
Iterative Approximate Byzantine Consensus
in Arbitrary Directed Graphs ∗

Nitin H. Vaidya
University of Illinois

Electrical and Computer
Engineering

Urbana, Illinois
nhv@illinois.edu

Lewis Tseng
University of Illinois
Computer Science

Department
Urbana, Illinois

ltseng3@illinois.edu

Guanfeng Liang
University of Illinois

Electrical and Computer
Engineering

Urbana, Illinois
guanfeng.liang@gmail.com

ABSTRACT
This paper proves a necessary and sufficient condition for
the existence of iterative algorithms that achieve approximate
Byzantine consensus in arbitrary directed graphs, where each
directed edge represents a communication channel between a
pair of nodes. The class of iterative algorithms considered in
this paper ensures that, after each iteration of the algorithm,
the state of each fault-free node remains in the convex hull of
the states of the fault-free nodes at the end of the previous
iteration. The following convergence requirement is imposed:
for any ǫ > 0, after a sufficiently large number of iterations,
the states of the fault-free nodes are guaranteed to be within
ǫ of each other.

To the best of our knowledge, tight necessary and sufficient
conditions for the existence of such iterative consensus algo-
rithms in synchronous arbitrary point-to-point networks in
presence of Byzantine faults have not been developed previ-
ously.

The methodology and results presented in this paper can
also be extended to asynchronous systems.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications

General Terms
Algorithms

Keywords
Consensus, Byzantine faults, iterative algorithms

∗This research is supported in part by National Science Foun-
dation award CNS 1059540 and Army Research Office grant
W-911-NF-0710287. Any opinions, findings, and conclusions
or recommendations expressed here are those of the authors
and do not necessarily reflect the views of the funding agen-
cies or the U.S. government.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’12, July 16–18, 2012, Madeira, Portugal.
Copyright 2012 ACM 978-1-4503-1450-3/12/07 ...$10.00.

1. INTRODUCTION
Dolev et al. [5] introduced the notion of approximate Byzan-

tine consensus by relaxing the requirement of exact consensus
[14]. The goal in approximate consensus is to allow the fault-
free nodes to agree on values that are approximately equal
to each other (and not necessarily exactly identical). In pres-
ence of Byzantine faults, while exact consensus is impossible
in asynchronous systems [8], approximate consensus is achiev-
able [5]. The notion of approximate consensus is of interest
in synchronous systems as well, since approximate consensus
can be achieved using distributed algorithms that do not re-
quire complete knowledge of the network topology [3]. The
rest of the discussion in this paper – with the exception of
Section 8 – applies to synchronous systems.

We consider “iterative” algorithms for achieving approxi-
mate Byzantine consensus in synchronous point-to-point net-
works that are modeled by arbitrary directed graphs. The
iterative approximate Byzantine consensus (IABC) algorithms of
interest have the following properties, which we will soon
state more formally:

• Initial state of each node is equal to a real-valued input
provided to that node.

• Validity condition: After each iteration of an IABC al-
gorithm, the state of each fault-free node must remain
in the convex hull of the states of the fault-free nodes at
the end of the previous iteration.

• Convergence condition: For any ǫ > 0, after a sufficiently
large number of iterations, the states of the fault-free
nodes are guaranteed to be within ǫ of each other.

In this paper, for the existence of a correct IABC algorithm,
we derive a necessary condition that must be satisfied by the
underlying communication graph. For graphs that satisfy
this necessary condition, we show the correctness of a spe-
cific IABC algorithm, proving that the necessary conditions
are tight. The rest of the paper is organized as follows. Sec-
tion 2 present our system and network models. Related work
is discussed in Section 3. Section 4 describes the iterative
algorithms of interest. The necessary condition is derived in
Section 5. A specific IABC algorithm is described in Section
6, and its correctness is proved in Section 7. Section 8 ex-
tends our results to an iterative algorithm in asynchronous
environments. Some recent results that build on the results
presented in this paper are summarized in Section 9. The
paper concludes with Section 10.

2. SYSTEM MODEL

Communication model: The system is assumed to be syn-
chronous (except in Section 8). The communication network
is modeled as a simple directed graph G(V,E), where V =
{1, . . . ,n} is the set of n nodes, and E is the set of directed
edges between the nodes in V. We assume that n ≥ 2, since
the consensus problem for n = 1 is trivial. Node i can reliably
transmit messages to node j if and only if the directed edge
(i, j) is in E. Each node can send messages to itself as well,
however, for convenience, we exclude self-loops from set E.
That is, (i, i) < E for i ∈ V. With a slight abuse of terminology,
we will use the terms edge and link interchangeably in our
presentation.

For each node i, let N−i be the set of nodes from which i has
incoming edges. That is, N−i = { j | (j, i) ∈ E }. Similarly, define
N+

i
as the set of nodes to which node i has outgoing edges.

That is, N+
i
= { j | (i, j) ∈ E }. Since we exclude self-loops from

E, i < N−
i

and i < N+
i

. However, we note again that each node
can indeed send messages to itself.

Failure Model: We consider the Byzantine failure model,
with up to f nodes becoming faulty. A faulty node may
misbehave arbitrarily. Possible misbehavior includes send-
ing incorrect and mismatching (or inconsistent) messages to
different neighbors. The faulty nodes may potentially col-
laborate with each other. Moreover, the faulty nodes are
assumed to have a complete knowledge of the execution of
the algorithm, including the states of all the nodes, contents
of messages the other nodes send to each other, the algorithm
specification, and the network topology.

3. RELATED WORK
As noted earlier, Dolev et al. presented the early results

on Byzantine fault-tolerant iterative consensus [5]. The ini-
tial algorithms [5, 14] were proved correct in fully connected
networks. Fekete [6] studied the convergence rate of approx-
imate consensus algorithms.

