NASH ég /66,027

NASA Contractor Report 166027

NASA-CR-166027
19830006723

ITERATIVE ALGORITHMS FOR LARGE SPARSE
LINEAR SYSTEMS ON PARALLEL COMPUTERS

Loyce M. Adams

UNIVERSITY OF VIRGINIA

Department of Applied Mathematics
and Computer Science

Charlottesville, Virginia 22904

Grant NAGl1-46
November 1982

LT
NASN

National Aeronautics and

Space Administration

Langley Research Center
Hampton, Virginia 23665

LIBRARY C9pY

fen 11982

LANGLEY RESEARCH CENTER
LIBRARY, NASA |
HAMPTON, VIRGIN.A j

TABLE OF CONTENTS

List of Symbols

List of Algorithms

List of Figures

List of Graphs

List of Tables

Chapter 1.

Chapter 2.

Chapter 3.

Chapter 4.

Chapter 5.

Introduction
The Finite Element Method

2.1 Method Description
2.2 Plane Stress Equations

The Finite Element Machine

Review of Parallel Arxchitectures
The Finite Element Machine Archatecture
3.2.1 Controller Hardware
3.2.2 Nodal Processor Hardware
3.2.2.1 CPU Board
3.2.2.2 1I0-1 Board
3.2.2.3 1I0-2 Board

w w

Paraillel Assembly and Stress Calculation

4,1 Parallel Matrix Assembly
4,2 Speedup for Parallel Matrix Assembly
4.3 Parallel Stress Calculation

Parallel Linear Stationary Iterative Methods

5.1 The Jacobi Iterative Method
5.2 The Multi-Color SOR Method
5.2.1 Motivation
5.2.2 Multi—Color Orderings
5.2.3 Comparison to Existing Theory
5.2.4 Comparison with Rowwise Orderang
5.3 The Multi-Color SSOR Method
5.3.1 Description
5.3.2 Parallel SSOR Implementation
5.3.3 Comparison with Rowwise Oxdering
5.4 Parallel Block Iterative Methods
5.4.1 The Block Jacobi Method
5.4.2 The Block SOR Method
5.4.3 The Block Multi-Color SOR Method

PAGE

vii
ix

xi

18

aR:]
20
22
23
23
25
25

28

28
34
45

48
57
57
60
74
85
87
88
88
91
92
92
94
99

Chapter 6.

Chapter 7.

Chapter 8.

References

Parallel Conjugate Gradient Methods

6.1 The Conjugate Gradient Method
6.2 Preconditioned Conjugate Gradient Methods
6.2.1 The PCG Algorithm
6.2.2 Implementation of Preconditioners
6.2.3 m-step PCG Methods
6.2,.3.1 Description
6.2.3.2 Analysis of Condition Number
6.2.4 m-step Extrapolated PCG Methods
6.2.4.1 Description
6.2.4.2 Extrapolation Pactor
6.2.4.3 Comparison to the PPCG Method

Parallel Algorithm Analysis

7.1 Execution Time Model
7.1.1 Execution Time for Multi-Color SOR

Execution Time for Conjugate Gradient
Execution Time for m-step SSOR PCG
validation

Results

Speedup Results

Para-efficiency

Execution Time Results

Reliability Considerations
Comparison to a Conventional Machine

w N
RELL
P
® e+ -

N
Np WNHERRRWN

NSNS

Conclusions and Future Directions

8.1 Conclusions
8.2 Puture Directions

ii

PAGE

107

107
107
110
113
119
119
127
139
139
141
144

148

148
153
158
158
159
162
le2
171
174
180
183

186

186
191

194

UST OF SYMBOLS

c® space of continuous functions

C] space of continuously differentiable functions
L2 1(9)) space of square integrable functions on fl
£ problem domain

aN boundary of fl

H.l ()] Sobolev space of order 1

H; (g} functions in H1 () that are 0O on an

vw gradient of w

K stiffness matrix

N number of rows of K

u displacement vector

L force vector

o3 stress vector

£ strain vector

p processor

d degrees of freedom

8 Jacobi iteration matrix

Lw SOR. iteration matrax

w relaxation factor

K condition number

r residual vector

fo} conjugate direction vector

M preconditioning matrix

m numbexr of steps for the m—-step PCG method
Y extrapolation factor

iii

This Page Intentionally Left Blank

Chapter

aoun

an 0

Algorithm

» W NP

N =

UST OF ALGORITHMS

Title

Parallel Jacobi (one point/processor)
Parallel Jacobi (multiple points/processor)
Multi-Color SOR

Multi-Color SSOR

Conjugate Gradient
Preconditioned Conjugate Gradient

Page

53
54
66
89

los
112

This Page Intentionally Left Blank

Chapter

2
2

Wwwwwww

b bbb b

oo uooouuoouoounuatnanunnang

Figure

N =

N w®mb wN e

UST OF FIGURES

Title

Region Discretization
Plate in Plane Stress

Example Structure

The Finite Element Machine
Architecture of the FEM
The FEM Nodal Processor
The FEM Local Links

The FEM Global Bus

The FEM Signal Flag Network

Region Discretized by Finite Elements
Discretization

Four Processors

Six Processors

Twelve Processors

Upper Triangular Connections to Node C
Processor Assignment

Stencil for (5.9)

Processor Assignment for Jacobi's Method
Red/Black Ordering

Stencil for (5.9)

Four Color Partitioning of the Gridpoints
Processor Assignment for (5.19)

9-point Discretization

3-Coloring for Fiqure 7.

Processor Assignment for Pigure 8,

13~-point Discretization

6—Coloring for Pigure 10.

Processor Assignment for Figure 11.

Linear Triangular Element and Grid Point Stencil
3—Coloring for Figure 13.

Processor Assignment for Figure 14.

Quadratic Triangular Element and Grid Point Stencil
6—Coloring for Figure 16,

Processor Assignment for Pigure 17.

Bi-Cubic Rectangle and Grid Point Stencal
Quintic Triangle

Line Red/Black Ordering

Processor Assignment for Pigure 21,

Red/Black 2-Line Ordering -
Processor Assignment for Figure 23.

4-Block Coloring for Figure 4.

Processor Assignment for Figure 25.

3-Block Coloring for Figure 7.

Processor Assignment for Figure 27.

vii

Page

21
22
22
23
25
26
26

28
35
35
35
35
36
46

52
54
60
61
63
65
66
67
67
68
68
69
69
70
70
71
72
72
73
73
95
96
- 97
98
100
101
102
103

Chapter

ounuunn

~ -3

Figure

29
30
31
32

1

1l
2

Title

6-Block Coloring for Pigure 10.
Processor Assignment for Pigure 29.
6~Block Coloring for Pigure 16.
Processor Assignment for Piqure 31.
Data Agssignment to 3 Processors

Problem Node Assignment
Four Processor Assignment (Plane Stress Problem)

viii

Page

104
104
105
105
109

152
160

Chapter Graph
7 1A
7 1B
7 2A
7 2B
7 3A
7 3B
7 4A
7 4B
7 5A
7 SB
7 6A
7 6B
7 7
7 78
7 8A
7 8B
7 92a
7 9B
7 10A
7 0B
7 11a
7 11B
7 12a
7 12B
7 13
7 14

UST OF GRAPHS

Title

R/B SOR (p vs. Speedup)
R/B SOR (a vs. Speedup)

CG(Bus) (p vs. Speedup)
CG(Bus) (@ vs. Speedup)

R/B SSOR 2-PCG(BUS) (p vs. Speedup)
R/B SSOR 2-PCG(BUS) (a vs. Speedup)

R/B/G SOR (p vs. Speedup)
R/B/G SOR (& vs. Speedup)

CG(BUS) (p vs. Speedup)
CG(BUS) (a vs. Speedup)

R/B/G SSOR 2-PCG(BUS) (p vs. Speedup)
R/B/G SSOR 2~PCG(BUS) (a vs. Speedup)

R/B/G SSOR 2-PCG(Sum/Max) (p vs. Speedup)
R/B/G SSOR 2-PCG(Sum/Max) (a vs. Speedup)

a =10 (p vs. Execution Time)
a =1 (p vs, Execution Time)

R/B SOR (a vs. Execution Time)
R/B SOR (p vs. Execution Time)

a =10 CG(Bus) (p vs. Execution Time)
a =1 CG(Bus) (p vs. Execution Time)

a =10 (Sum/Max) (p vs. Execution Time)
a =1 (Sum/Max) (p vs. Execution Time)

R/B/G SSOR 2-PCG (Sum/Max) (@ vs. Execution Time)
R/B/G SSOR 2-PCG (Sum/Max) (p vs. Execution Time)

Reliability

Comparison With a Conventional Computer

ix

Page

168
168

le8
les

168
168

170
170

170
170

170
170

170
170

175
175

176
176

178
178

179
179

179
179

182

184

This Page Intentionally Left Blank

Chapter

L - RN AN

L on

AN ONO

N NNNNNNNNNNASY

Table

D W N

W N

W ONOWUbLWwN K

W OoNOTG D WwNM

loa
10b
11
12

UST OF TABLES

Title

K Matrix Coefficients for Processor P
Problem Data for Processor P

Assembly Times
Agsembly Times
Assembly Times
Asgsembly Times
Assembly Times
Assembly Times
Assembly Times
Asgembly Times

for
for
for
for
for
for
for
for

Pigure 2. (Policy 1)

Pigure 2. (Policy 2) a=1,b=1
Figure 2. (Policy 2) a=.5,b=.5
Pigure 2. (Policy 2) a=.25,b=,25
16x48 Plate (Policy 1)

16x48 Plate (Policy 2) a=l,b=l
16x48 Plate (Policy 2) a=.5,b=.5
16x48 Plate (Policy 2) a=.25,b=, 25

Laplace's Equation (5-star Discretization)
Laplace's Equation (Quadratic Elements)
Plane Stress Problem (60 unknowns)

SSOR Results (R/B/G and Rowwise Ordering)

Number of m—-step R/B/G SOR PCG Iterations

m—-step SSOR PCG for 60x60 Plane Stress Problem
m—step SSOR PCG for 1536x1536 Plane Stress Problem
m—-step SSOR PCG for 768x768 Laplace’'s Equation
m—3tep Jacobi Results for 89x89 Problem

m—gtep SSOR (Extrapolated SSOR) 1536x1536 Problem
m-step SSOR (Extrapolated SSOR) 768x768 Problem
Ratio of 1-step to m—step R/B/G SSOR PCG

Ratio of l-step to m—step R/B SSOR PCG

4-FEM and Model Results

Processor Assignment for Laplace's Equation
Processor Assignment for Plane Stress Problem
Pour Sets of Model Costs

Speedups for Laplace's Equation

Speedups for the Plane Stress Problem
Para-efficiencies for Laplace's Equation
Para-efficiencies for the Plane Stress Problem
Execution Times for Laplace's Equation

Execution Time for the Plane Stress Problem (bus)
Execution Time for the Plane Stress Problem (sum/max)

Reliabilities

Comparison to a Conventional Solver/Machine

xi

Page

29
31
41
42
42
42
43
43
44
44

85
86
87
91

127
131
131
131
134
142
143
143
143

162
164
165
167
168
170
173
174
175
177
178
182
185

CHAPTER 1

introduction

The approximate solution of partial differentiali equations often leads
to large sparse systems of linear equations that must be solved numeri-
cally. These systems can contain tens, or even hundreds of thousands
of equations and require hours to soive on conventional mainframe com-

puters such as the CDC CYBER 7600 series.

With the advent of parallel architectures found in vector computers
such as the CRAY-1 and CYBER 203/205 or arrays of microprocessors
found in the ICL DAP (Cryer(1981]))., the HEP (Smith(1978) and NASA
Langley’s Finite Element Machine (Jordan[1978D, it may be possible to
solve these problems in a shorter time. Also, with the cost of hardware
continually decreasing. arrays of microprocessors may prove to be a
cost-effective architecture for solving these large problems, especially with
the use of VLS! (Very Large Scale Integration) or WSI| (Wafer Scale

integration) technology.

A major use of these equations is in structural engineering. Prob-
lems such as deflection of membranes are described by second order
elhiptic partial differential equations, and beam or plate bending problems
are governed by fourth order elliptic equations. The usual way to solve
these problems approximately is to first discretize the spatial domain by
finite elements and then to solve the resulting system of linear equations
by a direct solution technique. usually some variant of Cholesky decom-
position (see e.g. Noor and Fulton[1974) and Reid(1980]) The linear sys-

tem is often too large to fit completely in the computer's main memory.

especially after the fill-in due to the decomposition. Hence. these solu-
tion techniques must include the moving of data between main memory
and the backing store. This data handling requires efficient memory

management and can be very time consuming.

In this thesis. we investigate iterative algorithms for solving, on
paraliel computers, the large sparse symmetric and positive definite linear
systems that arise from elliptic partiai differential equations such as those
from structural engineering. Iterative methods have the advantage that
minimal storage space is required for implementation since no fill-in of
the zero positions of the coefficlent matrix for the system of linear equa-
tions occurs during computation. Hence if many processors with
memories are connected together and the data Is distributed among
them, it may be possible to solve large problems without moving large
amounts of data Another advantage of an iterative method is that the
process may converge In very few steps f a good nitial guess is
known This 1s the case In some applications Aiso, for certain three
dimensional elliptic problems, Fix and Larsen{1871] show that iterative
methods can outperform Cholesky decomposition on sequential computers
lterative methods seemingly paralielize better than direct methods and are
therefore potentially viable techniques for solving large sparse linear sys-—

tems on parailel computers

The thesis consists of eight chapters. Chapter 2 reviews the finite
element method. points out aspects of it that are amenable to parallel
computation and derives the system of linear equations for two example

problems

Chapter 3 describes in detaill the architecture of NASA Langley’'s
Finite Element Machine. This machine Is used to describe the imple-

mentation of the parallel iterative algorithms.

in Chapter 4, two algorithms are deveioped for the paraliel assembly
of the system of linear equations by the finite element technique for the
Finite Element Machine. These assembly algorithms are then compared
and their speedups relative to a single processor version are determined.
The last section of this chapter describes how to perform a stress
analysis in parallel on the Finite Element Machine once the solution to

the linear system for the displacements is found.

Chapter 5 describes several parallel linear stationary iterative
methods that can be implemented on either vector computers or paraliel
arrays. The implementation of Jacobi’'s method is given in Section 5.1.
Section 5.2 describes a new method, which we call Multi-color SOR.
discusses its implementation on parallel machines. compares it to existing
theory, and reports numerical comparisons to SOR without Multi-coloring.
Section 53 describes a Multi-color SSOR method and its efficient imple-
mentation on parallel architectures. Finally, Section 54 describes how to
implement block iterative methods such as block Jacobi and block SOR

on these machines.

Chapter 6 describes parallel conjugate gradient methods. The
implementation on the Finite Element Machine of the the standard conju-
gate gradient method is given in Section 6.1. Section 6.2 1 describes
the impiementation considerations for parallel preconditioned conjugate
gradient methods and Section 6.22 lists some common preconditioners

and discusses the difficulty encountered in their implementation on paral-

lel machines. In Sections 623 and 62.4 we give preconditioners that
are suitable for parallel machines, analyze when they can be appiled,
and relate them o the preconditioners of Dubois. Greenbaum, and
Rodrique(1979] and Johnson[1981]. Section 625 gives numerical results
for the preconditioners of Sections 6.2.3 and 6.2.4 on two example prob-

lems.

in Chapter 7 we develop a detalled model for comparing parallel
algorithms on an architecture like the Finite Element Machine. This
model is then used to analyze the algonthms in Chapters § and 6 as a
function of the number of processors in the microprocessor array and
also as a function ot the machine’s ratio of communication to arithmetic

time.

Chapter 8 summarizes the resuits of this work and describes areas

for promising future research.

CHAPTER 2

The Finite Element Method

This chapter glves a brief description of the finite element method,
highlights the aspects of the method that are amenable to parallel com-
putation, and derives the finite element equations for two specific prob-

lems that are used in future chapters.

2.1. Description of the Method

The finite element method Is a general technique for constructing
approximate solutions to boundary value problems (Oden{1981]). Strang and
Fix(1973)). Suppose we want to solve the following second order nonho-
mogeneous eiliptic partial differential equation with homogeneous Dirichlet

boundary conditions’

2 3 a
-7 2@ 02van = fx) xen
(=19 11 9x; @.n
uix) = 0 X €3N
2

where Q1 is a bounded domain in A~ and the matrix a”(x) is symmetric

and uniformly positive definite.

To approximate the solution of (2.1) by the finite element method,

we first write (2.1) in its variational form:

Find u(x)eH;(n) such that

alw.w) = (fv) v eH; (7)) 2.2)

where

w.v) = [weved
)

and
2 3 3
awv) = [T 8, MIZg 00 F ¥ 0 X
fol.e i i

Here H; denotes the set of all functions vssH‘I () such that v=0 on dn
where H1(n) Is the set of all functions which together with their partial
distributional derivatives belong to L2(n), the space of square integrable

functions on .

If we choose the matrix a“ in (2.1 to be the identity matrix, we

get Poisson’s equation.

-w_ +u)= fky) Gyden
xx T Yy Y y 2.3)

U,y 0 x.y)edn

Likewise. the associated weak form of Poisson’'s equation can be

obtained from (2.2).

Find u(x,y)eH; (V) such that

[y -wviyraxdy = [x.ywvocyraxay @ 4
y n

for all
1
v(x.y)eHo ()]
where Vw is the gradient of w.

We now consider the approximation of the solution of (2.4) by the
finite element method. A finite dimensional subspace thH; D must
first be chosen. This subspace typically consists of plecewise polynomi-
als defined over a triangulation of N, called nh, where each triangle 1s

called a finite element If the subspace V'7 ts spanned by the functions

pl j=1.2...n, called basis functions, we jook for an approximate soiution

uh(x.y) of the form

n
uh(x,y) = L alpl(x,y) (2.6)
=1

The substitution of (2.6) into (2.4) yields

fw" &) -9 &yddxdy = It oV &.y)axdy
h

1 ﬂh

Q.7
for all vh th.
By choosing vh=p,. i=1.2..n in (@2.7), we get the following symmetric
and positive definite system of linear equations for g.

Ka = £ 2.8)
where

K, = J'Vp *.y) Vo (.y) dxdy
i R /
a

2.9)

and
f, = J;,f(x,y)pl(x.y) dxdy
Nl

The power of the finite element method lies in the choice of the basis
functions P A linear polynomial i1s uniquely determined by its values at
the three vertices of any triangle. Suppose P; Is chosen to be that
plecewise linear polynomial which has the value 1 at vertex VI of the
triangulation and has the value zero at the rest of the vertices of the
triangulation. Then P; I1s a continuous function which belongs to H.| (9)]

and is nonzero only on those triangles having V, as a common vertex.

in addition, any Co-piecewise linear polynomial may be represented as a

1,.h
linear combination of the ¢,/'s. Functions veionging to Ho(n) are

obtained by omitting those p,'s that are defined to have the value 1 at
the V,’s on the boundary of nh. The points of nh for which P is
defined to be either 1 or 0 are often referred to as nodes. |If the .pl's

are linear as described above. the vertices V, will be the nodes.

Alternatively, a quadratic polynomial is uniquely determined by its
values at the vertices and at the midpoints of the sides of the triangle.
Likewise. values given at ten nodes located two per side of the triangie,
one at each vertex, and one Iin the center of the triangle uniquely

determine a cubic polynomial.

By choosing the pl’s to be piecewise polynomials with the value of
either 1 or 0 at the points of the triangulation, the vaiue of ai in equa-
tion (2.6) will be the value of u” x.y) at the nodal point j. denoted 5,.
and we can write equation (2.8) as

K& = L 210

The matrix K will be sparse due to the choice of the basis functions
since the values of k” will be zero If nodes / and /| are not on a
common finite element. In other words, row : will have at most as
many nonzero off dlagonal entries as node ! has neighbor nodes (wo
nodes are called neighbor nodes if they share a common finite element).
To lllustrate this, Figure 1 shows a region discretized by triangular finite

elements.

13 14 1S 16

(14) (18) (18)
(13) (15) (17)
1
(10)

10

(12)|
(9) (11)

(4) (6)

('l
~3
a

(1) (3) (5)
1 3 4

Figure 1. Region Discretization
18 elements; 16 nodes

Now, if linear piecewise polynomials are chosen for the basis functions,

row 6 of K will have at most 6 off-diagonal entries: namely. k62‘ k63'

k and k This sparsity will be a major consideration

kes: ke7° Koo 6.10°
in the design of parallel algorithms for solving K&=f and will be

addressed in Chapters 5 and 6.

Each entry, & as defined by equation (29) is obtained by an

i’
integration over the domain nh. Since ?; and pl in (2,9) are both
nonzero only on finite elements that contain both nodes / and /., this
Integration is only performed over these particular elements. Figure 1
shows that the integration is performed over six elements to calculate k”
if i=) and two eiements otherwise. As an example, suppose j=6 and ;=7

Then. from Figure 1 we obtain

kgp = (Lv.ps-Vp? * (J;)Vps-Vp7 @1

Likewise, If /=6 and j=6 we get

“55=(,£)V"s'v*’s*(£)v*’s'Vpe*(ﬁ)v*’e'v*’e*(J;)V%'V*’e

2.12)
+(£)Vs06 °Vp6+(£)Vp6 -Vps

10

Lastly, if +=6 and ;=8 then

k68 =0 213

since nodes 6 and 8 have no finite element in common. These obser-
vations suggest a commonly used three step procedure for assembling

the K matrix

(1) Zero out the storage that is to be used for K This wiil usually
be a symmetric storage structure in which the diagonal and upper

bands of K are stored.

(2) Integrate over each element. one at a time, to calculate the
element’s contribution to the diagonal and upper bands of K
For exampie. the integrations over element (1) in Figure 1 yield
the following contributions to K:

k Vo, Vp k1 : pr < VP
1 (J]') 1 1 2 N 1 2

k. .. Vp.-Vp k Ve, -Vp
29 (,{) 2 2 15 (J.I‘) 1 5

These values comprise what 1s commonly called the element

matrix for element (1) and can be represented by

1 2 s
V&, Ko ks
(0
2 koo K35
5 ks

(3) The values in each element matrix are added to the appropriate

position 1n the global K matrix

1

This procedure can Dbe adapted for a parallel computer with little
modification since the Iintegrations over twg different elements can be

done simultaneously. This is the topic of Chapter 4.

Thus far only the solution of a scalar partial differential equation by
the finite element method has been considered: however, the method can
be applied t0 a system of equations as well. In particular., the equa-
tions that govern the static displacement of a body in piane stress will
be a coupled sytem of two equations for the displacements of the body
in the x and y directions respectively. The finite element method as

applied to this problem will be described in the following section

2.2. Plane Stress Equations

The procedure for constructing the stiffness matrix K for a plane
stress analysis of an isotropic linear elastic body 1 will be described in
this section Similar descriptions may be found in 0Oden{1981]. Norne
and deVries(1978]. and Zlenkiewicz(1971). The probiem i1s to find the
displacements in both the x and y cogrdinate directions of a 2-
dimensional body N1 that s in plane stress. such as the membrane

shown n Figure 2.

Ng=

an, ; n an,
i =i
/
302
Ng=a

Figure 2. Plate in Plane Stress

First. we introduce the notation that will be useo in this discussion

%11
= t
g&.y) 022 stress vector
%12
[€11]
Ek.y) = e22 strain vector
“12]
-u
ubx,y) = v displacement vector
r- -
3
3x 0
- 3
D=}|0 3y
3 3
bay ax_
E = i v 1 0 .
1-v v=Poisson’s ratio

[‘ v 0 E=Young’s modulus

13

-
n 0 ny
N = 0 n n nx,ny normal components an2
L y X
ﬂf -
X
i = y body forces per unit area
-y-
=]
A ox
a =1, surface tractions applied on 3810,
g
t-y..
e
€ =1, displacements on 31,
v

The conservation of linear momentum for the body 1 states that any
portion w of the body must be in static equilibrium:
T =
[©'attraxay = 0 2.14)
W
For sufficiently smooth a and f we get the parual differenual equations
of equilibrium for the body fl.
T =
Dg+t+f =290 215

A maternial that is linearly elastic. homogenous. and isotropic satisfies the

constitutive equation which relates the stresses to the strains

g = Eg 216}
The strains and displacements are related by

£ = 0u 210

The substitution of (2.16) and (217) into (215 yields the partial dif-

ferential equations in terms of the displacements only

DTEDLG.y) + L&) = 0 &.ylen 218

14

The boundary conditions for (2.18) are.

€is) = Ues) sean, (2.19a)

Ng=g or NEDu=3(s) s ean, (2.19b)

The variational form of the problem in (2.18), (2.19a), and (2.19b) Is
easily found to be

£(D_\L)TEDy_dxdy = J;lrf_dxdy + | v Sds

2.20)
an2

for all v, csH.l ()R u; <-:H'I . i=1,2 and u.=ﬁ on an] and ¥=0 on an].

Before we Introduce the finite element approximation to (2.20) an
alternate derivation of (2.20) will be given. This derivation comes from
the minimization of the potential energy of the body. The potential

energy functional X(w) Is given by

1 T - (LT - Ta
Xw) = .§£ (Dw) ' E(Dw)dxdy ff)ﬁ Ldxdy f ¥’ Qds @210

an2

which is to be minimized among all

ﬁeH2:_= 4 w, eH1(n).m=ﬁ on an1.

To find the value of _u_eH1E that minimizes X. the first vanation &6X@w.y)

is formed and set to zero.
a<xm;1)>~—1-j'(ou)TE(Dl)dxdy o f (Dy) | EDydxdy - f v/ £ dxdy
) h n

(2.22)

- [éds = 0 .tor all veH,

E
an2 0

where H1E ={ ll v,c-:H.I) v=0 on an]}
o]

The boundary conditions (2 19b) are natural boundary conditions and do

15

not need to be explicitly imposed. They will automatically be satistied by

the minimizer of (2.21). Now. since E=ET. (2.22) becomes (2.20).

The solution of (2.20) 1s approximated by the same technique
described in the last section for Poisson’s equation, that 1s, we choose
a finite dimensional subspace th:H1 () and look for the approximation

y_h(x.y) of the following form:
h
Y &x,y) = d8 2.23)

where @ 1s a 2x2n matrix of piecewise continuous basis functions and &
is a 2nx1 vector containing the unknown values of the components of
y_h(x,y) at the n nodal points. In particular for linear basis functions, if
we just consider the value of y_h(x,y) where (x.y) is a point inside a tri-
angular finite element (e} with nodes 1.2, and 3, (2.20) becomes

h(e) (e), (o)

u xy) =08 (2 24)
where

and

(e) _

The pl‘s tn (224) will be piecewise linear polynominals defined on tri—
angular finite elements as 1n (29). Note that the same basis functions

are used for both components of y_h in (224) since both components

16

are eiements of the same subspace Vh

The substitution of (224) into (220) yelds the following element

matrix and vectors:

k€ = | 0% Epe®axay
q

e
(e) e T
£ = [@ taxay 2 25)
q
g%’ = T @) Nods
e
an,,

The equations that govern the solution at a particular node ; are

the global equations
K& =1t + g 2.26)

and must be assembled from (225 by adding the contributions over
each element to the appropnate position in K as was described in the

last section.

Suppose that once the displacements § are found, the stresses g
are to be calculated. From (216), (2.17)., and (2.23). the stress vector

g can be expressed as
g = ED®4 @22n

Since the elements of ® are linear, D® will be a matrix of constants
This implies that the stresses will be constant over a given element,
This can be seen since on a particular element e. ® will contain only
three nonzero basis functions 1in each row that are associated with the
three nodes of (e) Therefore. we may also write

a(e) - Em(e)_ﬁ_(e) © 28)

where CD(O) Is a 2x6 matrix and ﬁ_(e) tIs a 6x1 vector

17

(e) (
Hence, once _Qe 1s found the soiution of ne) only regquires one matrix
multiptication. In fact, this stress matrix Ech(e) can be saved from the

calculation of K@ in .25,

As llustrated above. the caiculation of _Q(e) requires only the values
of Q(e) and EDQ(e). This suggests a parallel implementation of the
stress calculation by elements is possible. A more detailed exptanation
of this is given in Chapter 4 for linear basis functions defined on a tri-

angulation of a plate under plane stress

CHAPTER 3

The Finite Element Machine

This chapter gives a briet summary of parailel architectures that
have been built or are under development and then describes in detail

the architecture of the Finite Element Machine.

3.1. Review of Parallel Architectures

For our purposes, it is convenient to classify paraliel architectures
into two categortes, namely, vector computers and array computers. A
vector computer will be considered to be a computer that has special
hardware instructions which accept vectors as operands. These instruc-
tions may be implemented via hardware pipelines as was the case for
the TI-ASC and the CDC STAR 100 in the early 1970‘s and currently for
the CDC CYBER 203 and 205 and the CRAY-] Alternatively. the ele-
ments of the vector may be loaded into separate processing elements as
is the case for the ILLIAC-IV (The ILLIAC-IV may also be considered to
be an array computer). A description of the architecture of these
machines as well as the state of the art tn 1377 of algonthms for solv-
ing partial differential equations on them s given in Ortega and

Voigti19771.

An array computer consists of an array of processing elements each
of which may execute instructions. These eiements may be simple chips

to perform specific functions or they may be complete processors

Array computers fall into two classes depending on the manner in

which they execute instructions (Flynn[1976]) In the first class. the pro-

18

19

cessing elements either all execute the same instruction or no instruction
on different data. This class Is called SIMD (single Instruction, muitiple
data). The ILLIAC IV is an example of a SIMD machine Alternatively,
the processors may execute different instructions in an asynchronous
fashion on different data. This class is called MIMD (multiple instruction.

multiple data).

During the course of a computation these processing elements must
communicate with each other. Since providing a communication hnk
from a processor to every other processor becomes prohibitive as the
number of processors increase. a particular connection strategy aiso
influences how we will further classify array architectures. Three major

strategies as summarized by Ortega and Voigt{1983] are listed below

() P processors are arranged in the form of a regular latice.
Each processor has its own local memory and I1s permanently
connected to a small subset of other processors., called neigh-

bors.

(2) P processors with local memory are connected to each other by

a bus.

(3) P processors and M memories are connected by an an elec-
tronic switch so that every processor has access to a subset,

possibly all, of the memories.

Latice arrays include the ILLIAC-IV, the Distributed Array Processor
(DAP) of International Computers Limited (Cryer{1981]), and the Systolic

Arrays of Kung{1980] The ILLIAC-IV and the DAP are SIMD machines

20

The Systolic Arrays are special purpose computers on a chip with a
group of processing elements working in a SIMD fashion to produce out-
put for other groups of processing elements. Hence, the Idea Is to
have simpie and cheap processors that calculate and transmit data in a

regular fashion for a particuiar application.

Examples of two MIMD bus arrays are the CM* at Carnegie Mellon
University (Swan[1977]) and ZMOB under development at the University of

Maryland (Rieger.Trigg. and Bane[1981]).

Examples of two MIMD switched arrays are the C.mmp of Carnegie
Meilon University (Fuller and Harbison{1978]) and the Hetrogeneous Ele-
ment Processor (HEP) being implemented by Deneicor, inc.

(Smith[1978).

3.2. The Finite Element Machine Architecture

Of particular Interest to us Is the architecture of the Finite Element
Machine (FEM) at NASA Langley Research Center. The FEM is an array
of microprocessors that can operate asynchronously, and can be classi-
fled as an MIMD computer that is arranged in a square lattice confi-
guration with dedicated local communication links between any processor
and its eight nearest neighbors. However, it is not strictly a lathce type

array since a bus connects all the processors.

To summarize the motivation for FEM. consider the structure Iin Fig—

ure 1.

