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1 Introduction

This report contains two related sets of results with different assumptions on synchrony. The
first part is about iterative algorithms in synchronous systems. Following our previous work on
synchronous iterative approximate Byzantine consensus (IABC) algorithms [6], we provide a more
intuitive tight necessary and sufficient condition for the existence of such algorithms in synchronous
networks1. We believe this condition and the results in [6] also hold in partially asynchronous
algorithmic model introduced in [2].

In the second part of the report, we explore the problem in asynchronous networks. While the
traditional Byzantine consensus is not solvable in asynchronous systems [5], approximate Byzantine
consensus can be solved using iterative algorithms [4].

2 Preliminaries

In this section, we present the network and failure models that are common to both parts.

2.1 Network Model

The network is modeled as a simple directed graph G(V, E), where V = {1, . . . , n} is the set of n
nodes, and E is the set of directed edges between nodes in V. With a slight abuse of terminology,
we use the terms “edge” and “link” interchangeably. We assume that n ≥ max(2, 3f + 1), since
the consensus problem for n = 1 is trivial. If a directed edge (i, j) ∈ E , then node i can reliably
transmit to node j. For convenience, we exclude self-loops from E , although every node is allowed
to send messages to itself. We also assume that all edges are authenticated, such that when a node
j receives a message from node i (on edge (i, j)), it can correctly determine that the message was
sent by node i. For each node i, let N−

i be the set of nodes from which i has incoming edges. That
is, N−

i = { j | (j, i) ∈ E }. Similarly, define N+
i as the set of nodes to which node i has outgoing

edges. That is, N+
i = { j | (i, j) ∈ E }. By definition, i ̸∈ N−

i and i ̸∈ N+
i . However, we emphasize

that each node can indeed send messages to itself.

2.2 Failure Model

We consider the Byzantine failure model, with up to f nodes becoming faulty. A faulty node may
misbehave arbitrarily. Possible misbehavior includes sending incorrect and mismatching messages
to different neighbors. The faulty nodes may potentially collaborate with each other. Moreover,
the faulty nodes are assumed to have a complete knowledge of the state of the other nodes in the
system and a complete knowledge of specification of the algorithm.

1With a slight abuse of terminology, we use “systems” and “networks” interchangeably in this report.
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Part I: Synchronous Networks
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Synchronous Networks

The network is assumed to be synchronous. This report provides a more intuitive condition that is
equivalent to our original necessary and sufficient condition introduced in Theorem 1 of [6]. Note
that the discussion in this part is not self-contained, and relies heavily on the material and notations
in [6].

3 More Intuitive Necessary and Sufficient Condition

For completeness, we state the tight condition from our previous report [6] here again:

Theorem 1 Suppose that a correct IABC algorithm exists for G(V, E). Let sets F,L,C,R form a
partition2 of V, such that L and R are both non-empty, and F contains at most f nodes. Then, at
least one of these two conditions must be true: (i) C ∪R⇒ L, or (ii) L ∪ C ⇒ R.3

This condition is not very intuitive. In Theorem 2 below, we state another tight necessary and
sufficient condition that is equivalent to the necessary condition in Theorem 1, and is somewhat
easier to interpret. To facilitate the statement of Theorem 2, we now introduce the notions of
“source component” and “reduced graph” using the following three definitions.

Definition 1 Graph decomposition: Let H be a directed graph. Partition graph H into strongly
connected components, H1,H2, · · · , Hh, where h is a non-zero integer dependent on graph H, such
that

• every pair of nodes within the same strongly connected component has directed paths in H
to each other, and

• for each pair of nodes, say i and j, that belong to two different strongly connected components,
either i does not have a directed path to j in H, or j does not have a directed path to i in H.

Construct a graph Hd wherein each strongly connected component Hk above is represented by vertex
ck, and there is an edge from vertex ck to vertex cl only if the nodes in Hk have directed paths in
H to the nodes in Hl.

It is known that the decomposition graph Hd is a directed acyclic graph [3].

Definition 2 Source component: Let H be a directed graph, and let Hd be its decomposition as
per Definition 1. Strongly connected component Hk of H is said to be a source component if the
corresponding vertex ck in Hd is not reachable from any other vertex in Hd.

2Sets X1,X2, X3, ..., Xp are said to form a partition of set X provided that (i) ∪1≤i≤pXi = X, and (ii) Xi∩Xj = Φ
when i ̸= j.

3Note that the notion of “⇒” and “
a⇒” (will be introduced in asynchronous networks part) is similar to “r-robust”

graph presented in [7].
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Definition 3 Reduced Graph: For a given graph G(V, E) and F ⊂ V, a graph GF (VF , EF ) is
said to be a reduced graph, if: (i) VF = V − F , and (ii) EF is obtained by first removing from E
all the links incident on the nodes in F , and then removing up to f other incoming links at each
node in VF .

Note that for a given G(V, E) and a given F , multiple reduced graphs GF may exist.

Theorem 2 Suppose that Theorem 1 holds for graph G(V, E). Then, for any F ⊂ V such that
|F | < |V| and |F | ≤ f , every reduced graph GF obtained as per Definition 3 must contain exactly
one source component.

Proof: Since |F | < |V|, GF contains at least one node; therefore, at least one source component
must exist in GF . We now prove that GF cannot contain more than one source component. The
proof is by contradiction. Suppose that there exists a set F ⊂ V with |F | < |V| and |F | ≤ f , and
a reduced graph GF (VF , EF ) corresponding to F , such that the decomposition of GF includes at
least two source components.

