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Abstract The analytical solution of 3D datum transformation with an isotropic weight

has been elegantly presented based on Procrustes algorithm (singular value decomposi-

tion). But the existence of analytical solution of 3D datum transformation with a non-

isotropic weight needs further investigation. Based on the Lagrangian extremum law, the

paper derives the analytical formula for translation parameter and scale factor, but because

the rotation matrix is unsolved, the analytical solution does not exist. For this reason, the

paper presents two kinds of iterative approach of 3D datum transformation with a non-

isotropic weight. One is the iterative approach dependent on the objective function value,

which uses the Lagrangian minimum function in the variable of rotation matrix as the

objective function, and the other is the iterative approach dependent on the derivative of

function, which uses the 3D datum transformation model that eliminates the translation

parameter. In order to improve the speed and reliability of iterative computation, the form

of rotation matrix represented by Rodrigues matrix instead of rotation angles or unit

quaternion is adopted for the two iterative approaches. A numerical experiment is

demonstrated, and comparison analysis of the two iterative approaches is carried out. The

result shows from the view of computing speed and reliability, the iterative approach based

on derivatives is preferred.
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1 Introduction

Three-dimensional datum transformation is a central problem in geodesy, engineering

surveying, photogrammetry, geographical information science (GIS), etc., e.g. Aktuğ

(2012), Akyilmaz (2007), Burša (1967), Chen et al. (2004), Dermanis (1998), El-Mowafy

et al. (2009), Ge et al. (2013), Kashani (2006), Neitzel (2010), Paláncz et al. (2013), Soler

and Snay (2004), Soycan and Soycan (2008), Watson (2006), Zeng (2014, 2015). It aims to

determine the transformation parameter of the transformation model. Usually, the trans-

formation model adopts seven-parameter similarity transformation, including three trans-

lation parameters and three rotation angle parameters and one scale factor, see Leick

(2004), Leick and van Gelder (1975). So far a lot of approaches for computing the seven

parameters have been presented, which can be classified into two categories. One is

analytical algorithm, and the other one is iterative algorithm. The former can give the exact

solution quickly by the analytical formulae of the parameters. Its advantage over the latter

is that it does not need the initial parameter values as well as iterative computation. Due to

the difficulty of mathematical derivation, rare analytical algorithms have been put forward.

E.g., the most famous analytical algorithm is the Procrustes algorithm presented by Gra-

farend and Awange (2003). It used the singular value decomposition technique to solve the

unconstrained Lagrangian extremum problem, and obtained the computation of rotation

matrix. It can deal with the case that the weight is isotropic, namely the weight is identical

in different coordinate direction. Shen et al. (2006) presented a quaternion-based algorithm

by means of eigenvalue–eigenvector decomposition. Han (2010) presented a step-wise

approach to compute the transformation parameters considering the physical meaning of

similarity transformation. Zeng and Yi (2010a) presented an analytical algorithm based on

Rodrigues matrix. The latter needs the initial parameter values, and iterative computation.

Although it has the initial values problem of parameter, i.e. in the case that the rotation

angle is large, the iterative computation fails due to a bad initial value of parameter (see

e.g. Zeng and Tao 2003; Zeng and Yi 2011), it plays the dominant role at present, which is

proved by a large amount of literature published recently. E.g., Zeng and Tao (2003)

investigated the feasibility of linearization of transformation model in different rotation

angles. Zeng and Huang (2008) presented a kind of searching method based on genetic

algorithm and pattern search method that is suitable for any size of rotation angle. El-

Habiby, et al. (2009) compared four non-linear least squares methods for 3D coordinates

transformation, namely Steepest Descent, Trust region, Gauss–Newton and Levenberg–

Marquardt. Zeng and Yi (2011) presented a quaternion-based iterative solution of 3D

coordinates transformation. It overcomes the initial value problem of parameter and is

valid for 3D coordinate transformation of any rotation angle.