There have been attempts at achieving approximate fault-
tolerant consensus iteratively in partially connected graphs.
Kieckhafer and Azadmanesh examined the necessary condi-
tions in order to achieve “local convergence” in synchronous
[10] and asynchronous [2] systems. [1] presents a specific
class of networks in which convergence condition can be sat-
isfied using iterative algorithms.

A restricted fault model – called “malicious” fault model –
in which the faulty nodes are restricted to sending identical
messages to their neighbors has also been explored recently
[19, 11, 12, 13]. In contrast, our Byzantine model allows
a faulty node to send different messages to different neigh-
bors. Under the (restricted) malicious fault model, Zhang
and Sundaram [19] develop sufficient conditions for iterative
consensus algorithm assuming a “local" fault model (in their
“local” model, a bounded number of each node’s neighbors
may be faulty).

LeBlanc and Koutsoukos [11] address a continuous time
version of the consensus problem with malicious faults in
complete graphs. Under both malicious and Byzantine fault
models, LeBlanc and Koutsoukos [12] have identified some
sufficient conditions under which the continuous time ver-
sion of iterative consensus can be achieved with up to f faults

in the network; however, these sufficient conditions are not
tight.

For the malicious fault model, LeBlanc et al. [13] have inde-
pendently obtained tight necessary and sufficient conditions
for tolerating up to f total number of faults in the network.
Under the malicious model, since a faulty node must send
identical messages to all the neighbors, the necessary and
sufficient conditions are weaker than those developed here
for the Byzantine fault model. For instance, under the ma-
licious model, iterative consensus is possible in a complete
graph consisting of 2 f +1 nodes, whereas at least 3 f +1 nodes
are necessary for consensus under the Byzantine fault model.

Iterative approximate consensus algorithms that do not
tolerate faulty behavior have been studied extensively (e.g.,
[9, 3]). The proof technique used for proving sufficiency in
this paper is inspired by the prior work on non-fault-tolerant
iterative algorithms [3].

4. IABC ALGORITHMS
In this section, we describe the structure of the iterative

approximate Byzantine consensus (IABC) algorithms of interest,
and state the validity and convergence conditions that they
must satisfy.

Each node i maintains state vi, with vi[t] denoting the state
of node i at the end of the t-th iteration of the algorithm. Initial
state of node i, vi[0], is equal to the initial input provided to
node i. At the start of the t-th iteration (t > 0), the state of
node i is vi[t−1]. The IABC algorithms of interest will require
each node i to perform the following three steps in iteration
t, where t > 0. Note that the faulty nodes may deviate from
this specification.

1. Transmit step: Transmit current state, namely vi[t − 1],
on all outgoing edges (to nodes in N+i).

2. Receive step: Receive values on all incoming edges (from
nodes in N−

i
). Denote by ri[t] the vector of values re-

ceived by node i from its neighbors. The size of vector
ri[t] is |N−

i
|.

3. Update step: Node i updates its state using a transition
function Zi as follows. Zi is a part of the specification
of the algorithm, and takes as input the vector ri[t] and
state vi[t − 1].

vi[t] = Zi (ri[t] , vi[t − 1]) (1)

We now define U[t] and µ[t], assuming that F is the set of
Byzantine faulty nodes, with the nodes inV−F being fault-
free.1

• U[t] = maxi∈V−F vi[t]. U[t] is the largest state among
the fault-free nodes at the end of the t-th iteration. Since
the initial state of each node is equal to its input, U[0] is
equal to the maximum value of the initial input at the
fault-free nodes.

• µ[t] = mini∈V−F vi[t]. µ[t] is the smallest state among
the fault-free nodes at the end of the t-th iteration. µ[0]
is equal to the minimum value of the initial input at the
fault-free nodes.

1For sets X and Y, X − Y contains elements that are in X but
not in Y. That is, X − Y = {i | i ∈ X, i < Y}.

Figure 1: Illustration for the proof of Theorem 1. In this
figure, C ∪ R; L and L ∪ C; R.

The following conditions must be satisfied by an IABC algo-
rithm in presence of up to f Byzantine faulty nodes:

• Validity: ∀t > 0, µ[t] ≥ µ[t − 1] and U[t] ≤ U[t − 1]

• Convergence: lim t→∞ U[t] − µ[t] = 0

The objective in this paper is to identify the necessary and
sufficient conditions for the existence of a correct IABC al-
gorithm (i.e., an algorithm satisfying the above validity and
convergence conditions) for a given G(V,E).

5. NECESSARY CONDITION
For a correct IABC algorithm to exist, the network graph

G(V,E) must satisfy the necessary condition proved in this
section. Theorems 1 and 2 below state equivalent necessary
conditions. The form of the necessary condition in Theorem
2 is more intuitive, whereas the form in Theorem 1 is used
later to prove sufficiency. We now define relations⇒ and;
that are used frequently in our discussion.

Definition 1. For non-empty disjoint sets of nodes A and B,

• A ⇒ B iff there exists a node v ∈ B that has at least f + 1
incoming edges from nodes in A, i.e., |N−v ∩ A| > f .

• A; B iff A⇒ B is not true.

Theorem 1. Suppose that a correct IABC algorithm exists for
G(V,E). Let sets F,L,C,R form a partition2 ofV, such that L and
R are both non-empty, and |F| ≤ f . Then, either C ∪ R ⇒ L, or
L ∪ C⇒ R.

Proof. The proof is by contradiction. Let us assume that
a correct iterative consensus algorithm exists, and C∪R; L
and L∪C; R. Thus, for any i ∈ L, |N−

i
∩ (C∪R)| < f + 1, and

for any j ∈ R, |N−
j
∩ (L ∪ C)| < f + 1. Figure 1 illustrates the

sets used in this proof.

2Sets X1,X2,X3, ...,Xp are said to form a partition of set X
provided that (i) ∪1≤i≤pXi = X, and (ii) Xi ∩ X j = Φ if i , j.

Also assume that the nodes in F (if F is non-empty) are all
faulty, and the other nodes in sets L,C,R are fault-free. Note
that the fault-free nodes are not aware of the identity of the
faulty nodes.