21

1 —1T—l lT

% ————] 0 =—] '—1zl

- ! !__7_/_8
| l N

1 3 4

Figure 1. Example Structure

This structure 1s composed of simple rod eiements of two nodes each.
Two nodes are said to be connected if they are on the same rod. For
example. node 1 is connected to nodes 2, 5, and 10 As was sesen in
Chapter 2, the finite element method produces a block stiffness matrix
that has as many nonzero off-dlagonal blocks in row i as node 1 has
connected nodes. If an iterative method is used to solve the equations,
the solution at node | is only a function of the information from node i‘s
connected nodes. This suggests assigning a processor to each node and
providing it with local communication links to processors containing con-
nected nodes. For FEM, the idea was to provide a fixed number of
local links per processor and to provide a global bus to handle the
connectivities that are not satisfied locally. For example. if eight nearest
neighbor links are available, processor 7 can operate with local links

only, but processor 1 must communicate globally with processor 10

A detailed description of the machine is given in the following para-
graphs. Most of this material can be found in Jordan. et al{1979]. Jor-
dan{1978], and [1979]. Jordan and Sawyer[1978], and Podsiadlo and Jor-
dan{1981]. Additional hardware information was obtained through personal
discusslons with Tom Crockett, Judson Knott., and David Loendorf at

NASA A current status report on the hardware., system software, and

22

application software can be found in Storsaall. Peebles. Crockett, Knott,

and Adams[1982].

The FEM architecture as shown in Figures 2 and 3, consists of a
controlier and indlvidual microprocessors., which we will call nodal pro-
cessors. The controller is connected to the nodal processors via a glo-
bal bus. Each nodal processor of the FEM is connected to Iits eight
nearest neighbors via the two-way local communication links. These
local links also connect the edges of the FEM in a toroidal wrap around
fashion so that every processor has eight nearest neighbors Each pro-
cessor can also communicate globally to its non-nearest neighbor pro-
cessors Dby using the serial global bus. Each microprocessor has its
own operating system and memory. Once operation begins, each pro-
cessor executes Its program independent of the controller. This archi-
tecture can be classified as an MIMD (muitiple instruction. multiple data)

machine with no central shared memory.

3.2.1. Controller Hardware

The controller is a Texas Instruments 990/10 mini-computer. [t has
128K words of memory and four 5-megabtye disk drives. A printer 1s the
cutput device for printing files from the disk of the TI 990 That s,
output from the nodal processors is transferred over the global bus and

ptaced on a file on the 990 disk. for printing when needed.

The DX-10 fuil screen editor on the 990 is used by the applications
programmer to edit, compiie., and link the programs that are to be run
on FEM The necessary data files for each processor can be created
by the editor and stored on the 990 disk Aiternatively. for compilicated

problem geometry, a program could be written to split a global data file

23

into appropriate data flles for each processor. Nevertheless, these data
files and the linked program file are stored on the 990 disk until time
for downloading to FEM. This downloading is accomplished by executing

commands on the controlier

3.2.2. Nodal Processor Hardware

The nodal processors are comprised of three hardware boards each.
namely, the CPU board, the {0O-1 board., and the 10-2 board. These

components will be described in the following sections.

3.2.2.1. CPU Board

The CPU board contains a Tl 9900 16 bit microprocessor, 16K bytes
of read only memory (ROM)., 32K bytes of random access memory (RAM),
and an Advanced Micro Devices AM9512 floating point chip. An iilustra—

tion of a nodal processor is given in Figure 4,

The ROM is reserved for NODAL EXEC, the nodal executive operating
system. and PASLIB, the PASCAL subroutine library that contains various
basic routines such as SEND and RECEIVE for transmitting data.
Approximately 4K of RAM s also reserved for NODAL EXEC. The
remaining 28K RAM is available for program code. run time data struc-
tures, and spectal user allocated data storage. called data areas. The
user may request as many as 32 separate data areas of convenient
sizes for a particular application program These areas will be used to
store the probiem data that is downloaded from the 990 disk. In prac-
tice. the program code s loaded at address 8000 hexadecimal toward
the bottom of the stack and the data areas are loaded directly above

the NODAL EXEC towards the top of the stack as depicted below.

23a

STRUCTURAL MICROPROCESSOR
MODEL MODEL

,e?_

/da
EJ-\> \c'-> cﬁ’g——z/

FIGURE 2. THE FINITE ELEMENT MACHINE

CONTROLLER—

R
| {IXLXIXIXILX

R0
LI X
MRIRIRIIRL

EVEYEYia /,\,/\ '
LLLLL BUS

ARRA Y LOCAL LINKS

FIGURE 3. THE FINITE ELEMENT MACHINE ARCHITECTURE

NE IGHBORS

SIGNAL
FLAG
NETWORK

FROM STATUS INTERRUPT COMMUNICATIONS T9
NE IGHBORS [CONDITION|MASK] |conTRoOL REGISTER
N =TT PROGRAM COUNTER CONTROL UNIT UNTT
mt IN ouT
NE —>) WORKSPACE POINTER INSTRUCTION REG.
: [n LC 0
: MEMORY oo | u
NwW=—3| | ROM CN T
AT | P
| CURRENT INSTRUCTION L FLOAE&'}'@ POINT LR | u
¥ POP/PUSH ?- '
4 T :
YR 3
o w 7777 o s
\ —»] BUS INTERFACES STACK F
/777 77777777777 7 .
RAM
! | | |} ARITHMETIC/LOGIC S
REGISTER 0 " UNTT
- PO
: 1sT or. 2ND OP,
& -—J REGISTER 15 :—1—— _ _
‘ ® L3
GLOBAL DATA REGISTER 1']
BUS Q)} L
=]
FIGURE 4, THE FEM NODAL PROCESSOR

B4

24

PGM address 8000 (hex.)

DATA
AREAS

NODAL
EXEC address FFFE (hex.)

The AMS512 floating point chip with a clock frequency of 2 MHz
provides single precision (32-bit. 25 bit mantissa) and double precision
(64-bit. 57 bit mantissa) add, subtract. muitiply and divide operations. To
use this capability, the operands must be loaded by software which
requires approximately 358 microseconds for two single precision
numbers. Once the operands are loaded. a single precision floating
point add or subtract can be performed in approximately 29
microseconds, a single precision floating point multiply in approximately
99 microseconds. and a single precision floating point divide in approxi-
mately 114 microseconds. These times for l|oading the operands were
provided by Tom Crockett at NASA Langiey Research Center and the
arithmetic times can be found in the Advanced Micro Devices

Manual{1979].

3.2.2.2. 10-1 Board

The hardware circuits for the local communication links and the
sum/max network are on the I0~1 board. As stated earlier, each pro-

cessor is connected locally to its eight nearest neighbors Each proces-

25

sor has 12 8-bit by 32-bit FIFO hardware queues for receiving values
from its neighbors. Likewise. an output register is available for sending
values to neighbors. Software queues for synchronous and asynchronous
data receiving are also implemented. An illustration of the local com-

munication links is given in Figure 6.

A separate hardware circuitry was designed by Jordan for calculating
maximums and sums across processors (Jordan. Scalabrim. and Cal-
vert[1979]). The sum/max hardware can be envisioned as a binary tree
with each processor initially at the leaves of the tree. The values from
pairs of processors are added and passed to the next level in the tree.
The procedure is repeated untii the final result i1s obtained. This allows a
sum to be calculated in Iogap time where p is the total number of pro-
cessors. An algorithm for finding the maximum value when only local

links and a global bus are available can be found in Bokhari[1979).

3.2.2.3. 10-2 Board

The hardware for the global bus connections, a signal flag network,
to be described below, and the processor's self identification tag Iis

resident on the 10-2 board.

In addition to serving as a connection between the controller and
FEM. the giobal bus connects each processor to every other processor.
The bus Is 16 bits wide: therefore. one single precision number requires
two transmissions. Information to be sent on the bus is tagged with a
source, destination, and mode tag. The mode indicates whether the data
Is to be broadcast to all processors or if it is to go to the destination
processor. Since contention Is likely to occur for the bus. the outgoing

data is buffered Input from the bus is detected by the address detector

25a

FROM NEIGHBOR N FROM NEIGHBOR NE FROM NEIGHBOR NW
\V4 \J y \V
FIFO FIFO oo FIFO
N NE NW

PROCESSOR 1

LOCAL OUTPUT REGISTER

ENABLE ENABLE s ENABLE
N NE NW
TO NEIGHBOR N TO NEIGHBOR NE TO NEIGHBOR NW

FIGURE 5, THE FEM LOCAL COMMUNICATION LINKS

26

and queued In an Imput buffer. An overview of the global bus is given

in Figure 6.

Each processor is part of eight separate signal flag networks. flags
0 through 7., which can be used for synchronization or decision making.
Each flag can be enabled into or disabled from its network by a PASLIB
routine. Data area 0 contains a list of processors., both local and glo~
bal., among which information must be shared during program execution.
These processors will be called logically connected processors. The

major function of the flags is to answer the following questions.

Any(k)? Is Plag k set in any enabled logically
connected processor?

All(k)? 1Is Flag k set in all enabled logically
connected processors?

Sync(k)? Was All(k) true previously?

Flag 0 has a FIRST bit. This Is used to determine if this processor
was the first one to set the flag. An IilHustration of the signal flag net-

work is given in Figure 7

The processor’s seif identitication number is hardwired on the 10-2
board. A PASLIB routine is used to return the value of the self-id as
needed during program execution. Typical instances in which the self-id
Is necessary are decision making during computation and interprocessor

commuanication.

27

Presently at NASA. 4 processors are operational with 16 scheduled
for the immediate future and 36 scheduled for December 1982, The ini-

tial design was for 1024 processors configured in a 32 by 32 array.

PROCESSOR 1

|

SOURCE | DATA
« INPUT FIFO
 {
DESTINATION SOURCE | DATA
' f ‘
DESTINATION | DATA
s OUTPUT FIFO ADDRESS
DETECTOR
MODE | SOURCE | DESTINATION | DATA 71
Yy N
7 DATA
. — ADDRESS
FIGURE 6, THE FEM GLOBAL BUS

e/l

PROCESSOR I

|

ENABLE | FLAG| . |ENABLE| FLAG ENABLE | FLAG| ... |ENABLE | FLAG
0 0 1 1 2 2 / 7

! ' v

v
FLAG 0 NETWORK FLAG 1 NETWORK FLAG 2 NETWORK «++ FLAG 7/ NETWORK

O D T A D Sy N D e O B

FIRST | ANY | ALL | SYNC | | ANY | ALL | SYNC| | ANY | ALL | SYNC|.,. | ANY | ALL | SYNC
010 0 1] 1 11122 2

~
~

R

FIGURE 7. THE FEM SIGNAL FLAG NETWORK

e

CHAPTER 4

Parallel Matrix Assembly and Stress Calculation

4.1. Parallel Matrix Assembly

This section describes how to assembie Iin parallel the nonzero
coefficients of the stiffiness matrix K, as described in Chapter 2. on an
array computer like the Finite Element Machine A description and
analysis of the assembly process with and without communication between

processors will be given.

Figure 1 shows a region that is discretized by eight triangular finite

elements which are comprised of three nodes each.

(0,0) R [T =2 53] (2,0)

Figure 1. Region Discretized by Finite Elements

If there are d unknowns at each of the nine nodes. the resulting stiff-
ness matrix K will have dimension 9dx9d. These nine nodes (and asso-
ciated data) are partitioned to the three processors (P.Q.R} so that dur-
ing the solution of Ku=f each processor wiil calculate exactly 3d unk-

nowns.

The coefficients of K that are required by processor P for the solu-

tion of the unknowns at nodes 4.5, and 7 must either be calcuiated by

28

29

P or calculated by processors R or Q and communicated to P Dbefore
the displacement calculation begins. In both cases. storage must be
allocated in P’'s memory for these coefficients. The amount of storage
depends on the number of nodes assigned to P, the number of equa-
tions at each node. and the number of nodes that share a common fin-
ite element with P’s nodes. In particular, for d equations at each node,
a dxd coeffictent matrix must be calculated for every pawr of nodes on
the same finite element if at least one of these nodes ts assigned to
processor P. 1n addition, one dxd symmetric matrix must be found for
each node that is assigned to P. The matrices that must be stored In
P‘'s memory for the region in Figure 1 are indicated in Table 1. The
nodes (4,5,7) are labeled Interior and the nodes in other processors that
share a common finite element with any of these nodes are labelled

Exterior and [x] represents a dxd matrix.

Interior Exterior

4 s 7 1 2 3 6 8
4 [x] (x]) I[x] [x] [x]
5 [x] [x] ([x] {x} ([x] ([x] ([x]
7 [x] [x] ([x] [x)

Table 1. K Matrix Coefficients for Processor P

For an iterative solution of Ky=f. Table 1 contains ail the coefficients
needed for processor P to solve for the displacements at nodes 4, 5
and 7. if a direct method such as Cholesky factorization were used
instead. extra storage must be allocated for the coefficients that will “fill
in" the band of the upper tnangular factor of K during the decomposi-
tion process For Figure 1. space must be reserved in processor P for

the 4-3. 4-6, 7-6, and 7-9 dxd fil 1n matrices. In particular, space

30

must be allocated in Table 1. for the fill in coefficients 4-3, 4-6. and
7-6

We now describe how to assemble the coefficients in Table 1 by
considering node 5. To find the [x] coefficients in the second row and
second column of Table 1 (denoted by 5-5), the coordinates of nodes
2,3,6, and 8 in addition to those of nodes 4 and 7 must be available to
processor P since node 5 is on elements E1, E2, E3, E4, E5, and E6
as shown in Figure 1. Hence. the 5-5 (x] coefficients can not be found
without coordinate Information that resides in other processors In fact,
the same conclusion hoids for every [x] in Table 1. This observation

leads us to consider the following strategy:

(1) Load each processor’'s memory at the outset with all problem data
necessary for the caiculation of the coefficients that are required
in the solution of the displacement equations at its collection of

nodes.

(2> Implement one of the following two policies.

Policy 1 Each processor will calculate the upper triangular and
diagonal coefficients associated with its collection of nodes as
well as the coefficients associated with the connection between
the processor's interior and exterior nodes. Communication

between processors will not be required for this policy.

Policy 2. Each processor will calculate the upper triangular and
diagonal coefficients associated with its collection of nodes The
coefficients that are associated with the connection between the

processor’s interior and exterior nodes will be sent and received

31

between processors. In particutlar, the lower trlangular coefficients
must be received and the upper triangular ones sent This com-
munication can be done on the Finite Element Machine via the

local neighbor links or the global bus.

In either case, all the coefficlents that are necessary for the dis—
placement calculation will be stored In the memory of the proces-

sor.

Both strategies can be implemented by providing each processor with
a table of elements and their associated properties (type. thickness, etc.).
coordinates of interior and exterior nodes. and associated processors for
the exterior nodes for use in data communication. Typical probiem data

for processor P is given Iin Table 2.

Global Node Node

Elements Number Coordinates Processor
8 7 5 4 (0,1) -
S 6 8 5 (1,1) -
6 5 3 7 (0,2) -
2 3 5 1 (0,0) R
5 &4 2 2 (1,0) R
4 5 7 3 (2,0) R - -
1 2 4 6 (2,1) Q

8 (1.2) Q

Table 2. Problem Data for Processor P

During the assembly process. integrations are performed over the ele-

ments (one at a time) in a processor’'s element table and the resulting

32

contributions are added to the appropriate global coefficients For exam-
ple. ntegrations over element 4-5-7 (E6) yields contributions to the

coefficients shown below.

4 S 7

4 ([x] ([x] I[x]
5 (x] [x]
7 (x]

Now consider the element 5-4-2 (ES5). Processor P calculates the
following contributions for the cases of commmunication (Policy 2) and
no communication (Policy 1) between processors respectively while pro-

cessor R calculates the same contributions regardiess of the policy.

2 4 S 2 4 5 2 4 5
2 2 2i{x] (x] ([x]
4 (x} [x]| 4 [(x] ([x] ([x] 4
5 [x] 5 [x] [x] 5
Processor P Processor P Processor R
(Polaicy 1) (Polacy 2)

This 1s possible because processor R also has element 5-4-2 n its
element table For Policy 2. the 4-2 and 5-2 contributions must be
sent by processor R to processor P and received by processor P,
whereas for Policy 1. the 4-2 (or 2-4) and the 5-2 (or 2-5) contribu-
tlons are calculated by both processors P and R thereby resuiting in a
duplication of effort Similar arguments hold for the 5-5 contributions
from the integrations over elements E1.E2.E3, and E4 in Figure 1. The
amount of communication overhead and effort duphcation are analyzed in

section 42

33

The output of the assembly process will be the data structures
KCOEFF and CONNECTED_TO which describe the K matrnix coefficients
necessary for the calculation of displacements at processor P’s nodes.
and the data structure SEND_TO which describes the processors to which
values from P must be sent during displacement calculation. These

structures are illustrated below for the region of Figure 1

Node KCOEFF Node CONNECTED_TO

4 [4] (5] (7] [1] (2] 4 5 7 1 2

5 (5] (4] (7] (2] (3] (6] {8] 5 4 7 2 3 6 8
7 (7] [4] (5] (8] 7 4 5 8

Node SEND_TO

S o
0
10

It 1s possible to use more space efficient storage structures since both
the upper and lower nonzero parts of the symmetrix K matrix are stored.
However. these structures were implemented to allow for ease in the
computation required by the iterative solution algorithm for the displace~
ments Also. if many processors are avallable so that a smail number
of nodes may be assigned to each processor. this extra storage will not

be prohibitive

A routine that uses Policy 1 and the data structures described
above was written for a FEM of any number of processors and imple-
mented on a 4 processor FEM for the equations of piane stress on a
region discretized Dby linear triangular elements as shown in Figure 2b
The same 1deas can be used for other partnal differential equations and

finite elements as well since the nfluence of a particular parnal

34

differentiat equation and finite element s contained in a subprocedure
that sets the value of the coefficients after perfcrming integrations over

the element

4.2. Speedup for Parallel Matrix Assembly

The speedup for the matrix assembly process 1s the time to assem-
ble the matrix on a uniprocessor machine divided by the time to assem-
ble the matrix on an array with p processors. The processor efficiency
is defined to be the speedup divided by the number of processors:

Speedup (p) Time (1) /Time (p)
Efficiency (p) = Speedup (p)/p

4.7

For a rectangular domain the speedup is easily calcuiated and will be
described below for the symmetric stiffness matrix that resuilts from a
plane stress analysis of a plate that has been discretized by linear tri-
anguilar finite elements. however. the same type of analysis can be done

for other problems and finite elements as well

Let the plate be discretized so that N nodes are arranged in r

rows and c¢ columns as shown in Figure 2a

35

c

I
NN
N

NN
INININ

™\
N\
~N

ANAN
ANAN
N
AN

NN
AN/
AN/
A A/

NN

AN

r=6.c=6,N=36 /=3.k=3.p=4
Fagure 2a. Discretizataon Figure 2b. Pour Processors
k k
. : /I 0 =
/
NININNRN S AvALNAN
SEINDIN AN
NN [
SN
AN >__!\ \\ — . 3|
j=2.k=3.p=6 i=1.k=3.p=12
Piqure 2c¢. Six Processors Pigure 2d. Twelve Processors

First, the time required for a uniprocessor matrix assembly wiil be
derived. Since K is symmetric. only the upper tnanguiar and the diago-
nal part of K will be calculated. If each node in the plate represents
d unknowns (d=2 for the plane stress problem), the K matrix can be
partitioned such that each partitioned row represents the equations at a
single node in the problem grid. Then for the discretization shown In
Figure 2a there will be at most 3 dxd matrices in the strictly upper tri—-

anqular part of each partitloned row and the diagonal entry will be a

36

dxd symmetric matrix. These four matrices can be visualized as the
contributions from a node’s northwest, north., and east neighbor nodes as
well as the contribution from the node itseif. The connectivities of these

neighbor nodes to the particular node C are shown in Figure 3.

NW . N

VAN

Figure 3, Upper Triangular Connections to Node C

Now because of symmetry only (d2+d)/2 elements of the dxd matrix on

the diagonal must be calculated. The off diagonal matrices on the other
hand are not necessarily symmetric and aiso may be full so that all d2
elements must be formed. The total number of entries that must be

calculated for the diagonal matrices and the matrices in the upper tri-

angular part of K are ltemized in (4 2).

N @2 +d)/2 for the diagonal matrices
(N-c)d2 for the north matrices
4.2)
(N-r)d2 for the east matrices
(N—r—c+1)d2 for the northwest matrices

Hence, the total time («(n units of the number of entries) needed to
assemble the K matrix on a uniprocessor machine is

) Time () = (3.5N ~2r -2¢ +1)d° +0 5Nd 4.3)

Next, the time to assemble K in parallel will be given for three dif-
ferent array processor arrangements first. for the special case of ail
boundary processors, that s, 4 processors arranged 1n a 2x2 grid,

secondly, for p>4 processors arranged in a p/2 x 2 grid, and lastly for

37

p>4 processors arranged in a +p x Ap gria. The p/2 x 2 grid 1is
only considered here lor the purpose of analyzing the cases shown In
Figure 2. In practice the problems of interest wili be large enough to
utllize a processor grid that contains interior processors For all three
cases, assume N nodes are partitioned to p processors with each pro-
cessor receiving an jxk gnd of nodes as illustrated in Figures 2b. 2c.

and 2d

The number of upper trlangular and diagonal coefficients that must
be calculated by the lower right corner processor when processors are
arranged in a 2x2 grnid is itemized in (4.4). This lower rnight corner
processor i1s the limiting processor in the sense that it has more data

communication to perform.

1k (d2+d)/2 for the dragonal matrices
/kd2 for the north matrices
44
/kd2 for the northwest matrices
/(k-1)d2 for the east matrices

For Policy 1. extra time must be added to (44) to account for the
redundant calculation of the west matrices for the non-interior nodes of
the processor For Policy 2. these values must be received instead of
caiculated and the non-interior upper triangular values sent The
number of duplications for Policy 1 and the number of sends and

receives for Policy 2 are given by (4 5)

Duplication (4) = 1d2
Receive (4) = /d2 45)
Send 4) = (2k+;-1)d2

Let a and b represent the number of coefficient calculations required 10

38

equal the time of one send and one receive operation respectively
Then, the total time for the parallel matrix assembly is given by (4 6a)

and (4.6b) for Policies 1 and 2 respectively.

3 5jkd® +0 5/kd ,
(4.6a)

Time1 4)

Time, (4) (3 5/k-y+a Rk+;-1)+by]d2 +0.5/kd

2

The speedup and efficiency can now be calculated by wusing 41
These values are given In (47a) and (47b) for Policy 1 and 2 respec-

tively.

(3.5N -2r -2¢ +1)d° +0.5Nd

3.5/kd° +0 5/kd

Speedup.I 4)

2 4.7a)
Ef ficiency,) = (3.5N-2r—2g+‘l)d +0.5Nd
3 5Nd“ +0.5Nd
(3.5N -2r -2¢ +1)d° +0 5Nd
Speedup2 4) = : :
[3 51k +(by—j+a (2k +1 -11d“ +0 5/k
4 7b)

(3.5N -2r -2¢ +1)d° +0.5Nd

(3.5N +p (b) -/ +a (2k +] =1))1d° +0 5Nd

Ef f/cwncy2 4)

If p>4 processors are arranged in a p/2 x 2 gnd so that each
processor s on the grid boundary. the number of upper trnianguiar and
diagonal coefticients that must be calculated by the lmiting processors

on the left boundary of the processor array i1s itemized in (4 8)

ik @ +d)/2 for the diagonal matrices
lkd2 for the north matrices

4 8)
/(k—l)d2 for the northwest matrices

]kd2 for the east matrices

39

For Policy 1. the redundant calculation of the south and southeast
border matrices must be added to (4.8). This duplication and the

receive and send communications that are necessary to implement Policy

2 are given in (4 9),

Duplication (p) = (2k+/-1d>
Send (p) = (2k+j-1d° 49
Receive (p) = (2k+j-1d°

The total time to assemble in paraliel the K matrix for Policies 1 and 2
1s given 1n (4.10a) and (4.10b) respectively.

(3.5/k +2k -1)d° +0.5/kd 4.10a)

Time.l P)

{3.5jk~y+(a+b) 2k +i-'l)]d2 +0.5/kd (4.10b)

Tlm92)

The speedup and efficiency are given by (4.11a) (4.11b) for Policy 1 and

Policy 2 respectively.

2
Speedup, (o) = (3.5N —2r 2c+1>2d +0.5Nd
(3.5/k +2k -1)d“ +0 5/kd
5 (4 Na
Efticiency, (o) = (3 5N —2r—2c+'l)d2 +0 5Nd
(3.5N +p 2k -1))d“ +0.5Nd
2
(3 5/k—~j +@a+b)(2k +/~1)]d” +0.5/kd
4 110

(3.5N -2r-2¢c +1)d2 +0.5Nd

Efflc:ency2 ®) >
{3.5N -p;+p (@ +b)(2k +; -1)1d” +0 5Nd

Lastly., assume that p>4 processors are arranged I1n a square
A0 x AP grid so that there will be one or more processors com-
pletely inside the processor gnd For this case. the upper triangular

and diagonal coefficients caiculated by a hmiting Interior processor are

40

itemized Iin (4.12).

ik (d2+d)/2 for the diagonal matrices
ikd2 for the north matrices
412)
1kd2 for the northwest matrices
/kd2 for the east matrices

For Policy 1. the duplhicated caiculations for this processor arrangement
are due to the calculation in each processor of the west. south. and
southeast matrices associated with the connection between the interior
and exterior nodes and s given In (413). The éends and receives
necessary to implement Policy 2 are also given in (4 13),

@k +2/-1)d°

2k +2] -1d° 4.13)
2k +2) -1)d°

Duplication (p)
Send (p)
Receive (p)

The total time to caiculate the K matrix for Policy 1 angd 2 is given in
(4.14a) and (4.14b) respectively

Time, () = (3.51k+2k+2/-11d" +0.51kd 4 14a)

Tim92 (p) = [35/k+a+b)(2k+2y —1)]d2 +0 S1kd (4 14b)

The associated speedups and efficiencies are given Dby (4153 and

(4.15D)

(3.5N -2r -2¢ +1)d° +0 5Nd

(3 5]k +2k +2/ -1)d° +0 5/kd
(3 SN-2r-2¢c +1)d° +0.5Nd

(3 5N +p (2k +2/ -1))d° +0 5Nd

Speedup.l @)
(4.15a)

Eft fic:ency.| ®)

41

(3.5N -2r -2¢ +1)d° +0.5Nd
(3 5/k +(a +b) 2k +2] -1)1d +0 5/kd

(3.5N -2r -2¢ +1)d° +0.5Nd

[3.5N +p (a +b) 2k +2/ ~1)1d° +0.5Nd

Speedup2 (p)
(4.15b)

Efllclency2 ®)

The values of the total assembly time, the time due to duplication,
the speedup. and the efficiency are given for Policy 1 in Table 3. for

the particular p. j. and k values corresponding to Figures 2b, 2c, and

2d.
e / k Total Duplication Speedup Efficiency
1 6 6 448 o —_— -
4 3 3 135 12 3.32 83%
6 2 3 110 28 4,07 68%
12 1 3 65 24 6.89 57%

Table 3. Assembly Times for Figure 2.
(Policy 1.)

Equations (4.9) and (4 13) show that the duplication is a decreasing
function of the number of processors when p>4 but the efficiency also
decreases since the duplication comprises a larger percentage of the

parallel time. This is also seen from Table 3.

Resuits on a 2x2 FEM for the 36 node plane stress problem with 2
equations per node and 9 nodes per processor (illustrated in Figure 2b)
show a speedup of 3.2 over the corresponding uniprocessor algorithm for
Policy 1. This number compares quite well with the value of 3.32 in

Table 3

The values of the sequential assembly time, the parallel assembly

time. the time due to communication overhead. the speedup, and the

42

efficiency are given for Policy 2 in Tabies 4a. 4b, and 4c¢ for the par-

ticular p, j. and k values corresponding to Figures 2b, 2c¢. and 2d

12

o

12

o

12

] k Total Ooverhead Speedup Efficiency

6 6 448 o — —

3 3 167 44 2.68 67%

2 3 138 56 3.25 54%

1l 3 89 48 5.03 42%
Table 4a. Assembly Times for Figure 2.

a=1:b=1 (Policy 2)

Ik Total Overhead Speedup Efficiency

6 6 448 (o} —— e

3 3 148 22 3.09 77%

2 3 110 28 4,07 68%

1 3 65 24 6.89 57%
Table 4b. Assembly Times for Figure 2.

a=05b=05 (Policy 2)

1k Total Overhead Speedup Efficiency

6 6 448 (o] — —_—

3 3 134 11 3.34 843

2 3 96 14 4.67 78%

1 3 53 12 8.45 70%
Table 4c. Assembly Tames for Figure 2.

a=0.25.0=0.25 (Policy 2)

43

The values in Tables 3 and 4a. 4b. and 4c¢ are for either a 2x2 or
a p/2 x 2 processor grid Equations (4.13), (4 14), and (415 were
used to predict the corresponding times for a plate with 768 nodes
arranged in 16 rows and 48 columns in order to to investigate the effect
of completely interior processors when p>4. The results are given In

Table § for Policy 1 and Table 6a. 6b. 6c. for Policy 2

e 1 k Total Overhead Speedup Efficiency
1 16 48 11012 (o] —_— -_—
4 8 24 2880 32 3.82 96%
16 4 12 844 124 13.05 82%
64 2 6 240 60 45,88 72%
256 1 3 73 28 150.85 59%

Table 5. Assembly Times for 16x48 Plate
(Policy 1)

2} ! k Total Overhead Speedup Efficiency
1l 16 48 11012 0 —_— -
4 8 24 3100 252 3.55 89%
16 4 12 968 248 11.38 71%
64 2 6 300 120 36.71 57%
256 1 3 101 56 109.03 43%

Table 6a. Assembly Times for 16x48 Plate
a=1;b=1 (Policy 2)

44

P I k Total Overhead Speedup Efficiency
1 16 48 11012 0 —-——V -
4 8 24 2972 126 3.70 93%
16 4 12 844 124 13.05 82%
64 2 6 240 60 45.88 72%
256 1 3 73 28 150.85 59%

Table 6b. Assembly Times for 16x48 Plate
a=05b=05 (Polacy 2)

P i k Total Overhead Speedup Efficiency
1l 16 48 11012 0 — —
4 8 24 2911 63 3.78 95%
16 4 12 782 62 14.08 88%
64 2 6 210 30 52.44 82%
256 1 3 59 14 186.00 73%

Table 6c. Assembly Times for 16x48 Plate
a=0,25;b=0.25 (Policy 2)

-

The resuits in Tables 3. 4. 5. and 6 show that for values of a and
b below 05 the best policy for assembling the stffness matrix K on an
array of p>4 processors will be Policy 2, that 1s, communication between
the processors s warranted. For the special case of 4 processors, the
values of a and b must be lower than 025 before Policy 2 s recom-
mended The conditions that must be sausfied for Policy 2 to be the
best policy are easily found from equations 46a and 46b. 410a and
410b. 414a and 414b for the cases of a 2x2 processor grd., a

p/2 x 2 grnd, and a «p x+p grid respectively These conditions

45

are given in (4 16) below.

a@k+i-1+jb-1) < 0 for p=4
(a+b) < 1 for p>4

(4 16)

When the problem of Figure 2a. 1s solved with 4 processors., /=3 and
k=3 so that the conditions in (4.16) become the following:

8a + 3b < 3 for p=4
(a+b) < 1 for p>4

(4.17)

For the problem of the 16x48 plate. j=8 and k=24 when 4 processors
are used so that the conditions in (4.16) become the following:

552 + 8b < 8 for p=4
@+b) < 1 for p>4

4.18)

Recall that a and b are the number of K matrix coefficient calculations
that comprise the time to send and receive a vaiue between processors
respectively. Equation (4.16) shows that Policy 2 is more likely to be the
optimal policy when the values of a and b are small The values of a
and b wil decrease for two reasons. First. the communication
between processors is made faster a and b will necessarily be less.
Secondly. if higher order elements or more complicated integration rules
are used the time to calculate one coefficient will increase which will In
effect make a and b less For these situations, the assembly process

should incilude communication between processors.

