1.1) matrix is an SGCO matrix. 

Next. we give the reiationshlp between SGCO matrices and 2-Colored 

matrices. 

Lemma 2. 

Let K be an irreducible L matrix. If K IS an SCGO matrix then 

there eXists a permutation matrix P so that p-1 KP IS a 2-

Colored matrix. 

Proof: 

From Theorem 3 it follows that K is a CO(l.l> or equivalently a 

consistently ordered (CO) matrix. It is well known that any CO 

matrix can be permuted to the AlB or 2-Colored form and the 

theorem follows. 

The contraposltlve of Lemma 2 states that if K is a symmetric L matrix 

that is not consistently ordered It can not be generally consistently 

ordered. This means that we can not simplify the determinant In Definl-

tion 6 for symmetric L matrices that are not consistently ordered in 

order to relate the eigenvalues of the Jacobi and SOA Iteration matrices 

associated with K. and hence determine the optimum relaxation factor w 

for the SOA iteration method. However. Lemma 2 only gives sufficient 

conditions for an SCGO matrix to be consistently ordered and it remains 

to be determined whether the requirement that K be an L matrax IS 

necessary 
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5.2.4. Comparison with Rowwise Ordermg 

The Multi-color and lexlographlcal (rowwlse) orderings were shown In 

the last section In general not be consistent orderings, therefore, we can 

not conclude that the eigenvalues of the respective SOR matrices are the 

same. The question then arises as to whether one ordering gives faster 

convergence than another However. we note that some degradation In 

the convergence rate of the Multi-color ordering can be permitted since 

It can be Implemented effectively on a parallel machine whereas the 

rowwlse ordering can not. 

The Multi-color and rowwise orderings were compared experimentally 

for three problems. The first problem was the five-star discretization of 

Laplace's equation on a rectangular grid with 768 unknowns. The results 

for the RIB and rowwlse ordering of the grid points are given In Table 

Both these orderings are consistent and the results are included 

here for comparison with the next two example problems. 

w 

1.00 

1.74 

1. 76 

1.80 

Iterat10ns 

Red/~ ROWW1se 

470 

73 

56 

65 

542 

82 

83 

85 

Table 1. Laplace's Equat:gn (5-Star D1scret1zation) 

€=10 

The second problem was a finite element discretization of Laplace's 

equation. The finite elements were triangular with quadratic baSIS func-

tions defined at the vertices and midpoints as shown In Figure 16 The 

width of each triangle was taken to be h = 1/12 so that the resulting sys-
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tem has (23)2 equations. Table 2 gIves the results for the 6-color ord-

erlng ot Figure 17 and the rowwlse ordering. 

Iterations 
w Rowwise 6-Color 2-.-star (Rowwise) --

1.00 563 561 463 
1.20 394 392 324 
1.40 266 264 218 
1.60 161 158 132 
1.70 113 109 91 
1.76 83 76 64 
1.77 76 69 57 
1.78 69 60 57 
1.79 62 54 59 
1.80 68 58 59 
1.82 75 66 66 
1.84 83 73 75 
1.86 94 82 97 
1.88 109 97 98 
1.90 117 121 117 
1.92 161 147 146 
1.94 194 197 195 
1.96 291 302 293 

Table 2. LaPlacel~erqua~~on (Quadrat~c Elements) 
e=10 .(23) unknowns 

For this problem. the 6-color ordering and the rowwlse ordermg tor the 

finIte element discretization give very sImilar results and the optimal 

values at ware the same In both cases In fact. near the optimum 

value of w both the tlnlte element dlscretizatlons require almost the same 

number of Iterations as the 5-star finite difference discretization which IS 

consistently ordered. 

The third problem was the plane stress problem described in 

Chapter 2. The plate was dlscretlzed by linear triangular elements as 

shown In Figure 14 Table 3 gives results for the Red/Black/Green ord-

erlng of FIgure 14 and the rowwise ordermg at the grtdpotnts. 



w 

1.4 

1.5 

1.6 

1.61 

1.62 

1.621 

1.622 ---1.623 

1.63 

1.64 

1.65 

1.66 

1.67 

1.68 

1.69 

1.7 

1.8 

Iterations 

!I~/~ Roww1se 

349 347 

265 263 

169 167 

153 152 

131 128 

129 126 

127 124 

142 140 

149 148 

147 145 

141 138 

135 133 

156 154 

155 154 

153 150 

150 148 

233 232 

Table 3. Plane stress 
€=10-6, 60 unknowns 
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Note from Table 3 that the optimum value of W IS 1.622 for both order-

Ings. Also. note that the number of Iterations for w> 1.622 behaves dif­

ferently than was seen from Table 2. For example. Table 2 showed that 

for W>W t the number of Iterations was strictly increasing whereas In 
op 

Table 3 the graph of W versus the number of Iterations has relative 

minima at w=l 66 for example 

5.3. Multi-Color SSOR 

In this section. we describe a Multi-color SSOR method. give an 

efficient Implementation of this method on vector computers or parallel 

arrays. and give numerlcal comparisons to an SSOR method without 

multi-coloring for an example problem. 
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5.3.1. Description 

The SSOR iterative method for solving (5 1) can be written as the 

forward SOR iteration followed by the backward SOR Iteration 

k...J. 
CD -wL>u. 2 = [wU -t(1-w)O lJ.l -t l2. 

(5.27> 

1 
k-tl k~ 

(0 -wU)u. = [wL +(1-w)O lJL -t 12. 

The basic convergence theorem for SSOR Iterative method (Young[1971]) 

Is stated below. 

SSOR Convergence Theorem 

If K Is a symmetric matrix with posItive diagonal elements. the 

SSOR method converges If and only If K is posItive definite and 

O<w<2. 

The SSOR method Is therefore convergent for symmetric and posItive 

definite matrices K. Even so. this method has been found to have a 

slower convergence rate than the SOR method for 2-Colored matrices 

Therefore. our Interest In this method Is as a preconditloner for a paral-

lei conjugate gradient method. as will be described In Chapter 6. and 

not as a stand alone linear stationary method. However. even for our 

purposes. a parallel Implementation of this method Is necessary. 

5.3.2. Parallel SSOA Implementation 

To solve (5.27> on a vector computer or a parallel array the equa-

tlons are first ordered so that K IS a p-Colored matrix With colors C 1 . 

C2 • ." • and C p' Then the Multi-color SOR method IS first applied to 
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K In a forward fashion. starting with the updating of color C l' followed 

by C 2' until the equations of color C p are updated. Next. the Multl­

color SOR method Is applied to K In a reverse fashion starting with 

color C p' followed by C p -1 until the equations of color Clare updated. 

After the reverse SOR pass Is completed. and hence one SSOR Iteration. 

if the convergence test Is met. the Iteration stops. otherwise. the process 

Is repeated. For parallel arrays. after the values of each color Clare 

updated on both the forward and reverse pass they must be communl-

cated between neighbor processors. The Multi-color SSOR algorithm Is 

given below: 

For k=1.2 ..... k
max 

do 

(n For c=1.2 ..... nc do 

(n Solve for !J.
k

"1-1 
c.p 

(2) Send necessary portion of !J.
k

"1-1 to logical neighbors 
c.p 

k "1-1 
(3) Receive !J. from logical neighbors. 

c.n 

(2) For c=nc.nc-1 ..... 1 do 

k ... 1 ... 
(1) Solve for !J. 

C.p 
k ... 1 

(2) Send necessary portion of !J. to logical neighbors. 
c.p 

(3) Receive !J.k ... 1 from logical neighbors. 
c.n 

(3) If II!J.~ ~~ - !J.~.p \I 00 < € set the convergence flag. 

(4) If all processors have convergence flag set then stop. 

Algorithm 4 Multi-color SSOR 

Each Iteration of the Multi-color SSOR method can be computation-

ally expensive since It Is comprised of two Multi-color SOR Iterations 
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We now describe how to save 50% of this computational effort 10 the 

solution of (5.27> by uSing an auxllary storage vector. This observation 

Is due to Conrad and Wallach £1979] Recall that the equations to be 

solved to carry out one SSOR iteration (with w=l and D =1 for Simplicity) 

are 

(5.28) 

The algorithm of Conrad and Wallach for doing multiple steps of SSOR 

is given below. 

(1) 

(2) 

A(O) 
Form U!,L and store 1n ,X.. 

(Th1S takes zero operat1ons 1f the 1n1t1al guess 1S zero.) 

For k=1.2 ..... k
max 

( 3 ) 

A(k~) 
Solve (/-L>!,L = ..'l:t.12. as a forward Mult1-color SOR pass. 

1 
A(k~) 

Store LJL 1n ,X.. 

(4) Solve (/-U)ll,(k+l)=.x,+.l2. as a backward Mult1-color pass. 

Store Ull,U< + 1) in.x. . 

If ex and /1 denote the number of nonzeroes 10 Land U respec-

tlvely then (3) requires ex multiplications and (4) requires /1 multlpllca-

tions. If 71 represents the maximum number of nonzeroes per_ row of K. 
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and m represents the number of multiplIcations per Iteration of SSOA. 

then a+I3«l1-l)N and 

m < (l1-l)N 

m < (l1+1>N 

5.3.3. Comparison with Rowwise Ordering 

If w=l 

If w" 1 
(5.29) 

It Is well known. see Young(l9711. that the SSOA method applied to 

a 2-Colored matrtx has optimum relaxation factor w=l. whereas. If the 

grid points are ordered rowwlse from bottom to top. left to right. the 

SSOR method converges faster for some w ttl 1. It Is an Interesting 
op 

question whether the same behavior will be seen for p-Colored matrices. 

We solved the plane stress problem of Chapter 2 (60 equations) with the 

AlB/G ordering of Figure 14 as well as the rowwlse ordering. The 

results are In Table 4 

Iteratl.ons Iteratl.ons 

w Rowwise w Y!/~ 

.90 589 .950 762 

1.00 530 .990 759 

1.20 467 .993 759 

1.25 463 .994 758 

1.30 463 .995 758 

1.35 469 .997 758 

.998 758 

1.000 758 

1.050 761 

1.100 772 
1.200 815 

Table 4. SSOR Results (R/B/G and Rowwl.se Orderings) 

Plane stress Problem (60 equations) 

Table 4 shows that .994<w<1.01 produces the best results for the 

AI BIG ordertng for the SSOA method. whereas. w=l 25 gave optimal 

results for the rowwlse ordertng. ThIS suggests that the SSOA IteratIve 
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method for p-Colored matrices has optimal relaxation factor w=l as IS 

true for 2-Colored matrices. However. this conjecture has yet to be 

proved or verified experimentally with more· examples of p-Colored 

matrices. We note that even If this were true. the Multi-color SSOA 

method. with w=l. can be Implemented effectively on vector computers 

and parallel arrays whereas the rowwise ordering can not. In addition. 

using w=l alleviates the need to estimate the value of w which may be 

a time consuming process since flttle theory exists to aid In this choice 

for matrices that are not 2-Colored. 

5.4. Parallel Block Iterative Methods 

In this section we consider the Implementation of block iterative 

methods on vector computers and parallel arrays. In Section 5.4.1 we 

describe the Implementation of the Block Jacobi Iterative method. In 

Section 5.4 2 we discuss the difficulties In Implementing the Block SOA 

method and '" Section 5.4.3 we generalize the Multi-color orderings of 

Section 5.2 2 and the p-Colored matrices of Section 5 2 3 to Block 

Multi-color orderings and p-Block Colored matrrces. Lastly. we compare 

the p-Block Colored matrices to the 1T-conslstently ordered (1T-CO> 

matrices of Young(19711 and the p-cycllc matrices of Varga(19621 

5.4.1. The Block Jacobi Method 

Let K be a pxp block matrix as shown In (5.24) and let the vectors 

T 1 T 
.fL and L be partitioned as .fL =<.fL

1 
.~ ••• •• u.,,) and L = <L .~." •• ~) 

respectively Furthermore. let 



Kl1 

K22 

D = 

K 
pp 

0 0 K12 

K21 0 0 

-L = 0 -u = 
0 

Kp 1 Kp2 K 
p.p-1 

0 

Then the. Block Jacobi method for solving (5.1) is 

or 

where 

k -t 1 
J.L 

B = D -
1 

(L -t U ) 

-1 
~ = D L 
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(530) 

K
1p 

0 

0 K 
p-l.p 

0 

(531) 

(5.32) 

and B is called the Block Jacobi Iteration matrix. The Block JOR 

method is iteration (5.32) with B replaced by B w where 

Bw = wB -t (l-w)l (533) 

Now. the iteration (5.31> can be written in Implementation form as 
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K k+1 
IA 

1-1 k P k 

= 1, - [r: K,t'-, + r: K.fL/] 
,=1 i =1 + 1 / 

(5.34) 

Note that if the KI/ are diagonal matrices. (5 34) is just the Jacobi 

iteration method (5.3). but if the KI/ are not diagonal. p systems of 

equations must be solved each iteration. one for each jL/.1=1.2 ..... p. 

However. these systems completely uncouple and hence can be solved 

simultaneously on parallel architectures. 

On vector computers. the right hand side of (5.34) can be formed 

as matrix vector products and vector additions and the solution of the p 

systems of equations Is vectorlzable (Buzbee.Boley.Parter[l979]) with the 

vector length equal to p. On arrays with p processors. (5.34) is easily 

implemented by assigning processor 1 to the calculation of jLl' Once 

k +1 14 is calculated. the appropriate components are sent to neighbor 

d th I t t of "k + 1 
processors an e appropr a e componen s .... are received from 

neighbors for use in the next iteration The p processors then complete 

the calculation of one Iteration In the time It takes the processor with 

the most unknowns to complete its calculation. If each processor has 

the same speed and the same number of unknowns. 0 (p) speedup can 

be achieved with thiS approach 

5.4.2. The Block SOA Method 

The Block SOA method for solving (5.1> is 

or 

where 

1 k 
= .:...twU+<l-w)DJ.u.: + L 

w 

I< + 1 k 
!J. = LJL + k. 

(5.35) 

(536) 
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-1 
Lw = CD -wL> [wU +<l-w)D) 

~ =wCD -wL> -lL 

and L Is the 'Slock SOR Iteration matrix. 
w 

The Implementation form of (5.35) Is given by 

1-1 k+1 P k 
f t" t"K) = -1-[ l.J KI JLJ + l.J 1 JLJ /=1'- /=/+1 r-. 

K k+1 
IA (5.37> 

k+1 
and JL

p 
.1 =1.2 ..... p Is solved In sequence. first .Y.

1
• followed by ~ ..... 

and finally .Y.
p

' 

The algorithm given by (5.37> Is sequential and can not be com-

pletely vectorlzed or Implemented on parallel arrays. However. it Is well 

known that for some dlscretlzatlons of partial differential equations a re-

ordering of the grid pOints results In a block matrix for which the equa­

tions In (5.37> uncouple. In particular. consider the grid point stencil of 

Figure 4. If we color the even rows of points Red and the odd rows of 

POints Black as shown in Figure 21. 

0 R 0 R 0 R 0 R 

0 B 0 B 0 B 0 B 

0 R 0 
R 

0 R 0 R 

0 B 0 B 0 B 0 B 

0 R 0 R 
0 R 0 R 

0 B 0 B 0 B 0 B 

Figure 21. Line Red/Black Ordering 

group all pOints In a given row Into one block. and then number the 

red blocks first from bottom to top. followed by black blocks. the matrix 



K for Figure 21 has the form 

Ix 
I 
I 
I 
I 
I 

K33 I 
t 

x 

x x 

x 

K = ---- - - - ----, .. ----- - -----
x : K44 

x x 

x x 
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(5.38) 

The SOR Iteration (5.37> Is the classical Red/Black line SOR which is 

composed of two block Jacobi sweeps. one on the Red blocks. followed 

by one for the Black blocks. The Implementation of this method on 

vector computers Is discussed by several authors 

(Buzbee.Boley.Parter(1979J.Nolen(1979J.Parter and Steuerwalt(1980J. Saad 

and Sameh(1981]>' For parallel arrays. every 2k rows of points are 

assigned to each processor as shown In Figure 22 for k = 1. 

J 
o R o R o R 0 R 

0 B o B o B o B 

j 
0 R o R o R o R 

0 B o B 0 B 0 B 

I 
0 R o R o R o R 

o B o B o B o B 

I 

Figure 22. Processor Assignment for Figure 21. 

For the assignment in Figure 22. processor I first updates the Red block 
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of unknowns. communicates these values to processor 1+1. updates the 

Black block of unknowns and communicates these values to processor 

/-1 and then checks the convergence of the process. This algorithm Is 

executed In all processors with slight modifications In processor 1 and 

processor p. If the grid contains p rows. a speedup of 0 (P/2) IS 

achieved by thiS scheme. 

The same Red/Black line SOR method can be used for the linear 

triangular finite element discretization of Figure 13 and the bl-cublc rec­

tangle of Figure 19. However. for the 9-polnt discretization In Figure 7. 

the 13-polnt discretization of Figure 16 and the quintic triangle In Figure 

20. a Red/Black 2-line SOR method can be used. For this scheme. we 

color the first bottom two rows Black. the next two rows Red. etc. as 

shown In Figure 23. 

