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Abstract-Solution of many scientific and engineering prob- 

lems requires large amounts of computing power. The finite 
element method [l] is a powerful numerical technique for solving 
boundary value problems involving partial differential equations 
in engineering fields such as heat flow analysis, metal forming, 
and others. As a result of finite element discretization, linear 
equations in the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA x  = b are obtained where A is large, 
sparse, and banded with proper ordering of the variables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx. In 
this paper, solution of such equations on distributed-memory 
message-passing multiprocessors implementing the hypercube [2] 
topology is addressed. Iterative algorithms based on the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAConju- 
gate Gradient method are developed for hypercubes designed for 
coarse grain parallelism. Communication requirements of differ- 
ent schemes for mapping finite element meshes onto the proces- 
sors of a hypercube are analyzed with respect to the effect of 
communication parameters of the architecture. Experimental 
results on a 16-node Intel 386-based iPSC/2 hypercube are 
presented and discussed in Section V.  

Index Terms-Finite element method, granularity, hypercube, 
linear equations, parallel algorithms 

I. INTRODUCTION 

OLUTION of many scientific and engineering problems S requires large amounts of computing power. With 
advances in VLSI and parallel processing technology, it is now 
feasible to achieve high performance and even reach interac- 
tive or real-time speeds in solving complex problems. The 
drastic reduction in hardware costs has made parallel com- 
puters available to many users at affordable prices. However, 
in order to use these general purpose computers in a specific 
application, algorithms need to be developed and existing 
algorithms restructured for the architecture. The finite element 
method [ I ]  is a powerful numerical technique for solving 
boundary value problems involving partial differential equa- 
tions in engineering fields such as heat flow analysis, metal 
forming, and others. As a result of finite element discretiza- 
tion, linear equations in the form A x  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI, are obtained where 
A is large, sparse, and banded with proper ordering of the 
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variables x .  Computational power demands of the solution of 
these equations cannot be met satisfactorily by conventional 
sequential computers and thus parallelism must be exploited. 
The problem has been recognized and addressed by other 
researchers [ 1]-[4]. Attempts to improve performance include 
a special-purpose finite element machine built by NASA [SI. 
Distributed memory multiprocessors implementing mesh or 
hypercube topologies are suitable for these problems, as a 
regular domain can be mapped to these topologies requiring 
only nearest neighbor communication [ 11. However, a closer 
look at message-passing multiprocessors reveals that speedup 
cannot be achieved that easily because of the communication 
overhead. 

Methods for solving such equations on sequential computers 
[6] can be grouped as direct methods and iterative methods. 
Since the coefficient matrix A is very large in these applica- 
tions, parallelization by distributing both data and computa- 
tions has been of interest. The Conjugate Gradient (CG) 
algorithm is an iterative method for solving sparse matrix 
equations and is being widely used because of its convergence 
properties. The sparsity of the matrix is preserved throughout 
the iterations and the CG algorithm is easily parallelized on 
distributed memory multiprocessors [ 1 I .  

In this paper, solution of such equations on distributed- 
memory message-passing multiprocessors implementing the 
hypercube [2] topology is addressed. In such an architecture, 
communication and coordination between processors is 
achieved through exchange of messages. A d-dimensional 
hypercube consists of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP = 2d  processors (nodes) with each 
processor being directly connected to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd other processors. A 
four-dimensional hypercube with binary encoding of the nodes 
is shown in Fig. 1. Note that the binary encoding of a 
processor differs from that of its neighbors in one bit. The 
processors that are not directly connected can communicate 
through other processors by software or hardware routing. 
The maximum distance between any two processors in a d- 
dimensional hypercube is d .  It has been shown that many other 
topologies such as meshes, trees, and rings can be embedded 
in a hypercube [7]. 

Achieving speedup through parallelism on such an architec- 
ture is not straightforward. The algorithm must be designed so 
that both computations and data can be distributed to the 
processors with local memories in such a way that computa- 
tional tasks can be run in parallel, balancing the computational 
loads of the processors as much as possible [8]. Communica- 
tion between processors to exchange data must also be 
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Fig. 1. Four-dimensional hypercube 

considered as part of the algorithm. One important factor in 
designing parallel algorithms is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgranularity [9]. Granularity 
depends on both the application and the parallel machine. In a 
parallel machine with a high communication latency, the 
algorithm designer must structure the algorithm so that large 
amounts of computation are done between communication 
steps. Another factor affecting parallel algorithms is the ability 
of the parallel system to overlap communication and computa- 
tion. The implementation described here achieves efficient 
parallelization by considering all these points in designing a 
parallel CG algorithm for hypercubes designed for coarse 
grain parallelism. In Section 111, communication requirements 
of different schemes for mapping finite element meshes onto 
the processors of a hypercube are analyzed with respect to the 
effect of communication parameters of the architecture. 
Section IV describes coarse grain formulations of the CG 
algorithm [ 101 that are more suitable for implementation on 
message-passing multiprocessors. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA distributed global-sum 
algorithm that makes use of bidirectional communication links 
to overlap communication further improves performance. 
Experimental results on a 16-node Intel 386-based iPSC/2 
hypercube are presented and discussed in Section V. 