Consider the case when (i) each node in L has initial input
m, (ii) each node in R has initial input M, such that M > m,
and (iii) each node in C, if C is non-empty, has an input in the
interval [m,M].

In the Transmit Step of iteration 1, suppose that the faulty
nodes in F (if non-empty) send m− < m on outgoing links to
nodes in L, send M+ > M on outgoing links to nodes in R, and
send some arbitrary value in interval [m,M] on outgoing links
to the nodes in C (if C is non-empty). This behavior is possible
since nodes in F are faulty. Note that m− < m < M < M+. Each
fault-free node k ∈ V − F, sends to nodes in N+

k
value vk[0] in

iteration 1.
Consider any node i ∈ L. Denote N′

i
= N−

i
∩ (C ∪ R). Since

|F| ≤ f , |N−
i
∩ F| ≤ f . Since C ∪ R ; L, |N′

i
| ≤ f . Node i will

then receive m− from the nodes in N−
i
∩F, and values in [m,M]

from the nodes in N′i , and m from the nodes in {i} ∪ (N−i ∩ L).
Consider the following two cases:

• Both N−
i
∩ F and N′

i
are non-empty: Now |N−

i
∩ F| ≤ f

and |N′
i
| ≤ f . From node i’s perspective, consider two

possible scenarios: (a) nodes in N−
i
∩ F are faulty, and

the other nodes are fault-free, and (b) nodes in N′i are
faulty, and the other nodes are fault-free.

In scenario (a), from node i’s perspective, the fault-free
nodes have sent values in interval [m,M], whereas the
faulty nodes have sent value m−. According to the va-
lidity condition, vi[1] ≥ m. On the other hand, in sce-
nario (b), the fault-free nodes have sent values m− and
m, where m− < m; so vi[1] ≤ m, according to the va-
lidity condition. Since node i does not know whether
the correct scenario is (a) or (b), it must update its state
to satisfy the validity condition in both cases. Thus, it
follows that vi[1] = m.

• At most one of N−
i
∩ F and N′

i
is non-empty: Thus,

|(N−
i
∩ F) ∪ N′

i
| ≤ f . From node i’s perspective, it is

possible that the nodes in (N−i ∩ F) ∪ N′i are all faulty,
and the rest of the nodes are fault-free. In this situation,
the values sent to node i by the fault-free nodes (which
are all in {i} ∪ (N−

i
∩ L)) are all m, and therefore, vi[1]

must be set to m as per the validity condition.

Thus, vi[1] = m for each node i ∈ L. Similarly, we can show
that v j[1] =M for each node j ∈ R.

Now consider the nodes in set C, if C is non-empty. All
the values received by the nodes in C are in [m,M], therefore,
their new state must also remain in [m,M], as per the validity
condition.

The above discussion implies that, at the end of iteration
1, the following conditions hold true: (i) state of each node
in L is m, (ii) state of each node in R is M, and (iii) state of
each node in C is in the interval [m,M]. These conditions
are identical to the initial conditions listed previously. Then,
by a repeated application of the above argument (proof by
induction), it follows that for any t ≥ 0, vi[t] = m for all ∀i ∈ L,
v j[t] =M for all j ∈ R and vk[t] ∈ [m,M] for all k ∈ C.

Since L and R both contain fault-free nodes, the conver-
gence requirement is not satisfied. This is a contradiction to
the assumption that a correct iterative algorithm exists.

Corollary 1. Suppose that a correct IABC algorithm exists
for G(V,E). Let {F,L,R} be a partition ofV, such that L and R are
both non-empty and |F| ≤ f . Then, either L⇒ R or R⇒ L.

The proof follows by setting C = Φ in Theorem 1.

Corollary 2. Suppose that a correct IABC algorithm exists
for G(V,E). Then n must be at least 3 f + 1, and if f > 0, then
each node must have at least 2 f + 1 incoming edges.

Proof. The necessary condition of n ≥ 3 f + 1 has been
shown previously [7]. We include a proof here for complete-
ness. For f = 0, n ≥ 3 f + 1 is trivially true. For f > 0, the
proof is by contradiction. Suppose that 2 ≤ n ≤ 3 f . In this
case, we can partitionV into sets L,R,F such that 0 < |L| ≤ f ,
0 < |R| ≤ f and 0 ≤ |F| ≤ f . Since 0 < |L| ≤ f and 0 < |R| ≤ f ,
we have L ; R and R ; L, respectively. This violates the
necessary condition in Corollary 1. Thus, n ≥ 3 f + 1.

The proof of the remaining corollary is also by contradic-
tion. Suppose that f > 0, and for some node i, |N−

i
| ≤ 2 f .

Define set L = {i}. Partition N−i into two sets F and H such
that |H| = ⌊|N−

i
|/2⌋ ≤ f and |F| = ⌈|N−

i
|/2⌉ ≤ f . Define

R = V − F − L = V − F − {i}. Since |V| = n ≥ 3 f + 1, R
is non-empty. Now, N−

i
∩R = H, and |N−

i
∩R| ≤ f . Therefore,

since L = {i} and |N−
i
∩R| ≤ f , R; L. Also, since |L| = 1 < f+1,

L; R. This violates Corollary 1 above.

In Section 7, we prove that the condition stated in Theo-
rem 1 is also sufficient for the existence of a correct IABC
algorithm. The condition in Theorem 1 is not very intuitive.
In Theorem 2 below, we state another necessary condition
that is equivalent to the necessary condition in Theorem 1,
and is somewhat easier to interpret. To facilitate the state-
ment of Theorem 2, we now introduce the notions of “source
component” and “reduced graph” using the following three
definitions.