0 R o R 0 R 0 R 

0 R 0 R 0 R o R 

o B 0 B 0 B 0 B 

o B o B o B o B 

0 
R 

0 
R o R 0 R 

0 R 0 R o R 0 R 

0 B o B 0 B 0 B 

0 B o B o B 0 B 

Figure 23. Red/Black 2-line Ordering 

and then group every two rows of Red POints Into one block and the 

same for the Black POints If the Red blocks are numbered from bottom 

to top followed by the Black blocks. the resulting matrix K for Figure 23 
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will have the form (5.38) with 4 diagonal blocks Instead of 6. The p 

rows of the problem grid are assigned to p/4 processors as shown In 

Figure 24 

I 
o R 0 R o R o R 

0 R 0 R 0 R o R 

o B 0 B o B o B 

o B o B o B 0 B 

1 
o R o R o R o R 

o R o R o R o R 

o B o B o B o B 

o B o B o B o B 

I 
F1gure 24. Processor Ass1gnment for F1gure 23. 

With this assignment. a speedup of 0 (P/4) is obtained 

It Is well known that the K matrix assolcated With the Red/Black k-

line orderings IS 7T-consistently ordered and has the form (5.39) 

(5.39) 

where Dr and Db represent the connectivity of the Red points to each 

other and the connectivity of the Black points to each other respectively 

(see Young[1971]) In this case. there is a theory for the selection of 

the relaxation parameter w for the associated Block SOR method which IS 

briefly summarized below 
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Oet/nltion 9. (Young) 

Let K be partitioned as in (5.24) and define a pxp matrix Z 

with elements Zj I by 

if kij =0 

If kif "0 

Then K Is 71-conslstently ordered (71-CO> If Z IS consistentiy 

ordered. 

Theorem ~. (Young) 

Let K be a positive definite 71-CO matrix. Then 

1 

(2) W; = 2/Cl-<l-P(B(77) )2]2 

where B(77) is the Jacobi Iteration matrix assoCiated with the partitioning 

In (5.24). 

5.4.3. The Block Multl-COlor SOR Method 

In the last section we showed how to implement either a 1 or a 2 

line SOA method on parallel arrays for all the dlscretlzatlons In Section 

5 2.2. This algorithm has the advantages that a theory eXists for deter-

mining the optimum relaxation factor w even though 10 practice the 

spectral radius 01 the Block Jacobi method may not be known In 

advance A major drawback of thiS Implementation arises when the 

number of processors p greatly exceeds n/2 and n/4 for the 1 and 2 

line methods respectively where n represents the number of rows In the 

problem grid In particular. these speedups are only n/2 and n/4. or 
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equivalently. 4"N /2 and .,fFi /4 when the number of unknowns IS N =n
2 

. 

In this sectIon. we propose an alternative blocking of the grid points that 

will give much better speedup results on a parallel array. 

5.4.3.1. Block Multi-Color Orderings 

As a first example. we consider the 9-polnt stencil of Figure 4. If 

we color the problem grid Into Red/Black/White/Orange blocks as shown 

In Figure 25. 

o W o W o 0 o 0 o R o R I o B o B J 

o R o R o B o B o w o w I I 0 0 o 0 

o w owl o 0 o 0 o R o R I o B o B 

o R o R I o B o B o W o w I o 0 o 0 

Figure 25. 4-Block Color1ng for F1gure 4 

two blocks of the same color are not adlacent and hence the solution 

for blocks of unknowns of the same color In (537) completely uncouple. 

The blocks are assIgned to processors In sIzes 2kx4/ so that each pro­

cessor has the same number of blocks of each color as shown In Fig­

ure 26. 
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o W o W o 0 o 0 o R o R o B o B 

o R o R o B o B o W o W o 0 o 0 

o W o W o 0 o 0 o R o R o B o B 

o R o R o B o B o W o W o 0 o 0 

Figure 26. Processor Assignment for Figure 25. 

The color pattern and processor assignment repeats beyond the subre­

gion shown. For this assignment with n
2 

grid points. p =n
2 
/8 and the 

maximum speedup that can be achieved is n
2

/8. 

If the Red blocks In FIgure 25 are numbered first. followed by the 

Black blocks. then the Orange and finally the White blocks. the matrix K 

Will have the form 

D" 
X

12 
X

13 
X

14 

X
21 D22 X

23 
X

24 

K = X
32 D33 X

34 
(540) 

X
31 

X
41 

X
42 

X
43 

X
44 

< where the matrix D 1/ is a nc.xnc. , , block diagonal matrix of the form 



D. 1 
I • 

D 
I.nc

i 
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(5.41) 

and nC
i 

Is the number of blocks of color I and D
I
./ represents the 

connectivity of nodes of the /th block of color I to each other. Note 

that nodes In two distinct blocks of the same color are not connected: 

whereas. nodes In the same block may be connected. Matrices which 

have the form (5.40) and (5.41> will be called p-Block Colored matrices. 

As a second example. consider the 9-polnt discretization of Figure 

7. The points are colored Into Red/Black/Green blocks as shown In 

Figure 27. 

I 0 B o B I lOG o G I I 0 R o R I 

I 0 G o G I I 0 R o R I I 0 B o B I 

I 0 R o R I I o B o B I I 0 G o G I 

I 0 B o B I o G o G I I 0 R o R I 

lOG o G I I 0 R o R I I 0 B o B I 

I 0 R o R I ( 0 B oBI I 0 G o G I 
Figure 27. 3-Block Coloring for Figure 7. 

The processors are assigned to blocks of size 3kx 2/ as shown In Figure 

28 for k=1 and J =1 and a speedup of o (n 2
/6) Is expected. Note that 

only four local communication links are used for each processor: 
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whereas for the coloring and assignment of Figure 8 and 9 respectively. 

four links pius four more for the next North. next South. next East. and 

next West processors was required to Implement the point R/B/G SOR 

method. 

I I 1 
o B o B o G o G o R o R 

- o G o G t-- o R o R t-- o B o B ~ 

o R o R o B o B o G o G 

I I I 
o B o B o G o G o R o R 

- o G o G t-- o R o R t-- o B o B t-

o R o R o B o B o G o G 

I I I 

Figure 29. Processor Assignment for Figure 27. 

As a last example of finite difference dlscretlzatlons. consider the 13-

point discretization of Figure 10. The points are colored into blocks with 

SIX colors. Red/Black/White/Orange/Purple/Yellow as shown in Figure 29 
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o W o W o P o P o B o B o W o W o P o P o B o B 

o 0 o 0 o R o R o G o G o 0 o 0 o R o R o G o G 

o B o B o W o W o P o P o B o B o W o W o P o P 

o G o G o 0 o 0 o R o R o G o G o 0 o 0 o R o R 

o P o P ., B ., B o W ., W o P ., P o B ., B ., W ., W 

., R o R o G ., G ., 0 ., 0 ., R ., R ., G ., G ., 0 ., 0 

Figure 29. 6-Block Color1ng for Figure 10. 

The blocks are assigned to processors in sizes of 2kx6i as shown for 

k=1 and 1=1 in Figure 30 and a speedup of 0 (n
2

/12) is expected. The 

coloring and processor assignment repeats beyond the subregion shown. 

., w ., w ., 
P 

., 
P 0 B 0 B 

., 
W 0 W 

., 
P 

., 
P 

., 
B 

., 
B 

., 
0 

., 
0 

., 
R 0 R 0 G 0 G 

0 0 
., 

0 
., 

R 0 R 
., 

G 
., 

G 

., 
B .. B .. W 

., 
W 

., 
P 

., 
P 

., 
B 

., 
B 

., 
W 0 W 

., 
P 

., 
P 

., 
G 

., 
G 

., 
0 0 0 

., 
R 

., 
R 

., 
G 

., 
G 

., 
0 

., 
0 

., 
R 0 R 

0 P 
., 

P 
., 

B 
., 

B 
., 

W 
., 

W 
., 

P 
., 

P 
., 

B 
., 

B 
., 

W 0 W 

0 R 
., 

R 
., 

G 
0 G 0 0 

., 
0 

., 
R 

., 
R 

., 
G 

., 
G 

., 
0 

., 
0 

Figure 30. Processor Assignment for Figure 29. 

We now consider the block orderings and processor assignments for 

the finite element dlscretlzations of Section 5.2.2. The linear triangular 

element discretization of Figure 13 can be colored anto Red/Black/Green 

blocks as shown an Figure 27 wIth the associated processor assIgnment 

of Figure 2B. The quadratic triangular element discretization of Figure 
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16 can be colored with six colors. Red/Black/GreenlWhite/Orange/Purple 

as shown In Figure 31. 

I 0 G o G o W ow" 0 G 0 

G 11 0 w o w 

I 0 B o B o P o P o B o B I o P o P 

I 0 R o R o 0 o 0 o R o R I o 0 o 0 

I 0 G o G o W o W o G o G I o w o w 

I 0 B o B o P o P o B oBI o P o P 

I 0 R o R o 0 o 0 o R o R I o 0 o 0 

Figure 3~. 6-Block coloring for Figure ~6 • 

The blocks are assigned to the processors In sizes 3kx4/ as shown In 

Figure 32 for I< =1 and 1=1 and a speedup of o (n2/12) Is expected. 

Note that only six local communication links for the Interior processors 

are used for thiS Implementation. 

0 G 0 G 0 W 0 W 0 G 0 G 0 W 0 W 

0 B 0 B 0 P 0 P 0 B 0 B 0 P 0 P 

0 R 0 R 0 0 0 0 0 R 0 R 0 0 0 0 

0 G 0 G 0 W 0 W 0 G 0 
G 

0 W 0 W 

0 B 0 B 0 P 0 P 0 B 0 B 0 P 0 P 

0 R 0 R 0 0 0 0 0 R 0 R 0 0 0 0 

F1gure 32. Processor Ass1gnment for P1gure 3~. 
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All the examples of block colorings In this section lead to K p­

Block Colored matrices. From (5.40) and (5.41) we can easily see that 

In general. p-Block Colored matrices are not 1T-CO matrices. On the 

other hand. It Is a trivial observation that 1T-CO matrices are always per­

mutationally similar to a 2-Block Colored matrix. 

It Is also easy to conclude that p-Block Colored matrices are not. 

in general. p-cycllc (relative to the partitioning (5.24» matrices of Varga. 

On the other hand. It Is an Immediate generalization of Corollary 1 that 

p-cycllc matrices relative to (5.24) are permutatlonally similar to either a 

2-Block or 3-Block Colored matrix. 

We acknowledge that In general no theory exists as of yet to help 

In determining the relaxation factor w for p-Block Colored matrices when 

p >2. but the extra parallelism that can be obtained over a k-line SOA 

method may far outweigh this disadvantage. 



CHAPTER 6 

Parallel Conjugate Gradient Methods 

6.1. The Conjugate Gradient Method 

The conjugate gradient (CG) method was proposed In 1952 by 

Hestenes and Stlefel£1952] as a method for solving a symmetric positive 

definite NxN system of linear equations. Although It IS an Iterative 

method in nature. It will converge In at most N steps In the absence of 

rounding error and hence may be viewed as a direct method. 

In practice. however. the method was found to take many more than 

N steps due to this rounding error and was not competitive with Gaus­

sian elimination But In 1971. Reld[1971] showed that the method could 

sometimes be used effectively as an Iterative procedure for large sparse 

systems since suitable convergence may occur In far fewer than N 

steps. Several denvatlons and descriptions of this procedure appear In 

the literature: see for example. Chandra[19781 who studied the method for 

both finite element and finite difference dlscretlzatlons of elliptic partial 

differential equations. and Schultchen and Kostem[1973] who recommend 

the method for solving the linear systems that anse from finite element 

dlscretlzatlons Schrelber[1983] discussed the implementation of the CG 

method for vector computers and Podsladlo and Jordan[l981] describe its 

implementation on the FEM. We give the algorithm below and review 

some of Its Implementation considerations on an array processor such as 

the FEM 
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(1) Choose JJ..0 

(4) k =0 

(5) For k =0. 1 .... k
max 

<c..
k .l) 

(1) a=:--:-------:~ 

<rJ.k .KIl) 

k+1 k k 
(2) JJ.. =JJ.. +aA 

(3) If IIJJ..k+l- JJ..k 11_<'" _ .. then stop. otherwise continue. 

k+l k k 
(4) L =L -aKA 

(Lk +1 k + 1 ) 
(5) /3- ..L 

{£k ..Lk) 

(6) k + 1 k + 10 k 
fl. =L +~A 

Algorithm 1. Conjugate Gradient Algorithm 

T 
In the above. ex .y) denotes the inner product A. X. 
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This algorithm can be implemented on an array computer wIth p 

processors like the FEM by partitioning the K matrix by rows Into p 

portions. where each portion consists of at most (N] rows. The vectors 
p 

JJ... L. fl.. and L are likewIse partitIoned by rows In the same manner 

The I th portIon of each data structure is assIgned to processor I as 

Illustrated below for p =3. 
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1 1 1 1 1 

------
2 2 2 2 2 

------
3 3 3 3 3 

K jL L Il. L 

Figure 1. Data Assignment to 3 Processors 

An examination of the CG algorithm as described above leads to the 101-

lowing observations: 

(1) Once a Is known. all processors can calculate their portion of 

k +1 
jL simultaneously With no communication required. 

(2) Once P IS known. all processors can calculate their portion 01 

k+1 
Il. simultaneously With no communIcation reqUIred 

(3) Once KIl.
k 

and a are calculated. all processors can calculate 

their portion of l +1 simultaneously With no communicatIon 

required. 

(4) Some components 01 Il.
k 

resIding in other processors will be 

needed for the calculation of KIl.
k 

ThiS means that the values of 

r!' for the non-interior nodes must be commUnicated between 

processors. 
k 

This corresponds to the communication of the .u. 

values during a Jacobi or Multi-color SOR Iteration as described 

In Chapter 5. 

(5) The calculations of a and P require inner products to be formed 

globally over the array computer. Each processor can calculate 

the partial sum that corresponds to ItS portion of rows. but these 

partial sums must then be added together. If each processor 
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were to broadcast its partial sum to every other processor. the 

number of values received by a single procesor IS 0 (p -1) tor 

one Inner product alone. 

This aspect of the CG algorithm was realized by Jordan[1979] to 

be detrimental to the performance of CG on an array computer 

and as a result t"e sum/max hardware circuit discussed In 

Chapter 3 was designed for the FEM to perform sums over the p 

processors. With this hardware. one Inner product can be per-

formed In 0 (J092P ) operations since each processor Will load Its 

partial sum onto the circuit. and the circuit will perform the sum 

In a binary tree fashion and then return the complete sum to 

each processor. 

6.2. Preconditioned Conjugate Gradient MethOds 

6.2.1. The PeG AJgorlthm 

The condition number of any nonslngular matrix K with respect to a 

given norm Is 

ICUO= IIKII 11K -'11 (6 1) 

In particular. if K Is symmetric with eigenvalues A I then In the spectral 

(I.e. '2) norm 

max I All 
I 

ICUO-mlnIA I (6.2) 

I I 

The standard analysis of the conjugate gradient methOd. Chan-

dra(1978J. shows that the error In the I th Iterate IS bounded by 



1 
where a=-­

KUO 
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(6.3) 

This bound shows that the error Is a decreasing function of the condl-

tlon number of K. Hence. the conjugate gradient method applied to a 

system KM.=! where IC(K)<K(K) will converge In fewer steps than the 

conjugate gradient method applJed to K!J.=L. This observation Is the 

motivation for the preconditioned conjugate gradient method Instead of 

solving KJL=L. we choose to solve 

......... 
K!J..=L (6.4) 

where 

and Q IS a nonslngular matrix chosen so that I(K)<IC(K) Since Q is 

nonslngular. we can define 

M=QQT (6.S) 

and M will be symmetric and positive definite. In terms of M. K can 

be written as 

(6.6) 

from which It can be seen that the eigenvalues of K and M -1 K are the 

same. The Introduction of M Into the expression for K allows the stan-

dard conlugate gradient algOrithm to be written for the solution of !J. 

directly In terms of M without explicitly forming Q 

described In Chandra(19781 and Is given below 

This algOrithm IS 



o 
( ~) Choose JL 

(5) k-O 

(6) For k=O.' .... k
max 

ct.l> 
(1) a= 

(fl· .Kfl> 

k ... , k k 
( 2) U. =u. ... aQ. 

( 3) If I\u.k "" - .lllL < € then stop. otherwise continue. 

k ... , k k 
( 4) L =L -aKQ. 

(6) {J= 
( .-1< ... , k+') 
r .r 
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Algor1thm 2. Precondit1oned ConJugate Gradient Algor1thm 

The only difference an the Implementation of Algorithm 2 and Algo­

rithm , IS the solution of a system of the form M.i.=L dUring each Itera-

tlon. The considerations In choosing an M and In Implementing the 
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corresponding system on a parallel computer are discussed In the next 

section 

6.2.2. Implementation of Precondltloners 

The preconditioned conjugate gradient algorithm of the last section 

requires a symmetric and positive definite preconditioning matrix M to be 

specified or computed. The question arises as how to choose M so 

that the condition number of K=QT M-
1
KQ-T, 

max A/ 
... i 

I(K)=-.-­
min A, 

where Ai are the eigenvalues of 

possible. 