11. THE BASIC CONJUGATE GRADIENT ALGORITHM 

The CG method is an optimization technique, iteratively 
searching the space of vectors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx in such a way so as to 
minimize an objective function f (x) = 1/2 (x, A x )  - ( b ,  x) 
where x = [ x l ,  . . . , X N ] '  and f : R N  -+ R .  If the coefficient 
matrix A is a symmetric, positive definite matrix of order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN, 
the objective function defined above is a convex function and 
has a global minimum where its gradient vector vanishes [ l l ] ,  
i.e., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ( x )  = A x  - b = 0, which is also the solution to Ax 
= b.  The CG algorithm seeks this global minimum by finding 
in turn the local minima along a series of lines, the directions 
of which are given by vectors po,  p I ,  p z ,  . .  in an N- 
dimensional space [ 121. The basic steps of the CG algorithm 
can be given as follows. 

Initially, choose xo and let r, = po = b - Axo, and then 
compute (ro, ro). Then, 

for k=O, 1, 2 ,  . .  

1. form q x = A p k  
2. a) form ( P k ,  qk) 

6. Pk+l=rk+l + P k P k ,  

Here rk is the residual associated with the vector xk, i.e., rk 
= b - Axk which must be null when xk is coincident with X* 

which is the solution vector. Pk is the direction vector at the 
kth iteration. A suitable criterion for halting the iterations is 
[(rkr r k ) / ( b ,  b) ]  < 6 ,  where E is a very small number such as 

The convergence rate of the CG algorithm is improved if the 
rows and columns of matrix A are individually scaled by its 
diagonal, D = diag[all, a22, - . a ,  a"] [12]. Hence, 

10-5. 

6 (2) 

where a = D - 1 / 2 A D - 1 / 2  with unit diagonal entries P = 

D1'2x and 6 = D -  II2b. Thus, b is also scaled and 1 must be 
scaled back at the end to obtain x. The eigenvalues of the 
scaled matrix A are more likely to be grouped together than 
those of the unscaled matrix A ,  thus resulting in a better 
condition number [12]. Hence, in the Scaled CG (SCG) 
algorithm, the CG method is applied to (2) obtained after 
scaling. The scaling process during the initialization phase 
requires only = 2  x z x N multiplications, where z is the 
average number of nonzero entries per row of the A matrix. 
Symmetric scaling increases the convergence rate of the basic 
CG algorithm approximately by 50 percent for a wide range of 
sample metal deformation problems. In the rest of the paper, 
the scaled linear system will be denoted by Ax = b.  

111. MAPPING CG COMPUTATIONS ONTO A HYPERCUBE 

The effective parallel implementation of the CG algorithm 
on a hypercube parallel computer requires the partitioning and 
mapping of the computation among the processors in a manner 
that results in low interprocessor communication overhead. 
This section first describes the nature of the communication 
required, outlines two approaches to mapping the computation 
onto the hypercube processors, and then evaluates their 
relative effectiveness as a function of communication parame- 
ters of the hypercube multiprocessor system. 

A .  Communication Requirements of the CG Algorithm 

The communication considerations in distributing the CG 
algorithm among the processors of a distributed-memory 
parallel computer may be understood with reference to Fig. 2. 
Fig. 2(b) displays the structure of a sparse matrix resulting 
from the finite element discretization of a simple rectangular 
region shown in Fig. 2(a). The discretization uses four-node 
rectilinear elements. In Fig. 2(a), the diagonals of the finite 
elements are joined by edges to give a finite element 
interaction graph, whose structure bears a direct relation to the 
zero-nonzero structure of the sparse system of equations that 
characterizes the discretization. Each node in a 2-D finite 
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Fig. 2. Strip mapping of (a) a finite element domain and (b) the 
corresponding A matrix onto a 2-D hypercube. 

element graph is associated with two variables, corresponding 
to two degrees of freedom. Each nodal degree of freedom has 
a corresponding row in the matrix A and is associated with a 
component in the vectors x, b,  r ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp ,  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq. Furthermore, it can 
be seen that the nonzeros in that row (column) of A occur only 
in positions corresponding to finite element nodes directly 
connected to that node in Fig. 2(a). The figure shows only a 
single point corresponding to the two degrees of freedom of a 
node. The matrix A and vectors x, b ,  r ,  p ?  and q are shown 
partitioned and assigned to the processors of a two-dimen- 
sional hypercube. The partitioning of the matrix A and vectors 
x, b,  r ,  p ,  and q can equivalently (and more conveniently) be 
viewed in terms of the partitioning of the corresponding nodes 

of the finite element interaction graph itqelf. as shown in Fig. 

If the values of cyk and ( Ik  are known at all the processors, 
the vector updates in steps 3, 4, and 6 of the CG algorithm can 
clearly be performed very simply in a distributed fashion 
without requiring any interprocessor communication. The 
individual pairwise multiplications for the dot products in 
steps 2 and 5 can also be locally performed in each processor. 
If each processor then forms a partial sum of the locally 
generated products, a global sum of the accumulated partial 
sums in each of the processors will result in the required dot 
product. Considering the arithmetic computations required in 
Steps 2-6, if the rows of A are evenly distributed among the 

2(a). 
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Fig. 3. Illustration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof 1-D strip 

U zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
PROCESSORS 

partitioning. 

processors, each processor will perform exactly the same 
amount of computation per phase of the CG algorithm. Thus, 
with respect to Steps 2-6 of the algorithm, any balanced 
mapping of the finite element nodes among the processors is 
essentially equivalent in terms of the total amount of computa- 
tion and communication. This however is not the case as far as 
step 1 goes, as discussed below. 