Definition 2. Graph decomposition: Let H be a directed
graph. Partition graph H into non-empty strongly connected com-
ponents, H1,H2, · · · ,Hh, where h is a non-zero integer dependent
on graph H, such that

• every pair of nodes within the same strongly connected com-
ponent has directed paths in H to each other, and

• for each pair of nodes, say i and j, that belong to two differ-
ent strongly connected components, either i does not have a
directed path to j in H, or j does not have a directed path to i
in H.

Construct a graph Hd wherein each strongly connected component
Hk above is represented by vertex ck, and there is an edge from
vertex ck to vertex cl if and only if the nodes in Hk have directed
paths in H to the nodes in Hl.

It is known that the decomposition graph Hd is a directed
acyclic graph [4].

Definition 3. Source component: Let H be a directed graph,
and let Hd be its decomposition as per Definition 2. Strongly
connected component Hk of H is said to be a source component if
the corresponding vertex ck in Hd is not reachable from any other
vertex in Hd.

Definition 4. Reduced Graph: For a given graph G(V,E)
and F ⊂ V, a graph GF(VF,EF) is said to be a reduced graph, if:
(i) VF = V − F, and (ii) EF is obtained by first removing from E
all the links incident on the nodes in F, and then removing up to f
other incoming links at each node inVF.

Note that for a given G(V,E) and a given F, multiple reduced
graphs GF may exist.

Theorem 2. Suppose that Theorem 1 holds for graph G(V,E).
Then, for any F ⊂ V such that |F| < |V| and |F| ≤ f , every reduced
graph GF obtained as per Definition 4 must contain exactly one
source component.

Proof. Since |F| < |V|, GF contains at least one node; there-
fore, at least one source component must exist in GF. We now
prove that GF cannot contain more than one source compo-
nent. The proof is by contradiction. Suppose that there exists
a set F ⊂ V with |F| < |V| and |F| ≤ f , and a reduced graph
GF(VF,EF) corresponding to F, such that the decomposition
of GF includes at least two source components.

Let the sets of nodes in two such source components of GF

be denoted L and R, respectively. Let C = V − F − L − R.
Observe that F,L,C,R form a partition of the nodes in V.
Since L is a source component in GF it follows that there are
no directed links in EF from any node in C ∪ R to the nodes
in L. Similarly, since R is a source component in GF it follows
that there are no directed links in EF from any node in L∪C to
the nodes in R. These observations, together with the manner
in which EF is defined, imply that (i) there are at most f links
in E from the nodes in C ∪ R to each node in L, and (ii) there
are at most f links in E from the nodes in L ∪ C to each node
in R. Therefore, in graph G(V,E), C ∪ R; L and L ∪ C; R,
violating Theorem 1. Thus, we have proved that GF must
contain exactly one source component.

The above proof shows that Theorem 1 implies Theorem
2. Appendix A presents the proof that Theorem 2 implies
Theorem 1. Thus, it follows that Theorems 1 and 2 specify
equivalent conditions.3

Corollary 3. Suppose that Theorem 1 holds true for graph
G(V,E). Then, for any F ⊂ V such that |F| ≤ f , the unique source
component in every reduced graph GF must contain at least f + 1
nodes.

Proof. Since the source component is non-empty, the claim
is trivially true for f = 0.

Now consider f > 0. The proof in this case is by con-
tradiction. Suppose that there exists a set F with |F| ≤ f ,
and a corresponding reduced graph GF(VF,EF), such that the
decomposition of GF contains a unique source component
consisting of at most f nodes. Define L to be the set of nodes
in this unique source component, and R =V−L−F. Observe
that F,L,R form a partition ofV. R must contain at least f + 1
nodes, since |L| ≤ f , |F| ≤ f , and by Corollary 2, n ≥ 3 f + 1.

Since |L| ≤ f , it follows that in graph G(V,E), L; R, Then
Corollary 1 implies that, in graph G(V,E), R ⇒ L. Thus,
there must be a node in L, say node i, that has at least f + 1
incoming links inE from the nodes in R. Since i ∈ L, it follows
that i < F (by definition of a reduced graph). Also, since i has
at least f + 1 incoming links in E from nodes in R, it follows
that in EF, node i must have at least one incoming link from
the nodes in R. This contradicts that assumption that set L
containing node i is a source component of GF.

3An alternate interpretation of Theorem 2 is that in graph GF

non-fault-tolerant iterative consensus must be possible.

6. ALGORITHM 1
We will prove that there exists an IABC algorithm – par-

ticularly Algorithm 1 below – that satisfies the validity and
convergence conditions provided that the graph G(V,E) satis-
fies the necessary condition in Theorem 1. This implies that
the necessary condition in Theorem 1 is also sufficient. Algo-
rithm 1 has the three-step structure described in Section 4, and
it is similar to algorithms that were analyzed in prior work as
well [5, 14, 10] (although correctness of the algorithm under
the necessary condition in Theorem 1 has not been proved
previously).

Algorithm 1

Steps to be performed by node i ∈ V in t-th iteration, t > 0:

1. Transmit step: Transmit current state vi[t − 1] on all out-
going edges.

2. Receive step: Receive values on all incoming edges.
These values form vector ri[t] of size |N−i |. When a fault-
free node expects to receive a message from a neighbor
but does not receive the message, the message value is
assumed to be equal to some default value.

3. Update step: Sort the values in ri[t] in an increasing order,
and eliminate the smallest f values, and the largest f
values (breaking ties arbitrarily). Let N∗

i
[t] denote the

set of nodes from whom the remaining N−
i
− 2 f values

were received, and let w j denote the value received from
node j ∈ N∗i [t]. For convenience, define wi = vi[t − 1] to
be the value node i “receives” from itself. Observe that
if j ∈ {i} ∪N∗

i
[t] is fault-free, then w j = v j[t − 1].