Let the sets of nodes in two such source components of GF be denoted L and R, respectively.
Let C = V − F − L− R. Observe that F,L,C,R form a partition of the nodes in V. Since L is a
source component in GF it follows that there are no directed links in EF from any node in C ∪ R
to the nodes in L. Similarly, since R is a source component in GF it follows that there are no
directed links in EF from any node in L ∪ C to the nodes in R. These observations, together with
the manner in which EF is defined, imply that (i) there are at most f links in E from the nodes in
C ∪ R to each node in L, and (ii) there are at most f links in E from the nodes in L ∪ C to each
node in R. Therefore, in graph G(V, E), C ∪ R ̸⇒ L and L ∪ C ̸⇒ R, violating Theorem 1. Thus,
we have proved that GF must contain exactly one source component. 2

The above proof shows that Theorem 1 implies Theorem 2. Now, we prove that Theorem 2
implies Theorem 1.

Proof: Suppose that the condition stated in Theorem 1 does not hold for G(V, E). Thus, there
exists a partition F,L,C,R of V such that |F | ≤ f , L and R are non-empty, and C ∪ R ̸⇒ L and
L ∪ C ̸⇒ R.

We now construct a reduced graph GF (VF , EF ) corresponding to set F . First, remove all nodes
in F from V to obtain VF . Remove all the edges incident on F from E . Then because C ∪R ̸⇒ L,
the number of incoming edges at each node in L from the nodes in C ∪R is at most f ; remove all
these edges. Similarly, for every node j ∈ R, remove all incoming edges from L ∪ C (there are at
most f such edges at each node j ∈ R). The resulting graph GF is a reduced graph that satisfies
the conditions in Definition 3.

In EF , there are no incoming edges to nodes in R from the nodes L ∪C; similarly, in EF , there
are no incoming edges to nodes L from the nodes in C ∪ R. It follows that no single node in VF

has paths in GF (i.e., paths consisting of links in EF ) to all the other nodes in VF . Thus, GF must
contain more than one source component. Thus, Theorem 2 does not hold for G(V, E). 2
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By two results above, it follows that Theorems 1 and 2 specify equivalent conditions.4

Next, we present a weaker necessary conditions derived from Theorem 2 that implies the prop-
erty of the source component.

Corollary 1 Suppose that Theorem 1 holds for graph G(V, E). Then, for any F ⊂ V such that
|F | ≤ f , the unique source component in every reduced graph GF must contain at least f +1 nodes.

Proof: The proof is by contradiction. Suppose that there exists a set F with |F | ≤ f , and a
corresponding reduced graph GF (VF , EF ), such that the decomposition of GF contains a unique
source component consisting of at most f nodes. Define L to be the set of nodes in this unique
source component. Also define C = Φ and R = V − L − F − C. Observe that F,L,C,R form a
partition of V.

Since |L ∪C| = |L| ≤ f , it follows that in graph G(V, E), L ∪C ̸⇒ R, Then Theorem 1 implies
that, in graph G(V, E), C ∪R⇒ L. That is, since C = Φ, R⇒ L, and there must be a node in L,
say node i, that has at least f +1 links in E from the nodes in R. Since i ∈ L, it follows that i ̸∈ F
(by definition of ⇒). Also, since i has at least f +1 incoming edges in E from nodes in R, it follows
that in EF , node i must have at least one incoming edge from the nodes in R. This contradicts
that assumption that set L containing node i is a source component of GF . 2

Note that this Corollary implies that for the correctness of IABC on the graph, the graph must
have a component that acts as a source with at least f + 1 nodes and thus outnumbers the faulty
nodes.

For a “local” fault model under the constraint that fault nodes send identical messages to their
outgoing neighbors, Zhang and Sundaram [7] showed sufficiency of a graph property similar to the
condition above, although they do not prove that the sufficient condition is also necessary. Also,
our fault model does not impose the above constraint on the faulty nodes.

4 Partially Asynchronous Algorithmic Model

[2] (Chapter 7) presents a Partially Asynchronous Algorithmic Model, in which an iterative algo-
rithm analogous to Algorithm 1 [6] is used to solve iterative consensus with zero faults, with the
following modifications:

• Each node may not necessarily update its state in each iteration. However, each node updates
its state at least once in each set of consecutive B iterations, where B is a finite positive integer
constant and is known to all nodes in advance.

• If node i updates its state in iteration t, due to message delays, node i may not necessarily
be aware of the most recent state (i.e., at the end of the previous iteration) of its incoming
neighbors. However, node i will know the state of each incoming neighbor at the end of at

4An alternate interpretation of the condition in Theorem 2 is that in graph GF non-fault-tolerant iterative con-
sensus must be possible.
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least one of the B previous iterations5; the most recent state known is used in performing
state update at node i.

We believe that the necessary and sufficient conditions for the IABC algorithm under partially
asynchronous algorithmic model are identical to the necessary and sufficient conditions presented
above and in [6] for the synchronous model. We expect that the proof is similar to the proof
presented in [6].

5If node i does not receive new values from some incoming neighbor j in the past B consecutive iterations, then
by the model definition, node i knows j is faulty.
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Part II: Asynchronous Networks
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Asynchronous Networks

In this part, we consider the iterative consensus problem in asynchronous networks. We will follow
the definition of asynchronous system used in [4]. Each node operates at a completely arbitrary
rate. Furthermore, the link between any pair of nodes suffers from an arbitrary but finite network
delay6 and out-of-order delivery.

Now, we introduce the class of algorithms that we will explore in this report.

5 Asynchronous Iterative Approximate Byzantine Consensus

Algorithm Structure By the definition of asynchronous systems, each node proceeds at different
rate. Thus, Dolev et al. developed an algorithm based on “rounds” such that nodes update once
in each round [4]. In particular, we consider the structure of Async-IABC Algorithm below, which
has the same structure as the algorithm in [4]. This algorithm structure differs from the one for
synchronous systems in [6] in two important ways: (i) the messages containing states are now
tagged by the round index to which the states correspond, and (ii) each node i waits to receive only
|N−

i | − f messages containing states from round t− 1 before computing the new state in round t.