4.3. Parallel Stress Calculation

The purpose of this section is to describe the stress calculation,
ang demonstrate that i1t can be made with no communication between

processors.

46

After the system of displacement equations has been solved (the solution
algonthms will be discussed in Chapters 5. and 6.). the displacements at
the nodal points In processor P’s CONNECTED_TO data structure are in
processor P’‘s local memory since these values were either calculated by
processor P or were passed to it during execution. Hence. the nodal
displacement values on the elements in processor P’s element table are
resident in processor P’s memory. As an illustration, consider the pro-

cessor assignment in Figure 6.

Figure 4. Processor Assignment

Displacements at the nodes 2., 3, 4, and 5 are in processor P’s local
memory after the displacement calculation is complete. ULikewise, the

same values are in processor Q's memory.

For the case of linear basis functions on the triangular elements.
the stresses are constant across the triangles. The obvious question is
whether processor P or Q should calculate the stresses on a given tri-
angle. Define as the first node of the triangles in Figure 5 the node
assoclated with the right angle and then number the remaining two
nodes In a counterclockwise fashion. A good rule would be to require
the processor that has the first node of the element as an interior node
to caiculate the stresses on that element since this will require no
duplication of effort. For example, processor P calcuiates stresses on

element 1-3-2 and element 3-5-4 whereas processor Q calculates

47

stresses on element 6-4-5 and element 4-2-3.

Recaill from Chapter 2 that the actual stress calculation, in the
linear element case. involves the pre-muitiplication of the element’s nodal
displacement vector by a stress matrix that is a function of the coordi-
nates of the element’'s nodal points. If the coordinate information n
Table 2. is available to the stress procedure. this matrix s rapidly cal-

culateq.

Stress calculation results for a 36 node plane stress problem (50
elements) run on a 2x2 FEM showed a speedup of 4 over a uniproces-—
sor version for the stress calculation. These results Iindicate that a
speedup of O(p) can be expected when p processors are used to cal-
culate the stresses. This perfect speedup is a consequence of the
absence of both communication between processors and redundant calcu-

lations.

The use of higher order basis functions will not produce constant
stresses over an element. but the stresses can be calculated from the
element’s nodal displacements and nodal coordinate values without any
duplication of effort among the processors Hence. for these basis func-

tions, O(p) speedup I1s also predicted

CHAPTER §

Parallel Linear Stationary lterative Methods

In this chapter we consider the Implementation of linear stationary

iterative methods for the solution of
Ku=t 5.1

on both vector computers and paraliel arrays. For concreteness. we will
use the CYBER 203/205 as an example of the former and NASA
Langley’'s Finite Element Machine as an example of the latter. The
implementation of Jacobi’'s method Is discussed In Section 5.1, the
description and Iimplementation of a new method. Multi-color SOR. is
given in Section 5.2, a Multi-color SSOR method is discussed in Section
53. and Implementation considerations for block iterative methods s

addressed in Section 54

5.1. The Jacobi lterative Method
Let the matrix K with elements k” be split as
K = D-L=-U ’ B 52

where D s the diagonal part of K and -L and -U are the stnctly
lower and upper triangular parts of K respectively Then the Jacobi
iterative method for solving (5.1) i1s given by

ot = wrud + 1 (5 3)
or

= 8By + ¢ 5 4

where

48

49

5.5

B= 0"V +W)

and the matrix B8 is called the Jacob: iteration matrix. The conditions

for the iteration (5.4) to converge are given below (Young{1971).

Jacobi Convergence Theorem

Let K be a real symmetric positive definite matrix. Then the
Jacobi iteration converges if and only if D+L+U Is positive

definite.

This theorem shows that the Jacobi method Is not guaranteed to con-
verge for all symmetric and positive definite matrices K such as those

arising from finite element discretizations as discussed in Chapter 2

Ciosely related to the Jacobi method is the simultaneous overrelaxa-~

tion method (JOR method) defined by

- Bwy_k + we (5.6)
where
8 = w8 + (1-w)l S.7
W

and Bw 1s called the JOR iteration matrix.

The conditions for this iteration to converge are given below (Young

(1971h:

JOR Convergence Theorem

Let K be a real symmetric positive definite matrix Then the
JOR iteration converges if and only if 2w 'D-K s positve

definite. The condition that 2w 'D-K 1s positive definite may

50

) 2
be repiaced by O<w<T_T—<2 where v

n<0 Is the smallest
min

mi

eigenvalue of 8.

This theorem Iimplies that by appropriately choosing w., the JOR method
can be made to converge |if umm<0. However, this cholce of w
depends on knowledge of the smallest eigenvalue of 8. in fact, Hayashi
and Yokomana ([1977] report that JOR diverged for finite element discreti-
zations of typical structural problems such as cantilevered beams and
simply supported plafes unless the relaxation parameter w was carefully
chosen. Hence, for problems of Interest to us, the JOR or Jacobi

methods are not suitable because the eigenvalues of B are rarely known

In advance and convergence Is not guaranteed for ——.'_uz <w<2. How-
min

ever, the implementation of these methods on vector computers or paral-

lel arrays Is of Interest to us since these methods may successfully be

used as preconditioners for the conjugate gradient method as discussed

in Chapter 6 or in the implementation of an SOR method as will be dis~

cussed in Section 5.2.

We now describe how Jacobi’'s method can be implemented on a
parallel computer For concreteness, we consider an elliptic equation of

the form
u + au + u = f (5.8)

on the unit square with Dirichlet boundary conditions where a is a given
constant and f is a given function of x and y. We discretize (5.8) with
the usual second-order finite difference approximations (see. eg. For-

sythe and Wasow [1960)) which give the difference equations

51

Ypr gt a1 Y-8y
(5.9)

2
L R RE R Uer g1l =01y,

where A is the spacing between gnd points, /./=1.2....N. h(N+1)=1, u',

denotes the approximate solution at the i.th grid point. and l”=f (h.ih).

Now, the Jacobi method (5.4) for (5.9) can bé written in the form

used for implementation as

S 160G G __he,
I I A I TS R Ry
*) L& ® GO
MEY 1 41 =141 e -1 4141 (5.10)

b=
“u T Yy

o3

First. we consider the Implementation of (5.100 on the CDC CYBER
203/205 where vectors consist of contiguous storage locations and the
efficiency of the vector operations is strongly dependent on vector length
with the maximum efflciency achieved for very long vectors For vectors
of length 1000 around 90% efficiency Is obtained. but this drops to
approximately 50% or less for vectors of length 100 and less than 10%
for vectors of length 10 Hence, we would like to keep vector lengths
on the order of 1000 or more whenever possibie Now for (59) sup-~
pose that h=01 so that N=99 and n=N2~104 If we consider the boun-
dary values of the square region to be unknowns and order the grid
points. including the boundary points. from left to right, bottom to top.
the unknown vector u In (5.4) will have length (N+22 and the new
iterate y_kH can be completely vectorized as a matrix vector product fol-
lowed Dby the addition of two vectors Also note that the relaxation

parameter in (56) causes no problem and hence the JOR method s

52

implemented in the same fashion However, the boundary values must
not be changed by the iteration and this s prevented by use of the
controt vector feature on the CYBER 203/205 which allows suppression of
storage of updated values into the boundary locations. (See. e.g. Lam-
blotte [1975] or Ortega and Voigt [1977] for more detais on this pro-
cedure.) Since the caliculation of new values corresponding to the boun-
dary points Is superfluous, an inefficiency of approximately 4% for N=99
Is introduced: however, almost full efficiency of the vector operations

resuits.

Next, we describe the implementation of (5.10) on the Finite Element

Machine. Now, the grid point stencil for (59) is given in Figure 1,
\o L]
O-—/-—(l) -]

Figure 1. Stencil for (59

N\

/

and matches exactly the eight local neighbor connections of the FEM
that was discussed In Chapter 3. Hence. if we have as many FEM pro-
cessors as the N nterior grnid points, each nterior point and its associ-
ated row of K matrix coefticients and f vector component could be
assigned to one processor. The boundary nodes would not be assigned
to processors. but instead their values are stored in the processors
which need them. The data communication between processors can be
done completely with the local communication links and the convergence
flag in all processors is checked by the signal flag network Let u

P
and u, denote the portions of y that are assigned to processor p and

53

the logical neighbors of processor p respectively. then, the algorithm that

is executed in each central processor (s given below:

For k=1 '2""kma do

M

)

(€))

4)

)]

X
Solve for y_zﬂ .

Send y_ﬁ” to the logical neighbors

via the local links and global bus If needed.

u

If ” g_:H - __: < € raise the convergence flag.

If the convergence flag is raised in all processors then stop
else continue.

Receive y_ﬁﬂ from the logical neighbor

processors via the local links and global bus if needed.

Aigorithm 1. Parallel Jacobi (One point/processor)

However, In practice it will most certainly be the case that the

number of interior grid points N will greatly exceed the number of pro-

cessors p. For this situation, we simply assign [N/p] points per pro-

cessor in such a way as to take advantage of the local links of FEM

For example, suppose that N=4p. Then we assign the gnd points to

the processors as shown In Figure 2.

54

-] -] o -] o Qo

— e
o o o o (] o
(-] o L] ° -] o
o o o o o -
o (-] o o o L]

et e
o o o o o o

Figure 2. Processor Assignment for Jacobii’s Method

and note that each processor must be connected only to its eight
nearest neighbors since each point is connected to its eight nearest grid
points as shown in Figure 1. Hence., only the local communication links
will be required for communication. Algonthm 1 is then modified as foi-

lows.

For k=1 '2“"kmax do

(1) Solve for each component of y_gﬂ I sequence

(2) Send the necessary components of _u,kﬂ to the local neighbors

via the local links (Only local links 'are needed for the stencil
of Figure 1)

k€1 k
@ i " wt - y_p“ L < € raise the convergence flag.

(4) If the convergence flag Is raised in all processors then stop
else continue.

(5) Receive y?k’ﬂ from the logical neighbor processors via the local
links. (Only local links are needed for the stencil of Figure 1)

Algorithm 2 Parallel Jacobi (Multiple points/processor)

55

For processors on the border of the processor array. values will not
be sent to and received from all eight of the neighbor processors— and
consequently. the algorithms In these processors may be different to
reflect this: or alternatively, the same algorithm could be used in all
processors with a test included to determine a processor's position in
the array. A third option would be to maintain the same algorithm n
each processor and provide each processor with the appropriate lists of
unknowns and assoclated processors to send data to and receive data
from. This was the approach taken In Chapter 4 where the connectivity
of the grid points was determined by the assembly process |[f this con-
nectivity data were coupied with an algorithm that assigns the points to
the processors, the appropriate information for communication would be

available to each processor and the algorithms In ail processors would

be the same

Algonthm 2 will allow each processor to run without waiting on other
processors with the exception of the synchromization i1n step (5) and the
convergence test in (4). Because the processors may complete the
updating of gkﬂ In gifferent times due to a number of factors. slightly
different clock times In the processors, different memory access times.
especially for those processors connected to the Dboundary, different
number of unknowns per processor if p does not evenly divide N, syn-
chronization of the processors to some degree is realized by the syn-
chronous RECEIVE command which causes processors to wait until the
value to be received s available before computation continues This, In
effect. allows the slower processors to catch up and ailso ensures that

the same answer will be obtalned for the problem on the processor

array as on a single processor Note that the processors are not

56

required to operate in a SIMD or lockstep fashion. but the information
for the next Iiteration must be obtained from neighbor processors before
the iteration continues. |f we reiax this requirement and use an asyn-
chronous RECEIVE. the processors may run asynchronously and the delay
times will be reduced. The numerical iterates will however deviate from
the true mathematical iteration but Baudet [1978] shows that this may be

beneficlal

The second source of delay is the convergence test for the iterative
process. The local convergence test in (3) of Algorithm 2 can be done
in all processors simultaneously and therefore incurs no delay. However,
at the end of each iteration. the convergence flag must be checked in
all processors as indicated by (4) of Aigorithm 2. If all the flags ars
not set. the processor continues with the next iteration. Hence. the
entire process will not terminate until all unknowns have satisfied the
convergence criterion and towards the end of the process a portion of
the processors may be doing unnecessary work. This seems to be an

unavoidable inefficiency.

In the absence of these delays, if p evenly divides N. and if the
processors operate at the same speed. the Jacobi method on the Finite
Element Machine will have speedup O (p) The actual speedup. however,
will be a function of the ratio of the communication to calculation times

of the processors and is discussed in Chapter 7.

57

5.2. The Multi-Color SOR Method

5.2.1. Motivation

Let the matrix K be split as given by (5.2). Then the SOR lteration
applied to (5.1) is given by

]

&(D Y %{wU +A-D I +L .11

or

k+
u]

Luy_k t c (5.12)

where

¢ =w(D -l Y

5.13)

L,=@ ~wl) " Nl +(1-w)D)

Lw is called the SOR iteration matrix and w is the relaxation parameter

chosen to enhance convergence.

The conditions for (5.11) to converge for symmetric matrices with
positive diagonal elements 1is given by the Ostrowski-Reich Theorem

(Vargal1962]). -

Ostrowski—-Reich Theorem

Let K be a symmetric matrix with positive diagonal elements.
Then the SOR method converges if and only if K is positive

definite and 0<w<2.

Since the problems of interest to us are symmetric and positive definite.

SOR is guaranteed to converge if we choose 0<w<2

58

The SOR iteration (5.12) can be written for implementation as

=1 -
k+1
ukﬂ=(1—w)u:.(+ E-U'. - k“u'

a k
i p L kul (5.14)

1 i=1 1=+

This form shows that the SOR literation is sequential in nature since the
values of ul, j=1,2....i-1 must be computed before u on iteration k+1.
This was not true for the Jacobl iteration of (5.10) where only previously
computed values were required for the update of a given component of
u. Despite this sequential nature. several authors (e.g. Hayes[1974],
Lambiotte{1975)) have observed that if (5.1) arises from a five-point
difference discretization of Poisson’s equation and the equations are
ordered according to the classical Red/Black partitioning of the grid
points then an SOR sweep may be carried out. 1n essense. by two
Jacobl sweeps. one on the equatons corresponding to the red points
and one for the equations corresponding to the black points. Thus, In
this case. the SOR method can be effectively implemented on vector or

parallel computers.

On vector computers. all the unknowns associated with the red gnd
points would be combined Into one long vector and similarly for the
unknowns associated with the black grid points For parallel arrays, an
equal number of red and black equations would be assigned to each
processor. The SOR iteration would be comprised of two Jacobi sweeps.
one Red sweep followed by one Black sweep with each sweep performed
simuitaneously by the processors. After each sweep, the updated values
of the respective color wouid be communicated between processors
Atter the Black sweep, and hence one SOR iteration. the convergence

test would be performed as described in the last section

59

This strategy does not work, however, for higher order finite differ-
ence or for finite element discretizations for more general elliptic equa-
tions which contain cross partial derivative terms. In these cases., It is
necessary to generalize the Red/Black partitioning of the grid points to a
“Muliti-color® partitioning: for example, a three color partitioning, say
Red/Black/Green, might give the desired result. In general, the number
of colors necessary will depend on the connectivity pattern of the grid
points. If p colors are used, an SOR sweep can be impiemented by p
Jacobl sweeps, one for each set of equations assoicated with a given
color For vector computers, this reduces the effective vector length to
O(n/p) while for parallel arrays it is necessary that each processor hold
a multiple of p equations where this multiple will be determined by the
particular discretization. Clearly, there will be a point of diminishing
returns as p increases. but for most differential equations and discretiza-
tions of interest it seems that no more than 6 colors wiil suffice and for
the size of n we have in mind (n = 10,000 +), the Muiti-color strategy

can be very effective.

We note that the Multi-color orderings for SOR have been used
before (Young(1971]. Hackbush(1977]. Hotovy and Dickson{1879]) but not in

context of parallel computation for finite element discretizations.

In the next section, we describe the method in more detail and give
the appropriate coloring (ordering) of the grid points for several finite
difference and finite element discretizations and discuss how to implement
the resulting Multi-color SOR method on paraliel computers. In Section
523 we compare the Multi~color SOR method to existing theory, and in

Section 52.4 we give numerical comparisons of the Multi-color ordering

60

with the lexiographical (rowwise) ordering of the grid points.

5.2.2. Muiti-Color Orderings

As a first example, we consider the elliptic equation (5.8) that Is
discretized as given In (5.9) and partititon the grid points by the
Red/Black scheme as shown in Figure 3. We then number the Red grid
points from left to right. bottom to top followed by the Black grid points

in the same fashion.

° R °B ° R °B
° B ° R °B ° R
° R °B ° R °B
°B ° R ° B ° R

Pigure 3. Red/Black Oxdering

Now if a=0, so that (58) is just Poisson’s equation. then (59) represents
the usual five-star discretization of (5.8). It is well-known (see e.g.
Young (1971D) that the difference equations (5.9) may be written In the

partitioned matrix form

D 8 4 .

8 D 4, L,

(5.15)

~|
]

"where D s a diagonal matrix and u and Y, denote the vectors of
unknowns associated with the red and black grid points respectively.

The Gauss-Seldel iteration for (5.15) may be written as

61

ktl _ . k
D‘”‘r = By_b + 17
(5.16)
Dy_zﬂ - T k+1 + 'Lb

and each part of (5.16) can then be effectively implemented in a parallel

fashion, with the introduction of the SOR parameter causing no problem.

if a#0, the form (5.15) of the difference equations is sull valid
although D is no longer a dlagonal matrix. Hence, the unknowns
corresponding to the red points are coupled to each other in (5.16) and
likewise for the biack points; whereas for a=0 they completely uncoupie.
The result is that (5.16) is no longer implementable in a parallel fashion.
This Is lllustrated by the grid point stencil for (5.9) with the Red/Black

ordering as shown in Figure 4.

\\B/

/

Figure 4. Stencil for (5.9)

The center Red point can be seen from Figure 4 to be connected to
the Red points at the four corners, and a similar stencil i1s obtained for

the Black center points.

We wish to introduce another partitioning of the grid points for
which unknowns within each subset of the partitioning are uncoupled.
This Is possible only if the graph associated with the discretized domain
can be colored with p colors so that nodes of a given color have no
edge between them A graph with this property will be calied p-partite

which 1s formaily defined below

62

Defimtion 1
A graph G(V,E) with a set of vertices V and edges E s p-

partite if 1ts vertices form p disjoint subsets S.,. S

p
with US,=V such that if uveE(G) then uesi and vesl for

1=1

o+ e Spe

some j#/],

Examples of a bi-partite and a 3-partite graph are Qiven below:

Bi-partite 3-partite

Definition 1 requires that nodes within the same subset are not con-
nected by an edge. however, no restrictions are made on the number of

nodes In a subset Si that can have edges to nodes in subset SI' In
p
2
node In one subset to any node In another In thus case., a p-partite
p
2

fact, ail () pairs of subsets could be connected by an edge from any

graph would consist of () bi-partite graphs.

For example, for the stencil of Figure 4. if we use four colors, we
can partition the grid pownts nto four subsets labeled Red. Black. White,
Orange so that each center point connects with only points of different
colors. A suitable coloring for the stencil in Figure 4 s illustrated in

Figure 5. We note that the coloring repeats beyond the given subregion.

63

°R °B °R °B °R °B
°w ° o0 °w ° o0 °w °o0
° R °B ° R ° B ° R ° B
°w °o0 ° W ° o0 °w ° o0
° R ° B °R ° B ° R °B
°w °o °wW ° 0 °w ° o0

Figure 5. Pour color partitioning of the gridpoints

In this case. the system (5.9) can be written in a partitioned form

analogous to (5.15) as

r — — —
D, 81, Biz Bua|[4% E
Byy Do Bpg Baaf | 4 L
= 5.17
By, Baz D3 Baa||w | Lw
f
847 Baz Baz Daf| % Lo
where D'l' D2. DS’ and D4 are diagonal matrices. The Gauss-Seidel

iteration 1n terms of (5.17) is then

kel _ . ko Ko k
D = -84, Bisy ~ B4, t L
) (5 18)
kel _ o k1 Ko
Douy, = =By, Bogily ~ Bogd, *t Ly

k+1
with similar equations for y_:ﬂ and L -

Now. since the D, are diagonal, (5.18) is easily impiementable on

i
parallel architectures by taking four sweeps of Jacobi‘'s method to
comprise one Gauss-Siedel steration. In particular, for vector computers,
the vectors are of length Ow/4) and the update of the vectors €. Udy.

g€, and g4, must occur In sequence with each vector update being fully

64

vectorized into matrix-vector multiplications and vector additions For
paraitel arrays. the grid points must be partitioned into subsets and each
subset assigned to a processor. The primary goal of this assignment
for a machine such as the Finite Element Machine, or on a simiiar
array with perhaps many more processors but limited processor to pro—
cessor interconnections, is to keep as many processors as possible run-
ning at a given time. This, in turn. requires maximum use of the pro-
cessor interconnections and mintmum use of the global bus since con-
tention for the bus will tend to introduce delays which cause processors

to be idle.

This objective can be achieved by ensuring that each processor
holds at least as many unknowns as a certain muitiple of the number of
colors where the multiple is the number of rows above the center point
In the gridpoint interconnection stencil. Also., we would like to ensure
as much as possible that all processors hold the same number of each
color of grd points., thereby increasing the likelihood that all processors
finish each Jacobi sweep on a particular color at the same tme so as

to reduce deilays in data communication between sweeps.

Figure 6 shows the assignment of the grid points of Figure 5 to the

processors.

65

| { !

OR OB OR OB QR °B
L ——

° W ° 0 ° W ° 0 ° W °o |
° R °B °R °B ° R °B
° W ° 0 ° W ° 0 ° W ° 0
OR .B OR °B °R °8
°w °0 °w °0 °w °0

| l l

Pigure 6. Processor Assignment for (5.19)

Each processor in Figure 6 holds an equal number of Red, Black.
Orange, and White points. If fewer processors are available. we can
assign a 2kx2/ block (instead of a 2x2 block) of points to each proces-
sor since the same number of each color of points will be iIn any two
disjoint blocks. During the solution of (5 18), the processors In the inte-
rior ot the processor array communicate with all their eight compass
point neighbors as can be seen from Figure 6 above and the grid point
stencil In Figure 1. On the Finite Element Machine this communication
can be done via the local communication links and no use of the global
bus will be necessary Each boundary processor will communicate with
fewer than eight neighbor processors, the exact number depending on its

location.

Let y‘c.p and ”‘c.n denote the portion of nodes of color ¢ assigned
to processor p and the portion of nodes of color ¢ that are needed Dby
processor p for the caiculation of 'u'c,p but reside in other (perhaps
neighbor) processors respectively. The Muiti-color SOR algorithm that is

executed by processor p s given below:

66

For k=1,2.....kmax do

(1 For c=1.2,..nc do

(1) Solve for y_’c”;
]

(2) Send necessary portion of y,tfp to logical neighbors.

1

(3) Recsive uz+ from logical neighbors.

n
2 If I l’c“"; - u’; 5 ” « < € set the convergence flag.

(3) If all processors have convergence flag set then stop.

Algorithm 3. Mulitl-color SOR

We now give the coloring of the grid points and the associated pro-
cessor assignment for some common finite difference and finite element
discretizations. First, consider the nine-point discretization illustrated Dby

the stencil in Figure 7

0 e © e

Pigure 7. 9—-poant Discretization

The grid points are partitioned Iinto three subsets by using the three

colors Red. Black, and Green as shown in Figure 8.

67

°B °G ° R °B ° G °R °B °G ° R
°G °R OB °G GR OB QG °R OB

Figure 8. 3—Coloring for Figure 7.

The points can be assigned 10 processors in blocks of size kx3j with a

minimum block size of 1x3 as shown in Figure 9.

—an ° G oﬁea ° g °R—{°B ° g ° R
l l I
° g ° R ° 5 ° G °* R L) ° G ° R ° g t—
l I
_{i‘R ° B ° G ° R ° B ° G ° R ° B ° G
°B °G QR OB °G CR OB °G 0;‘——
I
° g ° R ° B ° G ° R °B _oG' oi * 8

Figure 9., Processor Assignment for Figure 8.

With this assngnmentﬁ the North, South, East. and West local links of FEM
can be used but the global bus is needed to communicate values to the
next North, next South, next East, and next West neighbor processors. |f
the blocks were instead sized with k>1. only the eight local communica-~

tion links are required.

Secondly., consider the thirteen—-point discretization that 1s often used

for the bi-harmonic equation and 1s illustrated by the grid point stencil

In Figure 10.

68

Figure 10, 13-point Discretization

The grid points are partitioned into six disconnected subsets by the use

of the six colors Red. Black., White, Orange. Yellow, and Purple as shown

in Figure 11.
° W ° B
° R ° v
o p ° W
° 9 ° R
° B ° p
° v ° 0
° W ° B
° R ° vy

°P

° 0

W

R

B

Y

L

R

°B ° P
°Y ° 0
° W ° B
° R ° R
° P °w
°o0 ° R
° B °Pp
°Y ° 0

Figure 1l1. 6—-Coloring for Figure 10,

In order to maintain the same number of each color in two distinct pro-

cessors, the points must

‘minimum block size being 2x3 as shown in Figure 12.

be assigned

in Dblocks of 2kx3/ with the

Note that only

the eight local communication links of FEM are required.

N

69

o w -] B o P o w o B (-] P o w o B (-] P
° R o Y o o L R o Y o o [R (] Y o o
| I
° P °w °B °P °w ° B °P °w °B
(-] o o R (-] Y [o ° R o Y (] o o R ° R
o B o P o w o B o P -] w [B o P L] w
o Y o o o R o Y o o (-] R -] Y o o L] R
° W °B °P ° W °B ° P ° W °B ° P
o R o Y o o (-] R [Y Q o o R ° Y ° o

I |

Faigure 12, Processor Assignment for Figure 11.

We now consider rectangular domains that have been discretized by
finite elements. Triangular elements with associated piecewise continuous
%) linear basis functions defined at the three vertices and their asso-

ciated gridpoint stencil are shown in Figure 13.

N

AN

Pigure 13. Linear Traangular Element and Grid Point Stencal

The center point of the stencll is connected to the six points that share
a common trlangle. For this discretization, the grld points can be parti-
tioned into three disconnected subsets by using the colors Red. Black,

and Green as shown In Figure 14.

/
/

N
W
A/

°
[}
o

°-B G qr-R._._.—

/]
il
/
/)
/(1

O i) e e) e @

Figure l14. 3—Coloring for Figure 13.

70

The grid points are then assigned to processors in blocks of size kx3/

with the minimum block being of size 1x3 as shown

in Figure 15.

°B __°G _°R °B °Gg °R °B °g R

| N

_1°G ° R °B ° G °R °B ° G ° R B
L | .

R __°B _°G °R °*B °gG °R ° B G
E’B °G °R ° B ° g ° r| ° B ° G &
\°c OIR ° B °G "R °B °G °R B |—
—*rR °B °g R °B °G ° R "is G

|

Figure 15. Processor Assignment for Figure 14.

The local communication

for this assignment are the North. South, East,

Southeast links.

West.

Northwest,

iinks of each FEM processor that are needed

and

Next, consider a trlangular element with Co-piecewlse quadratic

basis functions defined at the vertices and midpoints of the triangie

71

This element and its associated grid point stencil are illustrated in Fig-

ure 16.

N
d

o, o

AN

Quadratic Element Stencil for Nodes 1,2, and 3

LN

NG

O © —— O

AN
S

0
[}

Stencil for Ncde 4 Stencil for Node 5 Stencil for Node 6

Figure 16. Quadratic Element and Grid Point Stencils

For this stencil. the gridpoints may be partitioned into six disjoint subsets
with the colors Red. Black. Green. Orange. Yellow, and Purple as shown

in Figure 17.

°R I)G °R\°G
- {d

o
x

Figure 17. 6-Coloraing for Co Quadratic Elements

72

R

The grid points are then assigned to processors in blocks of size 2kx6f

with the minimum block of size 2x6 as shown in Figure 18 Al eight
local links are required for this processor assignment.
°G °R °G °R G °R °G °R °G °R °G °R
— —
°Q0 °B °P °B Y °B °0 °B °p °B °Y °B
°G6G ®°R °G °R G °R °G °R °G °R °G °R
°pP °B °Y °B O °8B °P °B °Y °B °0 °B
°G °R °G °R G °R °G °R °G °R °G °R
— =
°Y °B °0 °8B P °8B Y °B °0 °B °P °B

Figure 18, Processor Assignment for

Figure 17.

We now consider two exampies of higher order finite eiements that

are used to discretize 4th order partial differential equations.

example 1s the C.l

rectangle

uniquely

(see Becker and 0Oden(1981)) A

The

cubic

first

(flunction and its first parttals are continuous) bi-cubic

in x and y can be

73

determined by 16 constants. Therefore, if we prescribe the values of

du du

the unknown at a grid point, uh. its partials in x and vy. o and —57'7-
2 h
d v

and its second partial %3y at the four corners of the rectangular ele-

ment as shown in Figure 19,

-

FPigure 19. Bi-Cubic Rectangle and Graid Point Stencil

0

the basis functions at each grid point will be bi-cubic polynomials which

h
will have continuous partials aaLn- across element boundaries where n is

the normal to a common side. The stencil in Figure 19 Is the same
stencil as the stencil of Figure 4, therefore Figures 5 and 6 give the
appropriate coloring and processor assignment for grids that are discre-

tized by this element.

Lastly, we consider the C] quintic trlangle, Oden [1981]1, which s

shown in Figure 20.

Figure 20. Quintic Triangle

A quintic basis function Is defined at each grid point by specifying 21

2 2 2
auha 2 h auhau du

lues: the six val 3 ", and
values; the six values Uh. ax " ay. ax2- aya, axay' ay2

at

74

du
each vertex of the triangle and the value of the normal derivative —— at

an
the midpoints of each side of the trilangle. The nodes In Figure 20
have the same connectivity as those of the c® quadratic triangular ele—
ment and the stencils of Figure 16. Therefore, Figures 17 and 18 give
the appropriate coloring and processor assignment for grids that are

discretized by this element.

5.2.3. Comparison to Existing Theory

In this section we explain what is meant by a p-Colored matrix and
show how matrices of this type relate to the consistently ordered (CO),
the q-r consistently ordered (CO(q.r)), and the q-r generally consistently
ordered (GCO(q.r)) matrices of Young{1971] and the p-cyclic matrices of
Varga(1962]). For these matrices of Young and the p-cyclic consistently
ordered matrices of Varga a welli known theory exists for determining the
optimum relaxation factor w for the associated SOR iterative method. We
show, In general, that p-Colored matrices do not fit Into any of these
classifications; however, CO, CO(q.r), and certain p-cyclic matrices can

easily be permuted into a p-Colored matrix.

The notion of a p-Colored matrix Is directly reiated to that of a p-
partite graph as was given by Definition 1. Recall that nodes within the
same subset of a p-partite graph are not connected by an edge: how-
aver. no restrictions are made on the number of nodes in a subset SI

that can have edge connections to nodes in subset SI'

By numbering the equations assoclated with nodes in subset 81. in

any order. followed by the equations associated with nodes In subset S,

83, .. . and finally subset sp. the result is a p~Colored matrix K which

has the foliowing form:

75

Dy X2 - - Xy
X3y Do - X3p
K =|. ... (5.19)
f(p'l XP2 e DPP
where the D" are block diagonal matrices.
&
2
b, =
Encl-

with each entry Ei being a square matrix representing the equations at
only one grid point of the associated problem domain that has been

colored with p colors and ncl nodes of color i

For the special case of one equation per grid point, say Laplace’s
equation for example. the D” will be diagonal matrices. As was noted
in Chapter 2, the plane stress problem has two unknowns per gnd point:
consequently for this problem. the E' will be 2x2 matrices and the 2

equations at the same node will have the same color.