Define

vi[t] = Zi(ri[t], vi[t − 1]) =
∑

j∈{i}∪N∗
i
[t]

ai w j (2)

where

ai =
1

|N−
i
| + 1 − 2 f

Note that |N∗
i
[t]| = |N−

i
| −2 f , and i < N∗

i
[t] because (i, i) <

E. The “weight” of each term on the right-hand side of
(2) is ai, and these weights add to 1. Also, 0 < ai ≤ 1.
For future reference, let us define α as:

α = min
i∈V

ai (3)

7. SUFFICIENCY (CORRECTNESS OF
ALGORITHM 1)

In Theorems 3 and 4 in this section, we prove that Algo-
rithm 1 satisfies validity and convergence conditions, respec-
tively, provided that G(V,E) satisfies the condition below,
which matches the necessary condition stated in Theorem 1.

Sufficient condition: For every partition F,L,C,R ofV, such
that L and R are both non-empty, and |F| ≤ f , either C∪R⇒ L,
or L ∪ C⇒ R.

Theorem 3. Suppose that F is the set of Byzantine faulty
nodes, and that G(V,E) satisfies the sufficient condition stated
above. Then Algorithm 1 satisfies the validity condition.

Proof. Consider the t-th iteration, and any fault-free node
i ∈ V − F . Consider two cases:

• f = 0: In this case, all nodes must be fault-free, and
F = Φ. In (2) in Algorithm 1, note that vi[t] is computed
using states from the previous iteration at node i and
other nodes. By definition of µ[t − 1] and U[t − 1],
v j[t − 1] ∈ [µ[t − 1],U[t − 1]] for all fault-free nodes
j ∈ V − F = V. Thus, in this case, all the values used
in computing vi[t] are in the interval [µ[t − 1],U[t − 1]].
Since vi[t] is computed as a weighted average of these
values, vi[t] is also within [µ[t − 1],U[t − 1]].

• f > 0: By Corollary 2, |N−
i
| ≥ 2 f + 1, and therefore,

|ri[t]| ≥ 2 f + 1. When computing set N∗
i
[t], the largest

f and smallest f values from ri[t] are eliminated. Since
at most f nodes are faulty, it follows that, either (i) the
values received from the faulty nodes are all eliminated,
or (ii) the values from the faulty nodes that still remain
are between values received from two fault-free nodes.
Thus, the remaining values in ri[t] are all in the interval
[µ[t− 1],U[t − 1]]. Also, vi[t− 1] is in [µ[t− 1],U[t− 1]],
as per the definition of µ[t − 1] and U[t − 1]. Thus
vi[t] is computed as a weighted average of values in
[µ[t− 1],U[t− 1]], and, therefore, it will also be in [µ[t−
1],U[t − 1]].

Since ∀i ∈ V − F , vi[t] ∈ [µ[t − 1],U[t − 1]], the validity
condition is satisfied.

Definition 5. For disjoint sets A,B, in(A ⇒ B) denotes the
set of all the nodes in B that each have at least f + 1 incoming edges
from nodes in A. More formally,

in(A⇒ B) = { v | v ∈ B and f + 1 ≤ |N−v ∩ A| }

With an abuse of notation, when A; B, define in(A⇒ B) = Φ.

Definition 6. For non-empty disjoint sets A and B, set A is
said to propagate to set B in l steps, where l > 0, if there exist
sequences of sets A0,A1,A2, · · · ,Al and B0,B1,B2, · · · ,Bl (propa-
gating sequences) such that

• A0 = A, B0 = B, Al = A ∪ B, Bl = Φ, Bτ , Φ
for τ < l, and

• for 0 ≤ τ ≤ l − 1,

– Aτ ⇒ Bτ,

– Aτ+1 = Aτ ∪ in(Aτ ⇒ Bτ), and

– Bτ+1 = Bτ − in(Aτ ⇒ Bτ)

Observe that Aτ and Bτ form a partition of A∪B, and for τ < l,
in(Aτ ⇒ Bτ) , Φ. Also, when set A propagates to set B, the
number of steps l in the above definition is upper bounded
by n − f − 1, since set A must be of size at least f + 1 for it to
propagate to B; otherwise, A; B.

Lemma 1. Assume that G(V,E) satisfies the sufficient con-
dition stated above. For any partition A,B,F of V, where A,B
are both non-empty, and |F| ≤ f , either A propagates to B, or B
propagates to A.

Proof. Appendix B presents the proof.

The lemma below states that the interval to which the states
at all the fault-free nodes are confined shrinks after a finite
number of iterations of Algorithm 1. Recall that U[t] and µ[t]
(defined in Section 4) are the maximum and minimum over
the states at the fault-free nodes at the end of the t-th iteration.

Lemma 2. Suppose that G(V,E) satisfies the sufficient con-
dition stated above, and F is the set of Byzantine faulty nodes.
Moreover, at the end of the s-th iteration of Algorithm 1, suppose
that the fault-free nodes inV−F can be partitioned into non-empty
sets R and L such that (i) R propagates to L in l steps, and (ii) the

states of nodes in R are confined to an interval of length ≤
U[s]−µ[s]

2
.

Then, with Algorithm 1,

U[s + l] − µ[s + l] ≤

(

1 −
αl

2

)

(U[s] − µ[s]) (4)

where α is as defined in (3).

Proof. Appendix C presents the proof.

Theorem 4. Suppose that F is the set of Byzantine faulty
nodes, and that G(V,E) satisfies the sufficient condition stated
above. Then Algorithm 1 satisfies the convergence condition.

Proof. Our goal is to prove that, given any ǫ > 0, there
exists τ such that

U[t] − µ[t] ≤ ǫ ∀t ≥ τ (5)

Consider s-th iteration, for some s ≥ 0. If U[s] − µ[s] = 0,
then the algorithm has already converged, and the proof is
complete, with τ = s (recall that we have already proved that
the algorithm satisfies the validity condition).