Step zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 of the algorithm requires a sparse matrix-vector 
product. This involves the formation of the sparse dot product 
of each row of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA with the dense vector p ,  necessitating 
interprocessor communication to obtain necessary nonlocal 
components of the p vector. Due to the relation between the 
nonzero structure of A and the interconnection structure of the 
finite element interaction graph, the interprocessor communi- 
cation required is more easily seen from Fig. 2(a) than directly 
from Fig. 2(b)-two processors need to communicate if any 
node mapped onto one of them shares an edge with any node 
mapped onto the other. Thus, the interprocessor communica- 
tion incurred with a given partitioning of the matrix A and the 
vectors x, b, r,  p ,  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq can be determined by looking at the 
edges of the finite element interaction graph that go across 
between processors. Therefore, in treating the partitioning of 
the sparse matrix A for its efficient solution using a parallel 
CG algorithm, in what follows, the structure of the finite 
element graph or associated finite element interaction graph is 
referred to rather than the structure of the A matrix itself. 

The time taken to perform an interprocessor communication 
on the Intel iPSC/2 system is the sum of two components-1) a 
setup cost zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASc that is relatively independent of the size of the 
message transmitted, and 2) a transmission cost Tc that is 
linearly proportional to the size of the message transmitted. 
Thus, 

(3) Tc,,,,,, = sc + I x Tc 

where I is the number of words transmitted. The setup cost is 
essentially independent of the distance of separation between 
the communicating processors, but is a nontrivial component 
of the total communication time unless the message is several 
thousand bytes long. Since an additional setup cost has to be 
paid for each processor communicated with, in attempting a 
mapping that minimizes communication costs, it is important 
to minimize not only the total number of bytes communicated, 
but also the number of distinct processors communicated with. 
The first of the two mapping schemes described, the 1-D strip- 
mapping approach [ 131, minimizes the number of processors 
that each processor needs to communicate to, while simultane- 
ously keeping the volume of communication moderately low. 
The second scheme, the 2-D mapping approach [13], lowers 
the volume of communication, but requires more processor 
pairs to communicate. The two schemes are compared and it is 
shown that for the values of the communication parameters of 
the Intel iPSC/2 and the range of problem sizes of current 
interest, the 1-D strip mapping scheme is the more attractive 
one. 

B. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1-D Strip Partitioning 

The I-D strip-mapping scheme attempts to partition the 
finite element graph into strips, in such a way that the nodes in 
any strip are connected to nodes only in the two neighbor 
strips. By assigning a strip partition to each processor, the 
maximum number of processors that any processor will need 
to communicate with is limited to two. The procedure can be 
understood with reference to Fig. 3. The finite element graph 
shown has 400 nodes. A load-balanced mapping of the mesh 
onto a two-dimensional hypercube with four nodes is therefore 
100 nodes per processor. Starting at the top of the leftmost 
column of the mesh, nodes in that column are counted off, 
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strip partitioning. 

until 100 nodes are visited. Since the number of nodes in the 
leftmost column is less than 100, the column immediately to its 
right is next visited, starting again at the top. By so scanning 
columns from left to right, 100 nodes are picked off and 
assigned to Po. Continuing similarly, another strip of 100 
nodes is formed and assigned to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPI .  Pi and Pz, respectively, 
are assigned the next two such strips. 

Thus, by only using a subset of the links of the hypercube, a 
linear chain of the processors is formed and adjacent strips 
generated by the strip mapping are allocated to adjacent 
processors in the linear chain. If the finite element mesh is 
large enough, such a load-balanced 1-D strip mapping is 
generally feasible. The scheme described above can be 
extended to more general rectilinear finite element graphs that 
cannot be embedded onto a regular grid; details may be found 
in [13]. 

C. 2-0  Orthogonal Strip Partitioning 

The partitions produced by 1-D strip mapping tend to 
require a relatively high volume of communication between 
processors due to the narrow but long shape of typical strips. 
The 2-D orthogonal partitioning method attempts to create 
partitions with a smaller number of boundary nodes, thereby 
reducing the volume of communication required. It involves 
the generation of two orthogonal 1-D strips. The hypercube 
parallel computer is now viewed as a PI  x P2 processor mesh. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A PI-way 1-D strip and a P2-way 1-D strip in the orthogonal 
direction are generated, as illustrated in Fig. 4 for mapping the 
mesh of Fig. 3 onto a 16-processor system. Partitions are now 
formed from the intersection regions of the strips from the two 
orthogonal 1-D strips, and can be expected to be more 
“square” (and consequently have a lower perimeteriarea) 
than those generated by a 16-way 1-D strip mapping. It can be 
easily shown that the generated partition satisfies the “nearest 

neighbor” property [13], i.e.. each such partition can have 
connections to at most eight surrounding partitions. Further- 
more, by using a synchronized communication strategy 
between mesh-connected processors, whereby for each itera- 
tion, all processors first complete communications with 
horizontally connected processors before communicating with 
their vertically connected processors, each processor needs to 
perform at most four communications [ 131. 

While each of the two orthogonal 1-D strip partitions is 
clearly load balanced, the intersection partitions in Fig. 4 are 
definitely not. Such a load imbalance among the intersection 
partitions can in general be expected. Consequently, the 2-D 
strip partitioning approach employs a second boundary refine- 
ment phase following the initial generation of the 2-D 
orthogonal strip partition. The boundary refinement procedure 
attempts to perform node transfers at the boundaries of 
partitions in such a way that the nearest neighbor property of 
the initial orthogonal partition is retained. The resulting 
partition after boundary refinement for the chosen example 
mesh is shown in Fig. 5. Details of the boundary refinement 
procedure and generalization of the orthogonal 2-D mapping 
procedure for nonmesh finite element graphs may be found in 
~ 3 1 .  