Due to the asynchronous nature of the system, different nodes may potentially perform their
t-th round at very different real times. Thus, the main difference between iteration and round is
as following:

• Iteration is defined as fixed amount of real-time units. Hence, every node will be in the same
iteration at any given real time.

• Round is defined as the time that each node updates its value7. Hence, every node may be
in totally different rounds at any given real time in asynchronous systems.

In Async-IABC algorithm, each node i maintains state vi, with vi[t] denoting the state of node
i at the end of its t-th round. Initial state of node i, vi[0], is equal to the initial input provided to
node i. At the start of the t-th round (t > 0), the state of node i is vi[t− 1]. Now, we describe the
steps that should be performed by each node i ∈ V in its t-th round.

Async-IABC Algorithm

1. Transmit step: Transmit current state vi[t− 1] on all outgoing edges. The message is tagged
by index t− 1.

2. Receive step: Wait until the first |N−
i | − f messages tagged by index t − 1 are received on

the incoming edges (breaking ties arbitrarily). Values received in these messages form vector
ri[t] of size |N−

i | − f .

3. Update step: Node i updates its state using a transition function Zi.

Zi is a part of the specification of the algorithm, and takes as input the vector ri[t] and state
vi[t− 1].

6The delay can also be variable.
7With a slight abuse of terminology, we will use “value” and “state” interchangeably in this report.
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vi[t] = Zi ( ri[t] , vi[t− 1] ) (1)

We now define U [t] and µ[t], assuming that F is the set of Byzantine faulty nodes, with the
nodes in V − F being non-faulty.8

• U [t] = maxi∈V−F vi[t]. U [t] is the largest state among the fault-free nodes at the end of the
t-th round. Since the initial state of each node is equal to its input, U [0] is equal to the
maximum value of the initial input at the fault-free nodes.

• µ[t] = mini∈V−F vi[t]. µ[t] is the smallest state among the fault-free nodes at the end of the
t-th round. µ[0] is equal to the minimum value of the initial input at the fault-free nodes.

The following conditions must be satisfied by an Async-IABC algorithm in the presence of up
to f Byzantine faulty nodes:

• Validity: ∀t > 0, µ[t] ≥ µ[t− 1] and U [t] ≤ U [t− 1]

• Convergence: lim t→∞ U [t]− µ[t] = 0

The objective in this report is to identify the necessary and sufficient conditions for the existence
of a correct Async-IABC algorithm (i.e., satisfying the above validity and convergence conditions)
for a given G(V, E) in any asynchronous system.

5.1 Notations

There are many notations used and will be introduced later in this part of the report. Here is a
quick reference:

• N+
i , N

−
i : set of outgoing neighbors and incoming neighbors of some node i, respectively.

• U [t], µ[t]: maximum value and minimum value of all the fault-free nodes at the end of round
t, respectively.

• Zi: a function specifying how node i updates its new value (algorithm specification).

• N@
i [t]: set of incoming neighbors from whom node i actually received values at round t ≥ 1.

• ri[t]: set of values sent by N
@
i [t].

• N∗
i [t]: set of incoming neighbors from whom node i actually used the values to update at

round t ≥ 1.

Note that by definition we have the following relationships: N∗
i [t] ⊂ N@

i [t] ⊂ N−
i . Moreover,

N∗
i [t] and N

@
i [t] may change over the rounds, and N−

i is a constant. Lastly, |N@
i [t]| = |N−

i | − 2f
and |N∗

i [t]| = |N@
i [t]| − f for any round t ≥ 1.

8For sets X and Y , X − Y contains elements that are in X but not in Y . That is, X − Y =
{i | i ∈ X, i ̸∈ Y }.
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6 Necessary Condition

In asynchronous systems, for an Async-IABC algorithm satisfying the the validity and convergence
conditions to exist, the underlying graph G(V, E) must satisfy a necessary condition proved in this
section. We now define relations

a⇒ and ̸ a⇒ that are used frequently in our proofs. Note that these
definitions are analogous to the definitions of ⇒ and ̸⇒ in [6].

Definition 4 For non-empty disjoint sets of nodes A and B,

• A
a⇒ B iff there exists a node v ∈ B that has at least 2f + 1 incoming links from nodes in A,

i.e., |N−
v ∩A| > 2f .

• A ̸ a⇒ B iff A
a⇒ B is not true.

Now, we present the necessary condition for correctness of Async-IABC in asynchronous sys-
tems. Note that it is similar to that for synchronous systems [6], but with ⇒ replaced by

a⇒.

Theorem 3 Let sets F,L,C,R form a partition of V, such that

• 0 ≤ |F | ≤ f ,

• 0 < |L|, and

• 0 < |R|

Then, at least one of the two conditions below must be true.

• C ∪R a⇒ L

• L ∪ C a⇒ R

Proof: The proof is by contradiction. Let us assume that a correct Async-IABC consensus
algorithm exists, and C ∪ R ̸ a⇒ L and L ∪ C ̸ a⇒ R. Thus, for any i ∈ L, |N−

i ∩ (C ∪ R)| < 2f + 1,
and for any j ∈ R, |N−

j ∩ (L ∪ C)| < 2f + 1,

Also assume that the nodes in F (if F is non-empty) are all faulty, and the remaining nodes, in
sets L,R,C, are fault-free. Note that the fault-free nodes are not necessarily aware of the identity
of the faulty nodes.

Consider the case when (i) each node in L has input m, (ii) each node in R has input M , such
that M > m, and (iii) each node in C, if C is non-empty, has an input in the range [m,M ].

At the start of round 1, suppose that the faulty nodes in F (if non-empty) send m− < m to
outgoing neighbors in L, send M+ > M to outgoing neighbors in R, and send some arbitrary value
in [m,M ] to outgoing neighbors in C (if C is non-empty). This behavior is possible since nodes in
F are faulty. Note that m− < m < M < M+. Each fault-free node k ∈ V − F , sends to nodes in
N+

k value vk[0] in round 1.