... -1 
K, or equivalently M K, IS as small as 

The best chOice for M In the sense of minimiZing I(K) is M =K but 

thiS gains nothing since K.i.=L IS Just as difficult to solve as KJL=1. The 

approach that has been taken In the literature IS to choose M to be a 

symmetric and positive definite approximation of K, If we write K as 

K=M-R (6.7> 

then 

(6 8) 

where R can be regarded as a remainder term Concus. Golub, and 

O'Leary(1976] give the following three criteria for M to be an effective 

precondltloner' 

(1) Mi.=L Is eaSily solved 

(2) M -1 R has small or nearly equal eigenvalues. or 
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(3) M-
1 
R has small rank 

A fourth cnterla that IS a major conSideration on a parallel computer IS 

(4) M IS easily formed. 

One class of precondltloners. Incomplete Cholesky Conjugate Gra­

dient. (lCCG>. (see Manteuffel[1979] for example) chooses M to be an 

incomplete Cholesky factorization of the matrix K. That Is. M =LL T where 

K = LLT - R (6.9) 

and L Is a lower triangular matrix and R is the remamder term. The 

matnx L In (6 9) and hence the matrix R will vary as different rules are 

used to create the Incomplete factorization. For example. one rule may 

restrict L to have the same sparsity structure as the lower part of K. 

whereas. another rule may allow flil-in within the band In some speCial 

fashion. In either case the system Mi.=L will be solved by forward and 

backward substitutions on the triangular systems 

L:t, =r 

(6.1 Q) 

respectively. 

The formation of M and the solution of the systems In (6 10) can 

be easily Implemented on a sequential computer; however. an efficient 

parallel implementation on an array or vector machine may be difficult to-

devise. In particular. the formation of M as an Incomplete Cholesky 

factorization may be difficult to Implement In parallel In addition. If L 

does not have a speCial structure. the forward and backward substitutions 
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will be Inherently sequential processes although Sameh and Kuck[19781 

and van der Vorst[1981] have discussed the parallel solution 01 triangular 

systems and we address this Issue In more depth later in this section. 

However. '" general. trtdlagonal and banded matrtces are not well sUited 

for preconditioning matrices for a conjugate gradient method to be 

Implemented on parallel computers. 

Another class of preconditioners that appears to be more easily 

Implemented on parallel computers arises by choosing M to be a spht-

tlng of K that describes a linear stationary Iterative method. As a first 

example. let D be the diagonal or (block diagonal) of K and choose 

M =D . We note that In most cases M =D will not closely approximate K. 

Furthermore. the choice M =D corresponds to a diagonal (block diagonal) 

scaling 01 K. That IS. 

K=D-1/2KD-1/2 

" -1/2 
jL=D jL (6.11> 

L=D-1/2L 

and to practice this scaling would be done a priori and Mi.=L would not 

be solved on each Iteration. That Is. the standard conJugate gradient 

method would be applied to (6 11> each Iteration. 

As a second example 01 a precondltloner that artses from a splitting 

for an Iterative method. consider the SSOR splitting 01 I<i..=L which is 

~c.lo-L>D-l clo-U>1L 
2-w w w 

2 
= .;!.-.C1-W) D+C1-WHLTU>+wLD-1U1LTLC6.12) 

2-w w 

where D. -L. and -U are the diagonal. strtctly lower. and strictly upper 

parts of K respectively. 
"Co) 

If we choose L =0 and take one step of the 
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A ... (1) 
SSOR method applied to K.L=L. the resulting L will be the exact solu-

A 

tlon to the system ML =r where the matrix M Is given by (6.13). 

M = ~(lo-uD-1 (lo-u) 
2-w w w 

(6.13) 

" We now consider the parallel Implementation of the solution of ML=L 

when M IS given by (6.13>' If the matrix K IS ordered by the Multi-

color ordering. then the solution to the triangular systems 

(10 -L)~ 
w 

= 2-wOL 
w 

(6.14) 

can be efficiently Implemented on parallel computers as one Multi-color 

SSOR Iteration applied to K.i.=L with initial guess to) =0. 

Systems like (6.14) can be solved as Multi-color SSOR Implementa-

tlons even if -L does not have the same elements as K as long as the 

sparsity structure of (D -U corresponds to some Multi-color ordering. 

We note that being able to solve these systems efficiently on an array 

computer would allow ICCG methods that require the factors of M to 

have the same sparsity structure as K or that correspond to some 

Multi-color scheme to be Implemented on parallel computers provided an 

efficient algOrithm could be found to do the Incomplete factorization In 

parallel. 

We next show for Laplace's equation that the above Implementation 

Of the SSOR preconditioning matrix (with w=1.0 =1) for a Multi-colored 

-grid achieves more accuracy With less computation than an Implementa-

tlon described by van der Vorst[1981) for a natural ordering of the grid. 
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Let I-E-F denote the lower triangular part of the matrix that results 

from a 5-star discretization of Laplace's equation where the grid is 

ordered by the natural ordering. Let the matrices -E and -F contain 

the first and second nonzero subdlagonals of the matrix K respectively. 

Then in its block tridiagonal form. the matrix K can be written as 

T, _FT , 
-F T2 

_FT 
, 1 2 

K • (6.15) 
= 

_FT • • T 

2 • • -FN- 1 
• • 

FN- 1 TN 

where the matrix F is partitioned into the men diagonal submatrlces F
j 

and the matrix E is partitioned into the nxn E
j 

submatrlces where E, IS 

the lower triangular part of the symmetric tridiagonal matrix T which has 
I 

been scaied to have unit diagonal. Recall. that the system of equations 

that must be solved each iteration to implement the precondltloner Is. 

T .. 
(/-E-FH/-E-F) L = L (6.16) 

Now. van der Vorst suggests approximating the forward substitution 

(/-E-F)x. = L (6 17) 

or equivalently the partltltoned systems 

by 

(6.18) 

where m terms of the series for (I -E )-1 are taken and a Similar 
I 
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expression Is found tor the approximation to the back substitution 

TA 
(/-E -F) L =,!.. Therefore. his Idea Is to take enough terms to approxl-

mate M given by (6.16) and at the same time produce a precondltloner 

for a natural ordering of the grid that Is vectorlzable without belOg cost 

prohibative. Simple operation counts show the followmg number of multl-

pllcatlons are needed to implement this scheme. 

(1) n to calculate F ~ 
r/-l 

2n (m -l)-m (m'tlH2 f ...m T...m T 
(2) 2 or finding I+E,+ ... +t::, and I+E

I 
+ .. +<t::

1 
) • 

For m =2. this Is n -2. For m =3. this Is 2n -5. 

2mn-m
2

-m ...m 
(3) 2 for multiplying <I+E,+ .. +t::, ) ~,+Ff'-l} 

For m =2. this IS 2n -3. For m =3. this is 3n -6. 

The total number of multiplications for m =2 and m =3 are given 

below In (6.19) 

7N - lO-V;:; m=2 

(6.19) 

10N - 19 V'N m=3 

Now. If the grid points are ordered by the RIB ordering. the matrix 

will have the form 

Note that the matrix E 10 (6 16) Is now Q. so that the van der Vorst 

scheme In (6.18) reduces to 
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~ = ~ +Ffi-1 for '=1.2 

for /=1.2 

which is the RIB SSOR iteration on the equation Ki. =L with to). The 

number of multiplications required for this Multi-color SSOR Implementa-

tion Is found from (5.29) to be at most 4N Hence. by ordering the 

grid in a RIB fashion. 0 (3N) and 0 (6N) multiplications can be saved 

over the van der Vorst 2 or 3-term implementation respectively for the 

natural ordering. In principle. the van der Vorst scheme is more gen-

eral since It can be applied to block matrices K regardless of the ord-

ering of the unknowns. but the more dense the matrices T/. the more 

expensive the scheme will be. We also note that the m-term approxi­

mation to (/-E,) -1 in (6.18) IS not necessary if the grid is ordered RIB 

(also true for Multi-colored grids) since E. =0 for all ,. This means 
I 

that the solution to (6 16) IS exact for the RIB ordering. whereas. It IS 

only approximate for the natural ordering whenever m <n +1 In addition. 

even If an exact solution to (6.16) could be obtained with a small value 

of m. (say 2 or 3). the number of Iterations of the PCG method with 

the resulting preconditoner would have to be 0<1 75) or 0(2.5) times less 

(for m =2.3 respectively) than the number of Iterations With the RIB PCG 

method to compensate for the Increase In the computational work. 

6.2.3. m-Step peG Methods 

6.2.3.1. Description 

It was demonstrated In section 6.2.2 that taking one step of a linear 

stationary iterative method such as Jacobi or SSOR applied to KL =L With 

to> =0 results In a precondltloner for the conjugate gradient method that 
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can be Implemented on a vector or array computer. The question now 

arises whether It would be beneficial to take more than one step of a 

linear stationary iterative method to produce a preconditloner M that 

more closely approximates K. 

We begin by deriving an expression for M. Let K =P -Q be a spllt-

tlng of K that is associated wIth the linear stationary Iterative method 

with Iteration matrix G =P-
1 

Q . Then the m-step iterative method applied 

to Ki.=L is 

(6.20) 

By choosing to> =0. (6.20> becomes 

(6.21> 

Hence. the preconditioning matrix IS 

m-1 -1 
M = P(J+G+ ... +G ) (622) 

Now. M must be symmetric and positive deflntte to be considered as a 

precondltloner for the conjugate gradient method. Before we establish 

the necessary and sufficient conditions for M to satisfy these crtterla. we 

prove the follOWing lemma 

Lemma 1. 

Proof' 

If A =BC Is a symmetric positive definite matrix. B IS symmetric. 

and C has positive eIgenvalues. then B is positive definite. 

-1 
Let C .!.=~. or equivalently. 
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(6.23) 

Multiply both sides by A 1/2 to get 

(6.24) 

or 

The proof is now by contradiction. Assume that B has a non-

positive eigenvalue. Then. since (6.24) IS a congruency 

transformation of B. it follows that R has a non posItive eigen-

value (see Gantmacher(1959». But the spectrum of R is Identi­

-1 
cal to that of C and by hypothesis can not have a nonposl-

tlve eigenvalue. Hence B is positive definite. 

The necessary and sufficient conditIons for M to be positive definite are 

gIven In Theorem 1. 

Theorem 1. 

Let K =P -Q be a symmetric positive definite matrtx and let P be 

a symmetric nonstngular matrtx. Then 

(1) the matrix M of (6.22) Is symmetrtc. 

(2) for m odd. M Is positive definite If and only Is P IS posl-

tive definite. 

(3) for m even. M Is positive definite If and only If P +Q Is 

positive definite. 



PrOOf. 

-1 
To prove symmetry. we write M as 

M-1 =p-1 tp-1 QP-l tp-1 QP-1 QP-1 t ... tp-1 QP-1 Q •• • p-1 

m-1 terms 
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(6.2S) 

Now since P and K and hence Q are symmetric. each term In 

(6.2S) Is symmetric. Thus M-
1 

and therefore M are symmetric. 

1 1 1 1 

The matrix G=p-1 Q can be expressed as G=K 2(J_K2p-1K2)K2. 

Since p-
1 

Is symmetric with P. the eigenvalues of the 

congruence transformation K 1/2p-1 K 1/2 are real. Hence. the 

eigenvalues of G are real. 

To prove (2). let m be odd. If g Is any eigenvalue of G 

other than 1. the corresponding eigenvalue of 

m-l 
R=<ltGt ... +G ) 

Is 

m-l = l_g
m 

ltgt ... +g T-g 

which Is positive since m Is odd. If g =1. the corresponding 

eigenvalue of R Is equal to m which is also positive. 

Now. since P=MR and M Is symmetric and R has positive 

eigenvalues. It follows from Lemma 1 that If P Is positive defln-

Ite then M must also be positive definite. Conversely. M can 

be written as M=PR-
1

. Since R-
1 

has positive eigenvalues and 

P Is symmetric. we conclude from Lemma 1 that if M is posl-
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tlve definite then P Is also posItive definite. 

Next. to prove (3) let m be even. It Is sufficient to consider 

M-
1 

since any conclusions about the definiteness of M-
1 

will 

apply to M. Since m is even. M-
1 

from (6.22) can be written 

as 

or 

-1 
Now. since PG =Q. M can be written as 

-1 
Now. since P Is nonslngular and symmetric. M is positive 

definite If and only if the symmetric matrix 

(6.27> 

Is positive definite 

Assume P +Q Is positive definite. Since S Is symmetric and the 

matrix has positive eigenvalues. S IS 

positive definite by Lemma 1. 

Conversely. If S Is positive definite. since P+Q is symmetric 

2 4 m-2 
and the series I +G +G + ... +G has posttlve eigenvalues. P+Q 

Is positive definite by Lemma 1. 
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DuboIs. Greenbaum. and ROdrtque£l9791 consider a truncated Neu­

mann series for K-
1 

as a precondltloner This precondltloner Is 

equivalent to that of (6.22) if K =P -Q corresponds to a Jacobi splitting 

where P =dlag (K>' but they do not consider more complicated spllttlngs 

that result from Iterative methods. Theorem 1 extends their main result. 

Under the hypothesis that K and P are both symmetric and positive 

deflntte matrices and p <G) < 1. they prove that M Is symmetric and posl-

tlve definite for all m Note that for odd m the condition that pCG ><1 

IS not needed and for even m. the matrix P IS only required to be 

symmetric. The relationship between the condition pCG><1 and the posi­

tive definiteness of PTQ Is given later In this discussion in Theorem 2. 

Theorem 1 Is helpful In choosing a splitting of K that Will produce 

an m-step preconditioner that Is symmetrtc and positive deflntte For 

example. If the Jacobi splitting of K (P=O and 0 =0 -K where 0 IS the 

diagonal of K) were conSidered. part (3) of the theorem says that If m 

Is even. PTO must be positive deflntte. We know from the Jacobi Con-

vergence Theorem (see. e g. Young[l9711>. 

Jacobi Convergence Theorem 

Let K =P -0 be a real. symmetrtc. and nonslngular matrtx With 

positive diagonal elements Then the Jacobi method converges 

(p (G > < 1) If and only if both P -0 and P TO are posItive definite. 

that PTO and hence M Will be positive definite only If the Jacobi 

method IS convergent. For the problems of Interest to us. the Jacobi 

method Is not guaranteed to be convergent since we only know that K 

Will be symmetrtc and POSitive definite. Therefore. for these prOblems. 

only odd values of m Will Yield m-step Jacobi precondltlontng matrices 
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that are guaranteed to be positive definite. 

For any splitting satisfying the hypothesis of Theorem 1. the question 

arises whether the same relationship exists between the positive definite­

ness of P to and the convergence of the Iterative method with iteration 

-1 
matrix P 0 that is given In the Jacobi Convergence Theorem above for 

the Jacobi splitting. We answer this question with Theorem 2. 

Theorem 2. 

Proof: 

Let K =P -0 be a symmetric posItive definite matrix and let P be 

symmetric and nonslngular. Then p(p-1 0 ><1 if and only if 

P to is positive definite. 

First. assume P+Q is positive definite. Since K is symmetric 

positive definite and P IS nonsingular. K=P-Q Is a p-regular 

splitting. Hence. from Ortega's p-regular splitting theorem. 

-1 
Ortega(l9711. p<P 0><1. 

We next note that G =P -1 0 can be expressed as 

1 

and the matrix K 1/2p-1K2 has real eigenvalues since K IS sym-

metric positive definite and P Is symmetric. Hence. G has real 

eigenvalues. 

-1 
Now. assume that p(G><l. then (/-G> exists and since G has 

real eigenvalues. It easily follows that the matrix H defined by 
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(628) 

has real eigenvalues. But we know from a theorem by 

Young£19711 that H Is N-stable. Hence H has positive elgen-

values. Now. we can write H as 

H=K-1 (PtQ) (6.29) 

or equivalently. 

(6.30> 

-1 
Finally. since K Is symmetric and posItive deflntte and H has 

positive eigenvalues and PtQ Is symmetric. we conclude from 

Lemma 1 that PTQ is positive definite. 

Note that the requirement that P be symmetric is stated as a suffi-

clent condition but not a necessary one. It remains to be proven 

whether or not the symmetry of P Is necessary for M to be symmetric 

for odd m > 1 or for P TQ and hence M to be symmetric and positive 

definIte for even m However. In practice. It was observed that the 

number of Iterations for convergence of the m-step PCG method wIth a 

nonsymmetrlc matrix P was extremely more than the number required by 

the standard conjugate gradient method (m =0) In particular. we solved 

the 60x60 plane stress problem which has a symmetrtc and positive 

definite coefficient matrix K with an m-step RJB/G SOR precondltloner. 

From the SOR convergence theorem stated in Chapter 5. we know that 

p(G)<1. but the SOR splitting matrix with w=1 for SImplicity Is P=D-L 

and is not symmetric. The results are given in Table 1 



m 

o 
1 

2 
3 
4 

!!!,-step R/B/G SOR 

49 
200 + 
200 + 
200 + 
200 + 

Table 1. Number of m-step R/B/G SOR PCG Iterations 
60x60 Plane Stress Problem 
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These results indicate that only symmetric spiittJngs should be considered. 

In the next section. we include results of the m-step PCG method 

derived from the Jacobi and SSOR splittlngs which are both symmetric 

6.2.3.2. Analysis of the Condition Number 

In the last section. we gave conditions for M to be symmetric and 

positive definite and hence to be considered as a precondltloner for the 

conJugate gradient method In this section we determine If increasing m 

will In fact produce a better conditioned system. For this purpose. we 

now denote by M m the matrix of (6.22). 

As a first step towards answering this question. we derive an 

expression for K(K
m

) 
.. -1 

Recall from (6.6) that K IS Similar to M m K so 

that KCK
m

) Is the same as the ratio of the largest to smallest eigen­

values of M - 1 K. An expression for M -
1 
K as a polynomlnal In G IS 

m m 

or 

-1 
where G =P Q. 