D. Comparison zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof I-D Versus 2 - 0  Partitioning 

In this subsection, the 1-D and 2-D approaches are 
compared with respect to the communication costs incurred 
for the matrix-vector product of step 1 of the CG algorithm. 
To facilitate a comparison, first a simple analysis is made for 
the case of a square mesh finite element graph with “in” 
nodes on a side. The communication costs with a I-D strip 
partition and a 2-D partition are formulated. A special case of 
2-D orthogonal strip partitioning, where a two-way partition is 
made along one dimension, is also treated [Fig. 6(c)]. This 
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Fig. 5. 2-D partition after boundary refinement. 
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m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P 

P/2 partitions 
(C) 

Strip mapping of a regular m x m finite element mesh onto P 
processors: (a) 1-D strip mapping, (b) 2-D strip mapping, (c)  1.5-D strip 
mapping. 

Fig. 6. 
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special case is interesting since it requires a maximum of three 
communications by any processor in any iteration, in contrast 
to two and four, respectively, for the 1-D and general 2-D 
case. Thus, the setup cost incurred with this special 2-D 
mapping is in between that of the other two, and the 
communication volume is also somewhere in between. This 
special case of 2-D orthogonal partitioning is hence referred to 
as a 1.5-D partition. 

The load-balanced partitioning of an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm x m node finite 
element mesh is shown in Fig. 6(a), (b), and (c) for the 1-D, 2- 
D, and 1.5-D cases, respectively. The use of a synchronized 
interprocessor communication strategy alluded to earlier can 
be used with the 2-D and 1.5-D cases. By performing all 
horizontal communications before vertical communications, 
the values to be transferred diagonally can be transmitted in a 
store-and-forward fashion, without incurring an additional 
setup cost for the diagonal communications. Thus, the number 
of transfers required between diagonally related processors in 
the mesh is added on to the volume of the intermediate 
processor’s communication. The number of variables is twice 
the number of nodes in the sample finite element problems 
used here. In the 2-D case then, each interior processor has an 
additional eight values added to its total communication 
volume, corresponding to the four diagonal transfers from its 
neighbors that it facilitates through a store-and-forward 
transmission. By referring to Fig. 6(a), (b), and (c), it is easy 
to see that communication times TID, T2D, and TI.,, for 1-D, 
2-D, and 1.5-D strip mapping, respectively, can be expressed 
as 

T l D = 2 x S C + 4 m x  T, (4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( 5 )  

(6)  
The relative merit of one scheme over the other is a function 

T~LI = 4 X SC+ (8 + 4m/Pl + 4m/P2) T, P,,  Pz> 2 

T, ,511 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 x SC + (4 + 2m t 4m/P) T,. 

of P, SC, and T,, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm as follows 

From these inequalities, it is concluded that for P = 16, PI  = 

P 2  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 = 4 the optimal approach is 

1-D strip partitioning, i 
for m<?x 8 (%+2) 

I 1.5-D strip partitioning, 
I 

1 2-D strip partitioning, 

L 

The above simplified analysis precludes the possibility of 
overlap between multiple out-bound communications from a 
processor. While such overlap is possible, the setup times for 
the individual communications are truly additive and cannot be 
overlapped. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA more detailed analysis assuming overlap 
between the transmission times with succeeding setup times 
provides results similar to the above simplified analysis with 
respect to the ranges of m where each of the above schemes is 
optimal. 

Using experimentally measured values for Sc = 970 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAps and 
Tc = 2.88 ps per double-precision number, it is seen that the 
1-D approach is superior to the other two for m < 194. This 
value of m is well above mesh sizes of interest in the context of 
a practically realistic finite element solution. While the above 
analysis considered a specific shape of a finite element graph, 
it provides a good estimate of the order of magnitude of the 
finite element graph size that makes the 1.5-D or 2-D 
approaches worth using for a parallel finite element solver on 
the Intel iPSC/2. Table I summarizes the results obtained with 

1 

1 
TI .5 < T2 iff m < ( + 2) x 

(1 +2 /P-2 /P, -2 /P , )  

For the case of a 16-processor hypercube system, we obtain 

P = 1 6 ,  P l = P 2 = J 1 6 = 4  

(7) 

~ ~ _ _ _ _ ~  __ __ ~- ~ ~ ~~~ ~ 

a number of finite element graphs using the three approaches. 
The total volume of communication required by the partition 
with the largest boundary is reported, as well as the predicted 
communication time for the local communication phase in 
each case. It can be seen that for every one of the examples, 
the partitions produced by the 1-D approach are clearly 
superior. As a consequence, only the communication protocol 
required by 1-D strip partitions was actually implemented on 
the Intel iPSC/2 system for the parallel CG algorithm. The 
formulation, implementation, and experimental performance 
measurement of the parallel CG algorithm are treated in the 
following sections. 
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Sample Problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Yo. Mesh Mesh No. of 

Size Description Nodes 

T1 15 x 20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARectanaular 300 

Max. Communication Est. Communication 
Volume in DP words 

I -D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 1.5-D I 2-D 1-D I 1.5-D I 2-D 

64 I 46 I 48 2124 I 3042 1 4018 

Time in jisecs 

IV. FORMULATION OF A COARSE GRAIN PARALLEL SCG 
(CG-SCG) ALGORITHM 

Strong data dependencies exist in the basic SCG algorithm 
which limit the available concurrency. The distributed inner 
product computation ( P k ,  q k )  which is required for the 
computation of the global scalar f f k  cannot be initiated until the 
global scalar b k - 1  is computed. Similarly, the inner product 
( r k + [ ,  r k +  I )  which is required for the computation of the 
global scalar b k  cannot be computed until the global scalar f f k  

is computed. During each SCG iteration, three distributed 
vector updates which involve no communication and one 
matrix-vector product which involves only local communica- 
tion cannot be initiated until the updating of these global 
scalars is completed. Hence, these data dependencies due to 
the inner product computations introduce a fine grain parallel- 
ism which degrades the performance of the algorithm on the 
hypercube. 