This paper is organized as follows. In Sect. 2, the analytical solution of 3D datum

transformation with a non-isotropic weight is investigated in detail based on Lagrangian

extremum law. The analytical formulae of translation parameter and scale factor are

obtained, but the rotation matrix is unsolved, i.e. the analytical solution does not exist. For

this reason, two kinds of iterative approaches are presented. One is the iterative approach

dependent on the objective function value introduced in Sect. 3, which uses the Lagrangian

minimum function as the objective function, and the other is the iterative approach

dependent on the derivative of function introduced in Sect. 4, which uses the 3D datum

transformation model that eliminates the translation parameter. In Sect. 5, a numerical

experiment is given to demonstrate the presented two approaches, and comparisons of the

two approaches are carried out. Lastly conclusions are made in the last section, i.e. Sect. 6.
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2 Basic mathematical model of 3D datum transformation with a non-
isotropic weight

The seven-parameter similarity transformation model can be expressed as

Ai ¼ kRBi þ t; ð1Þ

subject to

RTR ¼ I; detðRÞ ¼ þ1; ð2Þ

where Ai ¼ Xi Yi Zi½ �T and Bi ¼ xi yi zi½ �T (i ¼ 1; 2; � � � ; n) are the 3D coordinates

of a control point in the target and source coordinate systems of transformation, labelled as

system A and system B respectively. Superscript T represents transpose, I denotes an

identity matrix with the dimension of three, det is the determinant computation of matrix. k

denotes the scale factor, t ¼ DX DY DZ½ �T denotes the three translation parameters,

and R denotes the rotation matrix.

The computation problem of transformation parameters is sought in the principle of

least squares, namely

Lðt; k;RÞ ¼
X

n

i¼1

Ai � kRBi � tð ÞTPi Ai � kRBi � tð Þ ¼ min; ð3Þ

where Pi is the weight matrix corresponding to the control point i, which is non-isotropic

and even correlated in different coordinate direction.

Equation (3) is essentially an optimization problem, and can usually be solved by the

means of Lagrangian extremum law. If and only if the following conditions are satisfied,

the Lagrangian extremum exists.

oL

ot
¼ 0; ð4Þ

oL

ok
¼ 0; ð5Þ

oL

oR
¼ 0: ð6Þ

By Eqs. (3) and (4), one gets

oL

ot
¼
X

n

i¼1

�2 Ai � kRBi � tð ÞTPi ¼ 0; ð7Þ

further making the transpose of Eq. (7), one gets

X

n

i¼1

PT
i Ai � kRBi � tð Þ ¼ 0; ð8Þ

and then

t ¼
X

n

i¼1

PT
i

 !�1
X

n

i¼1

PT
i Ai � kRBið Þ: ð9Þ
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Let

pi ¼
X

n

i¼1

PT
i

 !�1

PT
i ; ð10Þ

thus

t ¼
X

n

i¼1

pi Ai � kRBið Þ: ð11Þ

Obviously, t is the function form of k and R:

Substituting Eq. (11) into Eq. (3), one gets

Lðk;RÞ ¼
X

n

i¼1

Ai � kRBi �
X

n

j¼1

pj Aj � kRBj

� �

 !T

Pi Ai � kRBi �
X

n

j¼1

pj Aj � kRBj

� �

 !

¼
X

n

i¼1

Ai �
X

n

j¼1

pjAj � k RBi �
X

n

j¼1

pjRBj

 ! !T

� Pi Ai �
X

n

j¼1

pjAj � k RBi �
X

n

j¼1

pjRBj

 ! !

: ð12Þ

Let

�Ai ¼ Ai �
X

n

j¼1

pjAj; ð13Þ

thus Eq. (12) is written as

Lðk;RÞ ¼
X

n

i¼1

�Ai � k RBi �
X

n

j¼1

pjRBj

 ! !T

Pi
�Ai � k RBi �

X

n

j¼1

pjRBj

 ! !

¼
X

n

i¼1

�AT
i Pi

�Ai � k�AT
i Pi RBi �

X

n

j¼1

pjRBj

 !

� k RBi �
X

n

j¼1

pjRBj

 !T

Pi
�Ai

þ k
2 RBi �

X

n

j¼1

pjRBj

 !T

Pi RBi �
X

n

j¼1

pjRBj

 !

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

¼
X

n

i¼1

�AT
i Pi

�Ai � k�AT
i Pi RBi �

X

n

j¼1

pjRBj

 !