(6.31> 
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Since we wish to compare I(cXm) to I(Km +1 >, we will assume that both 

Mm and Mm+l are symmetric and positive definite. By Theorem 1, this 

Implies that P and P+Q are positive definite and thus by Theorem 2, 

p(G)< 1. Therefore. since the proof of Theorem 1 showed that the 

eigenvalues >.., of G are real. they can be ordered as 

-1<>" <). < ••. <). <1 
1 2 n 

Furthermore, let 0 be the eigenvalue with the smallest absolute value 

Then the condition number of K is 

l_>..m 
1 

1-). m 
n 

1-0
m 

1-), m 
n 

l-Om 

1-), m 
1 

m 

(6.32) 

As can be seen from (6.32), the conditions for I(K
m

+
1 
)<I(K

m
> depend 

upon the distribution of the eigenvalues ).i of G. These conditions are 

given by Theorem 3 if and by Theorem 4 If 

We note that (6.32) shows for both odd and 

It IS Impossible to conclude 

... ,. 
If dKm +1 )<I«Km ) without knowledge of the values of ).1' ).n' and O. 

Theorem 3. 

Let K =P-Q and P be symmetric and positive definite with 

p(G)<l. Then If >"1)0. I(Km) Is a decreasing function for all 

m. 
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PrOOf' 

A A 

We must show that IdKmt1)</dK
m

) By (632). 

2 m-1 
<1-A1H1H'ltA1t ... H'1 ) 

2 m-1 
<1-AnHlTAn tAn t ... tAn ) 

(633) 

Hence. we must show for A 1)0 that 

(6.34) 

ThiS Inequality Is true since An>A1 and 

f (x) = 
2 m 

1txtx t ... tx 

2 m-1 
Hxtx t ... tx 

(6.35) 

can easily be shown to be an Increasmg function of x for x )0. 

As an application 01 Theorem 3 consider the SSOR splitting of a 

symmetric and positive definite matrix. Recall from the basIs conver­

gence theorem for SSOR that was stated In Chapter 5. that if K is a 

symmetric matrix with pOSitive diagonal elements. the SSOR method con-

verges if and only If K IS pOSitive definite and O<w< 2. Therefore. 

p(G)<l for the SSOR splitting and from Young [19711 we know that all 

the eigenvalues of G are real and nonnegative. Hence A 1 )0. To 

satisfy the last hypothesis of Theorem 3 we prove that the matrix P for 

the SSOR splitting Is symmetric and positive definite. 
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Lemma 2. 

Proof. 

Let K =P-Q be symmetric and positive definite. If P IS the 

SSOR splitting matrix.' then P and M m are symmetric and posi­

tive definite. 

Now. 

where D =dlag (K). and -U is the strictly upper triangular part of 

-1/2 1 
K. Since the matrix D (~-U) is upper triangular with 

w 

positive diagonal elements and hence nonsingular. It follows 

Immediately that P is symmetric and positive definite. Therefore 

by Theorems 1 

definite for all m 

and 2. M 
m 

is also symmetric and positive 

The results of the m-step SSOR preconditioned conjugate gradient 

method on the 60x60 plane stress problem problem are given In Table 

2. the results on the 1536x1536 plane stress problem are given In Table 

3. and the results on a 768x768 matrix derived from the 5-star dlscretl-

zatlon of Laplace's equation are given In Table 4 For all three prob-

lems. the results are given for both the natural rowwlse ordering and 

Multi-color Ord&rlng of the grid. The convergence criterion was 

11
,,1< i" 1 _,,1< 11_ < ~. -6 
0&. 0&. _ .. where €=10 for all three problems. The standard 

conjugate gradient results With no preconditioning are indicated by m =0. 
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yy~ Natural 
m # Iterat10ns # Iterat10ns # Iterations 

(w=l ) (w=l ) (w=l 2) 

a 49 49 49 

1 23 20 20 

2 16 15 14 
3 14 12 12 

4 12 11 10 

Table 2. m-step SSOR peG for 60x60 Plane stress Problem 

yy~ Natural 
m # Iterations # Iterat10ns # Iterations 

(w=l ) (w=l) (w=1.6) 

a 363 363 363 

1 139 III 93 

2 99 80 66 

3 82 65 54 

4 71 57 47 

Table 3. m-step SSOR peG for 1536xl536 Plane stress Problem 

!I!! Natural 
m # Iterat10ns # Ite~ations # Iterations 

(w=l) (w=l ) (w=1.8) 

a 56 56 56 

1 30 28 17 

2 22 21 13 

3 18 17 10 

4 16 15 -- - 9 

Table 4. m-step SSOR peG for 768x768 Laplace's Equation 

The results In Tables 2.3. and 4 show that the number of iterations 

Is a decreasing function of m as was predicted by Theorem 3. The 

results also Indicate that there will be an optimal value of m, say m opt' 

since for m >m
opt

' the reduction In the number of CG Iterations Is not 

enough to balance the Increase in the number of Iterations of the SSOR 

precondltloner For example. consider the R/B/G results In Table 3. 

The number of CG Iterations and the number of steps of the SSOR 
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preconditloner as a function of m are summarized in the tabie below. 

The last two columns of the table give the total algorithm cost (In units 

Of SSOR Iterations) for the assumptions that one CG iteration is 

eqUivalent to one SSOR Iteration and that one CG iteration IS twice as 

expensive as one SSOR iteration respectively. 

Iterations Total Cost ----m CG SSOR ~~ CC;-~(~) 

o 
~ 

2 

3 

4 

363 

139 

99 

82 

7~ 

o 
139 

198 

246 

284 

363 

278 

297 

328 

355 

726 

4~7 

396 

4~O 

426 

For this example. m =1 Is optimal if one CG iteration costs the same as 

one SSOR iteration and m =2 is optimal if one CG iteration is tWice as 

costly as one SSOR iteration. The actual relative cost of the CG and 

SSOA iterations on a parallel computer will be a factor of the amount of 

artithmetlc and communication operations In each algorithm as well as 

the times to perform these operations on the machine. These Issues 

will be discussed In more detail in Chapter 7 

We now prove Theorem 4. 

Theorem 4 

Let K =P-Q and P be symmetric and positive definite with 



Proof: 

(2) for m even. KcK
m

+
1

) < KcK
m

) If 

m +1)(1_>. m) < <1-0m)(1->. m +1) 
n n 

By (6.32). we must show that 

1-0m +1 
< 

1->' m +1 
n 
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and only If 

(6.36) 

Since >'n < 1 and m +1 Is even. (6.36) Is true because 

1-0
m 

+1 < 1+ 1>"11 m and 1->.; +1 > 1->..; 

Statement (2) of the theorem follows from (6.32) directly since 

K(K
m

+
1

) < KcK
m

) can be written as 

1+ 1>'11 mtl 1-0m 
< 

l_>.mtl l_).m 
n n 

(6.37> 

Observe from Theorem 4 that If >. n > I All a better conditioned system 

will result by increasing m from m (odd) to m + 1 (even). whereas. this 

may not be the case if m is Increased from m (even) to m + 1 (odd). 

As an example of the application of Theorem 4. we consider the 

Jacobi splitting of any symmetric and positive definite matrix K that has 

Property A (see Young [1971]). For this splitting. P=D where D Is the 

diagonal of K and therefore P Is symmetric and positive definite. Now. 

since K has Property A. the eigenvalues A, of G occur in .:tA, pairs and 

From (2) of the theorem. we conclude that gOing 

from an even to a consecutive odd number of steps is advantageous If 
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and only If 

(6.38) 

or equivalently, 

(6.39) 

As m increases the Inequality In (6.39) reduces asymptotically to 

(6.40> 

For m =2 and m =3, the exact conditions are An < .62 and An <.53 respec­

tively. But for problems of interest to us. An will be closer to 1 and 

we can conclude that It Is not advantageous to Increase m from m 

(even) to m + 1 (odd>. This fact has been verified by numerical experi-

ments for the m-step Jacobi precondltioner on an 89x89 symmetric and 

positive definite system that had Property A. The results are given in 

Table 5. 

m 

o 
1 

2 
3 
4 
5 
6 
7 
8 

# iterations 

45 
45 
23 
36 
21 
30 
18 
26 
16 

Table 5. m-step Jacobi Results for 89x89 Problem 

Note from Table 5 that Increasmg m from 2 to 3. from 4 to 5. and 

from 6 to 7 also increases the number of iterations from 23 to 36. from 

21 to 30. and from 18 to 26 respectively. On the other hand. observe 
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that increasing m from an odd to a consecutive even number always 

reduces the number of iterations. Dubois. Greenbaum. ROdnque(l9791 

reported similar results for Poisson's equation but they explained the 

-1 
results by assuming that the eigenvalues of M K were near 0.1. and 2. 

m 

Hence. our explanation given by Theorem 4 is more general. 

Theorem 4 suggested that in certain Instances it is better to take 

an even number of steps of the preconditioner. If this were done. the 

question would be to determine the conditions for I(CK
m 

-t2) < I( (Km), 

These conditions are given In Theorem 5. Notice that the hypothesIs of 

this theorem only requires P to be symmetric and nonslngular Instead of 

positive definite. 

Theorem 5. 

Let K =P -0 be symmetric and positive definite and let P be 

symmetric and nonslngular. If p(G)<l and m IS even then 

KCKm -t2> < I(Km )· 

Proof: 

From (6.32) we must show that 

1_0m -t2 
< 

l-Om 
for I All > IAnl 

1-X m-t2 l_X
m 

1 1 
(6.41> 

1_0m -t2 
< 

1-0
m 

for A > I All 1-), m +2 l_).m n 
n n 

We rewrite (6.41> as 



1-10 I m +2 

1-I Olm 

1-101 m+2 

1-1 01 m 

Since o <; IA11 

< 
1- P'11 m +2 

for IA1 ( > IAnl 
l-IA,I m 

< 
1-IAnl m +2 

for An > IAll 
l-I Anl m 

and o <; IAnl. (6.42) IS true since 

f<X) = 1 
mt2 

-x 

is an Increasing function of x for x ~O. 
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(6.42) 

(643) 

Hence. If we always take an even number of steps of the precondltloner. 

a better conditioned system will result as the number of steps increases. 

So far we have only addressed the question of whether a better 

conditioned system results by Increasing m We now turn to the ques-

tlon of how much improvement over m =1 can be made by takmg m > 1 

steps of the precondltloner DuboIs. Greenbaum. and ROdrlque(l9791 

prove that the m-step peG method can only reduce the number of 

Iterations needed by the 1-step peG method by a factor of m. that Is. 

# IteratIons l-step peG ( m 
# IteratIons m -step peG 

(6.44) 

In practice. this theoretical bound may not be reached and for a given 

distribution of eigenvalues it may be sharper for some values of m than 

for others. The results of Dubois. et. al. (1 9791 show this for the m-step 

Jacobi peG for Laplace's equation Tables 2. 3. and 4 show for the 

m-step SSOR peG method applIed to both the plane stress problem and 

Laplace's equation that the bound IS best for m =2 Table 5 shows that 

for the m-step Jacobi peG applied to a problem With Property A that 
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the bound is extremely sharp for m =2 and extremely poor for odd values 

of m. 

In order to determine the conditions under which the m-step PCG 

method gives the most improvement over the '-step PCG method. we 

examine the ratio for both odd and even m with different 
A 

K(J(m) 

assumptions about the distribution of the eIgenvalues A, of G which are 

assumed to be ordered as -1<A,<A
2

< ... <A.
n

<1 wIth O=min I Ad· , This 

ratio can easily be calculated from the equations of (6.32) and Is sum-

manzed below for the various cases. 

2 m-1 
HAn TAn T ... TAn 

A,)O 
2 m-' 

HA,TA,T ... TA, 

I I 2 m-l> (H A, HHAn TAn T ... TAn 
A,<O.An>O. m odd 

H IA,l
m 

A 

(IT IAnl mHH IA,I ) K (K 1 ) 
A,<O.A

n 
<0. m odd = (645) 

A 

(H IA11 mHH IAnl ) /C.(K
m

) 

1 I 2 m-' (H A, HHAn TAn T ... TAn ) 
A,<O.An) IA,I m even 

Cl-IOl
m

) 

ClT IA11 H'-IA,I m) 

A,<o.IA,1 ) IAnl m even 
n-AnH'-lol m) 

Several observations can be made from (6.45) and are listed below. 

A 

(1) If )., )0. the value of 
K (K, ) 

maxImum occurs as 
A 

K(K
m

) 
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A~O and A~' and Is equal to m. 

(2) 

K(K 1 ) 

If A, <0 and An>O. and m Is odd. the maximum value of " 
K.CK

m
) 

occurs when )'~l and Is equal to 

(3) The m-step peG method em >1> is more effective If An>O. 

(4) If A, <0. and An) A, • and m Is even. the maximum value of 

KCK, ) 
occurs when ).~ 1 and I A,I = IAn I and Is equal to 

K(K
m

) 

2m 

1-0m
o 

Note that the larger O. the larger this ratio Will be. 

Hence to achieve the maximum performance In this case. we 

would like the value of 0 to be as close to that of A, as 

possible. For K matrices with Property A. this IS not possible 

since 0=0 and the maximum ratio of the two condition numbers 

is 2m. 

In summary. the m-step peG method gives more Improvement 

over the l-step peG method when an even number of steps of 

the precondltloner are taken and the eigenvalues of the matrix 

G are distributed as desCribed in (4) above. 
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6.2.4. m-step Extrapolated peG Methods 

6.2.4.1. Description 

It was pOinted out In the last section that the m-step methods per-

form better If the smallest eigenvalue A, of G Is negative and the larg­

est eigenvalue An Is positive with An = I A ,1· Furthermore. the maximum 

... 

value of 
IdK, ) 

... was seen to be 2m If 0=0 and greater than 2m other-

I(Km) 

wise. The purpose of this section Is to demonstrate how to achieve this 

dIstrIbution of eigenvalues by using extrapolation. 

We begin by recalling that the Iteration matrix H for an extrapolated 

Iterative method can be written as 

H = <1-"1)/ + 'YG (6.46) 

where G IS the associated iteration matrix for "1=1 

ThiS Iterative method. corresponds to the splitting of K given by 

K = .lp _ (1-"1 P + Q) 
"I "I 

(647) 

where 

K = P - Q (648) 

IS the splitting of K that leads to the unextrapolated ("1=1> method with 

iteration matrix G =p-'Q. 

If we define 

R =.!p (6.49) 
"I 

and 
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(6.50> 

the preconditioning matrix M for the extrapolated m-step peG method 
m."I 

IS 

(6.51> 

The following Corollary gives the necessary and sufficient conditions for 

M to be symmetric and positive definite. 
m."I 

Corollary 1. 

Proof: 

Let K =P -Q be symmetric and positive definite and let P be 

symmetric and nonslngular. If "1>0. then 

(1) M is symmetric. 
m."I 

(2) for odd m. M is positive definite if and only If P is 
m."I 

positive definite. 

(3) for even m. M 
m."I 

Is positive definite If and only If g < 1 
n 

and "I <~ where the 
-gl 

eigenvalues of G are gl <g2 < .. <gn· 

R =.!p is symmetric since P IS symmetric. 
"I It follows from 

Theorem 1. that M is symmetric. 
m."I 

Since "1>0. (2) follows from Theorem 1 since for odd m . .!p IS 

"I 

positive definite if and only if P is positive definite. 

To prove (3) we note from Theorem 1 that for even m. M 
m."I 

is positive definite if and only if R i'S IS positive definite Since 

R is symmetric and nonslngular. we know by Theorem 3 that 

Ri'S IS positive <:1eflnlte It an<:1 only It p(H )<1. Therefore. 
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M is positive definite if and only if p«l-')I)J"'')IG)<' and this 
m .')1 

condition Is met If and only if l-')I+')Ign <1 and -1<1-')1"'')Ig1 or 

equivalently gn < 1 and ')I <_2_ and (3) follows. 
1-g

1 

The ratio of the largest to smallest eigenvalues of M-
1 

K where 
m .')1 

(6.52) 

depends upon the distribution of the eigenvalues of H as was discussed 

in the last section and this distribution will be a function of ')I. How-

ever. for the special case m =1. 

M -, K = ')I (/ -G ) 
1. ')I 

the ratio of the largest to smallest eigenvalues of M-,l K Is Independent 
.')1 

of ')I and extrapolation Is not worthwhile In this case. 

6.2.4.2. Choosing the extrapolation Factor 

We would like to choose ')I so that the eigenvalues of H. 