Now consider the case when U[s] − µ[s] > 0. Partition
V − F into two subsets, A and B, such that, for each node

i ∈ A, vi[s] ∈
[

µ[s],
U[s]+µ[s]

2

)

, and for each node j ∈ B, v j[s] ∈
[

U[s]+µ[s]

2
,U[s]

]

. By definition of µ[s] and U[s], there exist fault-

free nodes i and j such that vi[s] = µ[s] and v j[s] = U[s]. Thus,
sets A and B are both non-empty. By Lemma 1, one of the
following two conditions must be true:

• Set A propagates to set B. Then, define L = B and R = A.
The states of all the nodes in R = A are confined within
an interval of length <

U[s]+µ[s]

2 − µ[s] ≤
U[s]−µ[s]

2 .

• Set B propagates to set A. Then, define L = A and R = B.
In this case, states of all the nodes in R = B are confined

within an interval of length ≤ U[s] −
U[s]+µ[s]

2
≤

U[s]−µ[s]

2
.

In both cases above, we have found non-empty sets L and R
such that (i) L,R is a partition ofV − F , (ii) R propagates to
L, and (iii) the states in R are confined to an interval of length

≤
U[s]−µ[s]

2
. Suppose that R propagates to L in l(s) steps, where

l(s) ≥ 1. Then by Lemma 2,

U[s + l(s)] − µ[s + l(s)] ≤

(

1 −
αl(s)

2

)

(U[s] − µ[s]) (6)

In Algorithm 1, observe that ai > 0 for all i. Therefore, α
defined in 3 in Algorithm 1 is > 0. Then, n − f − 1 ≥ l(s) ≥ 1

and 0 < α ≤ 1; hence, 0 ≤
(

1 − αl(s)

2

)

< 1.

Let us define the following sequence of iteration indices:

• τ0 = 0,

• for i > 0, τi = τi−1+ l(τi−1), where l(s) for any given s was
defined above.

If for some i, U[τi] − µ[τi] = 0, then since the algorithm is
already proved to satisfy the validity condition, we will have
U[t] − µ[t] = 0 for all t ≥ τi, and the proof of convergence is
complete.

Now suppose that U[τi] − µ[τi] , 0 for the values of i in
the analysis below. By repeated application of the argument
leading to (6), we can prove that, for i ≥ 0,

U[τi] − µ[τi] ≤

(

Π
i
j=1

(

1 −
ατ j−τ j−1

2

))

(U[0] − µ[0]) (7)

For a given ǫ, by choosing a large enough i, we can obtain
(

Π
i
j=1

(

1 −
ατ j−τ j−1

2

))

(U[0] − µ[0]) ≤ ǫ

and, therefore,

U[τi] − µ[τi] ≤ ǫ (8)

For t ≥ τi, by validity of Algorithm 1, it follows that

U[t] − µ[t] ≤ U[τi] − µ[τi] ≤ ǫ

This concludes the proof.

It should be easy to see that other correct IABC algorithms
can be obtained by choosing “weights” differently than in
Algorithm 1, and with other appropriate ways of eliminating
values in the Update step. In recent work [18] we have devel-
oped an alternate proof of sufficiency, based on a transition
matrix representation of the update step in Algorithm 1.

8. ASYNCHRONOUS NETWORKS
Dolev et al. [5] propose an iterative algorithm for asyn-

chronous networks wherein message and processing delays
may be arbitrary but finite. We extend their approach to arbi-
trary point-to-point networks. In particular, we consider the
Asynchronous IABC Algorithm structure below, which is sim-
ilar to the algorithm in [5]. This algorithm structure differs
from the structure presented in Section 4 in two important
ways: (i) the messages containing states are now tagged by
the iteration index to which the states correspond, and (ii)
each node i waits to receive only |N−i | − f messages contain-
ing states from iteration t− 1 before computing the new state
in its t-th iteration. Due to the asynchronous nature of the
system, different nodes may potentially perform their t-th
iteration at very different real times.

Asynchronous IABC Algorithm

Steps to be performed by each node i ∈ V in its t-th itera-
tion, t > 0:

1. Transmit step: Transmit current state vi[t − 1] on all out-
going edges. The message is tagged by index t − 1.

2. Receive step: Wait until |N−
i
|− f messages tagged by index

t−1 are received on the incoming edges. Values received
in these messages form vector ri[t] of size |N−

i
| − f .

3. Update step: Node i updates its state using a transition
function Zi.

vi[t] = Zi (ri[t] , vi[t − 1]) (9)

We now introduce relation
a
⇒ that is analogous to relation

⇒ defined previously.

Definition 7. For non-empty disjoint sets of nodes A and B,

A
a
⇒ B iff there exists a node v ∈ B that has at least 2 f +1 incoming

edges from nodes in A, i.e., |N−v ∩ A| ≥ 2 f + 1.

Theorem 5 states a necessary condition for asynchronous it-
erative algorithms with the above structure.

Theorem 5. If an Asynchronous IABC Algorithm satisfies
validity and convergence conditions in graph G(V,E), then for
any partition F,L,C,R ofV, such that L and R are both non-empty

and |F| ≤ f , then either C ∪ R
a
⇒ L, or L ∪ C

a
⇒ R.

Proof. The proof is similar to the proof of Theorem 1. More
details can be found in [17].

The following corollary can be obtained from Theorem 5 [17].

Corollary 4. If an Asynchronous IABC Algorithm satis-
fies validity and convergence conditions in graph G(V,E), then
n > 5 f , and when f > 0, |N−

i
| ≥ 3 f + 1 for all i ∈ V.

It can be shown that the necessary condition in Theorem 5
is tight. In particular, an Asynchronous IABC Algorithm with
the structure above that performs the Update step shown be-
low can be proved to satisfy the convergence and validity
conditions [17]. Note that the Update step below, to be per-
formed by each node i ∈ V, is similar to that in Algorithm 1
for the synchronous network.

• Update step: Sort the values in vector ri[t] in an increas-
ing order, and eliminate the smallest f and the largest
f values (breaking ties arbitrarily). Recall that ri[t] con-
tains |N−

i
| − f values. Let N∗

i
[t] denote the set of nodes

from whom the remaining |N−
i
| − 3 f values were re-

ceived, and let w j denote the value received from node
j ∈ N∗

i
[t]. Define wi = vi[t − 1], and

vi[t] =

∑

j∈{i}∪N∗
i
[t]

ai w j (10)

where

ai =
1

|N−
i
| + 1 − 3 f

.