We now compare p-Colored matrices with diagonal D“ blocks to the
CO(qg.r) matrices of Young. Now, a test for determining whether a matrix
K is a CO({(g.r) matrix is glven by the foilowing definitions and theorem

by Young.

Definition 2. (Young)

For given positive integers q and r. the matrix K of order N

is a (q.r)-consistently ordered matrix (CO(q.r)-matrix) it for

76

some t. there exists disjoint subsets S1'32""'st of

t
w={1.2....,N} such that [S, =W and such that if k
k=1 ¥ 4

i</, then l €S, +82+ *e+ #5,_, and Iesk". where sk is the

#0 and

subset containing I if k” %0 and i>. then

IeSqH+SQ+2+ +St and J/e€S where Sk is the subset

k-q
containing /. C

Definition 3. (Young)

The vector 7=(71.72,---,'yn)r. where ; A=1,2.....N are

integers. Is a (q.r) compatible ordering vector for K if for any

/ and | such that k, #0 then

il
7, - =0 if 1</
and
Y, - =9 it i>f

A COQO.1 matrix is called CO. or consistently ordered.

Theorem 1. (Young)

The matrix K is a CO(q.r matnix if and only f there exists a

compatible odering vector for K

By using Theorem 1 1t is very easy to conclude that the p-Colored

matrix In (5.19) is in general not a CO(q.r) matrix. In particular. let

X12
X13
X23

(5.20)

Then it a compatible ordering vector exists for (5.19). we must have

77

from Theorem 1 that

Yo = ¥y =T
Y3 =Y T
or
73 - 72 = 0 (5.21

But, since X32¢0. we must require

Y3 = Yy = 74 5.22)

Since (5.22) conflicts with (5.21). (5.19) is in general not a CO(q.n
matrix. The same technique can be used to show that the 4-Colored
matrix for Figure 6. the 3-Colored matrix for Figure 7, the 6-Colored
matrix for Figure 11, the 3-Colored matrix for Figure 14, the 6-Colored
matrix for Figure 17, the 4-Colored matrix for the stencil of Figure 19,
and the 6-Colored matrix for the stencil of Figure 22 are not CO(q.n

matrices.

On the other hand. d the matrix K is a CO(q.r) matrix, we show In
the next theorem that K is permutationaily similar to a p-Colored matrix.
Before proving the theorem. we recall the following definitions of Young

and Vvarga

Definition 4 (Young)
Given the positive integers q.r. and t. the matrix K s a
T{g.r.t} matrix if it can be partitioned into the txt block form
K=(K”) where, for each /. K”=D, Is a square diagonal matrix
and where all other blocks vanish except possibly for the blocks

K i=1.2....t-r. and K: i=q+l.q+2. ..t

1atr’ i-q’

The matnx 1n (5.23) 1s an example of a T(l.s.t) matnx

78

D, Hrts
Ky D Hats
‘ H (5.23)
Ko t
K1 O
9 -
where the K” matrices are dlagonal matrices.
Definition §. (varga)
Let K be partitioned as
Kii Kz - Ky
K21 K22 . K2p
K = . . . (5.24)
K K .
| Pl P2 Kpp_

If the Jacobl matrix B=I—(dlag(K))-1K Is permutationaily similar
to a T(.,p-1.p) matrix, then K is p-cyclic relative to the parti-
tioning (5.24).

Theorem 2.
Let K be a CO(q.rN matrix and let p‘=(@+r)/d where d is the
largest common factor of ¢ and r. Then there exists a per-

mutation matrix P such that P 'KP is a
(4D p'-Colored matrix

(2) 2-Colored matrix if p’ is even

(3 3-Colored matrix if p Is odd

Proof.

Since K 1s a CO(q.r) matrix, K has Property Aq ; (see Young).

79

Therefore K also has Property A.l'p‘-'l. Now. there exists a
permutation matrix P such that P kP is a CO(.p'-1) matrix.
Furthermore., Young shows that a CO(l.s) matrix is also permu-
tationally similar to a T(l.s.t matrix with possibly certain rows
and corresponding columns of blocks deleted. Now, the adja-
cency graph associated with the Jacobi matrix for the T(l1,s.t)
matrix of (5.23) Is shown below, where we denote all the vari-

ables associated with O, by 1. the variables associated with D

1
by 2,..., and finally those assoclated with Dt by ¢t.

2

t=Dt=1=> - e =Dt-s —Dt-5=1 =+ + + —>]

If we color these t biocks with p’ colors from right to left as
. e 9 ’ . o o ’

.C'I/Ca/ /Cp /C1/Cz/ /cp /C.|/ etc. and group together all

the blocks of the same color and then order the matrix by

groups, the resulting matrix will have the form

D, X1pﬂ
Xay Da
K = Xs2. .
X, .. D
5 p'p’'-1 P’]

’
which is easily seen to be p -Colored as well as p-cyclic and

(1) follows.

We next prove statement (2) of the theorem. |If s s odd. these
t blocks can be colored R/B/R/B.. from night to left Ail the R

blocks can be grouped together and the same for the B blocks

80

so that the resulting matrix has the form

Dy, X2

Xa7 Dy

K =

which shows that K is 2-Colored.

If s is even, the t blocks are colored R/B/G/R/B/G.. from right
to left. Furthermore, if p’ is a muitiple of three, K has the

form

=

which Is 3-Colorable and also 3-cyclic whereas, if p’ 15 not a

muitiple of three, K has the form

3

which is not 3-cyclic but is 3-Colored. Hence. statement (3) of

the theorem follows .

We now compare p-Colored matrices to the p-cyclic matrices of
varga for the case where the D“. matrices 1n (5.19) are diagonal. From
the form of a T matrix given In (5.23), it Is readlly seen that a p-
Colored matrix Is not in general p-cyclic. On the other hand. 1f the
matrix of (5.24) is p-cyclic it is also p-Colored In fact. we can use
Theorem 1 to show that a p-cyclic matrix 1s permutationally similar to

either a 2 or a 3 Colored matnx

81

Corollary 1.

Let K be a p-cyclic matrix with the K” matrices being diagonal
matrices. Then there exists a permutation matrix P such that

P kP is a
(1) 2-Colored matrix if p Is even
(2) 3-Colored matrix if p is odd

Proot:
Since K is p-cyclic it is permutationally similar to a T(.p-1.p)
matrix. The conclusion follows directly from the proof of

Theorem 2 after noting that s=p-1 and t=p.

Corollary 1 Iimplles that p-cyclic matrices for which the diagonal
blocks are diagonal can be reordered to yield 2 or 3 diagonai blocks on
the diagonal. This means that for a vector implementation of the Muiti-
color SOR method. the associated vector y for the sofution of (5.1) can
be partitioned Into 2 or 3 long vectors rather than p shorter ones.
However. we note that the resuiting 3-Colored matrix in (2) of Corollary
1 may not be 3-cyclic and hence no known theory exists to aid in the
selection of the optimal relaxation factor w. This fact 1s possibly offset
by the much longer vectors that will result If p>>3. Barlow and
Evans{1982] mentions that p-cyclic matrices may be coiored with p

colors but does not mention the possibility of fewer colors.

Lastly, we discuss the relationship of p-Colored matrices (again with
the D” in (1) being dlagonal blocks) to Young’'s generaily consistently
ordered., GCO(q.r), matrices. First, we give the defimtion of a GCO(q.n

matrix.

82

Definition 6 (Younq)

A matrix K is a GCO(q.n matnix If
det (@7l +a” U -kD)

is independent of a for all a#0 and for all k where D.-L.,-U
are the diagonal. strictly lower and strictly upper parts of K

respectively

Definition 7. (Young)

A real matrix K of order N is an L- matrix it
k, >0, 1=1.2.....N
.

and

k, l<0, i#], i.j=12...N

Young also gives the relationship between GCO(q.r) and CO(q.r) matrices

in the following theorem

Theorem 3 (Young)

If K is an irreducible GCO(q.r) matrix which 1s an L matrix then

K 15 a CO(q.r) matnix.

Hence. matrices which are both L and GCO(q.r) matrices are permutatio-
naly similar to either a 2 or a 3-Colored matrix by Theorem 2 The
2-Colored matrix will be consistently ordered but the 3-Colored matrix
may not be q-r consistently ordered as was shown in the proof of

Theorem 2.

Since the matrix K 1s symmetric for our problems. we are interested

in the relationship of symmetric GCO matrices to CO(q.r) matrices.

83

Lemma 1

Proot

it K s a symmetric CGO(q.r) matrix then g=r and K is a.

GCOQ. 1) matrix.

Since K is a CGO(.n matrix. dett@lL+a 'U-kD) is independent
of a for ail a#»0 and for all k. Recall that the determinant of

an NxN matrix is the sum of N! terms of the form

t(o)=s (a)k *k (525

Lam*1.0@ " *N.omn
where s(0) 1s 1 if the sequence ad(1),0(2)...c(N) can be put in
the form 1.2,..N Dby an even number of interchanges of any

pair of elements In the sequence and -1 otherwise.

Now. all the terms that are multiplied by a7 ' are of the form

q-r._ - -
s(0)a (kd])(kd2)"kll"'k11"'(kdn) (5 26)

where d, 1s the ith entry of the diagonal of K and only k//
and k” need to Dbe interchanged for the sequence
ag(Mo()...o(N) to be in the order 1.2....N. Hence. all these
terms have s(g)=-1. In addition. since k“=k”. all these terms
are of the same sign and their sum can only be independent

it a9

of a a Is independent of a which Is true oniy If g=r.

Now. detta' L+a 'U-kD) can be written as

1 1

dettaN 'L+t 'U-kD)>

and 1s also ndependent of a for all a#0 and for all k

Therefore. we conclude that K is a GCO(1.1) matnx.

84

Definition 8.

A symmetric GCO(1.1) matrix is an SGCO matrix.

Next. we give the relationship between SGCO matrices and 2-Colored

matrices.

Lemma 2.
Let K be an irreducible L matrix. If K 1s an SCGO matrix then
there exists a permutation matrix P so that P-1KP 1Is a 2-

Colored matrix.

Proot:
From Theorem 3 it follows that K is a CO(1.1) or equivalently a
consistently ordered (CO) matrix. It is well known that any CO
matrix can be permuted to the R/B or 2-Colored form and the

theorem follows.

The contrapositive of Lemma 2 states that If K is a symmetric L matrix
that is not consistently ordered 1t can not be generally consistently
ordered. This means that we can not simplify the determinant in Defini-
tlon 6 for symmetric L matrices that are not consistently ordered in
order to relate the eigenvalues of the Jacobi and SOR iteration matrices
assoclated with K, and hence determine the optimum relaxation factor w
for the SOR Iteration method. However, Lemma 2 only gives sufficient
conditions for an SCGO matrix to be consistently ordered and it remains
to be determined whether the requirement that K be an L matnx 1s

necessary

85

5.2.4. Comparison with Rowwise Ordering

The Muliti-color and lexiographical (rowwise) orderings were shown in
the last sectlon in general not be consistent orderings, therefore, we can
not conclude that the eigenvalues of the respective SOR matrices are the
same. The question then arises as to whether one ordering gives faster
convergence than another However. we note that some degradation in
the convergence rate of the Multi-color ordering can be permitted since
it can be Implemented effectively on a parallel machine whereas the

rowwise ordering can not.

The Multi-color and rowwise orderings were compared experimentally
for three problems. The first problem was the five—star discretization of
Laplace’s equation on a rectangular grid with 768 unknowns. The results
for the R/B and rowwise ordering of the grid points are given In Table
1 Both these orderings are consistent and the resuits are included

here for comparison with the next two example problems.

Iterations
w Red/Black Rowwise
1.00 470 542
1.74 73 82
1.76 56 83
1.80 65 85

Table 1. Laplace's Equatixgn (5-Star Dascretization)
€=10

The second problem was a finite element discretization of Laplace’'s
equation. The finite elements were triangular with quadratic basis func-
tions defined at the vertices and midpoints as shown in Figure 16 The

width of each triangle was taken to be h=1/12 so that the resuiting sys-

86

2

tem has (23)" equations. Table 2 gives the results for the 6-color ord-

ering of Figure 17 and the rowwise ordering.

Iterations
w Rowwise 6~Color 5-Star (Rowwise)
1.00 563 561 463
1.20 394 392 324
1.40 266 264 218
1.60 lel 158 132
1.70 113 109 91
l1.76 83 76 64
1.77 76 69 $7
l1.78 69 60 57
1.79 62 54 59
1.80 68 58 59
1.82 75 66 66
1.84 83 73 75
1.86 94 82 97
l1.88 109 97 98
1.90 117 121 117
1.92 161 147 146
1.94 194 197 195
1.96 291 302 293

Table 2. Laplace's 6Equa1élon (Quadratic Elements)
€=10 ".(23)" unknowns

For this problem. the 6-color ordering and the rowwise ordering for the
finite element discretization give very similar resuits and the optimal
values of w are the same in both cases in fact, near the optimum
value of w both the fimite element discretizations require almost the same
number of iterations as the S-star finite difference discretization which Is

consistently ordered.

The third problem was the plane stress problem described in
Chapter 2. The plate was discretized by linear triangular elements as
shown n Figure 14 Table 3 gives results for the Red/Black/Green ord-

ering of Figure 14 and the rowwise ordering of the gridpoints.

87

Iterations

w R/B/G Rowwise
1.4 349 347
1.5 265 263
1.6 169 167
1.61 153 152
1.62 131 128
l.621 129 126
1.622 127 124
l1.62 142 140
1.63 149 148
1.64 147 145
1.65 141 138
1.66 135 133
1.67 156 154
1.68 155 154
1.69 153 150
1.7 150 148
1.8 233 232

Table 3. Plane Stress
€=10-6, 60 unknowns

Note from Table 3 that the optimum value of w i1s 1.622 for both order-
ings. Also, note that the number of iterations for w>1.622 behaves dif-
ferently than was seen from Tabie 2. For example. Table 2 showed that
for (")wopt the number of iterations was strictly increasing whereas in

Table 3 the graph of w versus the number of iterations has relative

minima at w=166 for example

5.3. Muiti-Color SSOR

in this section, we describe a Multi-color SSOR method. give an
efficient Iimplementation of this method on vector computers or parallel
arrays. and give numerical comparisons t0 an SSOR method without

multi-coloring for an example probiem.

88

5.3.1. Description

The SSOR iterative method for solving (51) can be written as the

forward SOR iteration followed by the backward SOR iteration

k
(D -wldy = [wU+('l—w)Dlu.k +t b

rof -

(5.27)
1
k+1 k+z
(D -wliu = (wl+(-wDlu + b
The basic convergence theorem for SSOR iterative method (Young{1971]

is stated below.

SSOR Convergence Theorem

if K is a symmetric matrix with positive diagonal eiements, the
SSOR method converges if and only if K Is positive definite and

0<w<2.

The SSOR method is therefore convergent for symmetric and positive
definite matrices K. Even so., this method has been found to have a
slower convergence rate than the SOR method for 2-Colored matrices
Therefore. our interest in this method is as a preconditioner for a paral-
lel conjugate gradient method. as will be described in Chapter 6. and
not as a stand alone linear stationary method. However. even for our

purposes, a parallel Implementation of this method is necessary.

5.3.2. Parailel SSOR Implementation

To solve (5.27) on a vector computer or a parallel array the equa-
tions are first ordered so that K 1s a p-Colored matrix with colors C].

Ca. . ., and Cp. Then the Multi-coior SOR method 1s first applied to

89

K 1n a forward fashion. starting with the updating of color C'l‘ followed
by C2. until the equations of color Cp are updated. Next., the Multi-
color SOR method Iis applied to K in a reverse fashion starting with

color Cp. foliowed by C until the equations of color C.l are updated.

p=1
After the reverse SOR pass Is completed., and hence one SSOR iteration.
if the convergence test is met, the lteration stops, otherwise, the process
is repeated. For parallel arrays, after the values of each color Ci are
updated on both the forward and reverse pass they must be communi-

cated between neighbor procaessors. The Multi-color SSOR algorithm s

given below:

For k='l.2,....kmax do
() For c=1.,2....nc do

M soive for g*t]

c.p
(2) Send necessary portion of y_ﬁ‘}} to logical neighbors

(3) Receive ‘L‘cﬁn] from logical neighbors.

(2) For c=nc.nc-1....1 do

k+1 ~
(1) Soive for y_c 0

(2) Send necessary portion of y_‘;*; to logical neighbors.

(3) Receive y_z*n] from logical neighbors.

K+l _

Q) If l ”'cp

k
uc‘p ” w < € set the convergence flag.

(4) It all processors have convergence flag set then stop.

Algorithm 4 Multi-color SSOR

Each iteration of the Multi-color SSOR method can be computation-

ally expensive since it is comprised of two Multi-color SOR iterations

20

We now describe how to save 50% of this computational effort in the
solution of (5.27) by using an auxilary storage vector. This observation
is due to Conrad and Wallach [1978] Recall that the equations to be
solved to carry out one SSOR iteration (with w=1 and O=/ for simplcity

are

Gy
a-008 2 =ugP+p
(5.28)
40
ad-0gY g 2 ap

The algorithm of Conrad and Wallach for doing multipie steps of SSOR

Is given below.

(1) Form UQ(O) and store in y.

(Thas takes zero operations 1f the initial guess i1s zero.)

(2) For k=1 '2""'kmax

(k +l)

(3) Solve (-L)y: = yth as a forward Multi-color SOR pass.
1
.(k 1-2-)
Store Ly in y.

(4) Solve (I-U)ﬁ(k+])=x+g as a backward Multi-color pass.

Store Uﬁ(k”) iny.

f « and 8 denote the number of nonzeroes in L and U respec-
tively then (3) requires a muitiphcations and (4) requires 8 multiphca-

tions. if n represents the maximum number of nonzeroes per row of K,

91
and m represents the number of multiplications per Iteration of SSOR,
then a+B8<(»-1N and

m < -HN It w=1
m < (M+1N If w#l

(5.29)

5.3.3. Comparison with Rowwise Ordering

It is well known. see Youngl(1971], that the SSOR method applied to
a 2-Colored matrix has optimum relaxation factor w=1, whereas. if the
grid points are ordered rowwise from bottom to top. left to right, the
SSOR method converges faster for some woptﬂ. It is an interesting
question whether the same behavior will be seen for p-Colored matrices.
We solved the plane stress problem of Chapter 2 (60 equations) with the

R/B/G ordering of Figure 14 as well as the rowwise ordering. The

resuits are in Tabie 4

Iterations Iterations

w Rowwise w R/B/G
.90 589 . 950 762
1.00 530 . 990 759
1.20 467 .993 759
1.25 463 .994 758
1.30 463 .995 758
1.35 469 . 997 758
.998 758
1.000 758
1.050 761
1.100 772
1.200 815

Table 4. SSOR Results (R/B/G and Rowwise Orderings)
Plane Stress Problem (60 equations)

Table 4 shows that .994<w<1.01 produces the best resuits for the
R/B/G ordering for the SSOR method. whereas. w=125 gave optimal

resuits for the rowwise ordering. This suggests that the SSOR iterative

92

method for p-Colored matrices has optimal reiaxation factor w=1 as s
true for 2-Colored matrices. However, this conjecture has yet to be
proved or verified experimentally with more ~examples of p-Colored
matrices. We note that even if this were true. the Multi-color SSOR
method, with w=1, can be implemented effectively on vector computers
and parallel arrays whereas the rowwise ordering can not. In addition,
using w=1 alleviates the need to estimate the value of w which may be
a time consuming process since little theory exists to aid in this choice

for matrices that are not 2-Colored.

5.4. Parallel Block Iiterative Methods

In this section we consider the implementation of block iterative
methods on vector computers and parallel arrays. In Section 5.4.1 we
describe the Iimplementation of the Block Jacobi iterative method. In
Section 5.42 we discuss the difficulties in implementing the Block SOR
method and in Section 5.4.3 we generalize the Muiti-color orderings of
Section 5§22 and the p-Colored matrices of Section 523 to Block
Multi-color orderings and p-Block Colored matrices. Lastly, we compare
the p-Block Colored matrices to the wm-consistently ordered (7-CO)

matrices of Young[1971] and the p-cyclic matrices of Varga(1962]

5.4.1. The Block Jacobi Method

Let K be a pxp Dblock matrix as shown in (5.24) and let the vectors

4 and f be partitioned as .u_=(y,.| ,y_2,--',up)T and L=(L1-L2."'.LP)T

respectively Furthermore, let

93

- -
K11
Kao
D =
K
pp
(5 30)
0 0 K12 K1p
Kn1 0 0
-L = 0 -y = 0
0 K
0 p-1.p
KM sz] Kp'p_1 0 0
Then the. Block Jacobi method for solving (5.1) is
otV = W er (531
or
y.kH = By.km (5.32)
where

B = 0w+

-1
c =0 L
and B Is called the Block Jacobi iteration matrix. The Block JOR

method is iteration (5.32) with 8 replaced by Bw where

Bw = wB + (1-w) (5 33)

Now. the iteration (56.31) can be wrntten in 1mplementation form as

94

i-1 p
k+1 _ _ k k
K“_u_l = j_’ IIEIK“;L, + i=);_‘,ﬂK”y.Il (5.34)

Note that if the K” are diagonal matrices. (534) is just the Jacobi

iteration method (5.3), but if the K, are not diagonal. p systems of

1]
equations must be solved each iteration. one for each y_’,1='l,2.....p.
However, these systems completely uncouple and hence can be solved

simultaneously on parallel architectures.

On vector computers, the right hand side of (5.34) can be formed
as matrnx vector products and vector additions and the solution of the p
systems of equations Is vectorizable (Buzbee.Boley.Parter{1979]) with the
vector length equal to p. On arrays with p processors, (5.34) is easily

implemented Dby assigning processor / to the calcuiation of &€, Once

y_fﬂ Is calculated, the appropriate components are sent to neighbor
processors and the appropriate components of y_kﬂ are received from

neighbors for use in the next iteration The p processors then complete
the caiculation of one iteration in the time 1t takes the processor with
the most unknowns to complete its calculation. |If each processor has
the same speed and the same number of unknowns. O(p) speedup can

be achieved with this approach

5.4.2. The Block SOR Msthod

The Block SOR method for solving (5.1) is

o-w T = Twura-wow® + L (5.35)
or
e e (5 36)

where

95

L, = ©-wl) WU +1-w)D]

¢ =wO-wl) 't

and L s the ‘Block SOR iteration matrix.

The implementation form of (5.35) is given by

-1 p
k+1 _ k+1 k
K4y =L l)_:_:K”u/ t _E K,,ull (5.37
/=1 =i+
and y_pkH J=1.2....p Is solved in sequence, first _u_.l. followed Dby _u_2

nd finall .
and fin yy_p

The aigorithm given by (5.37) Is sequential and can not be com-
pletely vectorized or implemented on parallel arrays. However, it is well
known that for some discretizations of partial differential equations a re-
ordering of the grid points results In a block matrix for which the equa-
tions in (5.37) uncouple. In particular, consider the grid point stencil of
Figure 4. If we color the even rows of points Red and the odd rows of

points Black as shown in Figure 21,

° R ° R ° R ° R
° B ° B ° B ° B
° R ° R ° R ° R
°B ° B ° B ° B
° R ° R ° R ° R
°B °B °B °B

Pigure 21. Line Red/Black Ordering

group all points in a given row into one block. and then number the

red blocks first from bottom to top. followed by black bliocks. the matrnix

96

K for Figure 21 has the form

I
)
Kaa ! x X
i
K33 : X
K = |=========== |~;<- ----------- (5.38)
X Kag
)
X X : K55
'
X X K
i : 66J

The SOR iteration (5.37) is the classical Red/Black line SOR which is
composed of two Dblock Jacobl sweeps. one on the Red blocks, followed
by one for the Black blocks. The implementation of this method on
vector computers is discussed by several authors
(Buzbee.Boley.Parter{1979],Nolen[1979].Parter and Steuerwalt(1980], Saad
and Sameh{1981)). For parallel arrays. every 2k rows of points are

assigned to each processor as shown in Figure 22 for k=1.

1
° R ° R ° R ° R
° B ° B ° B ° B
° R ° R ° R ° R
° B °B ° B ° B
° R °R ° R ° R
°B OB °B OB

Pigure 22, Processor Assignment for Pigqure 21.

For the assignment in Figure 22. processor first updates the Red block

97

of unknowns, communicates these values to processor [+1, updates the
Black block of unknowns and communicates these vaiues to processor
-1 and then checks the convergence of the process. This algorithm is
executed in all processors with slight modifications in processor 1 and
processor p. It the grid contains p rows. a speedup of O(®/2) s

achieved by this scheme.

The same Red/Black line SOR method can be used for the linear
trianguiar finite element discretization of Figure 13 and the bi~cubic rec-
tangle of Figure 19. However. for the 9-point discretization in Figure 7,
the 13-point discretization of Figure 16 and the quintic tniangle in Figure
20, a Red/Black 2-line SOR method can be used. For this scheme. we
color the first bottom two rows Black. the next two rows Red. etc. as

shown in Figure 23,

° R ° R ° R ° R
° R ° R ° R ° R
°B ° B ° B °B
°B ° B °B °B
° R ° R ° R ° R
° R ° R ° R ° R
° B °B ° B °B
°B °B °B ° B

Figure 23. Red/Black 2-line Ordering

and then group every two rows of Red points into one block and the
same for the Black points it the Red blocks are numbered from bottom

to top followed by the Black blocks. the resuiting matrix K for Figure 23

98

will have the form (5.38) with 4 diagonal blocks instead of 6. The p
rows of the problem grid are assigned to p/4 processors as shown In

Figure 24

° R ° R ° R ° R
° R ° R ° R ° R
° B ° B °B °B
° B ° 5 ° 5 ° B
° R ° R ° R ° R
° R ° R ° R ° R
°B °B °B °B
° B ° B ° B ° B

Figure 24. Processor Assignment for Figure 23.

With this assignment. a speedup of O (p/4) is obtained

It is well known that the K matrix assoicated with the Red/Black k-

line orderings 1s m-consistently ordered and has the form (5.39)

K = (5.39)

where Dr and Db represent the connectivity of the Red points to each
other and the connectivity of the Black points to each other respectively
(see Young{1971D In this case. there is a theory for the selection of
the relaxation parameter w for the associated Block SOR method which s

briefly summarized below

99

Definition 9. (Young)

Let K be partitioned as in (5.24) and define a pxp matrx 2
with elements Z by

0 if kil=°
r4 =

7] 1 if kil;‘O

Then K is mw-consistently ordered (7-CQO) if Z s consistently

ordered.

Theorem 4. (Young)

Let K be a positive definite m-CO matrix. Then

M pB™) <1

]
@ w, = 2/1-01-p8™H %2

where B(m is the Jacobi ieration matrix associated with the partitioning

in (5.24).

5.4.3. The Block Muiti-Color SOR Mathod

in the last section we showed how to implement either a 1 or a 2
line SOR method on parallel arrays for all the discretizations n Section
52.2. This algorithm has the advantages that a theory exists for deter—
mining the optimum relaxation factor w even though in practice the
spectral radius of the Block Jacobi method may not be known In
advancs A major drawback of this implementation arises when the
number of processors p greatly exceeds n/2 and n/4 for the 1 and 2
line methods respectively where n represents the n;:_rnber of rows In the

problem grid In particular, these speedups are only n/2 and n/4, or

100

equivalently, YN /2 and VYN /4 when the number of unknowns 1s N=n2.

In this section, we propose an alternative blocking of the grid points that

will give much better speedup results on a parallel array.

5.4.3.1. Block Multi-Color Orderings

As a first example, we consider the 9-point stencil of Figure 4. If

we color the problem grid into Red/Black/White/Qrange blocks as shown

in Figure 25,
° W ° W ° 0 ° 0 ° R ° R ° B ° B
° R ° R l° = ° B ° W ° W ° 0 ° 0
low uw 00 00 °R QR °B OB
° R ° R ° B ° B ° W ° W ° 0 ° 0

Figure 25. 4-Block Coloring for Figure 4

two blocks of the same color are not adjacent and hence the solution
for blocks of unknowns of the same color in (537) completely uncouple.
The Dblocks are assigned to processors in sizes 2kx4j/ so that each pro-
cessor has the same number of blocks of each color as shown in Fig-

ure 26.

101

Ow Ow 00 Oo OR -] B
° R ° R °B °B °w ° (o)
Ow Ow Oo Oo °R ° B
° R °R ° B ° B ° W ° o

Figure 26. Processor Assignment for Figure 25.

h

The color pattern and processor assignment repeats beyond the subre—

gion shown. For this assignment with n2 grid points, p=n"/8 and the

2

maximum speedup that can be achieved is n /8.

If the Red blocks in Figure 25 are numbered first, followed by the

Black blocks. then the Orange and finally the White blocks, the matrix K

will have the form

Dy X122 X3
0

Xyq Dpp X3

K =
X317 %32 Das

X4 Xa2 %43

where the matrix D”

X14

Xo4

X34

X

44

-

is a ncxac, block diagonal matrix of the form

(5 40)

102

D” = . (5.40)

L DI .nec

/]

and ne; ls the number of blocks of color i/ and D represents the

lal
connectlvity of nodes of the jth block of color / to each other. Note
that nodes Iin two distinct blocks of the same color are not connected.
whereas. nodes in the same block may be connected. Matrices which

have the form (5.40) and (5.41) will be called p-Block Colored matrices.

As a second example, consider the 9-point discretization of Figure

7. The points are colored Into Red/Black/Green blocks as shown In

Figure 27.
L"B ° B ° G °GJ ° R ° R
° G °G ° R ° R ° B ° B
° R ° R ° B ° B ° G ° G
° B ° B ° G ° G °R °R]
L°G ° G I;R ° R ° B ° B
L°R ° R L’B ° B l—:c ° G

Figure 27. 3-Block Coloring for Figure 7.

The processors are assigned in biocks of size 3kx2f as shown in Figure
28 for k=1 and f=1 and a speedup of O(n2/6) Is expected. Note that

only four Jlocal communication links are used for each processor;

103

whereas for the coloring and assignment of Figure 8 and 9 respectively,
four links plus four more for the next North, next South, next East, and

next West processors was required to implement the point R/B/G SOR

method.
°B °B ° G °G ° R ° R
— °G °G OR OR °B °B e
° R ° R °B ° B ° G ° G
° B ° B ° G ° G ° R ° R
— °G OG OR °R OB °B [
OR OR OB °B OG °G

Figure 28. Processor Assignment for Pigure 27.

As a last example of finite difference discretizations., consider the 13-
point discretization of Figure 10. The points are colored into blocks with

six colors, Red/Black/White/Orange/Purple/Yellow as shown in Figure 29

°P OP °B

°R OR OG

Figure 29.

B

G

W

(o]

6-Block Coloring for Figure

W

o

P

R

P

R

B

G

104

10.

The blocks are assigned to processors in sizes of 2kx6j as shown for

k=1 and j=1 In Figure 30 and a speedup of O(°/12) Is expected. The

coloring and processor assignment repeats beyond the subregion shown.

w W P °P °B °B
0) R °R °G °G
B B W °W °PpP °FP
G G 0O °0 °R °R
P P B °B °W °W
R R G °G 20 °O0

Figure 30. Processor Assignment for Figure 29.

We now consider the block orderings and processor assignments for

the finite element discretizations of Section 5.2.2.