The SCG algorithm requires the computation of two inner 
product terms at each iteration step. These inner product 
calculations require global information and thus are inherently 
sequential. The Global Sum (GS) and Global Broadcast (GB) 
operations [7] both require d communication steps and 
introduce a large amount of interprocessor communication 
overhead, due to the large setup time for communication. 
Furthermore, only one floating point word is transferred and 
one inner product term is accumulated during the GS-GB 
communication steps due to the data dependencies in inner 
product computations. New formulations of the SCG al- 
gorithm that allow the parallel computation of the inner 
products are discussed in [ lo]  and [14]. The formulation 
described in [lo] is used here with a different motive, namely 
to reduce the number of setups for communication. This 
coarse grain SCG algorithm enables the computation of two 
inner products in one GS-GB step as described in the next 
section. Further improvement is obtained by using a global 
sum algorithm that takes advantage of the two physical links 
between connected processors, in the architecture, to overlap 
communication in two directions. 

A .  CG-SCG f o r s  = I 

The rationale behind this formulation is to rearrange the 
computational steps so that two inner products can be 
communicated in each GS-GB communication step after 
computing the distributed sparse matrix-vector product q k  = 

A p k .  The problem is to find the expressions for the global 
scalars f f k  and @ k  in terms of these inner products. Using the 
recurrence relation given in Step 3 of the SCG algorithm, we 

have 

Using the recurrence relation defined for r k +  once more, 

( r k + l ,  A p k ) = ( r k ,  A p k ) - a k ( A p k ,  A p k )  (11) 

is obtained. Now using the recurrence relation defined for P k  

in step 6 of the SCG algorithm, 

( r k ,  A p k ) = ( p k ,  A p k ) - @ k - I ( P k ,  A P k - l ) = ( p k ,  A p k )  (12) 

is obtained. Note that ( P k ,  A p k - , )  = 0 since the direction 
vectors generated during the SCG algorithm are A orthogonal 
[ l l ] .  Hence, inserting (12) into (11) and then (11) into (10) 
one can obtain 

- 1. 
( P k ,  A p k ) - f f k ( A p k ,  A p k )  ( A p k ,  A p k )  

b k =  - = f f k  
( P k ,  A p k )  ( P k  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 A p k )  

Therefore, the inner products ( P k ,  Apk)  and (Apk,  Apk)  are 
needed to compute the global scalars f f k  and @ k .  The value of 
the inner product ( r k + l ,  r k + l )  which is required for the 
computation of the global scalar f f k +  on the next iteration can 
be computed in terms of the previous inner product ( r k ,  r k )  

using 

( r k + l ,  r k + l ) = @ k ( r k ,  r k ) .  (13) 

The initial inner product (ro, ro) is computed using the GS-GB 
algorithm. Hence, the steps of the coarse grain parallel SCG 
algorithm can be given as follows. 

Choose XO, let ro = PO = b - A x 0  and compute (ro, ro). 
Then, for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk = 0, 1, 2, 

1. form q k  = A p k  

2. a) form ( P k ,  q k )  and ( q k ,  q k )  (in one GS-GB communi- 
cation step) 

3. a) a k  = ( r k ,  r k ) / ( P k ,  q k )  

b) b k  = ( a k ( q k ,  q k ) / ( P k ,  q k ) )  - 1. 
cl ( r k + l ,  r k + l )  = b k ( r k ,  r k )  

4. r k + l  = r k  - a k q k  

x k + l  = x k  + a k P k  

P k + l  = r k + l  + b k p k .  

Hence, the number of GS-GB communication steps is reduced 
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TABLE I1 
SOLUTION TIMES (PER ITERATION) FOR B-SCG AND zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACG-SCG AL- 
GORITHMS ON iPSC2id4 HYPERCUBE FOR DIFFERENT SIZE FINITE 

ELEMENT PROBLEMS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
No No. tPSC2ld l  iPSCZld2 tPSCZld3 iPSCZld4 

Test zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11 Mesh ' of 1 of 1' sol. time ( (  sol. time I/ sol. time / /  sol. time I/ 

T7 11 49 x 49 14752 1 297 11 - 1 - 11 - I - /I 215.3 I 210.2 11 116.1 1 110.8 11 

from two to one per iteration of the SCG algorithm. Note that 
the volume of communication does not change when compared 
to the basic SCG (B-SCG) algorithm, since two inner product 
values are accumulated in a single GS-GB communication 
step. The computational overhead per iteration is only two 
scalar multiplications and one scalar subtraction which is 
negligible. The number of divisions is reduced from two to 
one ( l / ( p k ,  q k )  is computed once). 

Numerical results for a wide range of sample problems 
show that the proposed algorithm introduces no numerical 
instability and it requires exactly the same number of iterations 
to converge as the (B-SCG) algorithm. The solution times of 
different size sample finite element problems for B-SCG and 
the CG-SCG algorithms, on 1 -4-dimensional iPSC/2 hyper- 
cubes, are given in Table 11. 

B. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACG-SCG f o r s  = 2 

The rationale behind this formulation is to accumulate four 

and ( A  ' P z k ,  A 2 p 2 k )  in a single GS-GB communication step 
after computing two consecutive distributed matrix-vector 
products 4 2 k  = Ap2, and U2k = A q 2 k  and then compute four 
global scalars zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa Z k ,  PZk,  a 2 k +  I ,  and PZk+ The derivation of the 
expressions for these global scalars are too cumbersome and 
hence are omitted here. The basic steps of the algorithm for s 
= 2 are given below. 

inner products ( P Z k ,  A p 2 k )  > ( A  P Z k ,  A p 2 k )  > ( A p 2 k 9  A 2 P 2 k ) ,  

Choose X O ,  let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP -  I = 0,  4 -  I = 0, and then compute 

ro = p o  = b - Axo 

and 

Then, for 

d) a Z k + l  = (11 - a 2 k 1 2 ) / ( 4 2  - a z k l 3 )  + 02k12 

e) 63 = 13 + 0 2 k - l / a 2 k - 1 ( $ 2  + 1 / a 2 k - I 1 1 )  

f )  0 2 k + l  = 

8) ( r 2 k + l ,  r 2 k + l )  = 0 2 k @ Z k + l  (TZk, r2k) 

b) P 2 k  + 1 = r 2 k t  1 -k P 2 k P 2 k  

c) X Z k + 2  = X2k + a 2 k P 2 k  + a 2 k + l P Z k + l  

d) A P x + I  = - 0 2 k - 1 A p 2 k - 1  + (1 f 0 2 k ) A P Z k  - 

-a2k+1[( '$2 - a 2 k 1 3 )  - aYZkil(43 + P2k13 

- aZk14)1/(4 - a 2 k l 2 )  

4. a) r 2 k + l  = r2k - a 2 k A P 2 k  

a 2 k A  'P2k  

e) r 2 k + 2  = r2k t - l  - a Z k + l A P Z k + l  

f )  P 2 k + 2  = rZk+2 + 0 2 k + l P 2 k + l .  

Note the one iteration of the above algorithm corresponds to 
two iterations of the basic SCG algorithm. Hence, the number 
of global communication steps is reduced by a factor of four, 
that is, from twice per iteration to once every two iterations. 
The scalar computational overhead of this algorithm is 12 
multiplications and IO additiodsubtractions per SCG itera- 
tion which can be neglected for sufficiently large n, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn 
= N / P .  However, there is also a single vector update 
overhead per SCG iteration, giving a percent computational 
overhead of 2: (1 / ( z  + 5 ) )  100 percent, where z is the average 
number of nonzero entries per row of the A matrix. For z = 

18, where each node interacts with eight other nodes and there 
are two degrees of freedom per F E  node, the overhead is 
2: 4.4 percent. Hence, this algorithm is recommended only for 
solving sparse linear systems of equations with A matrices 
having large z ,  on large dimensional hypercubes. This 
approach can be generalized for larger s values. However, the 
computational overhead increases with increasing s and 
furthermore the numerical stability of the algorithm decreases 
with increasing s. 

C. Comparison of B-SCG and CG-SCG 

The solution times of B-SCG and the CG-SCG (for s = 1)  
algorithms for different size test FE problems on a four- 
dimensional hypercube, iPSC/2, are given in Table 11. The 
percentage performance improvement, 7 = [( TBsCC - 

Tc~scc) /Tc~scc]  * 100 percent, decreases with the increasing 
problem size, since the ratio of the GS-GB communication 
time to the total solution time per iteration decreases by 
increasing problem size. Here, TBscG denotes the time taken 
by the B-SCG algorithm and TccscG denotes the time taken by 
the CG-SCG algorithm. For example, on a four-dimensional 



AYKANAT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAef zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: ALGORITHMS FOR SOLUTION OF LINEAR EQUATIONS ON HYPERCUBES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
_____ 

1563 

hypercube (iPSC2/d4), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 monotonically decreases from 24 
percent for the smallest test problem T1 to 5 percent for the 
largest test problem T7. It can be also observed from Table I1 
that 7 increases with the increasing dimension of the hyper- 
cube, since the complexity of the GS-GB algorithm increases 
linearly with the dimension whereas the granularity of a 
problem decreases exponentially with the dimension, as the 
domain is divided among 2d processors. For example, for the 
smallest size test problem T 1, 7 increases monotonically from 
2 percent on iPSC2idl to 24 percent on iPSC2id4. Hence, the 
proposed CG-SCG algorithm is expected to result in signifi- 
cant performance improvement on large dimensional hyper- 
cubes. 

D. The Exchange-Add Algorithm 
As already mentioned, to compute the inner products in step 

2 of the CG-SCG algorithm, the partial sums computed by 
each processor must be added to form the global sums zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( (pk,  

qk)  and (qk,  qk) ) .  Furthermore, since these values are needed 
in the next step by all processors, they must be distributed to 
all processors. The global sum algorithm [7], shown in Fig. 
7(a), for a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd = 4 dimensional hypercube requires d nearest 
neighbor communication steps. The computations and nearest 
neighbor communications (shown by solid lines) at the same 
step of the algorithm are performed concurrently. 

The global broadcast algorithm [15], shown in Fig. 7(b), for 
a d = 4 dimensionzL hypercube also requires d nearest 
neighbor communication steps. Hence, a total of 2 d  concur- 
rent nearest neighbor communication steps are required. Note 
that most of the processors stay idle during the global sum and 
global broadcast steps. An alternative algorithm, the Ex- 
change-Add algorithm is illustrated in Fig. 8. The main idea 
in this algorithm is that each processor accumulates its own 
copy of the inner product instead of only one processor 
accumulating it and then broadcasting. Let the processors of a 
d-dimensional hypercube be represented by a d-bit binary 
number (zd- * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa ,  zo). Also, define channel i as the set of 
(2d- ’) bidirectional communication links connecting two 
neighbor processors whose representation only differs in bit 
position i .  Then, the steps of the Exchange-Add algorithm 
can be given as follows. 