(6.53) 

In order to achieve the most Improvement over the 1-step extrapolated 

(or unextrapolated for m=l> method. Since h j =l-')1"'')Ig/, (6.53) leads to 

the following choice for ')I: 

2 
')I opt = 2-g -g 

1 n 
(6.54) 

Note that If gl =-gn' ')I will equal 1 and the matrix- G already has the 

optimal distribution of eigenvalues and hence no extrapolation will be 

performed. This will be the case for the Jacobi splitting for Laplace's 

equation. 
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Extrapolation IS therefore most useful If all the eigenvalues gl of G 

Ie (K, ) 
are nonnegative and from (6.45) the maximum value of is 

2m 
m ,-g , 

m 

Ie(K
m

) 

g, ~O. m even. extrapolation 

(6.55) 

g, ~O. no extrapolatIon 

To Illustrate how effective extrapolation can be for m > 1 we conSider 

the m-step SSOR PCG method. The eigenvalues of the SSOR iteration 

matrix G are nonnegative and p(G )<, for symmetric and positive defmlte 

matrices K so the hypotheses for m even in Corollary , are met if we 

2 
take 1'<-,--. The plane stress problem and Laplace's equation were 

-gl 

solved with the m-step extrapolated SSOR PCG method for the Multi-color 

orderings of the respective grids. The results are given in parentheSIS 

10 Tables 6 and 7 respectively. 

m 

0 

1 

2 

3 

4 

YY5! Natural 

w=l w=l w=1.6 

363 363 363 

139 111 93 
99 (72 ) 80 66 

82 65 54 

71 (59) 57 47 

Table 6. m-stel' SSOR (Extrapolated SSOR) 

1536xl536 Plane stress Problem 

(,,=1.95 ) 



m 

a 
1 
2 

3 
4 

yy~ Natural 

w=l w=l w=1.8 

56 56 56 

30 28 17 

22 (17 ) 21 13 

18 17 10 

16 (14) 15 9 

Table 7. m-step SSOR (Extrapolated SSOR) 
768x768 Laplace's Equat10n 

('Y=1.7) 

143 

Note that for both the plane stress problem and Laplace's equation. the 

extrapolated method for the Multi-colored grid required fewer Iterations 

for convergence than the corresponding unextrapolated method but stili 

required more Iterations than the unextrapolated method applied to the 

natural ordering of the grid with optimal relaxation factor. The ratio of 

the number of Iterations for the l-step method to the number of Itera-

tlons for the m-step method IS given In Table 8 for the plane stress 

problem and In Table 9 for Laplace's equation 

m Onextrapolated Extrapolated Theoretical Max1mum 

2 1.40 1.93 2.00 
4 1 • 96 2 • 36 4. 00 

2 

4 

Table 8. Rat10 of I-step to m-step RlB/G SSOR peG 
Plane stress Problem 

1.36 
1.88 

('Y=1.95 ) 

1.76 
2.14 

2.00 
4.00 

Table 9. Rat10 of 1-step to m-step RIB SSOR peG 
Laplace'S Equation 

('Y=1.70 ) 
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Tables 8 and 9 show that for both problems. the extrapolated method 

with m =2 gives results closer to the theoretical maximum than does m =4. 

The Implementation of the extrapolation method takes little extra 

computational effort each iteration but does require the storage of an 

auxllary vector of length equal to the number of unknowns. However. 

the major consideration In the use of extrapolation Is the determination 

of the extrapolation factor 'Y. As is seen from (6.54). the optimal value 

of 'Y depends on prior knowlege of the largest and smallest eigenvalues 

of G which may not be known in practice. 

6.2.4.3. Comparison to the PPCG Method 

Johnson. Mlcchelli. and Paul (1982) have suggested symmetrically 

scaling the matrix K to have unit diagonal and then taking m terms of 

a parametrized Neumann series for K -1 = (f -G ) -1 as the value for M ~1 . 

They call the resulting method the PPCG (m-l) method to mean m-step 

Parametrized Preconditioned Conjugate Gradient Method. This 

corresponds to a preconditioning matrix that Is a polynomlnal of degree 

m-l In G. 

(6.56) 

derived from the Jacobi splitting 

K = I - G (6.57> 

.. 
and the solution to M rrf-=L can be Implemented by taking m steps of 

the Jacobi Iterative method applied to KL =L With Initial guess ;(0) =Q. 
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Since K.I. and hence G are symmetric. clearly M is symmetric. m_ 

Now. M -1 K can be written as a poly.qomlnal In K. 
m 

(6.58) 

and Johnson. et.al .. guarantee that Mm will be positive definite by 

choosing the a 's 
I 

so that the eigenvalues. y (~). of M-1K 
m 

and hence 

those of Mm are positive on the Interval [).l'). nJ that contains the 

eigenvalues of K. Hence. the Idea of the parametrization Is to choose 

-1 
the a/s so that the eigenvalues of Mm K are positive on [).1').nJ and 

are as close to 1 as possible In some sense such as the min-max or 

the least squares criteria. 

We now show how to generalize this Idea for any splitting of the 

matrix K. if we let 

K = P - Q (6.59) 

and G =P -1 Q then from (6.22). the inverse of the m-step precondltioner 

Is 

(6.60> 

We parametrize this series as. 

(6.61> 

and note from Theorem 1 that M will be symmetric If P Is sym-
m.a 

metriC since the a's do not affect the proof of symmetry. 

The expression for M -1 K Is given by 
m.a 
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(6.62) 

-1 
and is seen to be a polynomlnal In P K rather than In K as In (6.58). 

This means that the values of a, should be chosen so that the eigen­

-1 
values yO,) of M K are posItive on the Interval [A.

1
' A. n1 that contains 

m.a 

the eigenvalues of P -1 K and are as close to 1 as possible In some 

sense such as the min-max or least squares criteria. 

We now consider the special case 01 m =2 In equation (6.61> for the 

general splitting K =P-Q. The matrix M2 is then 
.a 

M 
2.a 

(6.63) 

and the 2-step extrapolated precondltloner matrix for the same splitting 

of K is seen by (651) to be 

M = ~ ( 2-." I + G ) -1 
2 . ." .,,2 ." 

(6.64) 

It Is known. see Chandra[l9781. that the same iterates of the PCG 

method Will be obtained with M and any posItive constant multiple of M 

Hence, the extrapolated precondltloner of (6.64) Yields the same results 

as the parametrized precondltloner of (6 63) if 

(6.65) 

or eqUivalently. 

2 ." = (6 66) 
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We note that for m >2 such a relationshIp wIll not eXIst between 

M and M and more research will be required to determine If 
m.a m."I 

the parametrized precondltloner Is better than extrapolation for these 

cases. 



CHAPTER 7 

Parallel Algorithm Analysis 

7.1. execution TIme Model 

The method of comparing algorithms for- serial machines Is the 

standard complexity analysis of the number of arithmetic operations 

required for completion of the algorithm. For Iterative methods this can 

be broken Into the number of operations per Iteration times the number 

of Iterations necessary for convergence. 

It has been pointed out repeatedly In the literature. see Ortega and 

Volgtll 977] Buzbeell 978]. Grosch[1979]. Jones[1980]. Hockney(1982]. for 

examples. that this standard complexity analysis Is not sufficient to com­

pare parallel algorithms. Additional factors such as data transmissions 

between processors. processor synchronizations. and global decision mak­

Ing among processors add to the execution time of a parallel algorithm. 

The number of these overhead operations vary with each algorithm and 

the number of processors used to solve the problem. In addition. the 

time required per operation may be a function of the number of proces­

sors as well as the hardware/software Implementation of the operation on 

the parallel machine. These considerations suggest that the analysis of 

a parallel algorithm's performance on a particular machine should Include 

a model for Its execution time. 

In this chapter an execution time model Is developed for analyzing 

the parallel algorithms In Chapters 5 and 6. The number of arithmetic 

operations. data transmissions. synchronizations. and flag checks per 

148 
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Iteration are multiplied by the total number of Iterations to yield the 

number of operations of each type. These numbers are then multiplied 

by the time cost for the respective operation to obtain the total execution 

time. This execution time Is measured In units of one 

multiplication/addition pair. A detailed description of the model follows: 

Let 

a = number of multiplication/addition pairs per Iteration 

b = number of barrier synchronizations per Iteration 

c = number of colors 

d = number of divisions per Iteration 

e = number of equations of each color per processor 

f = number of global flag checks per Iteration 

g = number of global transmissions per Iteration 

= number of Interior equations per processor 

m = number of steps of m-step peG 

p = number of processors 

, = number of receives per Iteration 

oS = number of sum/max circuitry uses per Iteration 

t = number of local transmissions per Iteration 

v = number of local convergence tests per Iteration 

71 = maximum number of nonzero entries per row of K 

I = number of Iterations required for convergence 

N = number of equations to be distributed to p processors 

The following are the costs of each operation In units of 

one single precision floating point multiplication/addition 

pair. 
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B = cost per barner synchronization 

D = cost per division 

F = cost per global flag check 

G = cost per global send 

R = cost per receive (both local and global> 

S = cost per sum/max usage 

T = cost per local transmission (send) 

V = cost per local convergence test 

-
The formula for the execution time (E) Is given by 

E = I [8 +dD +vV +rR +tT +gG +bB + f F +sS] (7.1> 

This formula can also be used to determine the execution time of a 

sequential algorithm by setting r.t.g.b.f. and s to zero. 

The values of v.b. and f are the same for all the Iterative algo-

rlthms considered In Chapters 5 and 6. A description of how these 

values are determined will now be given. The value of II J _ jLk -1 Ilog 

must be determined at the k th Iteration. If this value Is less than a 

prescribed tolerance E. the Iteration terminates. If not. the next iteration 

Is begun. This estimate Is determined In two steps. First. each pro-

cessor compares Its portion of jLk. say 
k 
~. with the corresponding por-

k-1 
tlon ~ obtained on Iteration k-1. If ,,~- ~-llfog <e the proces-

sor raises Its convergence flag. For a sequential algorithm this conver-

gence criterion requires N comparisons each Iteration; whereas. for a 

parallel algorithm. an equal partitioning of jL to the p processors allows 

these comparisons to be performed simultaneously In the processors. 

Hence the value of v Is gIven by 
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v = N <Sequential) 
<7.2) 

v = N /p (parallel) 

We note that the complexity analysis of an algorithm on a sequential 

computer rarely Includes the operation counts for the convergence test. 

However. If p=O W). <7.2) Implies that v=O (1) for a parallel Implementa-

tlon. This can cause a significant reduction In execution time of the 

parallel algorithm If the convergence test Is a costly operation or If the 

number of Iterations Is large. 

Secondly. the processors must be synchronized at the end of each 

Iteration for the purpose of checking the convergence flags of all the 

processors. That Is. 

b = 1 

f = 1 
<7.3) 

On the Finite Element Machine this synchronization Is Implemented as a 

barrier whereby each processor uses the signal flag hardware circuit to 

monitor the synchronization flag on all processors. When this flag Is set 

In all processors. the barrier Is lowered and the processors continue 

with the next Instruction which Is the global convergence test. To per-

form this test. each processor uses the signal flag hardware to check 

the convergence flag In all processors. If all processors have set their 

flag. the algorithm terminates; If not. the next Iteration Is begun. 

We note that other norms could be used to estimate the error. In 

I I h 2 Id I IlIk k-l)T(k k-l)t b f d part cu ar. t e -norm wou requ re ~ -jL u.. -jL 0 e orme. 

This would require N multiplications and N -1 additions (N additions If 

the sum Is Initally set to zero) for a sequential algorithm For a paral-

lei algorithm. N /p multiplications can be done simultaneously by the p 
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processors and these partIal sums loaded onto the sum/max circuit. The 

circuit would calculate and then return the complete sum (Inner product) 

to each processor. Since the sum/max circuIt Is not yet operatIonal on 

FEM and the actual programs run on FEM used the -norm test. the 

2-norm will not be consIdered In the model. 

To determIne I In <7.1>. for the plane stress problem for example. 

let x and y denote the number of rows and columns of problem nodes 

assIgned to each processor as shown In Figure 1 where lines between 

processors represent the local links that are used during computation. 

y y y 
I' • I 

r'I lSI 
0-0 

0 __ 
0-0 0-0 

~ I" 1'1 I'. 0--00 0-0 

x r- - I-

ISI I~ 
0-0 0-0 

0-1 0,0 

1'1 1'1 1'0 1-1 

I I I 
0_ 

lSI i,i 0,0 0,0 i,i 1'1 0--;0 1-1 1-1 0-0 

x - r- r-

0,0 

1'1 
0-0 0-0 

1'1 
0-0 

1~ .c:::J 1'1 1_1 0-0 

I I I 
1-0 

0'1 lSI ISI ISI 1'1 
0_ 

1~1 

~-x - '- r-

I'1 ISI 
0-0 i,i - 0-0 

l'L 1~ 1'1 0-0 

I I I 

Figure 1. Problem Node Assignment 

Furthermore. let d represent the number of equatIons at each problem 

node. and assume that the grid Is dlscretlzed by linear triangular finite 

elements so that each Interior node Is on a common finite element with 

six other nodes (East. West. North. South. Northwest. Southeast). 
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The number of equatIons withIn each processor that correspond to 

the .JI. values that are not communicated to other processors during 

computation (Interior equations) Is given by 

{

d CK-l)(y-1> 
, = 

d CK -2) <y -2) 

p<9 

p)9 
(7.4) 

where we are assuming that the processors are connected In an array 

fashion like the FEM so that a completely Interior processor does not 

occur until p =9. 

The values of a.g.s.t and r In (7.1> depend on the particular Itera-

tlve algorithm used to solve the problem and will be discussed separately 

In the following sections for the Multi-Color SOA. the Conjugate Gradient. 

and the m-step (SSOR> Preconditioned Conjugate Gradient algorithms. 

7.1.1. execution TIme for Multi-COlor SOR 

To solve K.JI.=L by the Multi-Color SOA method given by Algorithm 3 

In Chapter 5. at most 71-1 multiplications/addition paIrs for each of the 

N rows of K are required to produce the next Iterate and 2 additional 

multiplications/additions per row to do the over-relaxation. That Is. 

a = N (71+1> (7.5) 

If I represents the number of SOR Iterations. the total execution time for 

the sequential Multi-Color SOR algorithm Is given by 

E = I[N (71+1HNV) (7.6) 

Now suppose that p processors are available and that p evenly 

divides N. Then. the arithmetic In <7.5) Is divided by p to give 
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a = N (71+ l)/p <7.7> 

Chapter 5 showed how to map problems on rectangular grids onto an 

array of processors so that the Multi-color SOR method only requires a 

given processor to communicate with at most eight of Its nearest neigh­

bors. For example. an Interior processor will communicate with Its four 

nearest neighbors (North.South.East.West) during the solution of Laplace's 

equation If the region Is dlscretlzed by the usual five-star discretization. 

and during the solution of the plane stress problem with the domain 

dlscretlzed by linear triangular finite elements. an Interior processor will 

communicate with Its North. South. East. West. Northwest. Southeast. 

neighbors as shown In Figure 1. This means that the global bus and 

the sum/max circuitry are not required for these dlscretizatlons and 

g = 0 <7.8) 

.s = 0 <7.9) 

The number of local sends for each processor will equal the number of 

non-Interior equations: 

t = ce-/ 

or equivalently. 

{

d CK+y-l> 

t = d (2x-t2y-4) 

p<9 

p~9 
<7.10) 

and the number of values received by each processor per Iteration will 

be the number of non-Interior equations for all six neighboring proces-

sors: 



_ {2d Cxtyt1> 

r - d Cxtytl> 

p)9 

p<9 
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(7.11) 

Thus. the total parallel execution time for Red/Black/Green SOR for the 

plane stress problem Is 

E = I[(N (11+ 1>tNV)/p ttT +rR +8 tF] (7.12) 

where t. and r are given by <7.10) and (7.11> respectively. 

7.1.2. execution Time for Conjugate Gradient 

To solve K!J. =L by the conjugate gradient method given by Algorithm 

1 In Chapter 6. the following number of multiplications and additions are 

required: at most 11N multiplications and 11 <N -1) additions for forming 

KI1.. N multiplications and N -1 additions for doing each of the Inner 

products IJ..T KI1. and LTL. N multiplications and N additions for each of 

k k k k kt1 "k 
the computations !J. taI1. • L -aKsi. • and L +1JI1. respectively. In addl-

ton. 2 divisions for the calculation of a and P are required. Hence. the 

total number of arithmetic operations per Iteration Is given by <7.13) 

a ( 11N+5N 

d = 2 
(7.13) 

and the total execution time for the sequential conjugate gradient is 

bounded by 

E ( I [11N +5N t2D tNV] (7.14) 

Now. suppose that p processors are available and that p evenly 

divides N. Then the number of multiplication/addition pairs In <7.13) Is 

divided by P to give 
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a = (7JN -t5N )/p <7.15) 

but the two divisions must be done by all p processors. 

The values of t.r.g. and s In <7.1> depend on the mechanism used 

T T 
for doing the Inner products L Land /L K/L. We first give these values 

for the plane stress problem If a bus (such as the global bus on FEM) 

alone Is used. The values that each processor must communicate dur-

Ing each Iteration of the conjugate gradient algorithm are the non­

T 
Interior /L values. one partial sum for L L. and one partial sum for 

/L
T 

K/L. The non-Interior /L values are sent to the six neighboring pro-

cessors for a total of ae -I transmissions as given by <7.10>' In addi­

tion. the partial sums for LTL and /L
T 

KfL are sent to the eight local 

neighbor processors and broadcast over the global bus to the remaining 

p-9 processors. The totals for t and g are given In (7.16) and (7.17> 

respectively. 

t = ae-1T2 

p(9 

p>9 

(7.16) 

<7.17> 

The non-Interior values of /L from the six local neighbors must be 

received each Iteration. Also the two partial sums LTL and /L
T 

K/L must 

be received from p -1 processors and added to the accumulating global 

sum. If q denotes the ratio of the time to receive and add one 

number to this global sum to the time to receive the number. the value 

of r Is given by (7.18). 