The

linear trianguiar

element discretization of Figure 13 can be coiored into Red/Black/Green

blocks as shown in Figure 27 with the associated processor assignment

of Figure 28.

The quadratic triangular element discretization of Figure

105

16 can be colored with six colors. Red/Black/Green/White/Orange/Purpie

as shown in Figure 31.

R Rk

g °B|l°p °p[|l°B °B|[°p °p
l

)
(]
)

]
=
[-]
«

R °RrR|{[°0 cof{°R °R|[°0 ° 0]

[OG OG Ow Ow °G °G ow ow

°g °B|l|°p °2||l°B °B|[°Pp °p]

[°R °R{|°0 *0of|l°rR °Rr|][°0 o |

Figure 31. 6-Block Coloring for Figure 16.

The blocks are assigned to the processors In sizes 3kx4/ as shown in
Figure 32 for k=1 and /=1 and a speedup of O(n2/12) is expected.
Note that only six local communication links for the interior processors

are used for this implementation.

I 1

Pigure 32, Processor Assaignment for Pigure 31.

106

All the examples of block colorings in this section lead to K p-
Block Colored matrices. From (5.40) and (5.41) we can easily see that
in general. p-Block Colored matrices are not m-CO matrices. On the
other hand. it is a trivial observation that m~CO matrices are always per-

mutationally similar to a 2-Block Colored matrix.

It is also easy to conclude that p-Block Colored matrices are not,
in general. p-cyclic (relative to the partitioning (5.24)) matrices of vVarga.
On the other hand, it is an immediate generalization of Corollary 1 that
p-cyclic matrices relative to (5.24) are permutationally similar to either a

2-Block or 3-Block Colored matrix.

We acknowledge that in general no theory exists as of yet to help
in determining the relaxation factor w for p-Block Colored matrices when
p>2. but the extra parallelism that can be obtained over a k-line SOR

method may far outweigh this disadvantage.

CHAPTER 6

Parallet Conjugate Gradient Methods

6.1. The Conjugate Gradient Method

The conjugate gradient (CG) method was proposed n 1352 by
Hestenes and Stiefel[1952) as a method for solving a symmetric positive
definite NxN system of linear equations. Although it s an iterative
method in nature. It will converge 1in at most N steps in the absence of

rounding error and hence may be viewed as a direct method.

In practice. however, the method was found to take many more than
N steps due to this rounding error and was not competitive with Gaus-
sian elimination But In 1971, Reld[1971] showed that the method could
sometimes be used effectively as an iterative procedure for large sparse
systems since suitable convergence may occur in far fewer than N
steps. Several derivations and descriptions of this procedure appear In
the literature: see for example, Chandra(1978] who studied the method for
both finite element and finite difference discretizations ot ellptic partai
differentiali equations, and Schultchen and Kostem(1973] who recommend
the method for solving the linear systems that arise from finite element
discretizations Schreiber{1983] discussed the impiementation of the CG
method f{or vector computers and Podsiadlo and Jordan(1981] describe its
implementation on the FEM. We give the algorithm below and review
some of its implementation considerations on an array processor such as

the FEM

107

() Choose u°
@ 2=t -ky°
) p_o =L°

4) k=0

(58) For k=0.,1....k

max

k

() a= X

2 y_k +1

@ 1t |

@ Lki-'l

=r

k
c.L)

=$Lk tap

k+1
u -

@* k")

k

- aKp_k

Algorithm

1. Conjugate Gradient Algorithm

In the above., (.y) denotes the inner product LT_x,

LLk "m<e then stop. otherwise continue.

108

This algorithm can be Iimplemented on an array computer with p

processors like the FEM

by partitioning the K matrix by

rows

into p

portions, where each portion consists of at most [%l rows. The vectors

and f

€. r. R.
The ith portion of each

ilustrated below for p=3.

are likewise partittoned by rows In

data structure is assigned

to processor 1

the same manner

as

109

iy ~ - - r
1 [1]] 1 [1] 1]]
2 2 2 2 2
3L i 3L J 3L . 3L 4 3L 4
K € L L L

FPigure 1. Data Assignment to 3 Processors

An examination of the CG algorithm as described above leads to the fol-

lowing observations:

m

(2}

&)

(4)

5)

Once « is known, all processors can caiculate their portion of
_q_kf'I simultaneously with no communication required.
Once B s known. aill processors can calculate their portion of
p_kﬂ simultaneously with no communication required
Once Kp_k and a are calculated, all processors can calcuiate
their portion of _c_kﬂ simultaneously with no communication

AN

required.

Some components of p_k residing in other processors will be
needed for the caiculation of ng This means that the values of

p_k for the non-interior nodes must be communicated between

processors. This corresponds to the communication of the y,k
values during a Jacobi or Multi-color SOR iteration as described

In Chapter 5.

The calculations of @ and B require inner products to be formed
globaily over the array computer. Each processor can calculate
the partal sum that corresponds to its portion of rows, but these

partial sums must then be added together. |f each processor

110

were to Dbroadcast its partial sum to every other processor. the
number of values received by a single procesor i1s O(p-1) for

one Inner product alone.

This aspect of the CG algorithm was realized by Jordan{1979] to
be dsetrimental to the performance of CG on an array computer
and as a result the sum/max hardware circuit discussed in
Chapter 3 was designed for the FEM to perform sums over the p
processors. With this hardware. one inner product can be per-
formed In O(logap) operations since each processor will load its
partial sum onto the circuit, and the circuit will pertorm the sum
in a binary tree fashion and then return the compiete sum to

each processor.

6.2. Preconditioned Conjugate Gradient Methods

6.2.1. The PCG Algorithm

The condition number of any nonsinguiar matrix K with respect to a

given norm s
K(K)= "K” ||K-]” CR))

In particular. it K is symmetric with eigenvaiues A, then in the spectral

i

d.e. 12) norm

max |, |

K(K) 6.2

“min]
{

The standard analysis of the conjugate gradient method. Chan-

dra(1978]. shows that the error in the ith iterate i1s bounded by

LR R

| w-d I, < 2@(:; 2)’||y_- |, 6.3)

wher a=——
8 =0

This bound shows that the error is a decreasing function of the condi-
tion number of K. Hence. the conjugate gradient method applied to a
system Ku=f where k(K)<k(K) will converge in fewer steps than the
conjugate gradient method applied to Ky=f. This observation is the
motivation for the preconditioned conjugate gradient method Instead of

solving Ku=f., we choose to solve
Ra=f 6.4
where
R=Q k@™
ﬁ=QTy.
f=q7't
and Q s a nonsingular matrix chosen so that K (K)<K(K) Since Q is

nonsingular. we can define
M=QQ (6.5)

and M will be symmetric and positive defimite. In terms of M, K can

be written as

K=Q"M k@7 6.6)
from which it can be seen that the eigenvalues of K and M_1K are the
same. The introduction of M into the expression for K allows the stan-
dard conjugate gradient algonthm to be wrntten for the solution of y

directly in terms of M without explicitly forming Q This algonthm s

described in Chandra{1978] and is given below

112
o}
(1) Choose Y
(2) 2=t -ky°

(3) me° =°

(4) 2°=°
{5) k=0

(6) For k=0.'|,...kmax

& k
C L)
(p_k.ng)

(1) a=

(2) y_k +1 =LLk+dD.k

(3) if “y_kﬂ- uk‘L<e then stop. otherwise continue.

k+1_ k k
(4) L =L -akKp

Algorithm 2. Preconditioned Conjugate Gradient Algorathm

The only difference in the implementation of Algonthm 2 and Algo-
rithm 1 1s the solution of a system of the form Mr=r during each itera-

tion. The considerations in choosing an M and In implementing the

113

corresponding system on a parallel computer are discussed in the next

section

6.2.2. Implementation of Preconditioners

The preconditioned conjugate gradient algonthm of the last section
requires a symmetric and positive defimite preconditioning matrix M to be
specified or computed. The question arises as how to choose M so
that the condition number of K=Q M 1KQ .

max)‘,
k(K)= l.

min x,
i

where X, are the eigenvalues of K. or equivalently M—]K. 1S as small as

possible.

The best choice for M in the sense of mimimizing k(K) is M=K but
this gains nothing since K£=L 1s just as difficult to solve as Ky={f The
approach that has been taken in the Iiterature 1s to choose M to be a

symmetric and positive definite approximation of K. If we write K as
K=M-R 6.7

then

1 1

M~ 'K=i-M" 'R (6 8)
where R can be regarded as a remainder term Concus, Golub. and
O’Leary(1976] give the following three criteria for M to be an effective
preconditioner:

(1) Mf=r is easily solved

@ M~ 'R has small or nearly equal eigenvalues. or

114

@ M"'A has small rank
A fourth criteria that 1s a major consideration on a paraliei computer 1s

(4) M s easily formed.

One class of preconditioners. Incomplete Cholesky Conjugate Gra-
dient, (CCQG). (see Manteuftel(1979] for example) chooses M to be an
incomplete Cholesky factorization of the matrix K. That is, M=LLT where

K =L -n 6.9)

and L Is a lower triangular matrix and A is the remainder term. The
matrix L in (69) and hence the matrix A will vary as different rules are
used to create the Iincompiete factorization. For example, one rule may
restrict L to have the same sparsity structure as the lower part of K,
whereas., another rule may allow fill-in within the band n some spec:al
fashion. In either case the system Mc=r wili be solved by forward and

backward substitutions on the triangular systems
Ly=r
(6.10)
LTi=
respectively.

The formation of M and the solution of the systems in (6 10) can
be easlly implemented on a sequential computer; however, an efficient
parallel implementation on an array or vector machine may be difficult to-
devise. In particular, the formation of M as an incomplete Cholesky
factorization may be difficuit to implement in parailel In addition, it L

does not have a special structure. the forward and backward substitutions

115

will be inherently sequential processes although Sameh and Kuck[1978]
and van der Vorstl{1981] have discussed the parallel solution of triangular
systems and we address this issue In more depth later in this section.
However, in general, tridiagonal and banded matrices are not welil suited
for preconditioning matrices for a conjugate gradient method to be

implemented on parallel computers.

Another class of preconditioners that appears to be more easily
implemented on parallel computers arises by choosing M to be a split-
ting of K that describes a linear stationary iterative method. As a first
example, let O be the diagonal or (block diagonal) of K and choose
M=D. We note that in most cases M=D will not closely approximate K.
Furthermore. the choice M=D corrgsponds to a dlagonal (block diagonal)
scaling of K. That s,

-1/2KD-1/2

—VQy_

'8)
D-]/QL

=D
6.1

> Iﬁ) x>

and in practice this scaling would be done a priori and M£=L would not
be solved on each iteration. That is, the standard conjugate gradient

method would be applied to (6 11) each iteration.
As a second example of a preconditioner that arises from a splitting

for an iterative method. consider the SSOR splitting of KL=z which is

2
W dn gm=1 dn_ e o 1 QO-w) _ 112 e (6.12)
FeACD =L (D=L = 5o D+~ LU twlD UlLtr

where D, -L., and -U are the diagonal, strictly lower, and strictly upper

parts of K respectively. |f we choose £(°)=0 and take one step of the

116

SSOR method applied to Ki=r. the resulting 7 will be the exact solu-

tion to the system ML=r where the matrix M Is given by (6.13).

_ w1 A=V 60
M = -2—_—0)-(;0 Lo (;D u) 6.13)

We now consider the paraliel impiementation of the solution of M£=L
when M s given by (6.13). |If the matrix K I1s ordered by the Multi-
color ordering, then the solution to the triangular systems

1 2-
@GPty = =g7or

(6.14)

1 Ta
(aD Or X
can be efficiently implemented on parailel computers as one Multi-coior

~(0)

SSOR iteration applied to KC=r with initial guess r =0.

Systems like (6.14) can be solved as Multi-color SSOR implementa-
tions even if -L does not have the same elements as K as long as the
sparsity structure of (D-L) corresponds to some Muiti-color ordering.
We note that being able to solve these systems efficiently on an array
computer would aliow ICCG methods that require the factors of M to
have the same sparsity structure as K or that correspond to some
Multi-color scheme to be implemented on parallel computers provided an
efficient algorithm could be found to do the incompiete factonzation in

paraliel.

We next show for Laplace’s equation that the above implementation
of the SSOR preconditioning matrix (with w=1.0=/) for a Multi-colored
‘grid achieves more accuracy with less computation than an implementa-

tion described by van der Vorst(1981] for a natural ordering of the gnd.

17

Let /-£E~-F denote the lower {triangular part of the matrix that results
from a b5-star discretization of Laplace’s equation where the grid is
ordered by the natural ordering. Let the matrices -E and -F contain
the first and second nonzero subdiagonals of the matrix K respectively,

Then in its block tridiagonal form, the matrix K can be written as

B T N
T, -F,
T
-Fy T TF
X = S (6.15)
- T ‘. -

-F 2. . FN-'I

e FN-1 T -

where the matrix F Is partitioned into the nxn diagonal submatrices Fl
and the matrix £ is partitioned into the nxn El submatrices where E, s
the lower trianguiar part of the symmetric tridiagonal matrix T’ which has
been scaled to have unit diagonal. Recail, that the system of equations
that must be solved each iteration to Implement the preconditioner is.

U-E-FYU-E-F)'F = r (6.16)

Now, van der Vorst suggests approximating the forward substitution
(I-E-Fly = r - 6 17)
or equivaiently the partititoned systems
- = r +F
By = o
by
= .) +F .
Y, (/+E,.+E;"+) @ HFy) 6.18)

where m terms of the series for (I-El)-‘I are taken and a similar

118

expression is found for the approximation to the back substitution

(I—E-F)Tﬁ=1. Therefore. his idea Is to take enough terms to approxi-
mate M given by (6.16) and at the same time produce a preconditioner
for a natural ordering of the grid that is vectorizable without being cost
prohibative. Simple operation counts show the following number of muiti-

plications are needed to implement this scheme.

(1) n to calculate F,){_l_.I

2nim-=-N-m(m+1)+2

@) . for finding I+El+...+E'I.n and I+ET+..+(E7’)T.

For m=2. this Is n-2. For m=3, this Is 2n-5.

2mn-m2-m
2 i
For m=2, this 1s 2n-3. For m=3, this is 3n-6.

HETY @Ry,)
@ for multipiying (+E +.+E]") € +Fy,

The totali number of muluplications for m=2 and m=3 are given

below In (6.19)

TN - 104N m=2
10N - 194/N m=3

Now. 1if the grid points are ordered by the R/B ordering. the matnix

6.19)

will have the form

Note that the matrix £ in (616) is now 9, so that the van der Vorst

scheme in (6.18) reduces to

119

¥ = .L’-rF,)L’._.l for j=1.2

i = 1,.+F,T‘ for /=1.2

which is the R/B SSOR iteration on the equation Kf=r with £°’.

The
number of muitiplications required for this Muiti-color SSOR mplementa-
tion is found from (5.29) to be at most 4N Hence. by ordering the
grid in a R/B fashion. O(BN) and O(6N) multiplications can be saved
over the van der Vorst 2 or 3-term Implementation respectively for the
natural ordering. In principle. the van der Vorst scheme is more gen-
eral since it can be applied to block matrices K regardiess of the ord-
ering of the unknowns, but the more dense the matrices Ti‘ the more

expensive the scheme will be. We ailso note that the m-term approxi-
1

mation to (I-EI)- in (6.18) is not necessary if the grid is ordered R/B
(also true for Multi-colored grids) since E’.=0 tor all /. This means
that the solution to (6 16) 1s exact for the R/B ordering. whereas, it iIs
only approximate for the natural ordering whenever m<n+] In addition,
even if an exact solution to (6.16) could be obtained with a small value
of m. (say 2 or 3), the number of iterations of the PCG method with
the resulting preconditoner would have to be O(175) or 0.5 times less
(for m=2.3 respectively) than the number of iteratons with the R/B PCG

method to compensate for the increase in the computationai work.
6.2.3. m-Step PCG Methods

6.2.3.1. Description

it was demonstrated 1n section 6.2.2 that taking one step of a linear
stationary lterative method such as Jacobi or SSOR applied to KL=r with

£(0)=0 resuits in a preconditioner for the conjugate gradient method that

120

can be implemented on a vector or array computer. The question now
arises whether it would be beneficial to take more than one step of a
linear stationary iterative method to produce a preconditioner M that

more closely approximates K.

We begin by deriving an expression for M. Let K=P-Q be a split-
ting of K that is associated with the linear stationary iterative method
with [teration matrix G=P-1Q. Then the m-step iterative method applied

10 K,E:L is

PUtG+.+GT H ™ = pu+G+.46™ H er-f P 4 (6.20)

By choosing ﬁ(0)=0, (6.20) becomes

PU+G+.+6M 1M = 6.21)
Hence. the preconditioning matrix 1s

M = PU+G+.4G" " H™) (6 22)

Now. M must be symmetric and positive definite to be considered as a
preconditioner for the conjugate gradient method. Before we establish
the necessary and sufficlent conditions for M to satisfy these criteria, we

prove the following lemma

Lemma 1.
it A=8C is a symmetric positive definite matrix. 8 1s symmetric,

and C has positive etgenvalues, then B is positive definite.
Proof

Let C—]_:g=u,. or equivalently,

121
A" VBx=ag (6.23)

Multiply both sides by A.“2 to get

A" V287712501124 - V% (6.24)

or

Ry=\y
The proof is now by contradiction. Assume that B has a non-
positive eigenvalue. Then. since (6.24) 1s a congruency
transformation of 8. it foliows that A has a nonpositive eigen-
value (see Gantmacheri1959D). But the spectrum of AR is identi-

cal to that of C_' and by hypothesis can not have a nonpasi-

tive eigenvalue. Hence B Is positive definite.

The necessary and sufficient conditions for M to be positive definite are

given in Thearem 1.

Theorem 1.
Let K=P-Q be a symmaetric positive definite matrix and let P be

a symmetric nonsingular matrix. Then

(1) the matrix M of (6.22) is symmetncC.

(2) for m odd. M is positive definite if and only is P s posi-

tive definite.

(3) for m even, M Is positive definite if and only if P+Q s

positive definite.

122

To prove symmetry, we write M| as

-1

M =P

+p-1QP-1 +P—IQP-1QP-1 +...+P-]QP_1Q ceep”] (6.25)
m-<1 terms

Now since P and K and hence Q are symmetric, each term in

(6.25) Is symmetric. Thus M~) and therefore M are symmetric.

1 1 1 1
The matrix G=P_'Q can be expressed as G=K 2(-K2P kK2,
Since P-] Is symmetric with P, the eigenvalues of the
congruence transformation KV2P-'.|K]/2 are real. Hence, the

elgenvalues of G are real.

To prove (2), let m be odd. If g is any eigenvalue of G
other than 1. the corresponding eigenvalue of

R=U+G+.+G™)

Ttgt.+g™" = —2—

which Is positive since m is odd. f g=1, the corresponding

eigenvalue of R is equal to m which is also positive.

Now, since P=MR and M Is symmetric and R has positive
eigenvalues, It follows from Lemma 1 that if P is positive defin-
ite then M must also be positive definite. Conversely. M can

1

be written as M=PR™'. Since A ' has positive eigenvalues and

P Is symmetric, we conclude from Lemma 1 that if M is posi-

128
tive definite then P Is also pasitive definite.

Next, to prove (3) let m be even. It Is sufficient to consider

M_1 since any conclusions about the definiteness of M-.l will

apply to M. Since m is even, M™! from (6.22) can be wnitten
as

1

M1 = PV (P+PG +PGE

+PG +.4PG™ 1P

or

M =P~ 1((P+PGI+(P+PGIGZ +(P+PGIGH +.4(P+PGIG™ ~211P”]

Now. since PG=Q. M_| can be written as

m-2)

M V=P 1 p+010+G2 +G*+..4G P! (6.26)

Now. since P Is nonsingular and symmetric, M_‘I is positive

definite if and only if the symmetric matrix

S=P+Q1U+G2+G% +. +GM 72) 6.27)

is positive definite

Assume P+Q Is positive defimte. Since S is symmetric and the

m-2)—1

matrix (I+62+G4+...+G has positive eigenvalues, S s

positive definite by Lemma 1.

Conversely, if S s positive definite, since P+Q is symmetric

2 m-=2

and the series 1+G2+G”+..4G has positive eigenvalues. P+Q

is positive definite by Lemma 1.

124

Dubois. Greenbaum. and Rodrique{1978] consider a truncated Neu-
mann series for K-1 as a preconditioner This preconditioner s
equivalent to that of (6.22) if K=P-Q corresponds to a Jacobi splitting
where P=diag (K). but they do not consider more complicated splittings
that resuit from iterative methods. Theorem 1 extends their main result.
Under the hypothesis that K and P are both symmetric and positive
definite matrices and p(G)<1, they prove that M is symmetric and posi-
tive definite for all m Note that for odd m the condition that p(G)<1
t1s not needed and for even m. the matrix P s only required to be
symmetric. The reiationship between the condition p(G)<1 and the posi-

tive definiteness of P+Q Is given later in this discussion in Theorem 2.

Theorem 1 is heipful in choosing a splitting of K that will produce
an m-step preconditioner that is symmetric and positive definite For
example, if the Jacobi splitting of K (P=D0 and Q=D-K where D s the
diagonai of K) were considered, part (3) of the theorem says that if m
is even, P+Q must be positive definite. We know from the Jacob: Con-

vergence Theorem (see. e g. Youngi1971D.

Jacobl Convergence Theorem

Let K=P-Q be a real. symmetric. and nonsingular matrix with
positive diagonal elements Then the Jacobi method converges

(p@GI<N) it and only if both P-Q and P+Q are positive definite.

that P+Q and hence M will be positive deflnite only if the Jacobi
method 1s convergent. For the problems of interest to us., the Jacobi
method is not guaranteed to be convergent since we only know that K
will be symmetric and positive definite. Therefore, for these probiems,

only odd values of m wiil yield m-step Jacobi preconditioning matrices

125

that are guaranteed to be positive definite.

For any splitting satisfying the hypothesis of Theorem 1. the question

arises whether the same relationship exists between the positive definite-

ness of P+Q and the convargence of the iterative method with iteration

matrix P 'Q that is given in the Jacobi Convergence Theorem above for

the Jacobi splitting. We answer this question with Theorem 2.

Theorem 2.

Proof:

Let K=P-Q be a symmetric positive definite matrix and let P be
symmetric and nonsingular. Then p(P 'Q)<1 if and only it

P+Q is positive definite.

First, assume P+Q is positive definite. Since K is symmetric
positive definite and P is nonsinguiar, K=P-Q Is a p-regular
splitting. Hence. from Ortega’s p-regular splitting theorem.

Ortegal19711, pP~ 'Q)<1.

We next note that G=P 'Q can be expressed as

G=K-'|/2 (I _K1/2P-1K1/2)K1/2

" JU—

and the matrix K72 'k? has real eigenvalues since K is sym-

metric positive definite and P Is symmetric. Hence, G has real

eigenvalues.

Now, assume that p(G)<1, then (I-G)-'.I exists and since G has

real eigenvalues, it easiy follows that the matrix H defined by

126

H=4-G)" U +G) 6 28)

has real eigenvalues. But we know from a theorem Dby
Youngl1971] that H Is N-stable. Hence H has positive eigen-
values. Now, we can write H as

H=K"1 (P+Q) 6.29)
or equivalently,

K=P+QIH | (6.30)

Finally, since K is symmetric and positive definite and H-.I has

positive eigenvalues and P+Q Is symmetric, we conclude from

Lemma 1 that P+Q is positive definite.

Note that the requirement that P be symmetric is stated as a suffi-
cient condition but not a necessary one. It remains to be proven
whether or not the symmetry of P is necessary for M to be symmetric
for odd m>1 or for P+Q and hence M to be symmetric and positive
deflmite for even m However. In practice. it was observed that the
number of iterations for convergence of the m-step PCG method with a
nonsymmetric matrix P was extremely more than the number required by
the standard conjugate gradient method (m=0) in particular, we solved
the 60x60 plane stress problem which has a symmetric and positive
definite coefficient matrix K with an m-step R/B/G SOR preconditioner.
From the SOR convergence theorem stated in Chapter 5. we know that
p(G)I<1, but the SOR splitting matrix with w=1 for simphicity is P=D-L

and is not symmetric. The results are given in Table 1

127

m m-step R/B/G SOR
0 49

1 200 +

2 200 +

3 200 +

4 200 +

Table 1. Number of m-step R/B/G SOR PCG Iterations
60x60 Plane Stress Problem

These results indicate that only symmetric splitings should be considered.
in the next section, we include results of the m-step PCG method

derived from the Jacobl and SSOR splittings which are both symmetric

6.2.3.2. Analysis of the Condition Number

In the last sectlon. we gave conditions for M to be symmetric and
positive definite and hence to be considered as a preconditioner for the
conjugate gradient method In this section we determine if increasing m
will in fact produce a better conditioned system. For this purpose. we

now denote by Mm the matrix of (6.22).

As a first step towards answering this question, we derive an
expression for k(K_) Recall from (6.6) that K is similar to M;’]K so
that K(Rm) is the same as the ratio of the largest to smallest eigen-

values of M;K. An expression for M:K as a polynominal in G 1s

M,'n‘x = §+G+.+46™ e -0 6.31)

or -

where G=FP Q.

128

Since we wish to compare k(K) to KK). we will assume that both
Mm and Mm+‘l are symmetric and positive definite. By Theorem 1. this
implies that P and P+Q are positive definite and thus by Theorem 2.
p(G)<1. Therefore, since the proof of Theorem 1 showed that the

eigenvalues 7\[of G are real, they can be ordered as

-1<7\1<)‘2<° . -<kn<'l

Furthermore. let 6 be the eigenvalue with the smallest absolute value

Then the condition number of I?m is

r
127
2,20 or M\,<0 and m odd
]_xm 1 1
n
o 1-0™"
KR) = = A<0. A3 |x1| .m even (6.32)
-2
n
m
=6 _ , <o |x| > |k| .m even
m 1 1 n
]-X.l
.

As can be seen from (6.32), the conditions for K(Rmﬂxx(km) depend
upon the distribution of the eigenvalues A of G. These conditions are
given by Theorem 3 if x]>o, and by Theorem 4 if
A\,<0 and A > |\;| . We note that (6.32) shows for both odd and
even m that If \,<0 and Ix‘ll > |xn| it 1s impossible to conclude

it x(KmHKK(Km) without knowledge of the values of)‘1' xn. and 0.

Theorem 3.
Let K=P-Q and P be symmetric and positive definite with

p(G)I)<1. Then it)"l>°' x(k‘m) Is a decreasing function for all

m.

129

Proof-

We must show that K(Km+'l)<K(Km) By (632),

X a-xpar Gl ™H
KK) = — (6 33)
N Y4 TS WS oL
n n "n " "n
Hence. we must show for x1>o that
2 m 2 m
1R 2 N D W JO 3 N T+A _+A _t..tA
1M 1 < n'n n (6.34)
2 m-=1 2 m-=1 .
1+x1+x1+...+>‘1 Hxn”‘n*"‘ﬂ‘n

This Inequality is true since xn>x1 and

2

T+x +x +...+xm

Tx +x2 4., 4T]

f &) =

(6.35)

can easily be shown to be an increasing function of x for x30.

As an application of Theorem 3 consider the SSOR splitting of a
symmetric and positive definite matrix. Recall from the basis conver-
gence theorem for SSOR that was stated in Chapter 5, that it K is a
symmetric matrix with positive diagonai elements. the SSOR method con-
verges if and only if K s positive definite and O<«w<2. Therefore,
p(G)<1 for the SSOR splitting and from Young [1971] we know that all
the eigenvalues of G are real and nonnegative. Hence).]>o. To
satisfy the last hypothesis of Theorem 3 we prove that the matrix P for

the SSOR splitting is symmetric and positive definite.

130

Lemma 2.
Let K=P-Q be symmetric and positive definite. It P s the

SSOR splitting matrix. “then P and Mm are symmetric and posi-

tive definite.
Proof.
Now,
p==2 10712 p-un" w "%do-u
2-w w w

where D=diag(K), and -U is the strictly upper triangular part of

-1/2(%D-U) Is upper triangular with

K. Since the matrix D
positive diagonal elements and hence nonsingular., it follows
immediately that P Is symmetric and positive definite. Therefore
by Theorems 1 and 2, Mm Is also symmetric and positive

definite for all m

The results of the m-step SSOR preconditioned conjugate gradient
method on the 60x60 plane stress problem problem are given in Table
2. the results on the 1536x1536 plane stress problem are given Iin Table
3. and the results on a 768x768 matrix derived from the S-star discreti-
zation of Laplace’s equation are given 1n Table 4 For all three prob-
lems, the resuits are given for both the natural rowwise ordering and
Muilti-color ordering of the grid. The convergence criterion was
"y_’”i| -y_k |L° <€, where e='l0-6 for ail three problems. The standard

conjugate gradient results with no preconditioning are indicated by m=0.

131

R/B/G Natural

m # Iterations # Iterationgs # Iterations
(w=1) (w=1) (w=12)

0 49 49 49

1 23 20 20

2 16 15 14

3 14 12 12

4 12 11 10

Table 2. m-step SSOR PCG for 60x60 Plane Stress Problem

R/B/G Natural

m # Iterations # Iterations # Iterations
(w=1) (w=1) (w=1.6)

Q 363 363 363

1 139 111 93

2 99 80 66

3 82 65 54

4 71 57 47

Table 3. m—step SSOR PCG for 1536x1536 Plane Stress Problem

R/B Natural
m # Iterations # Iterations # Iterations
(w=1) (w=1) (w=1.8)
o 56 56 56
1 30 28 17
2 22 21 13
3 18 17 10
4 16 15 - - 9

Table 4. m-step SSOR PCG for 768x768 Laplace's Equation

The results in Tables 2,3. and 4 show that the number of iterations
is a decreasing function of m as was predicted by Theorem 3. The

results also indicate that there will be an optimal value of m. say mopt.

pt’ the reduction in the number of CG iterations is not

enough to balance the increase in the number of iterations of the SSOR

since for m>mo

preconditioner For example. consider the R/B/G results in Table 3.

The number of CG iterations and the number of steps of the SSOR

132

preconditioner as a function of m are summarized in the table below.
The last two columns of the table give the total algorithm cost (in units
of SSOR iterations) for the assumptions that one CG iteration s
equivalent to one SSOR iteration and that one CG iteration i1s twice as

expensive as one SSOR iteration respectively.

Iterations Total Cost
m cG SSOR CG=SSOR CG=2(SSOR)
0 363 0 363 726
1 139 139 278 417
2 99 198 297 396
3 82 246 328 410
4 71 284 355 426

For this example. m=1 is optimal if one CG iteration costs the same as
one SSOR iteration and m=2 is optimai if one CG iteration is twice as
costly as one SSOR lIteration. The actual relative cost of the CG and
SSOR iterations on a parallel computer will be a factor of the amount of
artithmetic and communication operations in each algorithm as well as
the times to perform these operations on the machine. These issues

will be discussed in more detail in Chapter 7
We now prove Theorem 4,

Theorem 4
Let K=P-Q and P be symmetric and positive definite with

p(GI<1. Then If xni "‘1' and)\]<0.

(1Y for m odd, K(Km_”) < K(Km).

133

2) for m even, K(Km+.l) < x(Km) i and only of

m+] m+1)

a+ |X1| n

)(1-xn"') < a-3Ma-a
Proof.

By (6.32), we must show that

m+1 1+ Ix]l m

1-0
1_)‘m+1 < m (6.36)
n n

Since xn < 1 and m+1 is even, (6.36) is true because

m
-8t < s %] M andg 1-xT” > 1-n]

Statement (2) of the theorem follows from (6.32) directly since

x(Kmﬂ) < K(Km) can be written as

m+1
1+ | ¢ 10" 6.7
]_xmﬂ]_)‘m :
n n
m+1 m m+1 m
and l-xn > 1-x, and 1+ |x1| > 1-6 .