� k�AT
i P

T
i RBi �

X

n

j¼1

pjRBj

 !

þ k
2 RBi �

X

n

j¼1

pjRBj

 !T

Pi RBi �
X

n

j¼1

pjRBj

 !

0

B

B

B

B

B

@

1

C

C

C

C

C

A

¼
X

n

i¼1

�AT
i Pi

�Ai � k�AT
i Pi þ PT

i

� �

RBi �
X

n

j¼1

pjRBj

 !

þ k
2 RBi �

X

n

j¼1

pjRBj

 !T

Pi RBi �
X

n

j¼1

pjRBj

 !

0

B

B

B

B

B

@

1

C

C

C

C

C

A

: ð14Þ
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Substituting Eq. (14) into Eq. (5), one gets

oL

ok
¼�

X

n

i¼1

�AT
i Pi þ PT

i

� �

RBi �
X

n

j¼1

pjRBj

 ! !

þ 2k
X

n

i¼1

RBi �
X

n

j¼1

pjRBj

 !T

Pi RBi �
X

n

j¼1

pjRBj

 ! !

¼ 0;

ð15Þ

thus

k ¼

P

n

i¼1

�AT
i Pi þ PT

i

� �

RBi �
P

n

j¼1

pjRBj

 ! !

2
P

n

i¼1

RBi �
P

n

j¼1

pjRBj

 !T

Pi RBi �
P

n

j¼1

pjRBj

 ! !
: ð16Þ

Obviously, k is the function form of R.

Substituting Eq. (16) into Eq. (14), one gets

LðRÞ ¼
X

n

i¼1

�AT
i Pi

�Ai

� �

�

P

n

i¼1

�AT
i Pi þ PT

i

� �

RBi �
P

n

j¼1

pjRBj

 ! !

2
P

n

i¼1

RBi �
P

n

j¼1

pjRBj

 !T

Pi RBi �
P

n

j¼1

pjRBj

 ! !

�
X

n

i¼1

�AT
i Pi þ PT

i

� �

RBi �
X

n

j¼1

pjRBj

 ! !

þ

P

n

i¼1

�AT
i Pi þ PT

i

� �

RBi �
P

n

j¼1

pjRBj

 ! !

2
P

n

i¼1

RBi �
P

n

j¼1

pjRBj

 !T

Pi RBi �
P

n

j¼1

pjRBj

 ! !

0

B

B

B

B

B

@

1

C

C

C

C

C

A

2

�
X

n

i¼1

RBi �
X

n

j¼1

pjRBj

 !T

Pi RBi �
X

n

j¼1

pjRBj

 ! !

;

ð17Þ

thus

LðRÞ ¼
X

n

i¼1

�AT
i Pi

�Ai

� �

�

P

n

i¼1

�AT
i Pi þ PT

i

� �

RBi �
P

n

j¼1

pjRBj

 ! ! !2

4
P

n

i¼1

RBi �
P

n

j¼1

pjRBj

 !T

Pi RBi �
P

n

j¼1

pjRBj

 ! !
: ð18Þ

Substituting Eq. (18) into Eq. (6), one gets a very complex equation from which the

analytical formula of R is impossible. In other words, the analytical solution of R does not

exist when the rotation is non-isotropic and even correlated in different coordinate

direction. Therefore, to overcome the problem, two kinds of iterative approaches are
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presented in this paper. One is dependent on the objective function value, while the other is

dependent on the derivative of function.

3 Iterative approach dependent on function value

Iterative approach dependent on function value is a family of iterative approach, also called

direct search method that does not depend on the derivative information of function. It is

very useful in the cases that the deduce process of derivative of function is very difficult

and even derivative of function is not existing. The direct search concept is firstly pre-

sented by Hooke and Jeeves (1961). Pattern search method is a kind of very popular direct

search method, and for its more detail, the readers are referred to e.g. Torczon (1997),

Lewis, et al. (2000), Dolan, et al. (2003), Al-Sumaita, et al. (2007), Zeng and Yi (2010b).

In this paper pattern search method is supposed to solve the Lagrangian minimum problem

of Eq. (18).