_ {2d(X-ty -tl> -t 2Cp-l>q 

r - d (x-ty-tl) -t 2(p -l)q 

p~9 

p<9 
<7.18) 
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The total execution time for the parallel conjugate gradient algorithm that 

uses the global bus for Inner products Is given In (7.19). 

E = I (71N -t5N tNV)/p -t2D ttT -trR -tgG -tB -tF] (7.19) 

where t. g. and r are given by (7.16), <7.17), and <7.18) respectively. 

Secondly. we assume that a special hardware circuit such as the 

sum/max circuit on the FEM Is available for performing the Inner pro­

ducts. Then the partial sums for LTL and IJ.TKIJ. are calculated simul­

taneously In the processors and then loaded onto the sum/max circuit. 

summed by the circuit. and the result placed Into a special receive 

buffer In each processor. In particular. the values of t. r. g. and s 

are: 

t = ce-I (7.20) 

• {2d<X+Y+1l p)9 
(7.21> r 

d (x-ty-tl) p<9 

g = 0 (7.22) 

s = 2 (7.23) 

Note that the number of receives. r. Is no longer 0 (p) since the global 

bus Is not used. The total execution time for the parallel conjugate 

gradient algorithm that uses this special hardware for the Inner products 

Is given In (7.24). 

E = I «71N -t5N -tNV)/p -t2D -ttT -trR -t2S -tB -tF] (7.24) 

where t and , are given by (7.20) and (7.21> respectively. 
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7.1.3. Executfon Time for m-Step (SSOR) peG 

The number of multiplication/addition pairs per Iteration Is equal to 

the number for standard conjugate gradient plus m times the number for 

one step of SSOR. Each step of SSOR can be Implemented as dls-

cussed In Chapter 5 and will require N <7}+l> multiplications If either 

overrelaxatlon or extrapolation Is used. The total execution time for the 

sequential m-step SSOR PCG method Is given in <7.25). 

E = TJN +5N +2D +NV +mN <7}+ 1) (7.25) 

The addition of the m-step SSOR precondltioner to the standard 

conjugate gradient algorithm adds extra arithmetic and local send and 

receive operations. It is important to note that the SSOR algorithm can 

be implemented as a forward and backward Multi-Color SOR method as 

described In Chapter 5 and hence no global communication between 

processors Is required for rectangular grids. 

The number of multiplications. local sends. and receives required by 

the m-step preconditloner alone will now be described. The arithmetic 

In <7.25) due to SSOR Is distributed among p processors and is given 

by <7.26). 

a = mN (7}+ l)/p (7 26) 

The only communication that the m-step precondltioner adds to the PCG 

" algorithm is the local communication of the L values during the m-step 

" Iterative solution of K.L=L. These values must be sent to the six neigh-

bor processors twice for every step of the precondltloner. once for the 

forward SOR pass and once for the reverse pass as indicated by <7.27). 
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t = 2m (ee-I) <7.27> 

.. 
Likewise. values of L must be received from the six neighbor processors 

for both the forward and reverse SOR pass for every step of the 

precondltloner. Hence. the number of receives Is given by 

r = {2dCx+y+um 

4d Cx+y+l>m 

p<9 

p)9 
<7.28) 

The total execution time of the parallel m-step peG algorithm 

depends on the Implementation of the Inner products. First. If the par-

tlal sums of the Inner products are communicated over the global bus. 

the execution time for the parallel m-step PCG method Is given by 

<7.29). 

E = C + /[mN (71+ l)/p +tT +rR) (7.29) 

where t and r are given by (7.27> and (7.28) respectively and C Is the 

execution time of the parallel conjugate gradient method given In <7.19). 

Secondly. we assume a special hardware circuit such as the 

sum/max circuit on FEM Is used to perform the inner products. Then 

the execution time for the m-step SSOR peG method Is given by <7.29) 

where. In this case. C represents the execution time of the parallel 

conjugate gradient method given in <7.24>. 

7.2. Model Validation 

To fully validate the model. problems would need to be solved on a 

p-processor array such as the Finite Element Machine so that an 

algorlthm's execution time dependence on p could be determined. At 

this writing. only four processors are operational on the FEM: therefore. 
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the model can only be partially validated. For Instance. algorithms that 

use only tour processors will make use ot the local communication links 

and the signal flag network but will not use the sum/max hardware or 

the global bus. 

The plane stress problem of Chapter 2 was chosen to validate the 

model on the 4-processor FEM. The plate was dlscretlzed Into 50 trl-

angular finite elements and the basis functions were chosen to be 

piecewise linear polynomials. As a result. the displacements were calcu-

lated at the vertex nodes shown In Figure 2. 

3 4 

1 2 

Figure 2. Four Processor Assignment 
Plane stress Problem 

Furthermore. the plate Is constrained on the left edge so that the dls-

placements at the six nodes along this edge are zero. The calculation 

of the displacements u and v at the remaining 30 nodes must be parti-

tloned to the four processors. Processors 1 and 3 in Figure 2 are 

assigned 6 nodes. or 12 equations each; whereas. processors 2 and 4 

will each solve 18 equations. The speed of the 4-processor FEM Is 

then governed by processors 2 and 4 since more work is assigned to 

them and as a result we can consider each of the four processors to 

be solving 18 equations. Therefore. the best possible speedup for this 



problem on the 4-processor machine Is 

6°(4) = 3.33 
72 

which corresponds to an efficiency of 83%. 
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(7.30) 

The parameters for the current 4-processor FEM that were used In 

the model were obtained from Tom Crockett at NASA and the arithmetic 

speeds were gotten from the specifications for the AMD 9512 floating 

point chlp£l979]. 

1 mult/add pair - 844~ 

1 division - 472~ or 0-0.5592 

1 barrier - l85~ or B-O.2l92 

1 flag check - l56~ or F-O.1848 

In addition. the times to send and receive values on the local links were 

determined by Loendorf and Smlth(l982] to be 

1 local receive - l500~ or R-l.7730 

1 local send - 1240#3 or T-1.4692 

and the time for a local convergence check was assumed to equal the 

time for a multiplication/addition pair (V=l>. The speedups obtained on 

the 4-processor FEM for the 3-Color SOA and standard conjugate gra­

dient algorithm as well as those predicted by the model are given In 

Table 1. 
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FEM Model FEM Model 

Method Speedup Speedup Efficiency Efficiency 

R/B/G SOR 2.84 2.93 7l% 73.3\ 

CG 2.82 2.90 7l\ 72.5\ 

Table l. 4-FEM and Model Results 

The efficiency of 71 % In Table 1 Indicates that the parallel overhead due 

to communication and synchronization between processors was only 12% 

Of the execution time since 17% efficiency was lost because the number 

of equations was not evenly divisible by the number of processors. We 

note that the efficiencies predicted by the model agree very closely with 

the 4-processor FEM results. 

7.3. Model Results 

The questions that we will answer with the model are Itemized 

below: 

(1) What ratio. a. of communication time to arithmetic time must 

the array computer have to efficiently support the implementation 

of an algorithm. and how does this ratio change as p 

Increases? 

(2) For a given algorithm and ratio a. what is the maximum 

number of processors that should be used to achieve a given 

efficiency level? 

(3) If the global bus Is used to do the Inner products. will the m­

step PCG<SSOR> be a more efficient algorithm than the standard 

conjugate gradient method <m =O)? 

These questions can be answered by analyzing the speedup of 
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a p-processor algorithm over Its corresponding single processor 

-

version and will be discussed In section 7.3.1. 

(4) How does an algorithm's performance on an array such as FEM 

with certain hardware speeds compare with Its performance on 

a benchmark hardware? A measure of this performance will be 

called the para-efficiency and will be discussed In section 7.3.2. 

(5) For a given a, what Is the best algorithm for solving the prob-

lem as p Increases? 

(6) For a given algorithm. how does the execution time change as 

a changes? In particular. below what a level will the execution 

time fall to decrease significantly? 

(7) For a given a. If the global bus Is used for the Inner products. 

for what values of m will the execution time of m-step 

PCG(SSORl be less than that of standard conjugate gradient 

em =o)? 

The answers to these questions are found by examining the 

execution times as a function of p and a and are given in 

section 7.3.3. 

(8) What Is the tradeoff between a decrease In speed and an 

Increase In the chance of machine failure as p Increases? 

-

This Issue of reliability Is discussed In section 7.3.4. 

(9) For a given algorithm and ratio a. how many processors are 

necessary to be competitive with a conventional machine and 
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problem solver? This question is the topic of section 7.3.5. 

The model was used to answer the above questions for the algo-

rlthms of Chapter 5 and 6 as applied to the following two test problems. 

This first problem Is Laplace's equation on a rectangular domain with 

Dirichlet boundary conditions. The domain Is dlscretlzed Into 18 rows 

and 50 columns of nodes so that the values at the 16 by 48 grid of 

Interior nodes are to be found. The resulting stiffness matrix K has 

dimension 768 by 768. If the nodes are ordered by the classical 

Red/Black scheme. the problem can be solved on a machine consisting 

of the following number of processors which are assigned the 

corresponding grid sizes. 

Processors 

1 

4 

16 
64 

128 

384 

~ size/processor 

16x48 

8X24 

4x12 

2x 6 

2x 3 

Ix 2 

Table 2. Processor AsSignments 
Laplace's Equation 

The second problem Is the plane stress problem of Chapter 2. A 

rectangular plate Is dlscretlzed by linear triangular finite elements as 

shown In Figure 2 so that the displacements, u and v. at 16 rows and 

48 columns of nodes must be found. The resulting stiffness matrix K 

has dimension 1536 by 1536. These nodes are colored Red/Black/Green 

as described In Chapter 5. This problem can be solved on a machine 

with the fOllowing number of processors by assigning the corresponding 

grid of nodes to each processor. 



Processor 

1 
4 

l.6 

64 
256 

~ size/processor 

l6x48 
8X24 

4xl.2 

2x 6 

l.x3 

Table 3. Processor Assignments 
Plane stress Problem 
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We note that the execution time per Iteration of an algorithm Is a func-

tlon of the number of equations per processor as well as the number of 

processors. If we fix the size of the problem. and allow the number of 

processors and hence the number of equations per processor to vary. 

we get results like those In the next five sections. Although not done 

here. the size of the problem. N. could be varied and the model used 

to predict the dependence on N for a fixed number of processors. 

However. for algorithms like Multi-color SOR which do not require any 

global communication or summation. the execution time Is only a function 

of the number of equations per processor and remains constant as N 

Increases. 

7.3.1. Speedup Results 

The speedup as a function of the number of processors. 

Execution time (1) 

Speedup (P) = Execution time (p ) 

for the Multi-Color SOR. the standard conjugate gradient. and the m-step 

(SSOR> preconditioned conjugate gradient methods of Chapters 5 and 6 

can be predicted by the model for a Finite Element Machine with partlc-

ular arithmetic and hardware/software communication times. Since speedup 
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Is a measure of how well the architecture of the machine can support 

the Implementation of an algorithm. or conversely. how well an algorithm 

performs on a particular machine. these arithmetic and communication 

times can be viewed as design variables for the machine and by chang­

ing these times we can determine what ratio of communication to arlth-

metlc the machine must have to efficiently support a given algorithm. 

Since the 'barrier operation and the flag checks occur only once per 

iteration. the send and receive operations comprise the majOrity of the 

communication between processors. Therefore. to analyze the perfor­

mance of an algorithm as the ratio of communication to arithmetic time 

changes. we choose to vary T. G'. and R in (7.1> and let the values of 

B, F, S, and D remain constant. Although T, G, and R can have dlf-

ferent values. we analyze the case where these values are equal and 

denote this value by a. We will refer to a as the ratiO of communica­

tion to arithmetic time. 

-2 -1 
The model was run with four values of a; namely. 10 , 10 • 1. 

and lOin order to determine an algorithm's performance over a wide 

range of values and to aid In machine design. Once this Is done. the 

results can be used to determine a smaller Interval for additional modei 

runs. Table 4 gives the four sets of model values where each set Is 

regarded as describing a particular Finite Element Machine. 
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FEM Machine T G R B P S D V 

1 10.00 10.00 10.00 1.85 1.56 * .5592 1 
2 1.00 1.00 1.00 1.85 1.56 * .5592 1 
3 .10 .10 .10 1.85 1.56 * .5592 1 
4 .01 .01 .01 1.85 1.56 * .5592 1 

Table 4. Four sets of Model Costs 
* (see 7.3.4) 

The times to perform a barrier synchronization and a global flag test 

were taken to be the times for these operations on the current machine. 

An approximate time for one use of the sum/max circuit was given by 

Jordan. et.al.(1979) to be 

48 + log~ (7.3.3) 

To this was added the time to place a value on the Circuit (assumed to 

be one send) and the time to read the sum from the circuit (assumed 

to be one receive). For example. If the time for 1 multiplication/addition 

-4 
pair Is 10 seconds. the value of S is given by 

S = T t<O.Ol)(48+log
2
P) t R <7.3.4) 

For each of the machines In Table 4. Speedup<p) was determined 

for the AlB SORe standard conjugate gradient (Global Bus)' standard 

conjugate gradient (Sum/MaX>. and RIB 1.2-step SSOR peG (Bus) and 

(Sum/Max) methods for the solution of Laplace's equation. These speed-

ups are given In Table 5. 
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PCG(SSOR) ~(SSOR) 

!I! (~) <!I!!) 
a .e SOR m-O m-l m-2 m-o m-l m-2 

4 2.7 3.0 2.4 2.5 3.0 2.4 2.5 

16 5.7 5.7 4.0 4.5 7.2 4.5 4.8 

10 64 14.6 4.9 5.0 6.7 18.5 10.8 11.7 

128 26.2 3.0 3.7 5.6 31.2 18.8 20.6 

384 55.2 1.1 1.4 2.5 57.7 36.6 41.6 

4 3.8 3.9 3.7 3.8 3.9 3.7 3.7 
16 13.5 13.5 12.3 12.7 14.2 12.7 12.9 

1 64 46.6 28.8 29.0 34.7 50.1 42.3 43.9 
128 87.5 24.6 28.8 41.2 93.3 78.6 82.8 
384 211.0 10.5 13.9 23.9 219.2 184.2 202.2 

4 4.0 4.0 4.0 4.0 4.0 4.0 4.0 

16 15.6 15.6 15.5 15.6 15.7 15.5 15.6 

.1 64 59.6 55.9 56.3 58.5 60.5 59.6 60.5 
128 114.4 87.3 92.9 104.1 116.5 115.5 118.6 
384 295.2 81.9 102.1 149.8 304.5 308.5 329.5 

4 4.0 4.0 4.0 4.0 4.0 4.0 4.0 
16 15.8 15.9 15.9 15.9 15.9 15.9 15.9 

.01 64 61.3 61.7 62.1 62.8 61.8 62.2 62.9 
128 117.9 117.1 119.4 122.9 119.5 121.2 123.9 
384 307.4 254.6 278.6 316.5 316.9 330.8 351.6 

Table 5. Speedups for Laplace's Equation 

Graphs lA. 2A. and 3A show speedup as a function of p. the number 

of processors. for the AlB SOA. the CG(Bus). and the AlB 2-step SSOA 

PCG(Bus) algorithms respectively. Each of these graphs shows the cases 

a=.O 1. a=.1. 1 and 10 from top to bottom of the graph respectively. 

Graphs 1 B. 2B. and 3B show the speedup as a function of the ratio a 

for the same algorithms. Each of these graphs shows the cases of 

p =4.16.64. 128. and 384 and the five dotted lines indicate perfect speedup 

tor these values of p. Graphs 1A and 1B show for AlB SOR that 

P =384 processors solve the problem in the shortest time Also note 

from Graph lA that only a slight improvement in speedup is seen for 

a=O.Ol over a=O.l; whereas. a large drop in speedup can be seen by 
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Increasing a from 1 to 10. 

However. for CG(Bus). a different story can be seen from Graph 2A 

and 2B. The number of processors that solves the problem in the 

shortest time Is not constant and in fact varies drastically with a. Note 

that the largest speedup is obtained with p =384 only for a=O.Ol while 

p = 128 gives the largest speedup only for a=O.l. At the level a=l. 64 

processors gives the maximum speedup and at a=10. the speedup 

decreases for more than 16 processors. Also note that for p =4 and 

p=16. the efficiency Is quite good for a=l; whereas for p=64 and 128. 

a=O.l Is strongly preferred over a=l and 384 processors should only be 

considered if a Is 0.01 or less. 

By comparing Graphs 3A and 3B with Graphs 2A and 2B. we see 

that some Improvement over CG(Bus) can be achieved by using 2 steps 

of SSOA PCG(Bus) and m =2 Is seen to be best the value of m from 

Table 5. In particular. p =384 gives the best efficiency at the a=O.l 

level for the 2-step SSOA PCG (Bus) algorithm whereas p = 128 was best 

for CG(Bus). In addition. 64 processors give the best speedup at the 

a=10 level for the 2-step SSOA PCG(Bus) algorithm whereas p=16 gave 

the best speedup for this value of a for the CG (Bus) algorithm. 