9. OTHER RESULTS
The results presented in this paper have led to other re-

lated results described elsewhere. Here we summarize the
other results. An alternate proof of correctness of Algorithm
1, using a transition matrix representation of the algorithm,
is presented in [18]. Our necessary conditions are useful to
examine whether IABC algorithms exist for specific graph
families [16]. For instance, IABC is feasible in an undirected
“core” network consisting of a clique of 2 f + 1 nodes, with
the remaining nodes being connected to all the nodes in this
clique [16]. Our results can also be extended to other sys-
tem models, particularly, the partially asynchronous algorith-
mic model of [3], as shown in [17], and networks with time-
varying topologies, as briefly discussed in [18]. Finally, the
results can also be extended to a generalized Byzantine fault
model [15] wherein possible faults are specified using a set
of feasible fault sets. The generalized fault model can be
used to capture correlated failures as well as different levels
of reliabilities for different nodes in the system.

10. CONCLUSIONS
This paper proves a tight necessary and sufficient condi-

tion for the existence of a class of synchronous iterative ap-
proximate Byzantine consensus algorithms (IABC) that can

tolerate up to f Byzantine fault in arbitrary directed graphs.
These results can be extended to a class of iterative algorithms
for asynchronous systems, as briefly discussed in Section 8.
The work presented in this paper has led to further related
results, as summarized in Section 9.

11. REFERENCES
[1] A. Azadmanesh and H. Bajwa. Global convergence in

partially fully connected networks (PFCN) with limited
relays. Conf. of IEEE Industrial Electronics Soc. (IECON),
2001.

[2] M. H. Azadmanesh and R. Kieckhafer. Asynchronous
approximate agreement in partially connected
networks. International Journal of Parallel and Distributed
Systems and Networks, 2002. http://ahvaz.unomaha
.edu/azad/pubs/ijpdsn.asyncpart.pdf

[3] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and
Distributed Computation: Numerical Methods.
Optimization and Neural Computation Series. Athena
Scientific, 1997.

[4] S. Dasgupta, C. Papadimitriou, and U. Vazirani.
Algorithms. McGraw-Hill Higher Education, 2006.

[5] D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and
W. E. Weihl. Reaching approximate agreement in the
presence of faults. J. ACM, 33:499–516, May 1986.

[6] A. D. Fekete. Asymptotically optimal algorithms for
approximate agreement. ACM PODC, 1986.

[7] M. J. Fischer, N. A. Lynch, and M. Merritt. Easy
impossibility proofs for distributed consensus
problems. ACM PODC, 1985.

[8] M. J. Fischer, N. A. Lynch, and M. S. Paterson.
Impossibility of distributed consensus with one faulty
process. J. ACM, 32:374–382, April 1985.

[9] A. Jadbabaie, J. Lin, and A. Morse. Coordination of
groups of mobile autonomous agents using nearest
neighbor rules. Automatic Control, IEEE Transactions on,
48(6):988 – 1001, June 2003.

[10] R. M. Kieckhafer and M. H. Azadmanesh. Low cost
approximate agreement in partially connected
networks. J. of Computing and Information, 1993. http://
ahvaz.ist.unomaha.edu/azad/pubs/jci.syncpart.pdf

[11] H. LeBlanc and X. Koutsoukos. Consensus in
networked multi-agent systems with adversaries. 14th
International conference on Hybrid Systems: Computation
and Control (HSCC), 2011.

[12] H. LeBlanc and X. Koutsoukos. Low complexity
resilient consensus in networked multi-agent systems
with adversaries. Int. Conf. on Hybrid Systems:
Computation and Control (HSCC), 2012.

[13] H. LeBlanc, H. Zhang, S. Sundaram, and
X. Koutsoukos. Consensus of multi-agent networks in
the presence of adversaries using only local
information. Conference on High Confidence Networked
Systems (HiCoNS), 2012.

[14] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann,
1996.

[15] L. Tseng and N. H. Vaidya, “Iterative Approximate
Byzantine Consensus under a Generalized Fault
Model,” report under preparation, May 2012.

[16] N. H. Vaidya, L. Tseng, and G. Liang. Iterative
approximate Byzantine consensus in arbitrary directed

graphs. Tech. Rep., University of Illinois, January 2012.
http://arxiv.org/abs/1201.4183

[17] N. H. Vaidya, L. Tseng, and G. Liang. Iterative
approximate Byzantine consensus in arbitrary directed
graphs – Part II: Synchronous and asynchronous
systems. Tech. Rep., University of Illinois, February
2012. http://arxiv.org/abs/1202.6094

[18] N. H. Vaidya, “Matrix Representation of Iterative
Approximate Byzantine Consensus in Directed
Graphs,” Tech. Rep., University of Illinois, March 2012.
http://arxiv.org/abs/1203.1888

[19] H. Zhang and S. Sundaram. Robustness of information
diffusion algorithms to locally bounded adversaries.
http://arxiv.org/abs/1110.3843, October 2011. A
version to appear at ACC 2012 as Robustness of
Distributed Algorithms to Locally Bounded Adversaries.

APPENDIX

A. THEOREM 2 IMPLIES THEOREM 1
We now prove that Theorem 2 implies the correctness of

Theorem 1. We achieve this by proving that, if the condition in
Theorem 1 does not hold true for G(V,E), then the condition
in Theorem 2 also does not hold true.

Proof. Suppose that the condition stated in Theorem 1
does not hold for G(V,E). Thus, there exists a partition
F,L,C,R of V such that |F| ≤ f , L and R are non-empty, and
C ∪ R; L and L ∪ C; R.