Observe from Theorem 4 that if \ > |x1| a better conditioned system
will result by increasing m from m (odd) to m+1 (even), whereas. this

may not be the case if m is increased from m (even) to m+1 (0dd).

As an example of the apphcation of Theorem 4. we consider the
Jacobi splitting of any symmetric and positive definite matrix K that has
Property A (see Young [1971D. For this splitting, P=D where D is the
diagonal of K and therefore P Is symmetric and positive definite. Now,
since K has Property A, the eigenvalues A, of G occur in XA, pairs and
A, ="\, and 6=0 From (2) of the theorem. we conclude that going

from an even to a consecutive odd number of steps is advantageous if

134

and only If
m+1 m m+
(1+xn)(‘l-kn) < (l—kn) (6.38)
or equivalently,
m+1
)‘n —2xn + 1 >0 (6.39)

As m increases the Inequality in (6.39) reduces asymptotically to

A<

n (6.40)

n| —

For m=2 and m=3, the exact conditions are xn<.62 and xn<.53 respec-
tively. But for problems of Interest to us, A\, will be closer to 1 and
we can conclude that it is not advantageous to Increase m from m
(even) to m+1 (odd). This fact has been verified by numerical experi-
ments for the m-step Jacobi preconditioner on an 89x89 symmetric and

positive definite system that had Property A. The resuits are given in

Table 5.

I3

literations

45
45
23
36
21
30
18
26
16

ONOODWN—~O

Table 5. m-step Jacobi Results for 89x89 Problem

Note from Table § that increasing m from 2 to 3. from 4 to 5. and
from 6 to 7 also increases the number of iterations from 23 to 36. from

27 to 30, and from 18 to 26 respectively. On the other hand. observe

135

that increasing m from an odd to a consecutive even number always
reduces the number of iterations. ODubois. Greenbaum, Rodrique{1979]
roported similar results for Poisson’s equation but they explained the
results by assuming that the eigenvalues of M;JK were near 0.1, and 2.

Hence. our explanation given by Theorem 4 is more general.

Theorem 4 suggested that in certain instances it is better to take
an even number of steps of the preconditioner. If this were done., the
question would be to determine the conditions for K(Rm+2) < K(Rm).
These conditions are given in Theorem 5. Notice that the hypothesis of
this theorem only requires P to be symmetric and nonsingular instead of

positive definite.

Theorem S.
Let K=P-Q be symmetric and positive definite and let P be
symmetric and nonsingular. |f p(G)<1 and m s even then

K(K) < K(Km).

m+2

Proot:
From (6.32) we must show that

m+2 5™

1-6 1
m+2 < m for |x1| > Ixnl
’l-)\.' 'I-x.'
m+2 m (6.41)
1-6 < =0 for A > lx1|
1_)‘m+2 .l_)‘m n
n n

We rewrite (6.41) as

136

2 1-p Mt
1-|°lmm < l]I m for |)‘1|>|>‘nl
1- 8| 1= |2
42 (6.42)
+2 1-|a
1‘|°|mm Al — for A, >\
1-| 6| 1-|xn| .
Since & <|x1| and & ‘l)‘nl' (6.42) 1s true since
.I_xm+2
fx) = ——rn— (6 43)
1-x

is an increasing function of x for x20.

Hence, if we always take an even number of steps of the preconditioner,

a better conditioned system will result as the number of steps increases.

So far we have only addressed the question of whether a better
conditioned system resuits by increasing m We now turn to the ques-
tion of how much improvement over m=1 can be made by taking m>1
steps of the preconditioner Dubois, Greenbaum. and Rodrique{1979]
prove that the m-step PCG method can only reduce the number of
iterations needed by the 1-step PCG method by a factor of m, that is.

i1terations 1-step PCG
terations m-step PCG

<m (6.44)

In practice, this theoretical bound may not be reached and for a given
distribution of eigenvalues it may be sharper for some values of m than
for others. The results of Dubois. et.al.[1979] show this for the m-step
Jacobl PCG for Laplace’'s equation Tables 2. 3., and 4 show for the
m~step SSOR PCG method apphed to both the plane stress problem and
Laplace’s equation that the bound 1s best for m=2 Table 5 shows that

for the m-step Jacobi PCG applied to a problem with Property A that

137

the bound is extremely sharp for m=2 and extremely poor for odd values

of m.

in order to determine the conditions under which the m-step PCG
method gives the most Improvement over the 1-step PCG method. we

K(R)

examine the ratio for both odd and even m with different

K(Km)
assumptions about the distribution of the eigenvalues A of G which are

assumed to be ordered as -1¢\ <Ay¢..<d <1 with &=min |x,|. This
i

ratio can easily be calculated from the equations of (6.32) and is sum-

marized below for the various cases.

-1

'H').n'l')\ +..+tA

= xy>0

IR0 W D W 0% 2 N

]

NN
_4333

2 m-=1)
I+ |x]| TSED WD e W)

A <0.Xn>0, m odd

1+ |x]|m !
) a+ Ix] ™Mas D
Skl * [l 81 Ay<0.A_<0. m odd (6 45)
KK) <1+|x1|’">(1+ a2 .
2 m-1
a+ aorasn el Th
*aDan gy, Ay<0x 3 [Aq| m even
a-Jel™

a+xra-ay) m,

A, <0. lx.‘l > Ixnl m even

m
a-xa-[8|™
Several observations can be made from (6.45) and are listed below.
K(R1)

K(Km)

m i x]>o. the maximum value of

Qccurs as

1¢2))

€))

4)

138

xT-eo and)"-,—-91 and is equal to m.

K(K'l)

x(Km)

if x1<o and kn>0. and m is odd, the maximum value of

1+]
occurs when x;,-—-ﬂ and is equal to m(————m).
1+ 7]

The m-step PCG method (m>1) is more effactive If kn>0.

if X,<0, and xn> A and m is even, the maximum value of

3

K(K'I)

A

x(Km)

7 -

occurs when A-—>1 and|x1| =|xn|and is equal to

2_m. Note that the larger O. the larger this ratio will be.

1-8™
Hence to achieve the maximum performance Iin this case. we

would llke the value of 8 to be as close to that of A, as
possible. For K matrices with Property A, this 1s not possible
since 6=0 and the maximum ratio of the two condition numbers

is 2m.

iIn summary. the m-step PCG method gives more improvement
over the 1-step PCG method when an even number of steps of
the preconditioner are taken and the eigenvalues of the matrix

G are distributed as described in (4) above.

139
6.2.4, m-step Extrapolated PCG Methods

6.2.4.1. Description

it was pointed out in the last section that the m-step methods per—
form better If the smallest eigenvalue)‘.' of G is negative and the larg-
est eigenvalue A is positive with xn=|x1|. Furthermore, the maximum

K(K1)

value of was seen to be 2m if 0=0 and greater than 2m other-

x(Km)
wise. The purpose of this section is to demonstrate how to achieve this

distribution of eigenvalues by using extrapolation.

We begin by recalling that the iteration matrix H for an extrapolated

iterative method can be written as
H = Q-y) + 7G . (6.46)

where G I1s the associated iteration matrix for y=1

This iterative method, corresponds to the splitting of K given by
1 1-y
K=;P-(—7—P1'Q) (6 47)
where

K =P -Q (6 48)

1s the spiitting of K that leads to the unextrapolated (y=1) method with

iteration matrix G=P-1Q.
if we define
1
R = -—P 6.49)
Y

and

140

s = 1—;"4: +Q (6.50)

the preconditioning matrix Mm v for the extrapolated m-step PCG method

1S

M = RU+H +.+HT 1)) 6.51)
m.,Yy

The following Corollary gives the necessary and sufficient conditions for

Mm y to be symmetric and positive definite.

Corollary 1.

Let K=P-Q be symmetric and positive definite and let P be

symmetric and nonsingular. If ¥>0. then

M M Is symmetric.
m.y

() for odd m. Mm y is positive defimte if and only if P s

positive definite.

(3) for even m, Mm y is positive definite 1f and only If gn<'|

and 7<L where the eigenvalues of G are g <@, ¢ .. %G .
‘I-g] 1792 n
Proof:
R=%P Is symmetric since P s symmetric. it follows from

Theorem 1. that Mm y is symmetric.

Since y>0. (2) follows from Theorem 1 since for odd m. %P 1s

positive definite if and only if P is positive definite.

To prove (3) we note from Theorem 1 that for even m. Mm v
is positive definite if and only if R+S s positive definite Since
R Is symmetric and nonsingular. we know by Theorem 3 that

R+S 1s positive definite if and only f p(H)<]I. Therefore,

141

Mm y Is positive definite if and only if p((1-y}/+yG)<1 and this

condition is met if and only Iif ‘l-'y+vgn<'| and -1<1--y+-yg.I or

2
'l-g1

equivalently gn<1 and ¥< and (3) follows.

The ratio of the largest to smallest eigenvalues of Mr-n1 ,yK where

MY K o= 1-HT (6.52)
m.,vy

depends upon the distribution of the elgenvalues of H as was discussed
in the last section and this distribution will be a function of y. How-
ever, for the special case m=1,

1

My

K = yU-G)

the ratio of the largest to smallest eigenvalues of M;LK Is independent

of ¥ and extrapolation is not worthwhile in this case.

6.2.4.2. Choosing the Extrapolation Factor

We would like t0 choose vy so that the eigenvalues of H,

h‘l<h2<"'<hn satisfy
|h1| = hn (6.53)

in order to achieve the most Improvement over the 1-step extrapolated
(or unextrapolated for m=1) method. Since h,.=‘l—'y+'yg,, (6.53) leads to
the foilowing choice for v:

2

Yopt = 3G, g (6.54)

Note that if g =79, 7 will equal 1 and the matrix- G already has the
optimal distribution of eigenvalues and hence no extrapolation will be
performed. This will be the case for the Jacobi splitting for Laplace’s

equation.

142

Extrapolation is therefore most useful f all the eigenvaiues g, of G

x(lz)
are nonnegative and from (6.45) the maximum value of —— is
K(K_)
m
2m
- g.l 20, m even, extrapolation
A 1-—9
K(Ky) ‘ 1 (6.55)
K(Rm) m g1>0. no extrapolation

To illustrate how effaective extrapolation can be for m>1 we consider
the m-step SSOR PCG method. The eigenvalues of the SSOR iteration
matrix G are nonnegative and p(G)<1 for symmetric and positive definite
matrices K so the hypotheses for m even in Corollary 1 are met if we

take 7<1T29—. The plane stress problem and Laplace’s equation were
1

solved with the m-step extrapolated SSOR PCG method for the Multi-color
orderings of the respective grids. The results are given in parenthesis

in Tables 6 and 7 respectively.

m R/B/G Natural
w=1 w=1 w=1.6
o 363 363 363
1 139 111 93
2 99 (72) 80 66
3 82 65 54
4 71 (59) 57 47

Table 6. m-step SSOR (Extrapolated SSOR)
1536x1536 Plane Stress Problem
(v=1.95)

143

m R/B/G Natural
w=1 w=1] w=1.8
0 56 56 56
h 30 28 17
2 22 (17) 21 13
3 18 17 10
4 16 (14) 15 9

Table 7. m-step SSOR (Extrapolated SSOR)
768x768 Laplace's Equation

(v=17)

Note that for both the plane stress problem and Laplace’s equation, the
extrapolated method for the Multi-colored grid required fewer iterations
for convergence than the corresponding unextrapoiated method but still
required more Iterations than the unextrapolated method applied to the
natural ordering of the grid with optimal relaxation factor. The ratio of
the number of iterations for the 1-step method to the number of itera-
tions for the m-step method s given In Table 8 for the plane stress

problem and in Table 9 for Laplace’s equation

m Unextrapolated Extrapolated Theoretical Maximum
2 1.40 1.93 2.00
4 1.96 2.36 4.00
Table 8. Ratio of l-step to m-step R/B/G SSOR PCG
Plane Stress Problem
(v=1.95)
2 1.36 1.76 2.00
4 1.88 2.14 4,00

Table 9. Ratio of 1-step to m—-step R/B SSOR PCG
Laplace's Equation
(v=1.70)

144

Tables 8 and 9 show that for both problems, the extrapolated method

with m=2 gives results closer to the theoretical maximum than does m =4,

The implementation of the extrapolation method takes little extra
computational effort each iteration but does require the storage of an
auxilary vector of length equal to the number of unknowns. However,
the major consideration in the use of extrapolation Is the determination
of the extrapoiation factor y. As is seen from (6.54), the optimal value
of v depends on prior knowlege of the largest and smallest eigenvalues

of G which may not be known in practice.

6.2.4.3. Comparison to the PPCG Method

Johnson, Micchelli, and Paul (1982] have suggested symmetrically
scaling the matrix K to have unit diagonal and then taking m terms of

a parametrized Neumann series for K '= g-6)7"

as the value for Mr—n1'
They call the resuiting method the PPCG(m-1) method to mean m-step
Parametrized Preconditioned Conjugate Gradient Method. This
corresponds to a preconditioning matrix that is a polynominal of degree
m=-1in G,

M = aita,G ayGit.ta G 6.56)

derived from the Jacobi splitting
K =1-aG 6.57)
and the solution to MmE_=L can be implemented by taking m steps of

the Jacobi iterative method applied to Ki=r with initial guess F°’=0.

145

Since K./, and hence G are symmetric, clearly Mm Is symmetric.

Now, M’-n]K can be written as a polynominal in K,

M,'n1x=tao/+a1(/-K)+a2</-i<)2+...+am_](l-K)’""‘]K (6.58)
and Johnson, etal., guarantee that Mm will be positive definite by
choosing the a;'s so that the eigenvalues, y(), of Mr_n]K and hence
those of Mm are positive on the Iinterval [x].xn] that contains the
eigenvalues of K. Hence., the idea of the parametrization is to choose
the a,'s so that the eigenvalues of M’—n]K are positive on [A;.A] and
are as close to 1 as possible in some sense such as the min-max or

the least squares criteria.

We now show how to generalize this idea for any splitting of the

matrix K. If we let
K =P ~-Q (6.59)

and G=P—1Q then from (6.22), the Inverse of the m-step precongitioner

is
M’—n] = (+G+G°+.4G™ Hp~! (6.60)
We parametrize this series as.
-1 2 m-1. -1
M| = (@t GGt G P 6.61

and note from Theorem 1 that Mm @ will be symmetric if P is sym-
metric since the a's do not affect the proof of symmetry.

The expression for M;,'1 LK is given by

146

-1 - - -1 - -1 m=1,.~1 (6.62)
Mm'aK—[ao'l'a.l(l P K)+. +am_1(l P K) IP K

and is seen to be a polynominal in P 1K rather than in K as In (6.58).

This means that the values of a, should be chosen so that the eigen-
values y(\) of M;_;' oK are positive on the mterval [A;.x I that contains
the eigenvalues of P-1K and are as close to 1 as possible in some

sense such as the min-max or least squares critena.

We now consider the special case of m=2 in equation (6.61) for the

general splitting K=P-Q. The matrix Mza is then
a
M. =lpc2/ 4+ 6.63)
2.a a, a,

and the 2-step extrapolated preconditioner matrix for the same splitting

of K is seen by (651) to be

o1, 2=y -1
My, =—PCSF 1 +G) (6.64)
v

It Is known. see Chandra(1978], that the same iterates of the PCG
method will be obtained with M and any positive constant multiple of M
Hence, the extrapolated preconditioner of (6.64) yelds the same results

as the parametrized preconditioner of (6 63) If

R

2y . 2 (6.65)

2
-

or equivalently,

Y =2 T (6 66)
ao/a.lﬂ

147

We note that for m>2 such a relationship will not exist between

M and M and more research will be required to determine if
m.a m.y

the parametrized preconditioner Is Dbetter than extrapolation for these

cases.

CHAPTER 7

Paraliel Algorithm Analysis

7.1. Execution Time Model _

The method of comparing algorithms for- serial machines is the
standard complexity analysis of the number of arithmetic operations
required for completion of the algorithm. For iterative methods this can
be broken iInto the number of operations per iteration times the number

of iterations necessary for convergence.

It has been pointed out repeatedly In the literature, see Ortega and
Voigt{1977) Buzbee{1978], Grosch(1979]. Jones[1980]. Hockney[1982], for
examples, that this standard complexity analysis Is not sufficient to com-
pare parallel algorithms. Additional factors such as data transmissions
between processors, processor synchronizations. and globai decision mak-
ing among processors add to the execution time of a parailel algorithm,
The number of these overhead operations vary with each algorithm and
the number of processors used to soive the problem. In addition. the
time required per operation may be a function of the number of proces-
sors as well as the hardware/software implementation of the operation on
the paraliel machine. These considerations suggest that the analysis of
a parallel aigorithm’s performance on a particular machine should Iinclude

a model for its execution time.

In this chapter an execution time model Is developed for analyzing
the paraliel algorithms in Chapters 5§ and 6. The number of arithmetic

operations, data transmissions, synchronizations, and flag checks per

148

149

lteration are multiplled by the total number of iterations to yleid the
number of operations of each type. These numbers are then muitipiied
by the time cost for the respective operation to obtain the total execution
time. This execution time Is measured In units of one

multiplication/addition pair. A detailed description of the model follows:

Let
a = number of multiplication/addition pairs per iteration
b = number of barriler synchronizations per iteration

number of colors

(2]
n

d = number of divisions per iteration

e = number of equations of each color per processor

-~
"

number of global flag checks per Iiteration

number of global transmissions per iteration

«Q
[}

I = number of interior equations per processor
m = number of steps of m-step PCG
p = number of processors

number of receives per Iteration

-
1]

number of sum/max circultry uses per iteration

()
[

t = number of local transmissions per Iteration

v = number of local convergence tests per iteration

7 = maximum number of nonzero entries per row of K
! = number of Iterations required for convergencse

N = number of equations to be distributed to p processors

The foliowing are the costs of each operation in units of
one singte precision floating point multiplication/addition

pair.

150

cost per barrier synchronization
= cost per dlvision

= cost per global flag check

= cost per global send

cost per receive (both local and giobal

= cost per sum/max usage

= cost per local transmission (send)

< 94 » » @€ M O O
I

cost per local convergence test

The formula for the execution time (E) Is glven by
E = Ila+dD+vWV+rR+tT +gG +bB +fF +sS] 7.1

This formula can ailso be used to determine the execution time of a

sequential aigorithm by setting r.t.g.b.f. and s to zero.

The values of v.b, and f are the same for all the iterative algo-
rithms considered in Chapters 5 and 6. A description of how these
values are determined will now be given. The vaiue of ”uk- uk-1lla
must be determined at the kth iteration. |If this value is less than a
prescribed tolerance €. the iteration terminates., if not. the next iteration
Is begun. This estimate is determined in two 7steps. First. each pro-
cessor compares Its portion of _u_k. say y_: with the corresponding por-
tion _q,:-] obtained on iteration k-1. If ”y_:- y_:q“‘n <€ the proces-
sor raises its convergence flag. For a sequential aigorithm this conver-
gence criterion requires N comparisons each iteration; whereas. for a
parallel algorithm, an equal partitioning of u to the p processors aliows
these comparisons to be performed simuitaneously In the processors.

Hence the value of v is given by

151

v = N (sequential)
N/p (parallel)

7.2

<
]

We note that the complexity analysis of an algorithm on a sequential
computer rarely Includes the operation counts for the convergence test.
However, if p=O W), (7.2) implies that v=0(1) for a parallel implementa-
tion. This can cause a significant reduction In execution time of the
parallel algorithm if the convergence test is a costly operation or if the

number of Iterations is large.

Secondly, the processors must be synchronized at the end of each
iteration for the purpose of checking the convergence flags of all the

processors. That is,
(7.3)

On the Finite Element Machine this synchronization is implemented as a
barrier whereby each processor uses the signal flag hardware circult to
monitor the synchronization flag on all processors. When this flag is set
in all processors, the barrier is lowered and the processors continue
with the next instruction which is the global convergence test. To per-
form this test, each processor uses the signal flag hardware to check
the convergence flag In all processors. it all processors have set their

tlag. the algorithm terminates: if not. the next iteration is begun.

We note that other norms could be used to estimate the error. In

particutlar, the 2-norm would require (uk—uk-])r(uk-uk-]) to be formed.

This would require N multiplications and N-1 additions (N additions f
the sum is Initally set to zero) for a sequential algorithm For a paral-

lel aigorithm. N/p muitipiications can be done simultaneously by the p

182

processors and these partial sums loaded onto the sum/max circuit. The
circuit would calculate and then return the complete sum (inner product
to each processor. Since the sum/max circuit Is not yet operationai on
FEM and the actual programs run on FEM used the w—norm test, the

2-norm willl not be considered in the model.

To determine / In (7.1). for the plane stress problem for example.
let x and y denote the number of rows and columns of problem nodes
assigned to each processor as shown iIn Figure 1 where lines between

processors represent the local links that are used during computation,

i 7 r
SN NI NSO
% _— - L
N NI SISO
N NN N X
SNl BNIN NI O
|
N N IN NI T
o _ || »
SN SNBSS AN I B SN AN |

I [I
Figure 1. Problem Node Assignment

Furthermore, let d represent the number of equations at each problem
node. and assume that the grid is discretized by linear trianguiar finite
elements so that each Interlor node Is on a common finite element with

six other nodes (East, West. North, South. Northwest, Southeast).

1583

The number of equations within each processor that correspond to
the u values that are not communicated to other processors during

computation (interior equations) is given by

(7.4)

dx-Ny-1 pP<9
= Ydx-2¢-2 p>9

where we are assuming that the processors are connected in an array
fashion like the FEM so that a completely interior processor does not

occur until p=9,

The values of a.g.s.t and r in (7.1) depend on the particular itera-
tive algorithm used to solve the problem and will be discussed separately
In the following sections for the Multi-Color SOR, the Conjugate Gradlent,

and the m-step (SSOR) Preconditioned Conjugate Gradient algorithms.

7.1.1. Execution Time for Multi-Color SOR

To solve Ky=f by the Muiti-Color SOR method given by Aigorithm 3
In Chapter 5, at most 7n-1 multiplications/addition palrs for each of the
N rows of K are required to produce the next iterate and 2 additional

multiplications/additions per row to do the over-relaxation. That is,
a = N(nth (7.5

If 1 represents the number of SOR Iiterations. the total execution time for

the sequentlal Muiti-Color SOR algorithm Is given by
E = |IIN+D+NV] (7.6)

Now suppose that p processors are avallable and that p evenly

divides N. Then, the arithmetic in (7.5) is divided by p to give

154

a = Nq+O/p @.n

Chapter 5 showed how to map probiems on rectangular grids onto an
array of processors so that the Multi-color SOR method only requires a
glven processor to communicate with at most eight of its nearest neigh-
bors. For example. an Interlor processor will communicate with its four
nearest neighbors (North.South,East,West) during the solution of Laplace’s
equation if the region is discretized by the usual flve-star discretization,
and during the solution of the plane stress problem with the domain
discretized by linear triangular finite elements, an Iinterior processor will
communicate with Its North, South, East, West, Northwest, Southeast,
neighbors as shown In Figure 1. This means that the global bus and

the sum/max circuitry are not required for these discretizations and

g 0 (7.8)

s =0 (7.9

The number of local sends for each processor will equal the number of
non=-interior equations:
t = co=i

or equivalently,

d&+y-1) p<9
' = (7.10)

d@2x+2y-4) p»9

and the number of values received by each processor per iteration will
be the number of non-interior equations for all six neighboring proces-

sors:

155

70

{ed Gty +1) p>9
T -

dbt+y+1) p<9

Thus. the total parallel execution time for Red/Black/Green SOR for the

plane stress problem Is
E = IUUINM+DENVI/p+tT+rR+B +F1] 7.12)

where t. and r are given by (7.10) and (7.11) respectively.

7.1.2. Execution Time for Conjugate Gradient

To solve Ku=f by the conjugate gradient method given by Algorithm
1 in Chapter 6. the following number of muitiplications and additions are
required: at most 7N muitiplications and 7nWN-1) additions for forming
Kp. N muitiplications and N-1 additions for doing each of the Iinner

products p_TKp_ and ;_T_r_. N multiplications and N additions for each of

the computations y_k+ap.k. Lk-aKnk. and Lk+1+Bp_k respectively. In addi-
ton, 2 divisions for the calculation of @ and B8 are required. Hence, the
total number of arithmetic operations per iteration is given by (7.13)

a < 7N+5N
d =2

(7.13)

and the total execution time for the sequential conjugate gradient s

bounded by
E < IInN+5N +2D +NV] (7.14)
Now, suppose that p processors are availlable and that p evenly

divides N. Then the number of muitiplication/addition pairs in (7.13) Is

divided by p to give

156

a = (MN+5N)/p 719

but the two divisions must be done by all p processors.

The values of t,r.g. and s in (7.1) depend on the mechanism used
for doing the inner products LTL and p_TKa,. We first give these values
for the plane stress problem if a bus (such as the global bus on FEM)
alone is used. The values that each processor must communicate dur-
Ing each iteration of the conjugate gradient algorithm are the non-
Interior p values, one partial sum for LT_r,. and one partial sum for
p_TKp_. The non-interior p values are sent to the six neighboring pro-
cessors for a total of ce-~/ transmissions as given by (7.10). in addi-
tion, the partial sums for LTL and p,TKp_ are sent to the eight local
neighbor processors and broadcast over the global bus to the remaining

p—-9 processors. The totals for t and g are given in (7.16) and (7.17)

respectively.

ce-it2 7.16)

0 p <9
g = (7.17)
2 p>9

t

The non-interior values of p from the six local neighbors must be
received each iteration. Also the two partial sums LTL and QTKQ must
be received from p-1 processors and added to the accumulating global
sum. If q denotes the ratio of the time to receive and add one
number to this globali sum to the time to receilve the number, the value

of r Is given by (7.18).

(7.18)

2d&x+y+1) + 2(pp-1gq p»9
=1 daty+) + 2(0-1q p<9

157

The total execution time for the parallel conjugate gradient algorithm that

uses the global bus for Inner products Is given in (7.19).
E = |{(aN +5N tNV)/p +2D +tT +rR +gG +8 +F] (7.19)

where t. g. and r are given by (7.16), (7.17), and (7.18) respectively.

Secondly, we assume that a speclal hardware circuit such as the
sum/max circuit on the FEM Iis avallable for performing the Iinner pro-
ducts. Then the partial sums for LTL and p_TKp, are calculated simui-
taneously in the processors and then loaded onto the sum/max circuit.
summed by the circuit. and the resuit placed into a special receive

buffer in each processor. In particular, the values of t, r. g. and s

are.
t = co-i (7.20
2d &4y +1) >9
r= { d(x+);'+‘l) :ug 720
g =0 (7.22)
s =2 (7.23)

Note that the number of receives, r. is no longer O (p) since the giobal
bus Is not used. The total execution time for the parallel conjugate
gradient aigorithm that uses this special hardware for the inner products

s given Iin (7.24),
E = (N +5N+NV)/p +2D +tT +rA +2S +8 +F) (7.24)

where t and r are given by (7.20) and (7.21) respectively.

158

7.1.3. Execution Time for m-Step (SSOR) PCG

The number of multiplication/addition pairs per iteration is equal to
the number for standard conjugate gradient plus m times the number for
one step of SSOR. Each step of SSOR can be Implemented as dis—
cussed in Chapter 5§ and will require N (n+1) multiplications if either
overrelaxation or extrapolation Is used. The total execution time for the

sequential m-step SSOR PCG method Is given in (7.25).

E = PN +5N +2D0 +tNV+mN (n+1) (7.25)

The addition of the m-step SSOR preconditioner to the standard
conjugate gradient algorithm adds extra arithmetic and local send and
receive operations. It is important to note that the SSOR algorithm can
be implemented as a forward and backward Muiti-Color SOR method as
described In Chapter 5 and hence no global communication between

processors Is required for rectangular grids.

The number of multiplications. local sends. and receives required by
the m-step preconditioner alone will now be described. The arithmetic
in (7.25) due to SSOR Is distributed among p processors and is given

by (7.26).
a = mNm+1)/p (7 26)

The only communication that the m-step preconditioner adds to the PCG
algorithm is the local communication of the ﬁ values during the m-step
iterative solution of KE=L- These values must be sent to the six neigh-
bor processors twice for every step of the preconditioner, once for the

forward SOR pass and once for the reverse pass as indicated by (7.27).

159

t = 2mce-1) (7.27

Likewise, values of ﬁ must be received from the six neighbor processors
for both the forward and reverse SOR pass for every step of the

preconditioner. Hence. the number of receives is given by

2d x+y+1)m p<9
r o= { (7.28)

4d x+y+im p#9

The total execution time of the parallel m-step PCG algorithm
depends on the Implementation of the inner products. First, if the par-
tial sums of the Inner products are communicated over the global bus,
the execution time for the parallel m-step PCG method is given by

(7.29).
E = C + IImN(™+1)/p +tT +rR) (7.29)

where t and r are given by (7.27) and (7.28) respectively and C Is the

execution time of the parallel conjugate gradient method given in (7.19),

Secondly, we assume a special hardware circuit such as the
sum/max circuit on FEM Is used to perform the inner products. Then
the execution time for the m-step SSOR PCG method is given by (7.29)
where, in this case, C represents the execution time of the parailel

conjugate gradient method given In (7.24).

7.2. Modsel Valldation

To {ully validate the model, problems would need to be solved on a
p-processor array such as the Finite Element Machine so that an
algorithm’s execution time dependence on p could be determined. At

this writing. only four processors are operational on the FEM: therefore,

160

the model can only be partially validated. For instance. algorithms that
use only four processors will make use of the local communication links
and the signal flag network but will not use the sum/max hardware or

the global bus.

The plane stress problem of Chapter 2 was chosen to validate the
model on the 4-processor FEM. The plate was discretized into 50 tri-
angular finite elements and the basis functions were chosen to be
piecewise linear polynomials. As a resuit, the displacements were calcu-

lated at the vertex nodes shown in Figure 2.

=

17

-/
Z

N
~
N\

7N

'I 9

/

Pigure 2. Four Processor Assignment
Plane Stress Problem

8N

,
A 7AV/AVi Vi

A

Furthermore, the plate Is constrained on the left edge so that the dis-
placements at the six nodes along this edge are zero. The calculation
of the displacements v and v at the remaining 30 nodes must be parti-
tioned to the four processors. Processors 1 and 3 in Figure 2 are
assigned 6 nodes, or 12 equations each; whereas, processors 2 and 4
will each solve 18 equations. The speed of the 4-processor FEM s
then governed by processors 2 and 4 since more work is assigned to
them and as a result we can consider each of the four processors to

be solving 18 equations. Therefore, the best possible speedup for this

161

problem on the 4-processor machine Is

60,,. _
754 = 3.83 (7.30)

which corresponds to an efficiency of 83%.

The parameters for the current 4-processor FEM that were used In
the mode! were obtained from Tom Crockett at NASA and the arithmetic
speeds were gotten from the specifications for the AMD 95312 floating

point chip[1979].

1 mult/add pair = 844uS
1l division = &472U8 or D=0,5592
1l barrier = 18SUS or B=0,2192

1 flag check = 156US or P=0.1848

In addition, the times to send and receive values on the local links were

determined by Loendorf and Smith(1982] to be

1 local receive = 150045 or R=1,7730

1 local send = 124048 or T=1,4692

and the time for a local convergence check was assumed to equal the
time for a muitiplication/addition pair (V=1). The speedups obtained on
the 4-processor FEM for the 3-~Color SOR and standard conjugate gra-
dlent algorithm as well as those predicted by the model are given in

Tabie 1.