The speedups for the same algorithms for the plane stress problem 

are given In Table 6. 
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~(~) PCG(~) 

!lY~ (~) (!I!!) 
a ~ SOR m-o m-l m-2 m-O m-l m-2 

4 3.3 3.4 3.1 3.1 3.4 3.1 3.1 

10 16 9.0 8.9 7.1 7.2 9.7 7.4 7.4 

64 25.9 13.1 13.4 15.4 28.3 20.1 20.0 

256 68.4 5.6 8.3 12.3 72.3 49.6 49.7 

4 3.9 3.9 3.9 3.9 3.9 3.9 3.9 

1 16 14.8 14.8 14.2 14.3 15.0 14.3 14.3 

64 55.4 45.9 46.4 48.5 56.4 52.3 52.4 

256 196.0 46.3 63.9 85.4 198.8 178.2 179.3 

4 4.0 4.0 4.0 4.0 4.0 4.0 4.0 

.1 16 15.8 15.8 15.8 15.8 15.9 15.8 15.8 
64 62.5 61.2 61.4 61.9 62.6 62.3 62.4 

256 240.9 173.2 194.5 211.7 240.9 240.5 242.6 

4 4.0 4.0 4.0 4.0 4.0 4.0 4.0 

.01 16 16.0 16.0 16.0 16.0 16.0 16.0 16.0 
64 63.3 63.3 63.5 63.5 63.3 63.5 63.6 

256 246.6 238.5 244.5 248.5 246.1 249.3 251.4 

Table 6. Speedups for the Plane Stress Problem 

Graphs 4A. 5A. 6A. and 7A show speedup as a function of p. the 

number 01 processors. for the AlB/G SOA. the CG<Bus}. the A/B/G 2-

step SSOA PCG<Bus}. and the AlB/G 2-step SSOA PCG<Sum/MaX> a/go-

rlthms respectIvely. Each of these graphs shows the cases a=. 0 1. a=. 1. 

a=l and a=10 from top to bottom of the graph respectively. Graphs 4B. 

58. 68. and 78 show speedup as a functIon 01. a. {or the same algo­

rithms where the four dotted horIzontal lines res present perlect speedup 

for p=4. 16. 64. and 256. From Graphs 4A and 4B the AlB/G SOA 

algorIthm Is seen to be very efficIent on machInes with a as large as 1 

for p (64. Even though the speedup drops drastically for a= 10. P =256 

processors stili solve the problem faster. From Graphs SA and 58 and 

6A and 68. we see a situation similar to Graphs 2A and 28 and 3A 

and 38 for laplace's equation; namely. If CG(8us) Is used. p =256 Is 
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preferred at the a=.l level. p=64 at the a=l level (perhaps a=lO also). 

From Graph 6A and 6B. we see that with the use of 2-step SSOR 

PCG(Bus) algorithm. p =256 gives the largest speedup up to level a=1. 

but for a=10. p =64 Is the maximum number of processors to use. 

Graph 7A and 7B show that the sum/max hardware circuit greatly 

Improves the efficiency of the 2-step SSOR PCG algorithm. In particular. 

p =256 solves the problem In the fastest time for all values of a. 

It should be noted that speedup Is not a viable measurement to 

compare parallel algorithms since the algorithm that can be Implemented 

with the least parallel overhead (most efficient> may stili take longer to 

execute due to extra arithmetic calculations. This was the case with 

AlB/G SOR applied to the plane stress problem. The algorithm Is very 

efficient for all values of a but takes too long to converge to a solution 

to be competitive with any of the conjugate gradient type algorithms. 

Execution time comparisons are given In section 7.3.3. 

7.3.2. Para-efficiency 

Schwartz[1979) recommended the para-efficiency 

PEFF( ) = E(p .H) 
P E (P .p -array) 

as a good measure of an algorithm's performance on a particular 

hardware configuration H. The para-efficiency Is the ratio of the execu­

tion time of an algorithm on a particular hardware. H. to the execution 

Ume on the p-array. The p-array Is an unrealizable hardware conflgura-

tlon In which all p processors are connected to each other and a cen-

tral shared memory. The time to write into and read from this memory 

Is assumed to be negllble compared wIth arithmetic time. Also no 
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memory contention is assumed for the p-array. This p-array Is 

envisioned as an Ideal architecture for p processors since the overhead 

due to passing data between them Is as small as possible. 

The FEM can be enVisioned as a p-array If the send time is equal 

to the time to write to memory and the receive time Is equal to the 

time to read from memory. Note that FEM never has the problem of 

memory contention. Let us define our p-array. or benchmark computer. 

to be a FEM for which send and receive operations over the local links 

and the global bus takes O.lJL-' each and the barrier and flag tests 

require the same time as given In Table 4. This definition views our 

benchmark computer to be nearly Ideal In the sense of sending and 

receiving data but communication overhead can stili occur In the form of 

barrier or flag checking operations. This Is consistent with the assump­

tion in Table 4 that the values of B. F. S. and D are constant and 

that the major overhead is due to the send and receive operations The 

PEFF (p) values tor the machine configurations of the last section are 

given in Table 7 for Laplace's equation. 
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~(~) ~(~) 

!/!! (Bus) (y!!) 
a ~ SOR m-o m-2 m-O m-2 

4 1.5 1.3 1.6 1.3 1.6 

16 2.8 2.8 3.5 2.2 3.3 

10 64 4.2 12.7 9.4 3.3 5.4 

128 4.5 40.3 22.3 3.8 6.0 

384 5.6 298.0 142.5 5.5 8.5 

4 1.0 1.0 1.1 1.0 1.0 

16 1.2 1.2 1.3 1.1 1.2 

1 64 1.3 2.2 1.8 1.2 1.5 
128 1.4 4.9 3.0 1.3 1.5 

384 1.5 30.7 14.9 1.5 1.8 

4 1.0 1.0 1.0 1.0 1.0 

16 1.0 1.0 1.0 1.0 1.0 

.1 64 1.0 1.1 1.1 1.0 1.1 

128 1.0 1.4 2.1 1.0 1.1 
384 1.1 3.9 2.4 1.0 1.1 

4 1.0 1.0 1.0 1.0 1.0 

16 1.0 1.0 1.0 1.0 1.0 

.01 64 1.0 1.0 1.0 1.0 1.0 

128 1.0 1.0 1.0 1.0 1.0 

384 1.0 1.3 1.1 1.0 1.0 

Table 7. Para-efficiencies for Laplace's Equation 

Several conclusions follow from Table 7. 

(1) a=.Ol Is virtually as good as the p-array for all the algorithms. 

(2) For a=O.l. an array like the FEM supports very efficiently all 

algorithms that do not use the bus. In addition. the RIB SSOR 

PCG(Bus) algorithm Is very efficient for p (64. 

(3) For a=1. the bus should only be considered when p (16. 

(4) For a=10. only p =4 yields a good para-efficiency. 

The values of PEFF <p) are given In Table 8 for the plane stress 

problem. 
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~(~) ~(~) 
(~) (!11:!) 

a E m-o m-2 m-o m-2 

4 1.2 1.3 1.2 1.3 
10 16 1.8 2.2 1.6 2.2 

64 4.8 4.1 2.2 3.2 
256 44.6 20.5 3.4 5.0 

1 4 1.0 1.0 1.0 1.0 
16 1.1 1.1 1.1 1.1 
64 1.4 1.3 1.1 1.2 

256 5.4 3.0 1.2 1.4 

4 1.0 1.0 1.0 1.0 
.1 16 1.0 1.0 1.0 1.0 

64 1.0 1.0 1.0 1.0 
256 1.4 1.2 1.0 1.0 

4 1.0 1.0 1.0 1.0 
.01 16 1.0 1.0 1.0 1.0 

64 1.0 1.0 1.0 1.0 
256 1.0 1.0 1.0 1.0 

Table 8. Para-efficiencies for Plane stress Problem 

Several conclusions follow from Table 8. 

(1) a=.Ol is virtually as good as the p-array for all the algorithms. 

(2) a=O.l is virtually as good as the p-array for all algorithms that 

do not use the bus. 

(3) For a=l and a=10. the para-efficiency Is more dependent on 

p :hence. the sum/max circuitry is becoming more important for 

larger p. 

(4) m =0 is more efficient for a=l and a=10 even though m =2 Is 

seen from the next section to yield a smaller execution tlme. 

7.3.3. execution Time Results 

If we consider factors such as simplicity and maintainability to be 

equal for all our algorithms. the best parallel algorithm to solve a given 
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problem will naturally be the one that requires the least time to execute. 

The execution times for the para"el algorithms are given In Table 9 for 

Laplace's equation. 

PCG(~) PCG(~) 

!Y!! (!!!!) (y!!) 
a E SOR m-o m-1 m-2 m-O m-1 m-2 

1 30.1 47.3 34.6 35.3 47.3 34.6 35.3 

4 11.1 15.8 14.6 14.3 15.6 14.4 14.2 

10 64 2.1 9.6 7.0 5.1 2.6 3.2 3.0 
128 1.2 15.7 9.5 6.0 1.5 1.8 1.7 

384 .55 43.7 23.9 13.9 .82 .94 .85 

4 7.9 12.2 9.2 9.4 12.2 9.2 9.4 
16 2.2 3.5 2.8 2.8 3.3 2.7 2.7 

1 64 .65 1.6 1.2 1.0 .94 .82 .80 

128 .34 1.9 1.2 .86 .51 .44 .43 
384 .14 4.5 2.5 1.5 .22 .19 .17 

4 7.6 11.9 8.7 8.9 11.9 8.7 8.9 
16 1.9 3.0 2.2 2.3 3.0 2.2 2.3 

.1 64 .51 .85 .61 .60 .78 .58 .58 

128 .26 .54 .37 .34 .41 .30 .30 

384 .10 .58 .34 .24 .16 .11 .11 

4 7.5 11.9 8.7 8.8 11.9 8.7 8.8 

16 1.9 3.0 2.2 2.2 3.0 2.2 2.2 

.01 64 .49 .77 .56 .56 .77 .56 .56 

128 .26 ,. 40 .29 .29 .40 .29 .28 
384 .10 .19 .12 .11 .15 .10 .10 

Table 9. Execution Times (sec) for Laplace's Equation 

(1 mult/add - 0.0001 sec.) 

Graphs 8A and 8B show the execution time (seconds) versus p. the 

number of processors. for the RIB SOA and the m=0.1.2 step 

PCG(SSOAHS/M) algorithms for a=10 and a=l respectively (for a=1. m =2 

Is not shown). RIB SOA Is seen to be the fastest method for Laplace's 

equation for both a levels. It Is Interesting to note from Graph 8A that 

there exists a value of p between 4 and 16 for whiCh taking more than 
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o steps of m-step PCG(SSOR> Is not cost effective. The reason for this 

Is that the time to do the extra communication required for the precon­

dltloner Is more than the time gained by the fewer number of Iterations. 

Note that when the cost of communication Is reduced as In Graph 8B. 

the ranking of algorithms for all p Is the same as the ranking for the 

case p=1. Furthermore. this ranking will continue as a decreases. 

Graph 9A shows the execution time (seconds) versus a for the RIB 

SOR algorithm for the cases p=Hdotted>. p=4. p=16. p=64. p=128 and 

p =384. Graph 9B shows execution time versus p for the cases a=.1. 

a=1 and a=10 for the RIB SOR algorithm. Note that p=384 gives the 

least exeuctlon time for all a levels. Both graphs show a slight 

increase In execution time from Increasing a from .1 to 1 for p ~64 and 

a larger Increase from Increasing a from 1 to 10 for all values of p. 

Graph 9A also can be used to help answer the question of tradeoff 

between faster communication and more processors. For example. for a 

machine with a=10 and p=64. a greater reduction In execution time can 

be realized by going to a a=l.p =64 machine (faster communication) 

rather than adding more processors to get an a=10.p=128 or possibly 

p =384 machine. 

An examination of Graph 9B shows for a=10. the graph changes 

convexity between p =4 and p =64. In other words. the execution time 

decreases more from p=16 to p=64 than from p=4 to p=16. The rea­

son for this Is that when p=16 there are completely Interior processors 

and the number of local receives double (7.11> and the number of sends 

virtually double (7.10). When a=10 this factor Is amplified but for a=1 

or a=.1. the communication cost Is much less and this factor Is not 

noticable. 
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Graph 98 also Illustrates that the execution time reduces by much 

more when decreasing a from 10 to 1 than the reduction seen when a 

Is reduced from 1 to 0.1. This suggests that there will be an optimal 

value of a below which the gains In execution time reduction wilt not 

Justify the cost of making the machine's communication faster. In fact. 

a=.Ol gives almost Identical execution time results as a=.1 for RIB SOR 

and was not Included In Graph 9B. 

The execution times for the parallel algorithms for the plane stress 

problem are given In Tables lOA and lOB for the global bus and 

sum/max circuit respectively. 

PCG(SSOR) 
(Bus) 

a ~ m-o m-~ m-2 m-3 m-4 

~ 1115.0 705.0 597.0 862.0 798.0 

4 328.0 230.0 195.0 286.0 267.0 
10 16 ~26.0 99.0 83.0 123.0 ~16.0 

64 85.0 52.0 39.0 55.0 50.0 
256 20~.0 85.0 49.0 58.0 47.0 

4 284.0 ~82.0 154.0 222.0 206.0 
1 16 75.0 50.0 42.0 61.0 56.0 

64 24.3 15.2 12.3 17.6 16.2 
256 24.1 11.0 7.0 8.9 7.5 

4 279.0 177.0 150.0 216.0 200.0 

.1 16 70.0 45.0 38.0 55.0 51.0 
64 18.1 11.5 9.7 13.9 12.9 

256 6.4 3.6 2.8 3.9 3.3 

4 279.0 ~76.0 149.0 215.0 200.0 
.01 16 70.0 44.0 37.0 54.0 50.0 

64 17.6 11.1 9.4 13.5 12.5 
256 4.7 2.8 2.4 3.4 3.2 

Table lOA. Execution Time (seconds) 

Plane stress Problem (BuS) 

(l mult/add - 0.0001 sec) 
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PCG(SSOR) 
( sum/MaX) 

a .e maO m-~ m-2 m-3 m-4 

~ ~~~5.0 705.0 597.0 862.0 798.0 

4 326.0 229.0 ~95.0 285.0 267.0 

~O ~6 ~~5.0 95.0 81.0 ~2~.0 ~1.4.0 

64 39.0 35.0 30.0 45.0 43.0 

256 1.5.0 1.4.0 ~2.0 ~8.0 ~7.0 

4 284.0 ~82.0 ~54.0 222.0 206.0 

~ 1.6 74.0 49.0 42.0 61.0 56.0 

64 1.9.8 ~3.5 ~1.4 ~6.6 ~5.5 

256 5.6 4.0 3.3 4.9 4.5 

4 279.0 ~77.0 ~50.0 2~6.0 200.0 

.1. 1.6 70.0 45.0 38.0 55.0 51.0 

64 1.7.8 1.1..3 9.6 ~3.8 ~2.8 

256 4.6 2.9 2.5 3.5 3.3 

4 279.0 ~76.0 ~49.0 21.6.0 200.0 

.01. ~6 70.0 44.0 37.0 54.0 50.0 

64 ~7.6 ~1..1. 9.4 1.3.5 1.2.5 
256 4.5 2.8 2.4 3.4 3.2 

Table ~OB. Execution Time (seconds) 

Plane Stress Problem (Sum/Max) 

(1. mult/add a 0.000~ sec) 

Graphs lOA and lOB show the execution time (seconds) versus p 

for the 0.1.2-step PCG(SSOR)(Bus) algorithms for a=10 and a=l respec-

tlvely. For both graphs. m =2 solves the problem In the least time for 

aI/ values of p. Note from Graph lOA that the execution time Increases 

If 256 processors are used. This Is because communication is expensive 

for a=lO and the cost of the bus for this many processors Is prohibitive. 

Graph lOB shows that If communication is less expensive (a=l). that 

p =256 processors stili give a further reduction in execution time for m =2 

and m =1 but not for m =0. This clearly shows 10r a large number 01 

processors that preconditioning is necessary to reduce the number of 

iterations In order to decrease the global communications even though 
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more local communications result. 

The execution time for the same algorithms and the sum/max circuit 

for the Inner products Is plotted In Graphs 11 A and 11 B for ex= 10 and 

ex=1 respectively. By comparing these graphs with Graphs lOA and lOB. 

the need for special hardware to do the Inner products for the conjugate 

gradient methods Is apparent whenever p )64. 

The time gained In the reduction In the number of Iterations with 

m >0 Is greater than the extra time required for the precondltloner com­

munications; hence. m =1.2 are faster than m =0 for both graphs. Note 

from Graph 11 B that more of an Improvement Is seen with ex=l because 

of reduced communication. The convexity changes around p =16 In 

Graph 11 B reflect the increase in communication cost of completely Inte­

rior processors as was discussed for Graph 9B. Again. when ex=1. this 

Increase is not observed in Graph 11 B. 

Graph 12A shows the execution time (seconds) for A/B/G 2-step 

SSOA PCG(S/M) as a function of ex with special cases shown for 

p = Hdotted) • p =4. P =16. P =64. and p =256. For all ex levels. p =256 

yields the least execution time. However. note that it ma.y be more cost 

effective to use 64 processors and make communication faster (a=l> 

rather than use ex= 10 and and Increase p to 256. 

Finally. Graph 12B shows execution time (seconds) versus p for the 

R1B/G SSOA PCG(Sum/MaX> algorithm for the special cases ex=lO. ex=1. 

and a=O.l. This graph closely resembles Graph 9B for RIB SSOA 

PCGCSum/Max) for Laplace's equation In particular. for p (64 there Is 

very little difference between the execution time for a=.1 and a=l. but 

there Is a significant execution time difference between a=.l and a=10. 
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This suggests that there an optimal value of a. below which It Is not 

cost effective to produce faster hardware. 