The variable in Eq. (18) namely R is a matrix with 3 rows and 3 columns, usually

represented by rotation angles (see e.g. El-Habiby et al. 2009; Zeng and Yi, 2011), unit

quaternion (see e.g. Shen et al. 2006; Zeng and Yi 2011), and Rodrigues matrix (see e.g.

Zeng and Yi 2010a). If the form of rotation matrix represented by rotation angles is used in

searching the solution of the minimum problem, there are a large number of computations

of trigonometric function, which slows down the speed of computation and even leads to a

failure of iterative computation. If the form of rotation matrix represented by unit

quaternion is used, there are four variables and a constraint condition that the sum of

squares of variables equals to 1. Searching the solution of the minimum problem in this

case is more difficult than that in the case which has three variables space and is uncon-

strained. So the form of rotation matrix represented by Rodrigues matrix is adopted for its

simple algebraic computation.

Rodrigues matrix can be written as

R ¼ ðI þ rÞðI � rÞ�1
; ð19Þ

where r is an anti-symmetric matrix formed with a Gibbs vector v ¼ vx vy vzð Þ as

r ¼
0 �vz �vy
vz 0 �vx
vy vx 0

2

4

3

5

: ð20Þ

4 Iterative approach dependent on derivatives

Substituting Eq. (11) into Eq. (1) and utilizing Eq. (13), one gets the 3D datum transfor-

mation model that eliminates the translation parameters. The form of rotation matrix

represented by Rodrigues matrix is adopted with the same consideration as Sect. 3.

�Ai ¼ kRBi � k

X

n

j¼1

pjRBj: ð21Þ
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Carrying out the Linearization of Eq. (21), one gets

Vi ¼
o�Ai

ok

o�Ai

ovx

o�Ai

ovy

o�Ai

ovz

� ��

�

�

� u ¼ u0
dk dvx dvy dvz½ �T�li; ð22Þ

where

u ¼ k vx vy vz½ �T ð23Þ

is the unknown, u0 is its approximate value and

du ¼ dk dvx dvy dvz½ �T ð24Þ

is the correction of the unknown.

o�Ai

ok
¼ RBi �

X

n

j¼1

pjRBj; ð25Þ

o�Ai

ovx
¼ k

oR

ovx
Bi � k

X

n

j¼1

pj
oR

ovx
Bj; ð26Þ

o�Ai

ovy
¼ k

oR

ovy
Bi � k

X

n

j¼1

pj
oR

ovy
Bj; ð27Þ

o�Ai

ovz
¼ k

oR

ovz
Bi � k

X

n

j¼1

pj
oR

ovz
Bj; ð28Þ

li ¼ �Ai � kRBi þ k

X

n

j¼1

pjRBj; ð29Þ

and

oR

ovx
¼

or

ovx
ðI � rÞ�1 þ ðI þ rÞðI � rÞ�1 or

ovx
ðI � rÞ�1

¼
or

ovx
ðI � rÞ�1 þ R

or

ovx
ðI � rÞ�1

¼ ðI þ RÞ
or

ovx
ðI � rÞ�1

;

ð30Þ

or

ovx
¼

0 0 0

0 0 �1

0 1 0

2

4

3

5

: ð31Þ

Similarly

oR

ovy
¼ ðI þ RÞ

or

ovy
ðI � rÞ�1

; ð32Þ
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or

ovy
¼

0 0 �1

0 0 0

1 0 0

2

4

3

5

; ð33Þ

oR

ovz
¼ ðI þ RÞ

or

ovz
ðI � rÞ�1

; ð34Þ

or

ovz
¼

0 �1 0

1 0 0

0 0 0

2

4

3

5

: ð35Þ

Let

Mi ¼
o�Ai

ok

o�Ai

ovx

o�Ai

ovy

o�Ai

ovz

� ��

�

�

� u ¼ u0
; ð36Þ

and then Eq. (22) can be written as

Vi ¼ Midu� li: ð37Þ

Further let

V ¼ ½V1 V2 � � � Vn �
T
; ð38Þ

M ¼ ½MT
1 MT

2 � � � MT
n �

T
; ð39Þ

l ¼ ½ l1 l2 � � � ln �
T
; ð40Þ

thus

V ¼ Mdu� l: ð41Þ

According to the least squares, the solution is

du ¼ MTPM
� ��1

MTPl; ð42Þ

where

P ¼

P1

P2

.
.