Consider any node i ∈ L. Denote N ′
i = N−

i ∩ (C ∪ R). Since C ∪ R ̸ a⇒ L, |N ′
i | ≤ 2f .

Consider the situation where the delay between certain w = min(f, |N ′
i |) nodes in N ′

i and node i
is arbitrarily large compared to all the other traffic (including messages from incoming neighbors
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in F ). Consequently, ri[1] includes |N ′
i | − w ≤ f values from N ′

i , since w messages from N ′
i are

delayed and thus ignored by node i. Recall that N@
i [1] is the set of nodes whose round 1 values are

received by node i in time (i.e., before i finishes step 2 in Async-IABC). By the argument above,
N@

i [1] ∩N ′
i ≤ f .

Node i receives m− from the nodes in F ∩N@
i [1], values in [m,M ] from the nodes in N ′

i ∩N@
i [1],

and m from the nodes in {i} ∪ (L ∩N@
i [1]).

Consider four cases:

• F ∩N@
i [1] and N ′

i ∩N@
i [1] are both empty: In this case, all the values that i receives are from

nodes in {i} ∪ (L∩N@
i [1]), and are identical to m. By validity condition, node i must set its

new state, vi[1], to be m as well.

• F ∩N@
i [1] is empty and N ′

i ∩N@
i [1] is non-empty: In this case, since |N ′

i ∩N@
i [1]| ≤ f , from

i’s perspective, it is possible that all the nodes in N@
i [1] ∩N ′

i are faulty, and the rest of the
nodes are fault-free. In this situation, the values sent to node i by the fault-free nodes (which
are all in {i}∪ (L∩N@

i [1])) are all m, and therefore, vi[1] must be set to m as per the validity
condition.

• F ∩ N@
i [1] is non-empty and N ′

i ∩ N@
i [1] is empty: In this case, since |F ∩ N@

i [1]| ≤ f , it
is possible that all the nodes in F ∩ N@

i [1] are faulty, and the rest of the nodes are fault-
free. In this situation, the values sent to node i by the fault-free nodes (which are all in
{i}∪(L∩N@

i [1])) are all m, and therefore, vi[1] must be set to m as per the validity condition.

• Both F ∩ N@
i [1] and N ′

i ∩ N@
i [1] are non-empty: From node i’s perspective, consider two

possible scenarios: (a) nodes in F ∩N@
i [1] are faulty, and the other nodes are fault-free, and

(b) nodes in N ′
i ∩N@

i [1] are faulty, and the other nodes are fault-free.

In scenario (a), from node i’s perspective, the non-faulty nodes have values in [m,M ] whereas
the faulty nodes have value m−. According to the validity condition, vi[1] ≥ m. On the
other hand, in scenario (b), the non-faulty nodes have values m− and m, where m− < m;
so vi[1] ≤ m, according to the validity condition. Since node i does not know whether the
correct scenario is (a) or (b), it must update its state to satisfy the validity condition in both
cases. Thus, it follows that vi[1] = m.

Observe that in each case above vi[1] = m for each node i ∈ L. Similarly, we can show that
vj [1] =M for each node j ∈ R.

Now consider the nodes in set C, if C is non-empty. All the values received by the nodes in C
are in [m,M ], therefore, their new state must also remain in [m,M ], as per the validity condition.

The above discussion implies that, at the end of the first iteration, the following conditions hold
true: (i) state of each node in L is m, (ii) state of each node in R is M , and (iii) state of each node
in C is in [m,M ]. These conditions are identical to the initial conditions listed previously. Then,
by induction, it follows that for any t ≥ 0, vi[t] = m,∀i ∈ L, and vj [t] = M, ∀j ∈ R. Since L and
R contain fault-free nodes, the convergence requirement is not satisfied. This is a contradiction to
the assumption that a correct Async-IABC algorithm exists. 2

Corollary 2 Let {F,L,R} be a partition of V, such that 0 ≤ |F | ≤ f , and L and R are non-empty.
Then, either L

a⇒ R or R
a⇒ L.
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Proof: The proof follows by setting C = Φ in Theorem 3. 2

Corollary 3 The number of nodes n must exceed 5f for the existence of a correct Async-IABC
algorithm that tolerates f failures.

Proof: The proof is by contradiction. Suppose that 2 ≤ n ≤ 5f , and consider the following two
cases:

• 2 ≤ n ≤ 4f : Suppose that L,R, F is a partition of V such that |L| = ⌈n/2⌉ ≤ 2f , |R| =
⌊n/2⌋ ≤ 2f and F = Φ. Note that L and R are non-empty, and |L|+ |R| = n.

• 4f < n ≤ 5f :

Suppose that L,R, F is a partition of V, such that |L| = |R| = 2f and |F | = n − 4f . Note
that 0 < |F | ≤ f .

In both cases above, Corollary 2 is applicable. Thus, either L
a⇒ R or R

a⇒ L. For L
a⇒ R to be

true, L must contain at least 2f + 1 nodes. Similarly, for R
a⇒ L to be true, R must contain at

least 2f + 1 nodes. Therefore, at least one of the sets L and R must contain more than 2f nodes.
This contradicts our choice of L and R above (in both cases, size of L and R is ≤ 2f). Therefore,
n must be larger than 5f . 2

Corollary 4 For the existence of a correct Async-IABC algorithm, then for each node i ∈ V,
|N−

i | ≥ 3f + 1, i.e., each node i has at least 3f + 1 incoming links, when f > 0.

Proof: The proof is by contradiction. Consider the following two cases for some node i:

• |N−
i | ≤ 2f : Define set F = Φ, L = {i} and R = V − F − L = V − {i}. Thus, N−

i ∩R = N−
i ,

and |N−
i ∩R| ≤ 2f by assumption.