7.3.4. Reliability ConslderatJons 

Speedup Cp) Is an Indication of how much faster a problem can be 

solved on p processors than on a single processor. However. this 

measurement does not account for the fact that as more processors are 

added. the machine may be less reliable because of an Increased pro­

bability of component failures. 

We now define the reliability. R Cp .t). of the array computer to be 

the probability that all p processors will run at least t units 01 time 

without failure. To derive an expression for R Cp .t) the following assump­

tions must be made: 

(1) The machine falls If anyone of Its processors fall. 

(2) The failure of a processor Is Independent of the failures of the 

other processors. 

(3) The failure rate. /J. for each processor Is constant. 

(4) The reliability Is a decreasing function with time. 

We are Interested only In the failures due to chance and not 

failures due to component "burn-In- or old age. as shown below (see 

Mlller(1977]) • 

Early Chance Wearout 

o 

With these assumptions. the reliability of one processor Is given by 



-Pt 
R <1.t,) = e 1 

and the mean time until failure for one processor Is 

, 
JI. =-, /3 
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<7.4.1> 

(7.4.2) 

Now. assumption (2) Implies that the multiplicative law of probability holds 

for the p -processor case and that 

-/3pt 
= e p (7.4.3) 

where tp denotes the time to solve the problem on a p-processor 

machine. 

The mean time until failure for the p-processor machine Is given by 

u, 
JI. =-p p 

If Ef f (p) represents the efficiency with p processors. 

t, 
= 

pt, 
pt = 

P speedup (p ) Ef f (p) 

and by using (7.4.5). equation (7.4.3) can be written as 

-pt, 

R (P .t
p

) = eeft (P) 

<7.4.4) 

(7.4.5) 

(7 4.6) 

Note from <7.4.6) that the reliability Is an Increasing function of the effi­

ciency. Hence. If we expect the efficiency to decrease with the number 

of processors. so will the reliability. However. If the machine parameter 

a and the algorithm were such that the efficiency remained nearly con-

stant as the number of processors Increased. the reliability would also 

be nearly constant for all p. 
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To Illustrate these concepts. Table 11 shows how the reliability changes 

as the length of the solution time for the problem on a single processor 

Increases. The speedups for the R/B/G SSOR PCG(Sum/MaX> algorithm 

for the plane stress problem were used to calculate the efficiencies In 

(7.4.6). The failure rate of a single processor. 11. was taken to be 

0.001 (0.001 failures every 1 unit of time). where a unit of time can be 

specified to be any amount of time that precisely defines the failure rate. 

Uni12rocessor £-! £-.1 E"~ £=~ £-~ 
Job Length 

(time un1ts) 

l. 99.90 99.87 99.78 99.68 99.49 

l.0 99.00 98.72 97.86 96.85 94.98 

l.00 90.48 87.89 80.56 72.6l. 59.74 

a=10, 11=0.001 

l. 99.90 99.90 99.89 99.88 99.86 
l.0 99.00 98.98 98.89 98.79 98.58 

l.00 90.48 90.25 89.4l. 88.50 86.69 

a=l , ,8=0.001 

l. 99.90 99.90 99.90 99.90 99.90 

l.0 99.00 99.00 98.99 98.98 98.95 

l.00 90.48 90.48 90.37 90.25 89.99 

a=.l, 11=0.001 

Table l.l.. Reliabil1ties 

Graph 13 shows the results from Table 11 for a=l. The, graph indicates 

that the efficiency drops as the number of processors Increases as was 

expected. 
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This factor should be kept In mind when analyzing the execution 

time graphs of section 7.3.3. Even though these graphs may show a 

decrease In execution time as more processors are added. the decrease 

may not be enough to balance the decrease In reliability. The level of 

reliability that Is required Is certainly a design Issue for any machine. 

7.3.5. COnventional MachineS/Solvers 

A natural question to ask Is how well the execution time of an 

algorithm on an array computer such as the Finite Element Machine 

compares to the execution time of a conventional algorithm on a con-

ventlonal machine. In other words. It may be of Interest to determine 

the number of processors. p. and the communication to arithmetic ratio. 

a. that are needed for the algorithm on the array to be competitive with 

a benchmark algorithm Implemented on a benchmark machine. 

To answer this question we make several assumptions. First. we 

assume that a direct method such as banded Cholesky decomposition 

followed by forward and backward subsltltutlon will be the benchmark 

method. Secondly. assume that all the bands of the stiffness matrix K 

will fit Into core storage of the benchmark computer We note that this Is 

the best possible sltutatlon for the benchmark algorithm/machine since 

for large problems time must be spent In bringing the matrix to and 

from core and backing store. Lastly. we assume three times. P. for 

performing one multiplication/addition pair on the benchmark computer: 

-s -6 -7 
namely. 10 .10 . and 10 JLS. 

The number of multiplication/addition pairs for the banded Chloesky 

algorithm Is easily calculated. George and Llu(19811. to be 
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where b Is the semi-bandwidth. The number of multiplication/addition 

pairs for both the forward and backward subltltutlon Is 

2 
Cb+l>N - C~) 

2 2 

where for the plane stress problem with an Interior grid of 16 by 48 the 

bandwidth and number of equations are given by 

b = 96 

N = 1536 

Hence. the number of multiplication/addition pairs. a. Is easily found to 

be 

a = 7891936 

-5 -6 -7 
For the three arithmetic speeds. .8=10 • 10 • and 10 • the time In 

seconds for this algorithm is a linear function of .8 and equals 78.92. 

7.89. and .79 for the three 13 values respectively. 

Graph 14 shows the execution time as a function of the number of 

processors for a=0.1. 1. and 10 for the RlB/G SSOR 2-step 

PCGCSum/Max) algorithm where the dotted horizontal lines represent the 

three execution times of the conventional solver on the conventional 

machine. The numbers of processors required to yield a smaller execu-

tlon time than the Cholesky algorithm for the three values of .8 are 

summarized In Table 12. 
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.1 
1.0 

10.0 

.1 
1.0 

10.0 

.1 
1.0 

10.0 

,8=10-6 

) 256 

) 256 

) 256 

) 64 
) 64 
) 256 

) 4 
) 4 
) 16 

Table 12. Comparison to a Conventional Solver/Machine 
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We acknowledge that the comparison to a conventional solver Is dlf-

flcult to make because the story may change completely as the problem 

size grows. For Instance. direct methods will require more storage and 

the number of operations may no longer be competitive with Iterative 

methods. especially If good Initial guesses are known. For an array 

computer like FEM. the storage Is distributed across the processors and 

Iterative methods do not require storage of any nonzero elements of 

the stiffness matrix K; hence. extra time will not be as likely to be 

needed to move the data to and from backing store to core as would 

be true with direct methods. The point to be made here Is that this 

type of analysis Is simple once the benchmark algorithm/machine are 

determined and realistic times for this algorithm/machine are obtained. 



CHAPTER 8 

COnclusions and Future Olrectfons 

8.1. Conclusions 

Two algorithms were developed In Chapter 4 for assemblylng the 

system of linear equations by the finite element method on array com­

puters. The first algorithm required no communication between proces­

sors but resulted In a duplication of effort among the processors. The 

second algorithm required no duplication of effort at the expense of 

communication between processors. Analytic formulas were obtained for 

the speedup. efficiency. and overhead of these algorithms on a p­

processor array. The more efficient algorithm was shown for p >4 pro­

cessors to be a function of the ratio of the time to send and receive 

one value to the time to calculate one coefficient of the stiffness matrix 

For p =4 processors. the choice of algorithms also depends on the size 

of the grid of unknowns that Is assigned to each processor. We also 

described In Chapter 4 how to calculate the stress vector in parallel 

without communication between processors or duplication of effort. 

In Chapter 5 we developed a new stationary Iterative method. called 

Multi-color SOR. for solving the large sparse linear systems arising from 

both finite element and finite difference dlscret/zatlons. Tnls method is a 

generalization of the classical Red/Black ordering and allows the succes­

sive overrelaxatlon (SOA> method to be Implemented on both vector com­

puters and parallel arrays as a multiple sweep Jacobi method which has 

ideal properties for these machines. 

186 
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The stiffness matrix K that results from a Multi-color ordering of the 

problem grid. was shown In general not be be consistently ordered. p­

cyclic. or generally consistently ordered; therefore. the development of a 

theory for this class of matrix that will lead to the determination of the 

optimal relaxation factor w Is yet to be found. Numerical results show 

that the SOR method with the Multi-color ordering and the natural order­

Ing of the grid converges In approximately the same number of Itera­

tions: therefore. the coloring of the grid for our test problems was not 

detrimental to the convergence rate of the method. 

An efficient Implementation of a Multi-color SSOR method that Is 

based on a forward followed by a backward Multi-color SOR step was 

also given In Chapter 5. Numerical results for this method for a plane 

stress problem show that the optimal w Is close If not equal to 1. It Is 

well known that the optimal w for the Red/Black ordering of a matrix 

with Property A Is 1. but It has yet to be proved whether or not this Is 

true for general Multi-colored matrices. 

Lastly. In Chapter 5. the Multi-color SOR method was generalized to 

the Block Multi-color SOR method. If the grid points In each block are 

from k consecutive rows (or columns) of the problem grid so that the 

matrix will be 7T-conslstently ordered. (see Young(19711). a theory exists 

for determining the optimal relaxation factor. On the other hand. If the 

grid points are blocked by /xk blocks of convenient size for Implementa­

tion on a array of processors. It Is generally not the case that the 

matrix will be 7T-conslstently ordered. 

In Chapter 6, we developed and analyzed an m-step preconditioned 

conjugate gradient method that can be efficiently Implemented on both 
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vector computers and parallel arrays. This method takes m steps of a 

Jlnear stationary Iterative method derived from a symmetric and nonslngu­

lar splitting of the stiffness matrix K In order to precondition the system. 

In Theorem 1. we extend a result of Dubois. Greenbaum. and 

Rodrlque[19791 by giving the necessary and sufficient conditions for the 

resulting preconditioning matrix. M. to be symmetric and positive definite. 

In Theorem 2. we relate the positive definiteness of M to the conver-

genee of the linear stationary Iterative method and thereby generalize the 

Jacobi Convergence Theorem. 

In Theorem 3. the condition number of the preconditioned system • 

.. 
IC.CK

m
). was proven to be a decreasing function of m If aI/ the eigen-

values of G. the Iteration matrix for the linear stationary Iterative method. 

are positive. However. If the smallest eigenvalue of G Is negative. the 

condition number behaves differently for m odd and m even. In partlc-

ular. Theorem 4 shows If An> 1 A 1 I. the condition number Is decreasing 

for m Odd. but Is decreasing for m even If and only If the following 

Inequality holds 

where l5=max I A,l, This means that Increasing m from an odd to a 
I 

consecutive even number of steps Is more beneficial. In some cases. 

than Increasing m from an even to a consecutive odd number of steps. 

These results further explain observations of DuboIs. Greenbaum. and 

Rodrlque(l9791, 

The most promising linear stationary Iterative method that we used 

for the m-step precondltloner was the Multi-color SSOR method. Numer­

Ical results show that the ratio of the number of Iterations with the 2-
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step Multi-color SSOR PCG method to the 1-step Multi-color SSOR PCG 

method was 1.40<1.36) for the plane stress problem and Laplace's equa­

tion respectively (the theoretical maximum Is 2.0). To Improve these 

results, we developed an m-step extrapolated PCG method that can be 

effective whenever all the eigenvalues of G are nonnegative (as Is true 

for SSOR>. Numerical results with this method show the ratios 1.40<1.36) 

are reduced to 1.93<1.76) respectively with little additional work. The 

disadvantage of using this method Is that little theory exists for determin­

Ing the extrapolation factor '1. 

Finally. In Chapter 6. we compared our m -step extrapolated PCG 

method to the Parametrized Preconditioned Conjugate Gradient Method 

(PPCG) of Johnson, Micchelli. and Paul(1ge21 and showed the two are 

equivalent whenever m =2. For m >2. the PPCG method appears more 

general since the freedom of choosing more than one parameter can 

possibly lead to a better precondltloner. By using our more general 

symmetric and nonslngular splitting of the matrix K. we showed how to 

generalize the PPCG method. More research Is required to determine 

the effectiveness of this approach. 

In Chapter 7. we developed a model for comparing the execution 

time of parallel algorithms on an array computer. This model Included 

the time for arithmetic. local convergence testing. synchronization for 

decision making. sending and receiving values ever a global bus. and 

performing a summation of p numbers via the global bus or alternatively 

by a special hardware circuit. The hardware times for doing one of 

each of the above operations was varied to determine the dependence of 

an algorithm's performance on these parameters. The model was vall-



dated on a 4-processor Finite Element Machine at 

Research Center; however. as more processors are 

machine. a more detailed validation can be done. 

NASA 

added 
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Langley 

to this 

The model was used to predict speedups as well as execution times 

for our algorithms for Laplace's equation and _t.he _ plane stress problem 

on a p-processor machine where a respresents the ratio of communica­

tion to arithmetic time. The major results are Itemized below for 

Laplace's equation. 

(1) RIB SOR was the most efficient and fastest algorithm for all 

values of p. The speedup for 384 processors was 307 for 

a=. 01. 295 with a=.l. 211 with a= 1 and as low as 55 with 

a=10. 

(2) The conjugate gradient method with the global bus for the Inner 

products should not be used with a large number of processors 

unless a<.Ol. 

(3) Some Improvement over the CG(Bus) algorithm Is obtained by 

taking two steps of the Red/Black SSOR precondltloner; however. 

more Improvement Is gotten by using the sum/max hardware 

circuit for the Inner products with this 2-step method but not 

enough to be competitive with the Red/Black SOR algorithm. 

The major results are Itemized below for the plane stress problem. 

(1) The Red/Black/Green SOR algorithm. even though very efficient 

on an array. takes too many Iterations to converge to be com­

petitive with the conjugate gradient methods. 

(2) The Red/Black/Green 2-step extrapolated SSOR preconditioned 

conjugate gradient algorithm with the sum/max circuit for the 
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Inner products was the fastest method for this problem and 

quite efficient as well. The speedup values for 256 processors 

are 251 for a=.Ol. 242 for a=.1. 179 for a=1. and only 50 for 

a=10. 

(3) The execution time for the method In (2) above varied very little 

when a was Increased from .1 to 1 but varied significantly for 

p ) 16 when a was Increased from 1 to 10. Therefore. If a 

parameter study were done to determine the value of a for 

design purposes. extra model runs should be done between the 

range a=l and a=10. 

In Chapter 7. we showed that the reliability of a p-processor array 

decreases as the value of a Increases. For example with p =256. a job 

length of 100 time units. and a component failure rate of 1 every time 

unit. the reliability decreases from 90% for a=.l to 87% for a=l to 60% 

for a=10. Finally. in Chapter 7. we outlined the procedure for compar­

ing our algorithms with Cholesky decomposition followed by forward and 

backward substltlon on a conventional computer. 

8.2. Future Dlrectfons 

The efficient implementation of the Multi-color SOA and the m-step 

SSOA preconditioned conjugate gradient methods on an array of proces­

sors depends on the coloring of the nodes. of the discretization followed 

by a particular mapping. or aSSignment. of the problem nodes to the 

processors. We gave In Chapter 5 the solution to this assignment prob­

lem for the special case of a rectangular problem domain. However. for 

irregular regions. the coloring of the nodes corresponds to a graph 
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coloring problem and In general Is an NP-complete problem (see McDI­

armld(1979]. and More '(1981] for examples). Furthermore. Bokharl[l979] 

showed that assigning p nodes to p processors In order to reduce the 

communication time Is also an NP-complete problem for a general prob­

lem domain. However. Bokharl did not consider the assignment of multi­

ple nodes per processor. We note that the assignment of nodes to the 

processors Is not Independent of the solution algorithm used to solve the 

system of linear equations and for our algorithms must be viewed In 

conjunction with the coloring problem. 

A second area for further research Is the comparison of block and 

point Iterative methods for parallel processors. Because of the overhead 

due to communication that was seen for our point methods. block 

methods may be competitive on these machines since the processor will 

become more computationally bound. These methods may prove effective 

for structural engineering problems since they are closely related to the 

modular or substructurlng approach that Is commonly used by structural 

engineers. 

A third Important area for the extension of our Ideas Is In the 

development of new Iterative algorithms such as asynchronous methods 

and multi-grid techniques. The asynchronous methods of Baudet[19781 

were Implemented on a multi-processor system with central shared 

memory. For the distributed memory multiple Instruction multiple data 

Finite Element Machine. research Is needed to determine If these 

methods are competitive with synchronous methods. For example. the 

Multi-color SOR method can be Implemented In an asynchronous fashion. 

thereby eliminating the walt time due to the synchronous receive and the 
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overhead due to some global flag checking. but It has yet to be deter­

mined whether the time saved by this overhead outweighs the possible 

Increase In time If more Iterations are necessary for convergence. We 

note that the current conjugate gradient methods can not run asynchro­

nously since synchronization Is necessary to accumulate the partial sums 

for the Inner products. 

An efficient multi-grid method for an architecture like the Finite Ele­

ment Machine Is another area for future research. This method requires 

relaxation on different sized problem grids and therefore may require a 

different communication strategy than the eight nearest neighbor connec­

tions. In addition. a parallel iterative method for performing the smooth­

Ing relaxations must also be developed. 
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