Initially, each processor has its own partial sum. 
step i :  f o r i  = 0, a . . ,  d - 1 

1. processors P(zd- I ,  . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe ,  z,+ 0, zr- ], . . , zo)  and 
P(zd-1, * .  ., z,+1, 1, z , - ] ,  e - . ,  zo)  concurrently 
exchange their most recent partial sums over channel i .  

2. each processor computes its new partial sum by adding 
~~ ~ 

if 

else 

end 

the partial sum it received over channel i to its most 
recent partial sum. 

This algorithm requires d exchange steps that can be over- 
lapped when two physical links are present. At the end of d 
exchange steps, each processor has its own copy of the sum. 

Fig. 9(a) and (b) illustrates the performance of the GS-GB 
and EA algorithms with respect to the number of double- 
precision (DP) words (w) added and the dimension of the 
hypercube, respectively. The node executive (NX/2) of the 
iPSC/2 handles short messages (I 100 bytes) and long 
messages (> 100 bytes) differently. Short messages are routed 
directly, whereas extra handshaking is performed between the 
two processors participating in the communication to establish 
the circuit for the transmission of a large message. This extra 
overhead causes the setup time to increase from Sc = 550 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAps 
to Sc = 970 p s  for long messages. This explains the jumps in 
the curves given in Fig. 9(a) at w = 13 (104 bytes). The 
measured performance for the GS-GB is found to be within 5 
percent of the estimated lower bound, TZ’GB = d[2(Sc + 
wT,) + wTcalc], where T,,,, is the time taken for a single DP 
add operation. However, the measured performance of the EA 
algorithm varies from T Z a S  = 1.3 TF$ (for w = 1 )  to TEas = 

1.6TE$ (for w = 30), where T,“,:‘ = d [ (&  + WTC) + 
w Tcalc] (TE: = 1 /2  y2-GB for small w). This discrepancy can 
be attributed to the software overheads for short messages and 
internal bus conflicts for long messages. 

E. Implementation of the Parallel CG-SCG Algorithm 

The distributed computations of the CG-SCG algorithm 
consist of the following operations performed at each iteration: 
matrix-vector product q k  = A p ,  (Step I ) ,  inner products (pk, 
4,) and (qk,  qk)  (Step 2), and the three vector updates required 
in Step 4. All of these basic operations are performed 
concurrently by distributing the rows of A ,  and the corres- 
ponding elements of the vectors b ,  x, r ,  p ,  and q among the 
processors of the Intel iPSC/2 16-node hypercube. Each 
processor is responsible for updating the values of those 
elements of the vectors x, r ,  p ,  and q assigned to itself. The 1- 
D approach has been implemented to distribute the problem 
due to its superior features for iPSC/2 as discussed earlier. In 
this scheme, all but the first and the last processors in the 
linear array have to communicate with their right and left 
neighbors at each iteration in order to update their own slice of 
the distributed q vector. The following communication topol- 
ogy is implemented to utilize the two serial bidirectional 
communication channels between the processors for overlap- 
ping these nearest neighbor communications. 

my processor number has even parity in the Gray code ordering then 
receive p i  E {my right neighbor’s left boundary} from my right neighbor 
send p i  E {my right boundary} to my right neighbor 
receive p i  E {my left neighbor’s right boundary} from my left neighbor 
send p i  E {my left boundary} to my left neighbor 
if my processor number has odd parity in the Gray code ordering then 
receive p i  E {my left neighbor’s right boundary} from my left neighbor 
send p i  E {my left boundary} to my left neighbor 
receive p i  E {my right neighbor’s left boundary) from my right neighbor 
send p i  E {my right boundary} to my right neighbor 
i f .  
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mx, a0010 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0001. 

STEP 2 

STEP 3 

STEP 2 

STEP 1 STEP 3 

(b) 

Fig. 7. (a) Global Sum, (b) Global Broadcast algorithms 
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Fig. 8. Exchange-Add algorithm. 
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" .  
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cute dunension 

(b) 

(b) as a function of cube dimension. 
Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9. (a) Performance of GS-GB and EA algorithms (a) as a function of w ,  
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T A B L E  111 
SOLUTION TIMES (PER ITERATION) FOR B SCG WITH GS-GB ALGORITHM 
AlvD C G S C G  WITH zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEA ALGORITHM ON 1PSC2 id4  HYPERCUBE FOR 

DIFFERFNT S17E FINITE ELEMENT PROBLEMS 

A lower bound for the complexity of this local communica- 
tion step is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT,,,,,,, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2(Sc + 2mTc), which holds under 
perfect load-balanced conditions, i.e., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnk = N / P  variables 
mapped to each processor and each processor has an equal 
number of F E  nodes at its right and left boundaries. Each 
processor of a pair coupled to communicate with each other 
issues a nonblocking (asynchronous) send after issuing a 
nonblocking receive. This is done to ensure that a receive is 
already pending for the incoming long message so that it can 
be directly copied into the user buffer area instead of being 
copied to the N X I 2  area and then transferred to the indicated 
user buffer due to a late issued receive. 