• 2f < |N−
i | ≤ 3f : Define set L = {i}. Partition N−

i into two sets F and H such that |F | = f
and |H| = |N−

i | − f ≤ 2f . Define R = V − F − L = V − F − {i}. Thus, N−
i ∩ R = H, and

|N−
i ∩R| ≤ 2f by construction.

In both cases above, L and R are non-empty, so Corollary 2 is applicable. However, in each
case, L = {i} and |L| = 1 < 2f + 1; hence, L ̸ a⇒ R. Also, since L = {i} and |N−

i ∩ R| ≤ 2f , and

hence R ̸ a⇒ L by the definition of
a⇒. This leads to a contradiction. Hence, every node must have

at least 3f + 1 incoming neighbors.

2

7 Useful Lemmas

In this section, we introduce two lemmas that are used in our proof of convergence. Note that
the proofs are similar to corresponding lemmas in [6] except for the adoption of

a⇒ and “rounds”
instead of ⇒ and “iterations.”
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Definition 5 For disjoint sets A,B, in(A
a⇒ B) denotes the set of all the nodes in B that each

have at least 2f + 1 incoming links from nodes in A. More formally,

in(A
a⇒ B) = { v |v ∈ B and 2f + 1 ≤ |N−

v ∩A| }

With a slight abuse of notation, when A ̸ a⇒ B, define in(A
a⇒ B) = Φ.

Definition 6 For non-empty disjoint sets A and B, set A is said to propagate to set B in
l rounds, where l > 0, if there exist sequences of sets A0, A1, A2, · · · , Al and B0, B1, B2, · · · , Bl

(propagating sequences) such that

• A0 = A, B0 = B, Bl = Φ, and, for τ < l, Bτ ̸= Φ.

• for 0 ≤ τ ≤ l − 1,

* Aτ
a⇒ Bτ ,

* Aτ+1 = Aτ ∪ in(Aτ
a⇒ Bτ ), and

* Bτ+1 = Bτ − in(Aτ
a⇒ Bτ )

Observe that Aτ and Bτ form a partition of A ∪ B, and for τ < l, in(Aτ
a⇒ Bτ ) ̸= Φ. Also, when

set A propagates to set B, length l above is necessarily finite. In particular, l is upper bounded by
n− 2f − 1, since set A must be of size at least 2f + 1 for it to propagate to B.

Lemma 1 Assume that G(V, E) satisfies Theorem 3. Consider a partition A,B, F of V such that
A and B are non-empty, and |F | ≤ f . If B ̸ a⇒ A, then set A propagates to set B.

Proof: Since A,B are non-empty, and B ̸ a⇒ A, by Corollary 2, we have A
a⇒ B.

The proof is by induction. Define A0 = A and B0 = B. Thus A0
a⇒ B0 and B0 ̸ a⇒ A0. Note

that A0 and B0 are non-empty.

Induction basis: For some τ ≥ 0,

• for 0 ≤ k < τ , Ak
a⇒ Bk, and Bk ̸= Φ,

• either Bτ = Φ or Aτ
a⇒ Bτ ,

• for 0 ≤ k < τ , Ak+1 = Ak ∪ in(Ak
a⇒ Bk), and Bk+1 = Bk − in(Ak

a⇒ Bk)

Since A0
a⇒ B0, the induction basis holds true for τ = 0.

Induction: If Bτ = Φ, then the proof is complete, since all the conditions specified in Definition 6
are satisfied by the sequences of sets A0, A1, · · · , Aτ and B0, B1, · · · , Bτ .

Now consider the case when Bτ ̸= Φ. By assumption, Ak
a⇒ Bk, for 0 ≤ k ≤ τ . Define

Aτ+1 = Aτ ∪ in(Aτ
a⇒ Bτ ) and Bτ+1 = Bτ − in(Aτ

a⇒ Bτ ). Our goal is to prove that either
Bτ+1 = Φ or Aτ+1

a⇒ Bτ+1. If Bτ+1 = Φ, then the induction is complete. Therefore, now let us
assume that Bτ+1 ̸= Φ and prove that Aτ+1

a⇒ Bτ+1. We will prove this by contradiction.

Suppose that Aτ+1 ̸
a⇒ Bτ+1. Define subsets L,C,R as follows: L = A0, C = Aτ+1−A0 and R =

Bτ+1. Due to the manner in which Ak’s and Bk’s are defined, we also have C = B0−Bτ+1. Observe
that L,C,R, F form a partition of V, where L,R are non-empty, and the following relationships
hold:
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• C ∪R = B0, and

• L ∪ C = Aτ+1

Rewriting B0 ̸
a⇒ A0 and Aτ+1 ̸

a⇒ Bτ+1, using the above relationships, we have, respectively,

C ∪R ̸ a⇒ L,

and
L ∪ C ̸ a⇒ R

This violates the necessary condition in Theorem 3. This is a contradiction, completing the induc-
tion.

Thus, we have proved that, either (i) Bτ+1 = Φ, or (ii) Aτ+1
a⇒ Bτ+1. Eventually, for

large enough t, Bt will become Φ, resulting in the propagating sequences A0, A1, · · · , At and
B0, B1, · · · , Bt, satisfying the conditions in Definition 6. Therefore, A propagates to B. 2

Lemma 2 Assume that G(V, E) satisfies Theorem 3. For any partition A,B, F of V, where A,B
are both non-empty, and |F | ≤ f , at least one of the following conditions must be true:

• A propagates to B, or

• B propagates to A

Proof: Consider two cases:

• A ̸ a⇒ B: Then by Lemma 1, B propagates to A, completing the proof.

• A
a⇒ B: In this case, consider two sub-cases:

– A propagates to B: The proof in this case is complete.