162

FEM Model FEM Model
Method Speedup Speedup Efficiency Efficiency
R/B/G SOR 2.84 2.93 71% 73.3%
CG 2.82 2,90 71% 72.5%

Table 1. 4~FEM and Model Results

The efficiency of 71% in Table 1 Indicates that the parallel overhead due
to communication and synchronization between processors was only 12%
of the executlon time since 17% efficiency was lost because the number
of equations was not evenly divisibie by the number of processors. We
note that the efficiencies predicted by the model agree very closely with

the 4-processor FEM results.

7.3. Model Resuits

The questions that we will answer with the model are Itemized

below:

(1) What ratlo, a., of communication time to arithmetic time must
the array computer have to efficiently support the implementation
of an algorithm, and how does this ratio change as p

increases?

(2) For a given algorithm and ratio a. what is the maximum
number of processors that shouid be used to achieve a given

officiency level?

(3) If the gilobal bus Is used to do the inner products, will the m-
step PCG(SSOR) be a more efficient aigorithm than the standard

conjugate gradient method (m=0)?

These questions can be answered by analyzing the speedup of

4)

(5

(6)

4]

(8)

9

163

a p-processor algorithm over Its corresponding single processor

version and will be discussed In section 7.3.1.

How does an algorithm’s performance on an array such as FEM
with certain hardware speeds compare with Its performance on
a benchmark hardware? A measure of this performance will be

cailed the para-efficiency and will be discussed in section 7.3.2.

For a given a, what Is the best algorithm for solving the prob-

lem as p Increases?

For a given algorithm. how does the execution time change as
a changes? In particular, below what a level will the execution

time fail to decrease significantly?

For a given a. if the global bus is used for the inner products,
for what values of m will the execution time of m-step
PCG(SSOR) be less than that of standard conjugate gradient

(m=0)?

The answers to these questions are found by examining the

executlon times as a function of p and « and are given in

section 7.3.3.

What is the tradeoff between a decrease In speed and an
increase in the chance of machine failure as p Increases?

This Issue of reliability is discussed in section 7.3.4.

For a given algorithm and ratio a. how many processors are

necessary to be competitive with a conventional machine and

164

problem solver? This question is the topic of section 7.3.5.

The model was used to answer the above questions for the algo-~
rithms of Chapter 5 and 6 as appiied to the following two test problems.
This first problem Is Laplace’s equation on a rectangular domain with
Dirlchiet boundary conditions. The domain is discretized Into 18 rows
and 50 columns of nodes so that the values at the 16 by 48 grid of
interior nodes are to be found. The resulting stiffness matrix K has
dimension 768 by 768. If the nodes are ordered by the classical
Red/Black scheme, the problem can be solved on a machine consisting
of the following number of processors which are assigned the

corresponding grid sizes.

Processors Grid size/processor
1 l6x48
4 8x24
16 4x12
64 2xX 6
128 2x 3
384 1x 2

Table 2. Processor Assignments
Laplace's Equation

The second problem Is the plane stress problem of Chapter 2. A
rectanguiar plate Is discretized by linear trianguiar finite elements as
shown In Figure 2 so that the displacements, u and v, at 16 rows and
48 columns of nodes must be found. The resulting stiffness matrix K
has dimension 1536 by 1536. These nodes are colored Red/Black/Green
as described in Chapter 5. This problem can be solved on a machine
with the following number of processors by assigning the corresponding

grid of nodes to each processor.

165

Processor Grid size/processor
1 16x48
4 8x24
16 4x12
64 2x 6
256 ilx 3

Table 3. Processor Assignments
Plane Stress Problem

We note that the execution time per iteration of an aigorithm is a func-
tion of the number of equations per processor as well as the number of
processors. If we tix the size of the problem, and allow the number of
processors and hence the number of equations per processor to vary,
we get resuits like those In the next five sections. Aithough not done
here, the size of the problem., N, could be varied and the model used
to predict the dependence on N for a fixed number of processors.
However, for algorithms like Muiti-color SOR which do not require any
global communication or summation. the execution time Is only a function
of the number of equations per processor and remains constant as N

increases.

7.3.1. Speedup Results

The speedup as a function of the number of processors,

Executlon time (1)
Execution time (p)

Speedup (p) =

for the Multl-Color SOR. the standard conjugate gradient. and the m-step
(SSOR) preconditioned conjugate gradient methods of Chapters 5 and 6
can be predicted by the model for a Finite Element Machine with partic-

ular arithmetic and hardware/software communication times. Since speedup

166

Is a measure of how well the architecture of the machine can support
the Implementation ot an algorithm, or conversely, how well an algorithm
performs on a particular machine., these arithmetic and communication
times can be viewed as design variables for the machine and by chang-
ing these times we can determine what ratio of communication to arith-

metic the machine must have to efficiently support a given algorithm.

Since the barrier operation and the flag checks occur only once per
iteration, the send and receive operations comprise the majority of the
communication between processors. Therefore, to analyze the perfor-
mance of an algorithm as the ratio of communication to arithmetic time
changes. we choose to vary T, G, and R in (7.1) and let the values of
B, F, S, and D remain constant. Although T, G, and R can have dif-
ferent values. we analyze the case where these values are equal and
denote this value by a@. We will refer to a as the ratio of communica~-
tion to arithmetic time.

The model was run with four values of a: namely, 10 2, 1071, 1.
and 10 in order to determine an algorithm's performance over a wide
range of values and to ald In machine design. Once this is done. the
results can be used to determine a smaller Interval for additional model

runs. Table 4 gives the four sets of model values where each set s

regarded as describing a particular Finite Element Machine.

167

FEM Machine T & R B E S D ¥
1 10.00 10.00 10.00 1.85 1.56 * .5592 1l
2 1.00 1.00 1.00 1.85 1.56 * .5592 1
3 .10 .10 .10 1.85 1.56 * .5592 1
4 .01 .01 .01 1.85 1.56 * .5592 1

Table 4. Four Sets of Model Costs
* (see 7.3.4)

The times to perform a barrier synchronization and a global flag test
were taken to be the times for these operations on the current machine.
An approximate time for one use of the sum/max circuit was given by

Jordan, et.al.[1979] to be

48 + logzp us (7.3.3)

To this was added the time to place a value on the circuit (assumed to
be one send) and the time to read the sum from the circuit (assumed
to be one receive). For example, if the time for 1 multiplication/addition

pair is 10~% seconds. the value of S is given by

S =T +(0.01)(48+|092p) + R (7.3.4)

For each of the machines in Table 4, Speedup(p) was determined
for the R/B SOR. standard conjugate gradient (Global Bus). standard
conjugate gradient (Sum/Max)., and R/B 1.,2-step SSOR PCG (Bus) and
(Sum/Max)} methods for the solution of Laplace’s equation. These speed-

ups are given in Table 5.

168

PCG(SSOR) PCG(SSOR)
R/B (Bus) (/M)
a P SR m=0 m=l @m=2 m=C mwl D=2
4 2.7 3.0 2.4 2.5 3.0 2.4 2.5
16 5.7 5.7 4.0 4.5 7.2 4.5 4.8
10 64 14.6 4.9 5.0 6.7 18.5 10.8 11.7
128 26.2 3.0 3.7 5.6 31.2 18.8 20.6
384 55.2 1.1 1.4 2.5 57.7 36.6 41.6
4 3.8 3.9 3.7 3.8 3.9 3.7 3.7
16 13.5 13.5 12.3 12.7 14.2 12.7 12.9
1 64 46.6 28.8 29.0 34.7 50.1 42.3 43,9
128 87.5 24.6 28.8 41.2 93.3 78.6 82.8
384 211.0 10.5 13.9 23.9 219.2 184.2 202.2
4 4.0 4.0 4.0 4.0 4.0 4.0 4.0
16 15.6 15.6 15.5 15.6 15.7 15.5 15.6
.1 64 59.6 55,9 56.3 58.5 60.5 59.6 60.5

128 114.4 87.3 92.9 104.1 116.5 115.5 118.6
384 295.2 81.9 102.1 149.8 304.5 308.5 329.5

4 4.0 4.0 4.0 4.0 4.0 4.0 4.0

lé 15.8 15.9 15.9 15.9 15.9 15.9 15.9

.01 64 61.3 61.7 62.1 62.8 6l1.8 62.2 62.9
128 117.9 117.1 119.4 122.9 119.5 121.2 123.9

384 307.4 254.6 278.6 316.5 316.9 330.8 351.6

Table 5, Speedups for Laplace's Equation

Graphs 1A, 2A., and 3A show speedup as a function of p, the number
of processors, for the R/B SOR. the CG(Bus), and the R/B 2-step SSOR
PCG(Bus) algorithms respectively. Each of these graphs shows the cases
a=.01, a=.1, 1 and 10 from top toc bottom of the graph respectively.
Graphs 1B, 2B. and 3B show the speedup as a function of the ratio «
for the same algorithms. Each of these graphs shows the cases of
p=4,16.64,128, and 384 and the five dotted lines Indicate perfect speedup
for these values of p. Graphs 1A and 1B show for R/B SOR that
p=384 processors solve the problem in the shortest time Also note
from Graph 1A that only a slight improvement in speedup is seen for

@=0.01 over a=0.1:. whereas, a large drop in speedup can be seen by

168a

390

o
] -1~
“ I
_ ! |
|
| .
oz
| | O
| ! ! w
fd | { Y o0
! i | S
" | | o>
_ | 1 3 -
_ Vo 3
pamr
" ! 1 -
| |] o
“ o "3
“ _ _
! oo
|
e
| -
o . S
[» o]
[sa]
dNd33ds
(@]
N
4l 1 ™
-
oz
o
o
e
/
o2
b B~
<
l
=
<C
- o=
. =)
Q - (o]
. o pod puuf
W nun
3383
1 1 L ©
[« B |
dNd33ds ~

390

SPEEDUP

a=,01
a=,1
a=1
a=10

-10

-10

GRAPH 2A. CG(BUS)

SPEEDUP

GRAPH 2B. CG(BUS)

9891

SPEEDUP

390

a=,01
a=.1
a=1
a=10

~-10{

-10

GRAPH 3A. R/B SSOR 2-PCG(BUS)

390

SPEEDUP

128

64

ot
(=)

.01 .1 1 1

P— —— - —— — — G- > h - i T — -

GRAPH 3B, R/B SSOR 2-PCG(BUS)

2891

169

increasing a« from 1 to 10.

However, for CG(Bus). a different story can be seen from Graph 2A
and 2B. The number of processors that solves the problem in the
shortest time Is not constant and in fact varies drastically with a. Note
that the largest speedup Iis obtained with p=384 only for a=0.01 while
p=128 gives the largest speedup only for a=0.1. At the level a=1, 64
processors gives the maximum speedup and at a=10. the speedup
decreases for more than 16 processors. Also note that for p=4 and
p=16. the efficlency is quite good for a=1. whereas for p=64 and 128,
a=0.1 Is strongly preferred over a=1 and 384 processors should only be

considered If a is 0.01 or less.

By comparing Graphs 3A and 3B with Graphs 2A and 2B, we see
that some Iimprovement over CG(Bus) can be achieved by using 2 steps
of SSOR PCG(Bus) and m=2 Is seen to be best the value of m from
Table 5. In particular, p=384 gives the best efficiency at the a=0.1
level for the 2-step SSOR PCG(Bus) aigorithm whereas p=128 was best
for CG(Bus). In addition, 64 processors give the best speedup at the
a=10 level for the 2-step SSOR PCG(Bus) algorithm whereas p=16 gave

the best speedup for this value of a for the CG(Bus) algorithm.

The speedups for the same algorithms for the plane stress problem

are glven in Table 6.

170

PCG(SSOR) PCG(SSOR)
R/B/G (Bus) (S/M)
-4 P SR m=0 m=l m=2 m=0 m=1 m=2
4 3.3 3.4 3.1 3.1 3.4 3.1 3.1
10 16 9.0 8.9 7.1 7.2 9.7 7.4 7.4
64 25,9 13.1 13.4 15.4 28.3 20.1 20.0
256 68.4 5.6 8.3 12.3 72.3 49.6 49.7

3.9 3.9 3.9 3.9

4 3.9 3.9 3.9
4.2 14.3 15.0 14.3 14.3
6.4
3.9

1 lé 14.8 l14.8 1
64 55.4 45.9 4
256 196.0 46.3 6

48.5 656.4 52.3 52.4
85.4 198.8 178.2 179.3

4 4.0 4.0 4.0 4.0 4.0 4.0 4.0

.1 le 15.8 l15.8 15.8 15.8 15.9 15.8 15.8
64 62.5 61.2 61.4 61.9 62.6 62.3 62.4

256 240.9 173.2 194.5 211.7 240.9 240.5 242.6

4 4.0 4.0 4.0 4.0 4.0 4.0 4.0

.01 16 16.0 16.0 16.0 16.0 16.0 l16.0 16.0
64 63.3 63.3 63.5 63.5 63.3 63.5 63.6

256 246.6 238.5 244.5 248.5 246.1 249.3 251.4

Table 6. Speedups for the Plane Stress Problem

Graphs 4A., 5A., 6A, and 7A show speedup as a function of p. the
number of processors, for the R/B/G SOR, the CG(Bus), the R/B/G 2-
step SSOR PCG(Bus), and the R/B/G 2-step SSOR PCG(Sum/Max) algo-
rithms respectively. Each of these graphs shows the cases a=.01, a=.1,
a=1 and a=10 from top to bottom of the graph respectively. Graphs 4B.
5B, 68B. and 7B show speedup as a function of « for the same aigo-
rithms where the four dotted horizontal lines respresent perfect speedup
for p=4, 16, 64, and 256. From Graphs 4A and 48 the R/B/G SOR
aigorithm Is seen to be very efficient on machines with a as large as 1
for p<64. Even though the speedup drops drastically for a=10. p=256
processors still solve the problem faster. From Graphs 5A and 5B and
6A and 6B, we see a situation similar to Graphs 2A and 2B and 3A

and 3B for Laplace’s equation; namely, If CG(Bus) Is used. p=256 Iis

170a

01

40S 9/8/4 *dh HdWH9

dNd33ds

0Le

40S 9/4/4 "Vh HdVY9

d
01

01=0
1=0
1°=0
10°=0

o1-

dNd33dS

0.2

170b

(SNEY9I *4S HdYYO

¥9

96¢

dNa33ds

0L¢T

(SNE)II VS HAWH9
d

o1-

01=0
=0
1°=0
10°=p

0.2

o1~

dNd33ds

SPEEDUP

270 ¢ | T
a=.01

-10 270

GRAPH 6A. R/B/G SSOR 2-PCG(BUS)

SPEEDUP

.01 .1 1 10

GRAPH 6B. R/B/G SSOR 2-PCG(BUS)

0.1

270

SPEEDUP

a=,01

-10
-10 270

GRAPH 7A, R/B/G SSOR 2-PCG(SUM/MAX)

256

SPEEDUP

.01 .1

i
10

Laay =

GRAPH 7B. R/B/G SSOR 2-PCG(SUM/MAX)

POLT

171

preferred at the a=.1 level, p=64 at the a=1 level (perhaps a=10 also).
From Graph 6A and 6B. we see that with the use of 2-step SSOR
PCG(Bus) algorithm, p=256 gilves the largest speedup up to level a=1,

but for a=10. p=64 is the maximum number of processors to use.

Graph 7A and 7B show that the sum/max hardware circuit greatly
improves the efficiency of the 2-step SSOR PCG algorithm. In particular,

p =256 solves the problem In the fastest time for ali values of a.

It should be noted that speedup Is not a viable measurement to
compare parailel algorithms since the algorithm that can be implemented
with the least parallel overhead (most efficientt may still take longer to
execute due to extra arithmetic calculations. This was the case with
R/B/G SOR applied to the plane stress problem. The algorithm is very
efficient for all values of a but takes too long to converge to a solution
to be competitive with any of the conjugate gradient type algorithms.

Execution time comparisons are given in sectlon 7.3.3.

7.3.2. Para-efficiency

Schwartz[1979] recommended the para-efficiency

E@.H)
E(p .p-array)

PEFF (p) =
as a good measure of an algorithm’s performance on a particular
hardware configuration H. The para-efficiency Is the ratio of the execu-
tion time of an aigorithm on a particular hardware, H., to the execution
time on the p-array. The p-array is an unrealizable hardware configura-
tion In which all p processors are connected to each other and a cen-

tral shared memory. The time to write into and read from this memory

Is assumed to be neglible compared with arithmetic time. Also no

172

memory contention is assumed for the p-array. This p-array Is
envisioned as an ideal architecture for p processors since the overhead

due to passing data between them is as small as possible.

The FEM can be envisioned as a p-array if the send time is equal
to the time to write to memory and the receive time is equal to the
time to read from memory. Note that FEM never has the problem of
memory contention. Let us define our p-array, or benchmark computer,
to be a FEM for which send and recelve operations over the local links
and the global bus takes 0.1us each and the barrier and flag tests
require the same time as given in Table 4. This definition views our
benchmark computer to be nearly ideal in the sense of sending and
receiving data but communication overhead can still occur in the form of
barrier or flag checking operations. This is consistent with the assump-
tion in Table 4 that the values of B, F, S, and D are constant and
that the major overhead is due to the send and receive operations The
PEFF (p) values for the machine configurations of the last section are

given in Table 7 for Laplace’s equation.

173

PCG(SSOR) PCG (SSOR)
R/B (Bus) (5/8)
[P SOR m=0 m=2 m=0 m=2
4 1.5 1.3 1.6 1.3 l.6
16 2.8 2.8 3.8 2.2 3.3
10 64 4.2 12.7 9.4 3.3 5.4
128 4,5 40.3 22.3 3.8 6.0
384 5.6 298.0 142.5 5.5 8.5
4 1.0 1.0 1.1 1.0 1.0
16 1.2 1.2 1.3 1.1 1.2
1 64 1.3 2.2 1.8 1.2 1.5
128 1.4 4.9 3.0 1.3 1.5
384 1.5 30.7 14.9 1.5 1.8
4 1.0 1.0 1.0 1.0 1.0
16 1.0 1.0 1.0 l.0 1.0
.1 64 1.0 1.1 1.1 1.0 1.1
128 1.0 1.4 2.1 1.0 1.1
384 1.1 3.9 2.4 1.0 1.1
4 1.0 1.0 1.0 1.0 1.0
16 1.0 1.0 1.0 1.0 1.0
.01 64 1.0 1.0 1.0 1.0 1.0
1289 1.0 1.0 1.0 1.0 1.0
384 1.0 1.3 1.1 1.0 1.0

Table 7. Para-efficiencies for Laplace's Equation

Several conclusions follow from Table 7.
(1) a=.01 Is virtually as good as the p-array for all the algorithms.

(2) For a=0.1. an array like the FEM supports very efficiently all

algorithms that do not use the bus. In addition., the R/B SSOR

PCG(Bus) algorithm Is very efficient for p <64.
(3) For a=1. the bus should only be considered when p<i6.

(4) For a=10, only p=4 yields a good para-efficiency.

The values of PEFF(p) are given in Table 8 for the plane stress

problem.

174

PCG(SSOR) PCG (SSOR)
(Bus) (5/M)
ez R =9 m=2 z=0 m=2
4 1.2 1.3 1.2 1.3
10 16 1.8 2.2 1.6 2.2
64 4.8 4.1 2.2 3.2
256 44.6 20.5 3.4 5.0
1 4 1.0 1.0 1.0 1.0
16 1.1 1. 1.1 1.4
64 1.4 1.3 1.1 1.2
256 5.4 3.0 1.2 1.4
4 1.0 1.0 1.0 1.0
.1 16 1.0 1.0 1.0 1.0
64 1.0 1.0 1.0 1.0
256 1.4 1.2 1.0 1.0
4 1.0 1.0 1.0 1.0
.01 16 1.0 1.0 1.0 1.0
64 1.0 1.0 1.0 1.0
256 1.0 1.0 1.0 1.0

Table 8. Para—efficiencies for Plane Stress Problem

Several conclusions follow from Table 8.
(1) a=.01 Is virtually as good as the p-array for all the algorithms.

() @=0.1 is virtually as good as the p-array for all algorithms that

do not use the bus.

(3 For a=1 and @=10, the para-efficiency is more dependent on
p:hence, the sum/max circuitry Is becoming more Important for

larger p.
(4 m=0 is more efficlent for a=1 and a=10 even though m=2 Is
seen from the next section to yield a smaller execution time.

7.3.3. Execution Time Results

If we consider factors such as simplicity and maintainabllity to be

equal for ail our aigorithms. the best parallel algorithm to solve a given

175

problem will naturally be the one that requires the least time to execute.
The execution times for the parailel aigorithms are given in Table 9 for

Laplace’s equation.

PCG(SSOR) PCG(SSOR)
R/B (Bus) (/M)

@ p SR m0 mel me2 me0 m=l m=2
1 30.1 47.3 34.6 35.3 47.3 34.6 35.3

4 1l1.1 15.8 14.6 14.3 15.6 14.4 14.2

10 64 2.1 9.6 7.0 5.1 2.6 3.2 3.0
128 1.2 15.7 9.5 6.0 1.5 1.8 1.7

384 +55 43.7 23.9 13.9 .82 94 .85

4 7.9 12,2 9.2 9.4 12.2 9.2 9.4

16 2.2 3.5 2.8 2.8 3.3 2.7 2.7

1 64 .65 1.6 1.2 1.0 .94 .82 .80
128 .34 1.9 1.2 .86 51 .44 .43

384 .14 4.5 2.5 1.5 .22 .19 17

4 7.6 11.9 8.7 8.9 11.9 8.7 8.9

16 1.9 3.0 2.2 2.3 3.0 2.2 2.3

.1 64 .51 .85 .61 .60 .78 .58 .58
128 .26 .54 .37 .34 .41 .30 .30

384 .10 .58 .34 .24 .16 .11 11

4 7.5 11.9 8.7 8.8 11.9 8.7 8.8

le 1.9 3.0 2.2 2.2 3.0 2.2 2.2

.01 64 .49 .77 .56 .56 77 .56 .56
128 .26 1+ 40 .29 .29 .40 .29 .28

384 .10 .19 .12 .11 .15 .10 .10

Table 9. Execution Times (sec) for Laplace's Equation
(1 mult/add = 0.0001 sec.)

Graphs 8A and 8B show the execution time (seconds) versus p. the
number of processors., for the R/B SOR and the m=0,1.2 step
PCG(SSOR(S/M) aigorithms for a=10 and a=1 respectively (for a=1, m=2
Is not shown). R/B SOR Is seen to be the fastest method for Laplace’s
equation for both a leveis. It is interesting to note from Graph B8A that

there exists a value of p between 4 and 16 for which taking more than

176

0 steps of m-step PCG(SSOR) is not cost effective. The reason for this
is that the time to do the extra communication required for the precon-
ditioner is more than the time gained by the fewer number of iterations.
Note that when the cost of communication is reduced as in Graph 88,
the ranking of algorithms for a!l p Iis the same as the ranking for the

case p=1. Furthermore, this ranking wiil continue as a decreases.

Graph 9A shows the execution time (seconds) versus a for the R/B
SOR algorithm for the cases p=1(dotted), p=4, p=16. p=64, p=128 and
p=384. Graph 9B shows execution time versus p for the cases a=.1,
a=1 and a=10 for the R/B SOR aigorithm. Note that p=384 gives the
least exeuction time for all a levels. Both graphs show a slight
increase In execution time from increasing a from .1 to 1 for p264 and
a larger increase from Iincreasing a from 1 to 10 for all values of p.
Graph 9A aiso can be used to help answer the question of tradeoff
between faster communication and more processors. For example, for a
machine with a=10 and p=64, a greater reduction in execution time can
be realized by going to a a=1.,p=64 machine (faster communication)
rather than adding more processors to get an a=10,p=128 or possibly

p =384 machine.

An examination of Graph 9B shows for a=10. the graph changes
convexity between p=4 and p=64. In other words. the execution time
decreases more from p=16 to p=64 than from p=4 to p=16. The rea-
son for this is that when p=16 there are completely Interior processors
and the number of local receives double (7.11) and the number of sends
virtually double (7.10). When a=10 this factor is amplified but for a=1

or a=.1, the communication cost is much less and this factor is not

noticable.

176a

40S 9/4 *56 HAVH 40S G/ *¥6 HAVHO
v8¢ 8¢T Y9 ¢ 91 ki 1 01 T ’ 1° 10°
! | | | |

! pgg=d
V\\L gZ1=d

b
—

-

|
(93S) 3IWIL NOILND3X3
3
]
Q.
1 ¢

¢
-

i | J]]
0S 0%

(23S) 3WIL NOILNI3X3

177

Graph 9B also Hlustrates that the execution time reduces by much
more when decreasing a from 10 to 1 than the reduction seen when «
is reduced from 1 to 0.1. This suggests that there will be an optimal
value of a below which the gains In execution time reduction will not
justify the cost of making the machine’'s communication faster. In fact,
a=.01 gives almost identicali execution time results as a=.1 for R/B SOR

and was not Included in Graph 9B.

The execution times for the parallel algorithms for the plane stress
problem are given In Tables 10A and 10B for the global bus and

sum/max clrcuit respectively.

PCG(SSOR)
(Bus)

a P E’Q m=] m=2 m=3 m=4

1l 1115.0 705.0 597.0 862.0 798.0

4 328.0 230.0 195.0 286.0 267.0

10 16 126.0 99.0 83.0 123.0 116.0
64 85.0 52.0 39.0 §5.0 50.0

256 201.0 85.0 49.0 58.0 47.0

4 284.0 182.0 154.0 222,0 206.0

1 16 75.0 50.0 42.0 61.0 56.0
64 24.3 15.2 12.3 17.6 16.2

256 24.1 11.0 7.0 8.9 7.5

4 27%.0 177.0 150.0 216.0 200.0

L 16 70.0 45.0 38.0 55.0 51.0
64 18.1 11.5 9.7 13.9 12.9

256 6.4 3.6 2.8 3.9 3.3

4 279.0 176.0 149.0 215.0 200.0

.01 16 70.0 44.0 37.0 54.0 50.0
64 17.6 11.1 9.4 13.5 12.5

256 4.7 2.8 2.4 3.4 3.2

Table 10A. Execution Time (seconds)
’ Plane Stress Problem (Bus)
(1 mult/add = 0.0001 sec)

178

PCG(SSOR)
(Sum/Max)

IR

p E0 mel m=2 me3 m=4

1 1115.0 705.0 597.0 862.0 798.0

4 326.0 229.0 195.0 285.0 267.0

10 l6 115.0 95.0 81.0 121.0 114.0

64 39.0 35.0 30.0 45.0 43.0

256 15.0 14.0 12.0 18.0 17.0

4 284.0 182.0 154.0 222.0 206.0

1 16 74.0 49.0 42,0 61.0 56.0

64 19.8 13.5 11.4 16.6 15.5

256 5.6 4.0 3.3 4.9 4.5

4 279.0 177.0 150.0 216.0 200.0

.1 16 70.0 45.0 38.0 55.0 51.0

64 17.8 11.3 9.6 13.8 12.8

256 4.6 2.9 2.5 3.5 3.3

4 279.0 176.0 149.0 216.0 200.0

.01 16 70.0 44.0 37.0 54.0 50.0

64 17.6 11.1 9.4 13.5 12.5

256 4.5 2.8 2.4 3.4 3.2
Table 10B. Execution Time (seconds)

Plane Stress Problem (Sum/Max)
(1 mult/add = 0.0001 sec)

Graphs 10A and 10B show the execution time (seconds) versus p
for the 0.1.2-step PCG(SSOR)(Bus) aigorithms for a=10 and a=1 respec-
tively. For both graphs, m=2 solves the problem in the least time for
atl values of p. Note from Graph 10A that the execution time increases
Iif 256 processors are used. This is because communication is expensive
for «=10 and the cost of the bus for this many processors is prohibitive.
Graph 10B shows that if communication is less expensive (a=1), that
p =256 processors still give a further reduction in execution time for m=2
and m=1 but not for m=0. This clearly shows for a large number of
processors that preconditioning Is necessary to reduce the number of

iterations In order to decrease the global communications even though

EXECUTION TIME (Sgc)

10

; I6
P
GRAPH 10A, &¢=10

64 256

CG(BUS)

EXECUTION TIME (SEC)

4 16 64 256
P

GRAPH 10B, a=1 CG(BUS)

BgLT

179

more local communications resuit.

The execution time for the same algorithms and the sum/max clrcuit
for the inner products is plotted in Graphs 11A and 11B for a=10 and
a=1 respectively. By comparing these graphs with Graphs 10A and 108B,
the need for special hardware to do the Inner products for the conjugate

gradient methods is apparent whenever p»64.

The time galned in the reduction in the number of iterations with
m >0 is greater than the extra time required for the preconditioner com-
munications; hence, m=1,2 are faster than m=0 for both graphs. Note
from Graph 11B that more of an Improvement is seen_with a=1 because
of reduced communication. The convexity changes around p=16 In
Graph 11B reflect the increase in communication cost of completely inte-
rior processors as was discussed for Graph 98B. Again, when a=1, this

increase Is not observed in Graph 11B.

Graph 12A shows the execution time (seconds) for R/B/G 2-step
SSOR PCG(S/M) as a function of a with special cases shown for
p=1(dotted), p=4, p=16, p=64, and p=256. For ali a levels, p=256
ylelds the least execution time. However, note that it may be more cost
effective to use 64 processors and make communication faster (a=1)

rather than use =10 and and increase p to 256.

Finally, Graph 12B shows execution time (seconds) versus p for the
R/B/G SSOR PCG(Sum/Max) algorithm for the special cases a=10, a=1,
and a=0.1. This graph closely resembles Graph 9B for R/B SSOR
PCG(Sum/Max) for Laplace’s equation In particular, for p<64 there Iis
very little difference between the execution time for a=.1 and a=1, but

there is a significant execution time difference between a=.1 and a=10.

179a

256

64
1 (SUM/MAX)

[~
e
- =)
i
—
<« &
<
o=
(dw]
l L .
[=} (=] o -
[=] [w) e
m —
(93S) 3IWIL NOILNO3X3
O
| &

64

16
P
GRAPH 11A,at=10 (SUM/MAX)

]

(=] —
—

S) 3IWIL NOILNIO3X3

EXECUTION TIME (SEC)

1004

—?~

—
=

4

p=64

.01

GRAPH 12A, R/B/G SSOR 2-PCG(SUM/MAX)

EXECUTION TIME (SEc)

630

100

—
[=]

1

1 4 16 64 256

P

GRAPH 12B. R/B/G SSOR 2-PCG(SUM/MAX)

q96LT

180

This suggests that there an optimal value of a, below which it is not

cost effective to produce faster hardware.

7.3.4. Rellability Considerations

Speedup (p) is an indication of how much faster a probilem can be
solved on p processors than on a single processor. However, this
measurement does not account for the fact that as more processors are
added, the machine may be less reliable because of an increased pro-

bability of component failures.

We now define the reliabiilty, R(@.t), of the array computer to be
the probability that all p processors will run at least t units of time
without fallure. To derive an expression for R (p.t) the following assump-

tlons must be made:
(1) The machine failis if any one of its processors fall.

(2> The failure of a processor is Independent of the fallures of the

other processors.
(3) The fallure rate, 8. for each processor Is constant.

(4) The reliability is a decreasing function with time.

We are Interested only In the failures due to chance and not
failures due to component “burn-in® or old age. as shown below (see

Milter{1977D).

RATE

[P

Early Chance Wearout

0

With these assumptions. the retliability of one processor is given by

181

-8t
R ('l,t.‘) = @ 1 (7.4.0)
and the mean time until failure for one processor is
g = 4 (7.4.2)
1° 3

Now, assumption (2) implies that the muitiplicative law of probability holds

for the p-processor case and that

-Bpt p

Rp.t) =29 (7.4.3)
p

where tp denotes the time to solve the problem on a p-processor

machine.