.

Pn

2

6

6

6

4

3

7

7

7

5

: ð43Þ

Because the approximation of the unknown is usually tough, iterative computations are

needed, i.e., one firstly gives the approximation u0, then solve the correction du by the

above approach, next give the approximation of next iteration as u0 þ du, and then repeat

the above operation until every element of du is less than a given tolerance.

5 Numerical experiments and discussion

The experimental data is adopted from Grafarend and Awange (2003). The coordinates of

7 control points in the system B (local system) and A (WGS-84 system) are listed in

Tables 1 and 2.
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The numerical experiments have two parts. One is the special case that the weight

matrix is identity one. The other is the common case of arbitrary form of weight matrix. It

is supposed in the common case that the precisions of three coordinate directions in the

local system are consistent, and then r2x adopts the same value as Grafarend and Awange

(2003), and r2y , r
2
z are generated with ‘randn’ command in Matlab. Additionally, the

precisions of three coordinate directions in the WGS-84 system are inconsistent, namely

the X and Y coordinates have the same precisions, but Z coordinates has lower precisions

than planar X and Y coordinates, and here r2Z ¼ 2r2X is assumed. r2X adopts the same value

as Grafarend and Awange (2003), and r2Y , r
2
Z are generated with ‘randn’ command in

Matlab. The correlation of each point is not taken into account. The generated variances

are listed in Tables 1 and 2. The weight matrix is generated with the same method as

Grafarend and Awange (2003), and the result is list in Table 3.

The iterative approach dependent on function value and iterative approach dependent

on derivatives are employed to recover the 7 transformation parameters. In the process of

the former, the initial value of v is set as 0 0 0ð Þ, the stopping criteria is that the

mesh tolerance or function tolerance is less than 10-12, and through 84 iterative times

for the special case and 82 iterative times for the common case, the iterations are both

convergent and the results are listed in Tables 4, 5, 6 and 7 respectively. In the process

of the latter, the approximation of the unknown value u is set as 1 0 0 0ð Þ, the
stopping criteria is that every element of du is less than 10-12, and through both 2

iterative times for the special case and the common case, the iterations are both

Table 1 Coordinates and variances in system B (local system)

Station name System B (local system) (m) Variance (m2)

x y z r
2
x r

2
y r

2
z

Solitude 4,157,222.543 664,789.307 4,774,952.099 0.14330000 0.16126012 0.25780367

Buoch Zeil 4,149,043.336 688,836.443 4,778,632.188 0.15510000 0.19971861 0.18798665

Hohenneuffen 4,172,803.511 690,340.078 4,758,129.701 0.15030000 0.12979970 0.18605368

Kuehlenberg 4,177,148.376 642,997.635 4,760,764.800 0.14000000 0.24000544 0.12159004

Ex Mergelaec 4,137,012.190 671,808.029 4,791,128.215 0.14590000 0.14040930 0.20278356

Ex Hof Asperg 4,146,292.729 666,952.887 4,783,859.856 0.14690000 0.19497925 0.15982531

Ex Kaisersbach 4,138,759.902 702,670.738 4,785,552.196 0.12200000 0.14330598 0.17612573

Table 2 Coordinates and variances in system A (WGS-84)

Station name System A (WGS-84) (m) Variance (m2)

X Y Z r
2
X r

2
Y r

2
Z

Solitude 4,157,870.237 664,818.678 4,775,416.524 0.01030000 0.01625193 0.02285900

Buoch Zeil 4,149,691.049 688,865.785 4,779,096.588 0.00380000 0.00395319 0.00737509

Hohenneuffen 4,173,451.354 690,369.375 4,758,594.075 0.00060000 0.00100625 0.00156868

Kuehlenberg 4,177,796.064 643,026.700 4,761,228.899 0.01140000 0.01788546 0.02858824

Ex Mergelaec 4,137,659.549 671,837.337 4,791,592.531 0.00680000 0.00506161 0.01762072