– A does not propagate to B: Thus, propagating sequences defined in Definition 6 do not
exist in this case. More precisely, there must exist k > 0, and sets A0, A1, · · · , Ak and
B0, B1, · · · , Bk, such that:

∗ A0 = A and B0 = B, and

∗ for 0 ≤ i ≤ k − 1,

o Ai
a⇒ Bi,

o Ai+1 = Ai ∪ in(Ai
a⇒ Bi), and

o Bi+1 = Bi − in(Ai
a⇒ Bi).

∗ Bk ̸= Φ and Ak ̸ a⇒ Bk.

The last condition above violates the requirements for A to propagate to B.

Now Ak ̸= Φ, Bk ̸= Φ, and Ak, Bk, F form a partition of V. Since Ak ̸ a⇒ Bk, by Lemma
1, Bk propagates to Ak.

Since Bk ⊆ B0 = B, A ⊆ Ak, and Bk propagates to Ak, it should be easy to see that B
propagates to A.

2
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8 Sufficient Condition

8.1 Algorithm 2

We will prove that there exists an Async-IABC algorithm – particularly Algorithm 2 below –
that satisfies the validity and convergence conditions provided that the graph G(V, E) satisfies the
necessary condition in Theorem 3. This implies that the necessary condition in Theorem 3 is also
sufficient.

Algorithm 2 has the three-step structure, and it is similar to algorithms that were analyzed in
prior work as well [4, 1] (although correctness of the algorithm under the necessary condition in
Theorem 3 has not been proved previously).

Algorithm 2

1. Transmit step: Transmit current state vi[t− 1] on all outgoing edges.

2. Receive step: Wait until receiving values on all but f incoming edges. These values form
vector ri[t] of size |N−

i | − f .9

3. Update step: Sort the values in ri[t] in an increasing order, and eliminate the smallest f
values, and the largest f values (breaking ties arbitrarily). Let N∗

i [t] denote the identifiers of
nodes from whom the remaining N−

i − 3f values were received, and let wj denote the value
received from node j ∈ N∗

i . For convenience, define wi = vi[t − 1] to be the value node i
“receives” from itself. Observe that if j ∈ {i} ∪N∗

i [t] is fault-free, then wj = vj [t− 1].

Define

vi[t] = Zi(ri[t], vi[t− 1]) =
∑

j∈{i}∪N∗
i [t]

aiwj (2)

where

ai =
1

|N−
i |+ 1− 3f

Note that |N∗
i [t]| = |N−

i | − 3f , and i ̸∈ N∗
i [t] because (i, i) ̸∈ E . The “weight” of each term

on the right-hand side of (2) is ai, and these weights add to 1. Also, 0 < ai ≤ 1. For future
reference, let us define α as:

α = min
i∈V

ai (3)

8.2 Sufficiency

In Theorems 4 and 5 in this section, we prove that Algorithm 2 satisfies validity and convergence
conditions, respectively, provided that G(V, E) satisfies the condition below, which matches the
necessary condition stated in Theorem 3.

Sufficient condition: For every partition F,L,C,R of V, such that L and R are both non-empty,
and F contains at most f nodes, at least one of these two conditions is true: (i) C ∪ R a⇒ L, or
(ii) L ∪ C a⇒ R.

9If more than |N−
i | − f values arrive at the same time, break ties arbitrarily.
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Note that the proofs below are similar to the ones for synchronous systems in [6]. The main
differences are the following:

• We need to consider only values in N@
i [t] not in N−

i . This is due to different step 2 between
Algorithm 1 [6] and Algorithm 2.

• We interpret t as round index, rather than iteration index.

Theorem 4 Suppose that G(V, E) satisfies Theorem 3. Then Algorithm 2 satisfies the validity
condition.

Proof: Consider the t-th round, and any fault-free node i ∈ V − F . Consider two cases:

• f = 0: In (2), note that vi[t] is computed using states from the previous round at node i
and other nodes. By definition of µ[t − 1] and U [t − 1], vj [t − 1] ∈ [µ[t − 1], U [t − 1]] for all
fault-free nodes j ∈ V − F . Thus, in this case, all the values used in computing vi[t] are in
the range [µ[t − 1], U [t − 1]]. Since vi[t] is computed as a weighted average of these values,
vi[t] is also within [µ[t− 1], U [t− 1]].

• f > 0: By Corollary 4, |N−
i | ≥ 3f + 1. Thus, |N@

i | ≥ 2f + 1, and |ri[t]| ≥ 2f + 1. When
computing set N∗

i [t], the largest f and smallest f values from ri[t] are eliminated. Since at
most f nodes are faulty, it follows that, either (i) the values received from the faulty nodes
are all eliminated, or (ii) the values from the faulty nodes that still remain are between values
received from two fault-free nodes. Thus, the remaining values in ri[t] are all in the range
[µ[t− 1], U [t− 1]]. Also, vi[t− 1] is in [µ[t− 1], U [t− 1]], as per the definition of µ[t− 1] and
U [t − 1]. Thus vi[t] is computed as a weighted average of values in [µ[t − 1], U [t − 1]], and,
therefore, it will also be in [µ[t− 1], U [t− 1]].

Since ∀i ∈ V − F , vi[t] ∈ [µ[t− 1], U [t− 1]], the validity condition is satisfied. 2

Before proving the convergence of Algorithm 2, we first present three lemmas. In the discussion
below, we assume that G(V, E) satisfies the sufficient condition.

Lemma 3 Consider node i ∈ V − F . Let ψ ≤ µ[t− 1]. Then, for j ∈ {i} ∪N∗
i [t],

vi[t]− ψ ≥ ai (wj − ψ)

Specifically, for fault-free j ∈ {i} ∪N∗
i [t],

vi[t]− ψ ≥ ai (vj [t− 1]− ψ)
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Proof: In (2), for each j ∈ N∗
i [t], consider two cases:

• Either j = i or j ∈ N∗
i [t] ∩ (V − F): Thus, j is fault-free. In this case, wj = vj [t − 1].