The mean time until fallure for the p-processor machine is given by

. (7.4.8)
ko =

if Eff (p) represents the efficlency with p processors,

Pt t
pt = = (7.4.5)
P speedup (p) Eft ()
and by using (7.4.5), equation (7.4.3) can be written as
"Bt]
eff (p) (7 4.6)

Rp.t) = e
(pP

Note from (7.4.6) that the reliability is an Increasing function of the effi-
ciency. Hence, If we expect the efficiency to decrease with the number
of processors., so will the reliability. However. |f the machine parameter
a and the algorithm were such that the efficiency remained nearly con-
stant as the number of processors increased. the reliability would also

be nearly constant for all p.

182

To lllustrate these concepts. Table 11 shows how the reliability changes
as the length of the solution time for the problem on a single processor
Increases. The speedups for the R/B/G SSOR PCG(Sum/Max) algorithm
for the plane stress problem were used to calculate the efficiencies in
(7.4.6). The failure rate of a single processor, 8, was taken to be
0.001 (0.001 failures every 1 unit of time), where a unit of time can be

specified to be any amount of time that precisely defines the failure rate.

Uniprocessor ~ p=l p~4 p=16 p=84 p=256
Job Length

(time unats)

1 99.90 99.87 99.78 99.68 99.49

10 99.00 98.72 97.86 96.85 94,98

100 90.48 87.89 80.56 72.61 59.74
a=10, £=0.001

1 99.90 99.90 99.89 99,88 99.86

10 99,00 98.98 98.89 98.79 98.58

100 90,48 90.25 89.41 88.50 86.69

a=1 , B=0.001

1 99,90 99.90 99.90 99.90 99.90

10 99.00 99.00 98.99 98.98 98.95

100 90.48 90.48 90.37 90.25 89,99
a=.1, £=0.001

Table 1l1. Reliabilaties

Graph 13 shows the results from Table 11 for a=1. The, graph indicates
that the efficiency drops as the number of processors increases as was

expected.

RELIABILITY (%)

100

86

|
1 10 100

UNIPROCESSOR JOB LENGTH
GRAPH 13, RELIABILITY

182a

183

This factor shouid be kept In mind when analyzing the executlon
time graphs of section 7.3.3. Even though these graphs may show a
decrease in execution time as more processors are added, the decrease
may not be enough to balance the decrease in reliability. The level of

reliabllity that is required is certainly a design issue for any machine.

7.3.5. Conventional Machines/Soivers

A natural question to ask Is how well the execution time of an
algorithm on an array computer such as the Finite Element Machine
compares to the execution time of a conventional algorithm on a con-
ventional machine. In other words, It may be of interest to determine
the number of processors. p. and the communication to arithmetic ratlo,
a. that are needed for the algorithm on the array to be competitive with

a benchmark algorithm impiemented on a benchmark machine.

To answer this question we make several assumptions. First., we
assume that a direct method such as banded Cholesky decomposition
followed by forward and backward subsititution will be the benchmark
method. Secondly. assume that all the bands of the stiffness matrix K
will fit into core storage of the benchmark computer We note that this is
the best possible situtation for the benchmark algorithm/machine since
for large problems time must be spent in bringing the matrix to and
from core and backing store. Lastly, we assume three times, 8. for
performing one muitiplication/addition pair on the benchmark computer:

namely. 10°>.107%, and 1077 us.

The number of muitiplicatlon/addition pairs for the banded Chloesky

algorithm Is easily calculated. George and Liu(1981], to be

184

3
%(b)(b+3)N - (-bs—+b2+§b)

where b Is the semi-bandwidth. The number of multiplication/addition
pairs for both the forward and backward subititution Is

2

b~ b
G+DN (—2-43)

where for the plane stress problem with an interior grid of 16 by 48 the

bandwidth and number of equations are given by

b
N

96
1536

Hence., the number of muitiplication/addition pairs, a, Is easily found to

be

a = 7891936

For the three arithmetic speeds, B=10-5. 10-6. and 10-7, the time in

seconds for this algorithm is a linear function of 8 and equals 78.92,

7.89, and .79 for the three B8 values respectively.

Graph 14 shows the execution time as a function of the number of
processors for «=0.1, 1, and 10 for the R/B/G SSOR 2-step
PCG(Sum/Max) algorithm where the dotted horizontal lines represent the
three execution times of the conventional solver on the conventional
machine. The numbers of processors required to yleld a smailler execu—
tion time than the Cholesky algorithm for the three values of 8 are

summarized In Table 12.

EXECUTION TIME (sEC)

184a

79 e = en o e e - e S W g T CEL L G S IR S D G = =y
— B=10"°
7.9;.__.B _______________________________
— ~1n=7 —
7ok B0]
| |
1 4 16P 64 256

GRAPH 14, COMPARISON WITH A CONVENTIONAL COMPUTER

185

o B
.1 > 256
1.0 > 256
10.0 > 256
g=10""

.1 > 64
1.0 > 64
10.0 > 256
g=10"°

.1 4

1.0 4

10.0 16
8=10""

Table 12. Comparison to a Conventional Solver/Machine

We acknowiedge that the comparison to a conventional solver is dif-
ficult to make because the story may change completely as the problem
size grows. For instance., direct methods will require more storage and
the number of operations may no longer be competitive with iterative
methods, especially it good Initial guesses are known. For an array
computer like FEM, the storage Is distributed across the processors and
iterative methods do not require storage of any nonzero elements of
the stiffness matrix K. hence., extra time will not be as likely to be
needed to move the data to and from backing store to core as would
be true with direct methods. The point to be made here is that this
type of analysls Is simple once the benchmark algorithm/machine are

determined and realistic times for this algorithm/machine are obtained.

CHAPTER 8

Conclusions and Future Directions

8.1. Conclusions

Two algorithms were developed In Chapter 4 for assemblying the
system of linear equations by the finite element method on array com-
puters. The first algorithm required no communication between proces-
sors but resulted In a duplication of effort among the processors. The
second algorithm required no dupiication of effort at the expense of
communication between processors. Analytic formulas were obtained for
the speedup. efficlency, and overhead of these algorithms on a p-
processor array. The more efficient algorithm was shown for p>4 pro-
cessors to be a function of the ratio of the time to send and receive
one value to the time to calculate one coefficient of the stiffness matrix
For p=4 processors. the choice of algorithms also depends on the size
of the grid of unknowns that is assigned to each processor. We aiso
described In Chapter 4 how to calculate the stress vector Iin parallel

without communication between processors or duplication of effort.

In Chapter 5 we developed a new stationary iterative method. called
Muiti-color SOR, for solving the large sparse linear systems arising from
both finite element and finite difference discretizations. Tnis method is a
generalization of the classical Red/Black ordering and allows the succes-
sive overrelaxation (SOR) method to be implemented on both vector com-
puters and parallel arrays as a muitiple sweep Jacobi method which has

Ideal properties for these machines.

186

187

The stiffness matrix K that resuits from a Muilti-color ordering of the
problem grid. was shown In general not be be consistently ordered. p-
cyclic, or generally consistently ordered: therefore, the development of a
theory for this class of matrix that will lead to the determination of the
optimal relaxation factor w is yet to be found. Numerical results show
that the SOR method with the Multi-color ordering and the natural order-
ing of the grid converges In approximately the same number of itera-
tions: therefore. the coloring of the grid for our test problems was not

detrimental to the convergence rate of the method.

An efficilent Implementation of a Muiti-color SSOR method that is
based on a forward foliowed by a backward Muiti~color SOR step was
also given In Chapter 5. Numerical resuits for this method for a plane
stress problem show that the optimal w is close if not equal to 1. it is
well known that the optimal w for the Red/Black ordering of a matrix
with Property A is 1, but it has yet to be proved whether or not this is

true for general Muiti-colored matrices.

Lastly, in Chapter 5, the Multl-color SOR method was generalized to
the Block Multi-color SOR method. |If the grid points in each block are
from k consecutive rows (or columns) of the problem grid so that the
matrix will be wm-consistently ordered., (see Youngl(1971)), a theory exists
for determining the optimal relaxation factor. On the other hand, if the
grid points are blocked by /xk blocks of convenient size for implementa-
tion on a array of processors, it is generally not the case that the

matrix will be w-consistently ordered.

In Chapter 6, we developed and analyzed an m-step preconditioned

conjugate gradient method that can be efficiently implemented on both

188

vector computers and parallel arrays. This method takes m steps of a
linear stationary iterative method derived from a symmetric and nonsingu-
lar splitting of the stiffness matrix K In order to precondition the system.
In Theorem 1. we extend a result of ODubols, Greenbaum, and
Rodriquel1979] by giving the necessary and sufficient conditions for the
resulting preconditioning matrix. M, to be symmetric and positive definite.
In Theorem 2, we relate the positive definiteness of M to the conver-
gence of the linear stationary iterative method and thereby generalize the

Jacobi Convergence Theorem.

In Theorem 3., the condition number of the preconditioned system,
n(l?m). was proven to be a decreasing function of m If all the eigen-
values of G, the Iteration matrix for the linear stationary iterative method.
are positive. However, If the smallest eigenvalue of G Is negative, the
condition number behaves differently for m odd and m even. In partic-
ular, Theorem 4 shows If xn>|x1|. the condition number is decreasing
for m odd, but is decreasing for m even if and only If the following
inequality hoids

1

m m m+
YA=X <=6 A=-)

a+ |x,|’"+1

where O8=max |x,| . This means that Increasing m from an odd to a
!

consecutive even number of steps Is more beneficlal, in some cases,
than Iincreasing m from an even to a consecutive odd number of steps.

These resuits further explain observations of Dubols. Greenbaum. and

Rodriquel(19791.

The most promising linear stationary iterative method that we used
for the m-step preconditioner was the Multi-color SSOR method. Numer-

ical resuits show that the ratlo of the number of iterations with the 2-

189

step Muiti-color SSOR PCG method to the 1-step Multi~color SSOR PCG
method was 1.40(1.36) for the plane stress problem and Laplace’s equa-
tion respectively (the theoretical maximum Is 2.0). To Improve these
resuits, we developed an m-step extrapolated PCG method that can be
effective whenever all the eigenvalues of G are nonnegative (as Is true
for SSOR). Numerical results with this method show the ratios 1.40(1.36)
are reduced to 1.93(1.76) respectively with little additional work. The
disadvantage of using this method Is that little theory exists for determin-

ing the extrapolation factor <.

Finally, In Chapter 6, we compared our m-step extrapolated PCG
method to the Parametrized Preconditioned Conjugate Gradlent Method
(PPCQ) of Johnson, Miccheili, and Paul[1982] and showed the two are
equivalent whenever m=2. For m>2, the PPCG method appears more
general since the freedom of choosing more than one parameter can
possibly lead to a better preconditioner. By using our more general
symmetric and nonsingular splitting of the matrix K, we showed how to
generalize the PPCG method. More research Is required to determine

the effectiveness of this approach.

iIn Chapter 7. we developed a model for comparing the execution
time of paraliel aigorithms on an array computer. This model included
the time for arithmetic, local convergence testing, synchronization for
decision making., sending and recelving vaiues cver a global bus, and
performing a summation of p numbers via the global bus or aiternatively
by a special hardware circult. The hardware times for doing one of
each of the above operations was varied to determine the dependence of

an algorithm’s performance on these parameters. The model was vali-

190

dated on a 4-processor Finite Element Machine at NASA Langley
Research Center: however. as more processors are added to this

machine, a more detalled validation can be done.

The model was used to predict speedups as well as execution times
for our algorithms for Laplace’s equation and the plane stress probiem
on a p-processor machine where a respresents the ratio of communica-
tion to arithmetic time. The major results are Iitemized Dbsiow for

Laplace’s equation.

(1) R/B SOR was the most efficient and fastest algorithm for ali
values of p. The speedup for 384 processors was 307 for
a=.01. 295 with a=.1, 211 with a=1 and as low as 55 with
a=10.

(2) The conjugate gradient method with the global bus for the Inner
products should not be used with a large number of processors

unless a<.01.

(3) Some Iimprovement over the CG(Bus) aigorithm Iis obtained by
taking two steps of the Red/Black SSOR preconditioner. however,
more Improvement is gotten by using the sum/max hardware
circult for the Inner products with this 2-step method but not

enough to be competitive with the Red/Black SOR algorithm.
The major resuits are itemized below for the plane stress problem.

(1) The Red/Black/Green SOR aigorithm. even though very efficient
on an array, takes too many iterations to converge to be com-

petitive with the conjugate gradient methods.

(2) The Red/Black/Green 2-step extrapolated SSOR preconditioned

conjugate gradlent aigorithm with the sum/max circuit for the

191

Inner products was the fastest method for this problem and
- quite efficlent as well. The speedup values for 256 processors
are 251 for a=.01, 242 for a=.1, 179 for a=1, and only 50 for

a=10.
(3) The execution time for the method In (2) above varied very little
when a was Increased from .1 to 1 but varied significantly for
p»16 when a was Increased from 1 to 10. Therefore, if a
parameter study were done to determine the value of «a for
design purposes, extra model runs shouid be done between the

range a=1 and a=10.

In Chapter 7, we showed that the reliabllity of a p-processor array
decreases as the value of a Iincreases. For example with p=256. a job
length of 100 time units, and a component failure rate of 1 every time
unit, the rellability decreases from 90% for a=.1 to 87% for a=1 to 60%
for @=10. Finally, in Chapter 7, we outlined the procedure for compar-
ing our algorithms with Cholesky decomposition foliowed by forward and

backward substition on a conventional computer.

8.2. Future Directions

The efficient implementation of the Multi-color SOR and the m-step
SSOR preconditioned conjugate gradient methods on an array of proces-
sors depends on the coloring of the nodes of the discretization {followed
by a partlcular mapping, or assignment. of the problem nodes to the
processors. We gave in Chapter 5 the solution to this assignment prob-
lem for the special case of a rectangular problem domain. However, for

Irregular regions, the coloring of the nodes corresponds to a graph

192

coloring problem and In general Is an NP-complete problem (see McDi-
armid(1979). and More‘(1981] for examples). Furthermore. Bokhari{1979]
showed that assigning p nodes to p processors in order to reduce the
communication time is aiso an NP-compiete problem for a general prob-
lem domain. However., Bokharl did not consider the assignment of multi-
ple nodes per processor. We note that the assignment of nodes to the
processors is not independent of the solution aigorithm used to soive the
system of llnear equations and for our algorithms must be viewed in

conjunction with the coloring problem.

A second area for further research is the comparison of block and
point Ilterative methods for parallel processors. Because of the overhead
due to communication that was seen for our point methods. block
methods may be competitive on these machines since the processor will
become more computationally bound. These methods may prove effective
for structural engineering problems since they are closely related to the
modular or substructuring approach that is commonly used by structural

engineers.

A third Important area for the extension of our Ideas Is in the
deveiopment of new Iterative algorithms such as asynchronous methods
and muiti-grid techniques. The asynchronous methods of Baudet[1978]
were Iimplemented on a muiti-processor system with central shared
memory. For the distributed memory multiple Instruction muitiple data
Finite Element Machine, research Is needed to determine If these
methods are competitive with synchronous methods. For example. the
Multi-color SOR method can be Impiemented in an asynchronous fashion,

thereby eliminating the wait time due to the synchronous receive and the

193

overhead due to some globai flag checking., but it has yet to be deter-
mined whether the time saved by this overhead outweighs the possible
Increase In time If more Iterations are necessary for convergence. We
note that the current conjugate gradient methods can not run asynchro-
nously since synchronization Is necessary to accumulate the partial sums

for the inner products.

An efficlent muiti-grid method for an architecture ilke the Finite Eile-
ment Machine is another area for future research. This method requires
relaxation on different sized problem grids and therefore may require a
different communication strategy than the eight nearest neighbor connec-
tions. In addition, a parailel iterative method for performing the smooth-

Ing relaxations must also be developed.

REFERENCES ‘

Advanced Micro Devices, Inc. [1979]. “Floating Point Processor."
Advanced MOS/LSI.

Axelsson, O. [1976]. "A Class of iterative Methods for Finite Ele-
ment Equations,” Computer Methods in Applled Mechanics
and Engineering, Vol. 9, pp. 123-137.

Baudet. G. [1978). “Asynchronous Iterative Methods for Multipro-
cessors.,” Journal Association of Computing Machinery, 25.
pp. 226-224.

Bariow, R, Evans, D. [1982). “Parallel Algorithms for the Iterative
Solution to Linear Systems." The Computer Journal, Vol.
25, No. 1, pp. 56-60.

Becker, E.. Carey, G.. Oden. J. [1981]. Finite Elements: An Intro-
duction, Volume 1. Prentice Hall, Englewood Cliffs, N.J.

Bokhari, G. [1979]. "On the Mapping Problem." Proceedings 1979
International Conference on Parallel Processing, pp. 239-
248.

Buzbee. B.L. [1978]. “Implementing Techniques for Elliptic Prob-
lems on Vector Processors,” LA-UR 80-2343, Los Alamos
Scientific Laboratory, Los Alamos. NM.

Buzbee, B.L., Boley, D., Parter, S.V. [1979]. “Applications of Block
Relaxatlon.” 1979 Society of Petroleum Engineers of AIME
Fifth Symposium on Reservoir Simulation." Denver, Co.

Chandra. R. [1978]. "Conjugate Gradient Methods for Partial Dif-
ferentlal Equations.” Ph.D. thesis, Research Report #1289,
Department of Computer Science. Yale University.

194

Coleman, T.. More. J. [1981]). "Estimation of Sparse Jacobian Ma-

trices and Graph Coloring Problems,” ANL-81-39, Appiled
Mathematics Division, Argonne National Laboratory, Ar-
gonne, Il

Concus. P.. Golub. G.. O’Leary, D. [1976]. "A Generalized Conju-

Conrad,

Conrad,

gate Gradlent Method for the Numerical Solution of Ellip-
tic Partlal Differential Equations,” STAN-CS-76-533, Com-
puter Science Department, Stanford University.

V.. Waliach, Y. [1977]. “Rterative Solution of Linear Equa-
tions on a Parallel Processor System.” [EEE Transactions
on Computers, Vol. C-26, No. 9. pp. 838-847.

V.. Wallach, Y. [1979]). ‘Alternating Methods for Sets of
Linear Equations.” Numerische Mathematik, Vol. 32, pp.
105-108.

Cryer. C.W., etal. [1981]1. *"The Solution of Linear Complementary

Dubois,

Fix. G..

Fiynn,

Fuller,

Problems on an Array Processor," MRC Technical Sum-
mary Report #2170, Mathematics Research Center,
University of Wisconsin, Madison, Wi

P.. Greenbaum, A., Rodrique. G. (1979). “Approximating
the Inverse of a Matrix for Use in Iterative Algorithms on
Vector Processors,” Computing, Vol. 22, pp. 257-268.

Larsen. K. [1971]. "On the Convergence of SOR lterations
for Finite Element Approximations to Elliptic Boundary
Value Problems," SIAM Journal Numerical Analysis, Voi. 8,
No. 3., pp. 536-547.

MJ. [1976]. "Very High-Speed Computing Systems.”
Proceedings IEEE, Vol. 54, pp. 1901-1909.

S H., Harbison, S.P. [1978] "The C.mmp Muitiprocessor.”
CMU-CS-78-146, Department of Computer Science, Car-
negie Mellon University.

186

Forsythe. G. and Wasow. W. [1860]. Finite Difference Methods for
Partial Differential Equations. John Wiley, New York.

Gannon, D. [1981). *"On Mapping Non-uniform P.D.E. Structures
and Algorithms onto Uniform Array Architectures.”
Proceedings 1981 International Conference on Parallel
Processing, pp. 100-105.

Gannon, D. [1980]. *"A Note on Pipelining a Mesh Connected
Multiprocessor for Finite Element Problems by Nested
Dissectlon.” Proceedings 1980 International Conference on
Parallel Processing, pp. 197-204.

Gantmacher. F. [1959). The Theory of Matrices, Vol. I.. Cheisea
Publishing Company. New York. pp. 296-298.

George, A., Poole, W.G. Jr.. Voigt, R. [1976]. "Analysis of
Dissection Algorithms for Vector Computers." ICASE Re-
port No. 76-17.

George, A., Liu, J [1981]. Computer Solution of Large Sparse Po-
sitive Definite Systems, Prentice Hall, Inc., Englewood
Cliffs, N.J.

Grosch, C. [1978]. “"Poisson Solvers on a Large Array Computer,"
TR 78-4, Department of Mathematical and Computing
Sciences. Old Dominlon University, Norfolk, Va.

Grosch, C. [1979). “Performance Analysis of Poisson Solvers on
Array Computers.,"TR 79-3, Department of Mathematical
and Computing Sciences Old Dominion University, Norfolk,
Va.

Hackbusch, W. [1977]. "On the Multi-Grid Method Applied to
Difference Equations.” Computing, Vol 20. pp. 291-306.

196

Hayashi, K., Yokoyama, M. {1977). ‘“Direct Simulation of Engineer-
ing Problems with a Fast Array Computer,” Bulletin of the
Japan Soclety of Mechancial Engineers, Vol. 20, No. 149,
pp. 1438-1445.

Hayes, L. [1974]. “Comparative Analysis of Iterative Techniques
for Solving Laplace’s Equation on the Unit Square on a
Parallel Processor,” M.S. Thesls, Department of
Mathematics, University of Texas. Austin.

Heller, D., Stevenson, D.. Traub. J. [1976]. “Accelerated Ilterative
Methods for the Solution of Tridiagonal Systems on
Paraliel Computers.” Journal Association Computing
Machinery, Vol. 23, No. 4, pp. 636-654.

Hestenes, M., Stiefel, E. [1852). "Methods of Conjugate Gradients
for Solving Linear Systems." J. Res. Nat. Bur. Std., pp.
409-436.

Hockney, R., Jessope [1982]. Parallel Computers, Adam Hilger
Ltd., Techno House, Redcliffe Way, Bristol BS1, Great
Britian.

Hotovy, S.. Dickson, L. [1979]. ‘"Evaluation of a Vectorizable 2-D
Transonic Finite Difference Algorithm®., American Institute
of Aeronautics and Astronautics, Inc., pp. 1-7.

Johnson, O., Micchelll, C., Paul. G. [1982] “Polynominal Precon-
ditioners for Conjugate Gradient Calculations.,” [8M
Research Report #40444#, IBM Thomas J. Watson
Research Center, Yorktown Heights, N.Y.

Jones. A., Schwarz, R. [1980]. ‘“Experience Using Multiprocessor
Systems~A Status Report,” Computing Surveys, Vol 12,
No. 2, pp. 121-165.

197

Jordan, H. [1978]. "A Special Purpose Architecture for Finite Ele-
ment Analysis,” Proceedings 1978 International Conference
on Parallel Processing, pp. 263-266.

Jordan, H., Sawyer, P. [1978]. °"A Multi-microprocessor System for
Finite Element Structural Analysis,” Trends in Computer-
lzed Structural Analysis and Synthesls, (A.Noor and H.
McComb, Jr.. Eds.). Pergamon Press., pp. 21-29,

Jordan, H. [1979]. "The Finite Element Machine-Programmer’s
Reference Manual," CSDG-79-2, University of Coiorado,
Boulder.

Jordan. H.. Scalabrin, M., Calvert, W. [1979]. "A Comparison of
Three Types of Multiprocessor Algorithms,” Proceedings
1979 International Conterence on Parallel Processing, pp.
231-238.

Kung, H.. Leiserson C. [1978]. “"Systolic Arrays for VLSL" Sparse
Matrix Proceedings, Duff, I. and Stewart., G.., editors.

Lambiotte, J. [1975]. "The Solution of Linear Systems of Equa-
tions on a Vector Computer.” Ph.D. Dissertation, Universi-
ty of Virginia, Charlottesvilie, Va.

Manteuffel, T. [1979]. “An Incomplete Factorization Technique for
Positive Detinite Linear Systems,® Mathematics of Compu-
tation, Vol. 34, No. 150, pp. 473-479.

McDiarmid, C. [1878]. ‘"Determining the Chromatic Number of a
Graph." SIAM Journal Computing, Vol. 8, No. 1, pp. 1-14.

Miller. I. Freund. J. [1977). Probability and Statistics for En-
gineers. Prentice Hall. Inc.. Englewood Cliffs, NJ.. pp.
450-453.

198

199

Nolen. J. [1979]. ‘“Application of Vector Processors to the Solu-
tion of Fimte Difference Equations.” 1979 Society of
Petroleumm Engineers of AIME Fifth Symposium on Reser-
voir Simulation, Denver, Co.

Noor. A., Fulton, R. [1974). “Impact of the CDC-STAR 100 Com-
puter on Finite Element Systems.” Sixth National ASCE
Conference on Electronic Computation, Atlanta, Ga.

Noor. A.. Voigt, 8. [1975]. ‘“"Hypermatrix Scheme for Finite Ele-
ment Systems on the CDC-STAR Computer.," Computers
and Structures, Vol. 5, 1975, pp. 287-2896.

Norrie, D., DeVries, G. {1978). An Introduction to Finite Eiement
Analysis. Academic Press. New York.

Oden, J.. Becker, E., Carey, G. [1981]. Finite Elements: An Intro-

duction, Volume |, Prentice Hall, Englewood Cliffs, N.J.

Ortega. J. (1972]. Numerical Analysis: A Second Course, Academic
Press, New York.

Ortega, J., Voigt, R. [1977]. “Solutions of Partlal Ditferential
Equations on Vector Computers.,” Proc. 1877 Army Nu-
merical Analysis Conference, pp. 475-526.

Ortega., J.. Voigt, R. [1983]. "Solutions of Partiali Differential
Equations on Parallel Computers.” (To appear in SIAM Review.)

Parter, S., Steuerwait. M. [1980]. °"On K-line and KxK Block ltera-
tive Schemes for a Problem Arising in Three-Dimensional
Elliptic Difference Equations.” SIAM Journal Numerical
Analysis, Vol. 17, No. 6, pp. 823-839.

200

Podsladlo, D.. Jordan, H 1[1981]. "Operating Systems Support for
the Finite Element Machine," CSDG-800-1, University of
Colorado, Bouider.

Reld. J. [1971). °"On the Method of Conjugate Gradients for the
Solution of Large Sparse Systems of Linear Equations,”
Proceedings Conference on Large Sparse Sets of Linear
Equations, Academic Press, New York.

Reid. J. [1972]). "The Use of Conjugate Gradients for Systems of
Linear Equations Possessing ‘Property A'." SIAM Journal
Numerical Analysis, Vol. 8, No. 2, pp. 325-332.

Reid, J. [1980]. “Solution of Linear Finite Element Equatlons.,” In-
vited chapter for special AMD volume on State of the Art
Surveys of Finite Element Methods., (Eds. A. Noor and
W. Plikey).

Rieger. C.. Trigg. R.. Bane, B. [1981]. "ZMOB: A New Computing
Engine for AL" TR-1028, Department of Computer Sci-
ence, Maryland Artificial Intelligence Group. University of
Maryland, College Park, Md.

Saad, Y., Sameh A. [1981). “lterative Methods for the Solution of

Eiliptic Difference Equations on Multiprocessors.” Lecture Notes
in Computer Science, CONPAR 81, Niirnberg, (Ed. Wolfgang

Hindler), Springer-Verlag, New York.

Sameh A., Kuck, D. [1978]. "On Stable Parallel Linear System
Solvers®, Journal Association Computing Machinery, Vol
25, No. 1. pp. 81-91

Schreiber, R. [1983]. “"Implementation of the Conjugate Gradient
Method on a Vector Computer."(To appear in SIAM Jour-
nal on Sclentitic and Statistical Computation.)

Schuitchen, E.. Kostem, C. {1973). “Solution of Linear Equations
by Iterative Methods in Finite Element Analysis." Fritz
Engineering Laboratory Report No. 400.10, Department
Civil Engineering. Lehigh University. Bethlehem, Penn.

Schwartz, J. [1979). “Ultracomputers." New York University Techni-
cal Report.

Smith, B. [1978]. “A Pipelined Shared Resource MIMD Computer.®
Proceedings 1978 International Conterence on Parallel
Processing, pp. 6-8.

Smith, C., Loendorf, D. [1982]. ‘Performance Analysis of Software
For An MIMD Computer,” CS-1982-7, Duke University,
Durham, N.C.

Storaasli, O. Peebles, S., Crockett, T., Knott, J., Adams, L. [1982].
"The Finite Element Machine: An Experiment in Parallel
Processing." NASA Technical Memorandum 84514, NASA
Langley Reseach Center, Hampton, Va,

Strang. G.. Fix, G. [1973]. An Analysis of the Finite Element
Method. Prentice-Hall, Englewood Cliffs. N.J.

Swan, R. [1977] "CM*-A Modular Multi-Microprocesor,” AFIPS
Conference Proceedings, Vol. 46, AFIPS Press. Montvale,
N.J.. pp. 637-644,

van der Vorst, H. [1981]. *"A Vectorizable Variant of Some ICCG
Methods.,” preprint, Academisch Computer Centrum
Utrecht, Budapestiaam 6, Utrecht, the Netheriands.

Varga, R. [1962]. Matrix Iterative Analysis, Prentice-Hall. Engle-
wood Cliffs, N.J.

Wellford. L.. Vahdani. B. {1981]. "A Block Iteration Scheme for
the Solution of Systems of Equations Resuiting from
Linear and Nonlinear Finite Element Models.” Computer
Methods in Applied Mechanics and Engineering, Vol. 26,
pp. 33-52.

201

Whetstone, W. [1969]. "Computer Analysis of Large Linear
Frames." Journal of the Structural Division, Proceedings
of ASCE, pp. 2401-2417.

Young. D. [1971]. |terative Solution of Large Linear Systems,
Academic Press. New York.

Zave, P.. Rheinboldt., W. [1979). “Design of an Adaptive, Parallel
Finite Element System.,* ACM Transactions on Mathemati-
cal Software, Vol. 5§, No. 1, pp. 1-17.

Zienkiewicz. 0. [1971]. The Finite Method in Engineering Science,
McGraw-Hill, London, Great Britian.

202

Report No 2 Government Accession No. 3 Recipient’s Catalog No

NASA CR-166027

Title and Subtitle % Report Date

November 1982

Iterative Algorithms for Large Sparse Linear Systems

6 Performing Organization Codi
on Parallel Computers 9 Drganization Lode

Author(s) 8 Performing Organization Report No

Loyce M. Adams
10 Work Unit No

Performing Organization Name and Address

Department of Applied Mathematics & Computer Science 11 Comtrect or Gram o
University of Virginia)
Charlottesville, VA 22904 NAG1-46

13 Type of Report and Period Covered

Sponsoring Agency Name and Address Contractor REpOl"t
National Aeronautics and Space Administration oo
Washington, DC 20546 ottty U i

Supplementary Notes

Langley Technical Monitor: Dr. Olaf 0. Storaasli

Abstract

Large sparse linear systems of equations require hours to solve on conventional
mainframe computers; however, with the advent of parallel architectures, such as
vector computers or arrays of microprocessors, these problems may be solved in less
time. In addition, with hardware becoming cheaper, parallel algorithms for solving
problems on these architectures may prove to be cost-effective.

In this thesis, we develop algorithms for assembling in parallel the sparse system
of Tinear equations that result from finite difference or finite element discretiza-
tions of elliptic partial differential equations, such as those that arise in
structural engineering. Parallel linear stationary iterative algorithms and parallel
preconditioned conjugate gradient algorithms are developed for solving these systems.
In addition, a model for comparing parallel algorithms on array architectures is
developed and results of this model for our algorithms are given.

Key Words (Suggested by Author(s)) 18 Oistribution Statement

parallel processing, finite element

methods, iterative algorithms, sparse Unclassified - Unlimited

linear systems, parallel computers Subject Category 64
Security Classif (of thes report} 20 Secunity Classif (of this page) 21 No of Pages 22 Price
Unclassified Unclassified 234 ATl

305 For sale by the National Technical Information Service, Springfield, Virgimia 22161

End of Document