Ex Hof Asperg 4,146,940.228 666,982.151 4,784,324.099 0.00002000 0.00001245 0.00002713

Ex Kaisersbach 4,139,407.506 702,700.227 4,786,016.645 0.00410000 0.00458562 0.00975938

Acta Geod Geophys (2016) 51:557–570 565

123



Table 3 Weight matrix

Weight

matrix

Values Weight

matrix

Values

P1 6.51034885 0.00005093 -0.00004319 P5 6.54871861 0.00005901 -0.00004779

0.00005093 5.63336324 0.00000938 0.00005901 6.87415224 0.00000942

-0.00004319 0.00000938 3.56295957 -0.00004779 0.00000942 4.53707026

P2 6.29319762 0.00004981 -0.00005080 P6 6.80634928 0.00005418 -0.00005986

0.00004981 4.90980598 -0.00000143 0.00005418 5.12836620 -0.00000546

-0.00005080 -0.00000143 5.11865458 -0.00005986 -0.00000546 6.25569978

P3 6.62683154 0.00006515 -0.00005464 P7 7.93012846 0.00006479 -0.00005873

0.00006515 7.64482735 0.00001110 0.00006479 6.76163613 0.00000578

-0.00005464 0.00001110 5.32979632 -0.00005873 0.00000578 5.37961018

P4 6.60495162 0.00004390 -0.00005242

0.00004390 3.87756843 -0.00001480

-0.00005242 -0.00001480 6.65869204

Table 4 Result of 3D datum transformation in the special case

Iteration based on function value Iteration based

on derivative

Iterative

times

84 2

v 0.0000024308 0.0000021681 -0.0000024065 0.0000024204 0.0000021664 -0.0000024073

R 1.0000000000 0.0000048131 -0.0000043362 1.0000000000 0.0000048146 -0.0000043328

-0.0000048131 1.0000000000 -0.0000048615 -0.0000048146 1.0000000000 -0.0000048409

0.0000043362 0.0000048615 1.0000000000 0.0000043327 0.0000048409 1.0000000000

DX (m) 641.8981 641.8804

DY (m) 68.7474 68.6553

DZ (m) 416.3697 416.3982

k 1. 000005583 1. 000005583

Table 5 Transformation residuals in the special case

Station name Iteration based on function value (m) Iteration based on derivative (m)

X Y Z X Y Z

Solitude 0.0940 0.1351 0.1404 0.0940 0.1351 0.1402

Buoch Zeil 0.0588 -0.0496 0.0134 0.0588 -0.0497 0.0137

Hohenneuffen -0.0399 -0.0883 -0.0084 -0.0399 -0.0879 -0.0081

Kuehlenberg 0.0201 -0.0223 -0.0868 0.0202 -0.0220 -0.0874

Ex Mergelaec -0.0918 0.0143 -0.0054 -0.0919 0.0139 -0.0055

Ex Hof Asperg -0.0118 0.0067 -0.0544 -0.0118 0.0065 -0.0546

Ex Kaisersbach -0.0293 0.0043 0.0012 -0.0294 0.0041 0.0017

rm (m) 0.0773 0.0773
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convergent and the results are listed in Tables 4, 5, 6 and 7 respectively. rm in Tables 5

and 7 is mean error and computed by

rm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L

3n� 7

r

; ð44Þ

and L is the Lagrangian extremum by Eq. (1) or (18).

Comparing the Table 4 and the result of Grafarend and Awange (2003) namely I-LESS

procrustes algorithm, it is seen that the result of iterative approach based on derivatives is

identical to that of I-LESS procrustes algorithm. It is worthy to be noted that there is a little

mistake in Grafarend and Awange (2003) that the second element and third element in the

first row of rotation matrix wrongly exchange position. In addition the result of iterative

approach dependent on function value is slightly different from that of I-LESS procrustes

algorithm, and the bias of translation parameter is cm level. However, from Table 5, it is

seen that the transformation residual is in sub-mm level.

It is seen from Table 6 that the result of iterative approach dependent on function value

is slightly different from that of iterative approach based on derivatives, and the bias of

translation parameter is dm level. However, from Table 7 it is seen that the transformation

residual is in sub-mm level.