Therefore, µ[t− 1] ≤ wj ≤ U [t− 1].

• j is faulty: In this case, f must be non-zero (otherwise, all nodes are fault-free). From
Corollary 4, |N−

i | ≥ 3f + 1. Thus, |N@
i | ≥ 2f + 1, and |ri[t]| ≥ 2f + 1. Then it follows that

the smallest f values in ri[t] that are eliminated in step 2 of Algorithm 2 contain the state
of at least one fault-free node, say k. This implies that vk[t− 1] ≤ wj . This, in turn, implies
that µ[t− 1] ≤ wj .

Thus, for all j ∈ {i} ∪N∗
i [t], we have µ[t− 1] ≤ wj . Therefore,

wj − ψ ≥ 0 for all j ∈ {i} ∪N∗
i [t] (4)

Since weights in Equation 2 add to 1, we can re-write that equation as,

vi[t]− ψ =
∑

j∈{i}∪N∗
i [t]

ai (wj − ψ) (5)

≥ ai (wj − ψ), ∀j ∈ {i} ∪N∗
i [t] from (4)

For non-faulty j ∈ {i} ∪N∗
i [t], wj = vj [t− 1], therefore,

vi[t]− ψ ≥ ai (vj [t− 1]− ψ) (6)

2

Similar to the above result, we can also show the following lemma:

Lemma 4 Consider node i ∈ V − F . Let Ψ ≥ U [t− 1]. Then, for j ∈ {i} ∪N∗
i [t],

Ψ− vi[t] ≥ ai (Ψ− wj)

Specifically, for fault-free j ∈ {i} ∪N∗
i [t],

Ψ− vi[t] ≥ ai (Ψ− vj [t− 1])

Then we present the main lemma used in proof of convergence. Note that below, we use
parameter α defined in (3). Recall that in (2) in Algorithm 2, ai > 0 for all i, and thus, α > 0.

Lemma 5 At the end of the s-th round, suppose that the fault-free nodes in V−F can be partitioned
into non-empty sets R and L such that (i) R propagates to L in l rounds, and (ii) the states of

nodes in R are confined to an interval of length ≤ U [s]−µ[s]
2 . Then,

U [s+ l]− µ[s+ l] ≤
(
1− αl

2

)
(U [s]− µ[s]) (7)
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Proof: Since R propagates to L, as per Definition 6, there exist sequences of sets R0, R1, · · · , Rl

and L0, L1, · · · , Ll, where

• R0 = R, L0 = L, Ll = Φ, for 0 ≤ τ < l, Lτ ̸= Φ, and

• for 0 ≤ τ ≤ l − 1,

* Rτ
a⇒ Lτ ,

* Rτ+1 = Rτ ∪ in(Rτ
a⇒ Lτ ), and

* Lτ+1 = Lτ − in(Rτ
a⇒ Lτ )

Let us define the following bounds on the states of the nodes in R at the end of the s-th round:

M = maxj∈R vj [s] (8)

m = minj∈R vj [s] (9)

By the assumption in the statement of Lemma 5,

M −m ≤ U [s]− µ[s]

2
(10)

Also, M ≤ U [s] and m ≥ µ[s]. Therefore, U [s]−M ≥ 0 and m− µ[s] ≥ 0.

The remaining proof of Lemma 5 relies on derivation of the three intermediate claims below.

Claim 1 For 0 ≤ τ ≤ l, for each node i ∈ Rτ ,

vi[s+ τ ]− µ[s] ≥ ατ (m− µ[s]) (11)

Proof of Claim 1: The proof is by induction.

Induction basis: For some τ , 0 ≤ τ < l, for each node i ∈ Rτ , (11) holds. By definition of m,
the induction basis holds true for τ = 0.

Induction: Assume that the induction basis holds true for some τ , 0 ≤ τ < l. Consider Rτ+1.
Observe that Rτ and Rτ+1 − Rτ form a partition of Rτ+1; let us consider each of these sets
separately.

• Set Rτ : By assumption, for each i ∈ Rτ , (11) holds true. By validity of Algorithm 2,
µ[s] ≤ µ[s+ τ ]. Therefore, setting ψ = µ[s] in Lemma 3, we get,

vi[s+ τ + 1]− µ[s] ≥ ai (vi[s+ τ ]− µ[s])

≥ ai α
τ (m− µ[s]) due to (11)

≥ ατ+1(m− µ[s]) due to (3)

• Set Rτ+1 − Rτ : Consider a node i ∈ Rτ+1 − Rτ . By definition of Rτ+1, we have that
i ∈ in(Rτ

a⇒ Lτ ). Thus,
|N−

i ∩Rτ | ≥ 2f + 1

It follows that
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|N@
i [s+ τ ] ∩Rτ | ≥ f + 1

In Algorithm 2, 2f values (f smallest and f largest) received by node i are eliminated before
vi[s+ τ + 1] is computed at the end of (s+ τ + 1)-th round. Consider two possibilities:

– Value received from one of the nodes in N@
i [s+ τ ]∩Rτ is not eliminated. Suppose that

this value is received from fault-free node p ∈ N@
i [s + τ ] ∩ Rτ . Then, by an argument

similar to the previous case, we can set ψ = µ[s] in Lemma 3, to obtain,

vi[s+ τ + 1]− µ[s] ≥ ai (vp[s+ τ ]− µ[s])

≥ ai α
τ (m− µ[s]) due to (11)

≥ ατ+1(m− µ[s]) due to (3)

– Values received from all (there are at least f+1) nodes in N@
i [s+τ ]∩Rτ are eliminated.