The FE nodes mapped to a processor can be grouped as 
infernaf nodes and boundary nodes [Fig. 2(a)]. Internal 
nodes are not connected to any F E  nodes mapped to another 
processor and boundary nodes are connected to at least one 
FE  node which is mapped to a neighbor processor. The 
internal sparse matrix-vector product required for updating 
the elements of the vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq h  corresponding to the internal F E  
nodes, does not require any elements of the vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPk which 
are mapped to the neighbor processors. Hence, the internal 
sparse matrix-vector product computation on each processor 
is initiated following the asynchronous local communication 
steps given above. Each processor can initiate the sparse 
matrix-vector product corresponding to its boundary FE 
nodes only after the two receive operations from its two 
neighbors are completed. Note that the synchronization on the 
asynchronous send operations can be delayed until the 
distributed vector update operations at Step 4 of the CG-SCG 
algorithm. This scheme is chosen to overlap the communica- 
tion and the computation during the internal sparse matrix- 
vector product. However, the percent overlap is measured to 
be below 5 percent due to the internal architecture of 

processors of the iPSCI2. 
The EA algorithm described in the previous section is 

implemented to compute the two inner products in Step 2 of 
the CG-SCG algorithm. The volume of communication during 
the d concurrent nearest neighbor communication steps of the 
algorithm is only 16 bytes ( 2  DP words). The short messages 
are always stored first into the N X I 2  buffer regardless of a 
pending receive message. Hence. in the implementation of the 

EA algorithm on the iPSCI2. each processor of a pair 
participating in the exchange operation issues a nonblocking 
send operation before the blocking receive operation in  order 
to prevent the delay of the send operation. The updating of the 
two partial sums is delayed until the completion of the send 
operation. 

Each processor of the hypercube computes its own copies of 
the global scalars CY and in Step 3 of the algorithm in terms of 
the two inner products computed in Step 2 of the CG-SCG 
algorithm. Then, at Step 4 of the algorithm. each processor 
updates its own slices of the distributed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, r ,  and p vectors, 
without any interprocessor communication using these global 
scalars. Solution times for this implementation are given in 
Table 111. 

V. PERFORMANCE RESULTS ANI)  DISCUSSION 

This section presents overall performance results for the 
parallel CG-SCG algorithm. A simple model can be used to 
estimate an upper bound on achievable speedup. Given a 1 -D 
strip partitioning of a finite clement graph onto P processors 
so that Nk is the number of nodes mapped onto processor ph 
and V k  is the number of values to be communicated by /'A, the 
iteration step time may be estimated as 

where T,, = ( z  f 5)TCiglc is the execution time required for 
each locally mapped variable, Sc and T(- are the setup time and 
per value transmission time, and T:: is the global sum 
evaluation time using the Exchange-Add algorithm. e is the 
efficiency of the parallel implementation (spcedupIP). Since 
the iterations of the algorithm are synchronized, the bottleneck 
processor is the one with maximal sum of local execution cost 
(2. T,;Nk) and communication cost (T(.. vh), where the local 
communication cost is modeled as described earlier in Section 
111. In addition to local execution and communication costs. 
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Test 

Prob. 

Mesh No. of Bottleneck Processor Estimated Measured 

Size Var’s Load zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI Comm. Vol. Efficiency Efficiency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T3 25 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 25 1175 80 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(W elfcimcy) 

100.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

104 82% 14% 

60.01 w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 

T4 32 x 32 -- 

T5 33 x 33 

T6 40 x 40 

T7 49 x 49 

40.0 50.0 {w  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf , , , . , . , , , 

1950 128 ~~ 128 89% ~ _ _ _  82% -. 
2143 138 136 89% 83% 

3120 200 162 93% 87% 
4752 302 200 94% 89% 

0 I m o m m 4 a o m  
no. of variables 

(a) 

4 CG-SCG(EA) 
+ E-SCG (GS-GB) 
0 CG-SCG(EA) 
+ E-SCG (GS-GB) 

speedup 

16 1 
14 - 

12 - 
IO - 
8 -  

6 -  

4 -  

2 -  

0 2 4 6 E IO 12 14 16 
110. of processors 

(b) 

Fig. 10. (a) Efficiency. (b) Speedup. 

the time required to perform a global sum operation is added to 
estimate the time for an iteration step. Table IV presents the 
estimated processor efficiency for each of the sample problems 
and compares it to the experimentally measured efficiency on 
the 16-node iPSC/2. The realized efficiency is within 10 
percent of the upper bound for the large problems. The 
deviation from the estimated bound is due partly to the fact that 
the communication model used is overly optimistic in assum- 
ing that complete overlap of data transmission during simulta- 
neous send/receive is possible. In practice, contention for an 
internal bus for long messages during local communication 
steps results in a lower achieved transmission rate. Fig. 10(a) 
shows the percent efficiency as a function of problem size, for 
d = 3 and d = 4. It can be seen that the CG-SCG algorithm 
with EA is more efficient for cases where the amount of 
computation per processor is smaller. Fig. 10(b) shows 
speedup as a function of the number of processors. It can be 

seen that the implementation of the algorithm is scalable and 
an almost linear speedup is achieved for larger problems. 

VI. CONCLUSION 

Coarse grain algorithms for message passing hypercube 
multiprocessors were presented. The implementation on a 16- 
node Intel hypercube of the (s = 1) algorithm and experimen- 
tal results were discussed. The algorithm, as expected, results 
in a higher performance improvement for cases in which the 
partitioning of the domain results in fine grain computations 
(small problems or large problems on large hypercubes) and 
for large dimensional hypercubes as the communication 
overhead is a function of d, independent of the problem size. 
The parallel CG-SCG algorithm is part of a finite element 
modeling system (ALPID) for metal deformation, based on a 
viscoplastic formulation. The incorporation of a parallel 
iterative solver in place of the original direct solver has made 
its effective parallelization on a hypercube parallel computer 
feasible. 
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