Table 6 Result of 3D datum transformation in the common case

Iteration based on function value Iteration based

on derivative

Iterative

times

82 2

v 0.0000025108 0.0000021756 -0.0000024401 0.0000025040 0.0000021746 -0.0000024332

R 1.0000000000 0.0000048801 -0.0000043512 1.0000000000 0.0000048664 -0.0000043491

-0.0000048801 1.0000000000 -0.0000050217 -0.0000048664 1.0000000000 -0.0000050079

0.0000043511 0.0000050217 1.0000000000 0.0000043491 0.0000050080 1.0000000000

DX (m) 641. 8754 641.8770

DY (m) 69.7813 69.6590

DZ (m) 416.1342 416.1543

k 1.000005594 1.000005593

Table 7 Transformation residuals in the common case

Station name Iteration based on function value (m) Iteration based on derivative (m)

X Y Z X Y Z

Solitude 0.0960 0.1373 0.1532 0.0959 0.1373 0.1530

Buoch Zeil 0.0594 -0.0477 0.0224 0.0596 -0.0476 0.0226

Hohenneuffen -0.0400 -0.0881 0.0002 -0.0398 -0.0881 0.0004

Kuehlenberg 0.0232 -0.0208 -0.0707 0.0228 -0.0209 -0.0711

Ex Mergelaec -0.0898 0.0176 0.0064 -0.0899 0.0177 0.0063

Ex Hof Asperg -0.0096 0.0096 -0.0420 -0.0098 0.0096 -0.0421

Ex Kaisersbach -0.0294 0.0065 0.0080 -0.0291 0.0066 0.0083

rm (m) 0.1830 0.1830
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In order to investigate the performance of iterative approach dependent on function

value namely pattern search method, the iterative process is drawn in Fig. 1. It shows that

the convergent process is highly similar although the weight matrix is different for the two

cases. And the approach is stable and feasible.

6 Conclusion

Through lots of derivation of this paper, it is found that analytical solution of 3D datum

transformation does not exist in the case that the weight matrix is non-isotropic and even

correlated in different coordinate direction. Thus the iterative approach of 3D datum

transformation is investigated. The paper presents two kinds of iterative approach, i.e.

iterative approach dependent on the objective function value and iterative approach

dependent on the derivative of function. In order to improve the speed and reliability, the

form of rotation matrix represented by Rodrigues matrix rather than rotation angles or unit

quaternion is adopted for both two iterative approaches.

The numerical experiment and analysis shows the presented two kinds of iterative

approach are both correct and efficient. Further it is thought that iterative approach

dependent on function value is convenient for its objective function can be established

easily and fast, however it needs a great deal of iterative computation, therefore it is slower

than the iterative approach based on derivatives, and its result is slightly worse than the

iterative approach based on derivatives. On the other hand, the iterative approach based on

derivatives has lots of work to deduce derivatives, but once the model is established, the

iterative computation is faster and more reliable than the iterative approach dependent on

function value. From the view of computing speed and reliability, the iterative approach

based on derivatives is preferred.

Acknowledgments The study is supported jointly by the Open Foundation of Hubei Key Laboratory of

Construction and Management in Hydropower Engineering, China Three Gorges University (Grant No.

2014KSD13), the 2015 Open Foundation of Hubei Key Laboratory of Intelligent Vision Based Monitoring

for Hydroelectric Engineering, China Three Gorges University (Grant No. 2015KLA06), the Open Research

Fund Program of the Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, China

(Grant No. 11-01-04), the Open Foundation of the Key Laboratory of Precise Engineering and Industry

0 10 20 30 40 50 60 70 80 90
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Iteration times

lo
g

1
0
(L

)

sepcial case

common case

Fig. 1 Iterative process based on

function value

568 Acta Geod Geophys (2016) 51:557–570

123



Surveying, National Administration of Surveying, Mapping and Geoinformation of China (Grant No.

PF2011-4), and National Natural Science Foundation of China (Grant No. 41104009). The first author is

grateful for the support and good working atmosphere provided by his research team in China Three Gorges

University. The first author also thanks two anonymous reviewers for valuable comments and suggestions,

which enhanced the quality of this manuscript.

References
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