Note that in this case f must be non-zero (for f = 0, no value is eliminated, as already
considered in the previous case). By Corollary 4, we know that each node must have at
least 3f +1 incoming edges. Thus, N@

i [t+ τ ] ≥ 2f +1. Since at least f +1 values from
nodes in N@

i [t + τ ] ∩ Rτ are eliminated, and there are at least 2f + 1 values to choose
from, it follows that the values that are not eliminated are within the interval to which
the values from N@

i [s + τ ] ∩ Rτ belong. Thus, there exists a node k (possibly faulty)
from whom node i receives some value wk – which is not eliminated – and a fault-free
node p ∈ N@

i [t+ τ ] ∩Rτ such that

vp[s+ τ ] ≤ wk (12)

Then by setting ψ = µ[s] in Lemma 3 we have

vi[s+ τ + 1]− µ[s] ≥ ai (wk − µ[s])

≥ ai (vp[s+ τ ]− µ[s]) due to (12)

≥ ai α
τ (m− µ[s]) due to (11)

≥ ατ+1(m− µ[s]) due to (3)

Thus, we have shown that for all nodes in Rτ+1,

vi[s+ τ + 1]− µ[s] ≥ ατ+1(m− µ[s])

This completes the proof of Claim 1.

Claim 2 For each node i ∈ V − F ,

vi[s+ l]− µ[s] ≥ αl(m− µ[s]) (13)

Proof of Claim 1:

Note that by definition, Rl = V−F . Then the proof follows by setting τ = l in the above Claim
1.

By a procedure similar to the derivation of Claim 2 above, we can also prove the claim below.
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Claim 3 For each node i ∈ V − F ,

U [s]− vi[s+ l] ≥ αl(U [s]−M) (14)

Now let us resume the proof of the Lemma 5. Note that Rl = V − F . Thus,

U [s+ l] = max
i∈V−F

vi[s+ l]

≤ U [s]− αl(U [s]−M) by (14) (15)

and

µ[s+ l] = min
i∈V−F

vi[s+ l]

≥ µ[s] + αl(m− µ[s]) by (13) (16)

Subtracting (16) from (15),

U [s+ l]− µ[s+ l] ≤ U [s]− αl(U [s]−M)− µ[s]− αl(m− µ[s])

= (1− αl)(U [s]− µ[s]) + αl(M −m) (17)

≤ (1− αl)(U [s]− µ[s]) + αl U [s]− µ[s]

2
by (10) (18)

≤ (1− αl

2
)(U [s]− µ[s]) (19)

This concludes the proof of Lemma 5.

2

Now, we are able to prove the convergence of Algorithm 2. Note that this proof is essentially
identical to the synchronous case [6].

Theorem 5 Suppose that G(V, E) satisfies Theorem 3. Then Algorithm 2 satisfies the convergence
condition.

Proof: Our goal is to prove that, given any ϵ > 0, there exists τ such that

U [t]− µ[t] ≤ ϵ ∀t ≥ τ (20)

Consider the s-th round, for some s ≥ 0. If U [s] − µ[s] = 0, then the algorithm has already
converged, and the proof is complete, with τ = s.

Now consider the case when U [s]− µ[s] > 0. Partition V − F into two subsets, A and B, such

that, for each node i ∈ A, vi[s] ∈
[
µ[s], U [s]+µ[s]

2

)
, and for each node j ∈ B, vj [s] ∈

[
U [s]+µ[s]

2 , U [s]
]
.

By definition of µ[s] and U [s], there exist fault-free nodes i and j such that vi[s] = µ[s] and
vj [s] = U [s]. Thus, sets A and B are both non-empty. By Lemma 2, one of the following two
conditions must be true:

• Set A propagates to set B. Then, define L = B and R = A. The states of all the nodes in
R = A are confined within an interval of length < U [s]+µ[s]

2 − µ[s] ≤ U [s]−µ[s]
2 .
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• Set B propagates to set A. Then, define L = A and R = B. In this case, states of all the
nodes in R = B are confined within an interval of length ≤ U [s]− U [s]+µ[s]

2 ≤ U [s]−µ[s]
2 .

In both cases above, we have found non-empty sets L and R such that (i) L,R is a partition
of V − F , (ii) R propagates to L, and (iii) the states in R are confined to an interval of length

≤ U [s]−µ[s]
2 . Suppose that R propagates to L in l(s) steps, where l(s) ≥ 1. By Lemma 5,

U [s+ l(s)]− µ[s+ l(s)] ≤

(
1− αl(s)

2

)
(U [s]− µ[s]) (21)

Since n− f − 1 ≥ l(s) ≥ 1 and 0 < α ≤ 1, 0 ≤
(
1− αl(s)

2

)
< 1.

Let us define the following sequence of iteration indices10:

• τ0 = 0,

• for i > 0, τi = τi−1 + l(τi−1), where l(s) for any given s was defined above.

By repeated application of the argument leading to (21), we can prove that, for i ≥ 0,

U [τi]− µ[τi] ≤
(
Πi

j=1

(
1− ατj−τj−1

2

))
(U [0]− µ[0]) (22)

For a given ϵ, by choosing a large enough i, we can obtain(
Πi

j=1

(
1− ατj−τj−1

2

))
(U [0]− µ[0]) ≤ ϵ

and, therefore,

U [τi]− µ[τi] ≤ ϵ (23)

For t ≥ τi, by validity of Algorithm 1, it follows that

U [t]− µ[t] ≤ U [τi]− µ[τi] ≤ ϵ

This concludes the proof. 2

9 Conclusion

In this report, we present two sets of results. First, we prove another necessary and sufficient
condition for the existence of synchronous IABC in arbitrary directed graphs. The condition is
more intuitive than the one in [6]. We also believe that the results can be extended to partially
asynchronous algorithmic model presented in [2]. In the second part, we extend our earlier results
to asynchronous systems.

10Without loss of generality, we assume that U [τi]−µ[τi] > 0. Otherwise, the statement is trivially true due to the
validity shown in Theorem 4.
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