We now construct a reduced graph GF(VF,EF) correspond-
ing to set F. First, remove all nodes in F fromV to obtainVF.
Remove all the edges incident on F from E. Then because
C ∪ R ; L, the number of incoming edges at each node in L
from the nodes in C ∪ R is at most f ; remove all these edges.
Similarly, for every node j ∈ R, remove all incoming edges
from L∪C (there are at most f such edges at each node j ∈ R).
The resulting graph GF is a reduced graph that satisfies the
conditions in Definition 4.

In EF, there are no incoming edges to nodes in R from the
nodes in L ∪ C; similarly, in EF, there are no incoming edges
to nodes in L from the nodes in C∪R. It follows that no single
node in VF has paths in GF (i.e., paths consisting of links in
EF) to all the other nodes inVF. Thus, GF must contain more
than one source component. Thus, Theorem 2 does not hold
for G(V,E).

B. PROOF OF LEMMA 1
To prove Lemma 1, we first prove the following Lemma.

Lemma 3. Assume that G(V,E) satisfies Theorem 1. Consider
a partition A,B,F of V such that A and B are non-empty, and
|F| ≤ f . If B; A, then set A propagates to set B.

Proof. Since A,B are non-empty, and B ; A, by Corol-
lary 1, we have A⇒ B.

Define A0 = A and B0 = B. Now, for a suitable l > 0, we will
build propagating sequences A0,A1, · · ·Al and B0,B1, · · ·Bl in-
ductively.

• Recall that A = A0 and B = B0 , Φ. Since A ⇒ B,
in(A0 ⇒ B0) , Φ. Define A1 = A0 ∪ in(A0 ⇒ B0) and
B1 = B0 − in(A0 ⇒ B0).

If B1 = Φ, then l = 1, and we have found the propagating
sequence already.

If B1 , Φ, then define L = A = A0, R = B1 and C =
A1 −A = B − B1. Since B; A, R ∪ C; L. Therefore, by
Theorem 1, L ∪ C⇒ R. That is, A1 ⇒ B1.

• For increasing values of i ≥ 0, given Ai and Bi, where Bi ,

Φ, by following steps similar to the previous item, we can
obtain Ai+1 = A0∪in(Ai ⇒ Bi) and Bi+1 = Bi−in(Ai ⇒ Bi),
such that either Bi+1 = Φ or Ai+1 ⇒ Bi+1.

In the above construction, l is the smallest index such that
Bl = Φ.

A more detailed proof of the above lemma is presented in
[16].

Proof of Lemma 1.

Proof. Consider two cases:

• A ; B: Then by Lemma 3 above, B propagates to A,
completing the proof.

• A⇒ B: In this case, consider two sub-cases:

– A propagates to B: The proof in this case is complete.

– A does not propagate to B: Recall that A ⇒ B. Since
A does not propagate to B, propagating sequences
defined in Definition 6 do not exist in this case.
More precisely, there must exist k > 0, and sets
A0,A1, · · · ,Ak and B0,B1, · · · ,Bk, such that:

∗ A0 = A and B0 = B, and

∗ for 0 ≤ i ≤ k − 1,

o Ai ⇒ Bi,

o Ai+1 = Ai ∪ in(Ai ⇒ Bi), and

o Bi+1 = Bi − in(Ai ⇒ Bi).

∗ Bk , Φ and Ak ; Bk.

The last condition above violates the requirements
for A to propagate to B.
Now, Ak , Φ, Bk , Φ, and Ak,Bk,F form a parti-
tion of V. Since Ak ; Bk, by Lemma 3 above, Bk

propagates to Ak.
Given that Bk ⊆ B0 = B, A = A0 ⊆ Ak, and Bk prop-
agates to Ak, now we prove that B propagates to
A.
Recall that Ai and Bi form a partition ofV− F.
Let us define P = P0 = Bk and Q = Q0 = Ak.
Thus, P propagates to Q. Suppose that P0,P1, ...Pm

and Q0,Q1, · · · ,Qm are the propagating sequences
in this case, with Pi and Qi forming a partition of
P ∪Q = Ak ∪ Bk =V− F.

Let us define R = R0 = B and S = S0 = A. Note
that R,S form a partition of A ∪ B = V − F. Now,
P0 = Bk ⊆ B = R0 and S0 = A ⊆ Ak = Q0. Also,
R0 − P0 and S0 form a partition of Q0. Figure 2 illus-
trates some of the sets used in this proof.

∗ Define P1 = P0∪(in(P0 ⇒ Q0)), and Q1 =V−F−
P1 = Q0−(in(P0 ⇒ Q0)). Also, R1 = R0∪(in(R0 ⇒

S0)), and S1 =V− F − R1 = S0 − (in(R0 ⇒ S0)).
Since R0 − P0 and S0 are a partition of Q0, the
nodes in in(P0 ⇒ Q0) belong to one of these two
sets. Note that R0 − P0 ⊆ R0. Also, S0 ∩ in(P0 ⇒

Q0) ⊆ in(R0 ⇒ S0). Therefore, it follows that
P1 = P0 ∪ (in(P0 ⇒ Q0)) ⊆ R0 ∪ (in(R0 ⇒ S0)) =
R1.

Figure 2: Illustration for the last part of the proof of Lemma 1. In this figure, R0 = P0 ∪ (R0 − P0) and Q0 = S0 ∪ (R0 − P0).

Thus, we have shown that, P1 ⊆ R1. Then it
follows that S1 ⊆ Q1.

∗ For 0 ≤ i < m, let us define Ri+1 = Ri∪in(Ri ⇒ Si)
and Si+1 = Si − in(Ri ⇒ Si). Then following an
argument similar to the above case, we can in-
ductively show that, Pi ⊆ Ri and Si ⊆ Qi. Due to
the assumption on the length of the propagat-
ing sequence above, Pm = P ∪ Q = V − F and
Qm = Φ. Thus, there must exist r ≤ m, such that
for i < r, Ri ,V− F, and Rr =V− F and Sr = Φ.
The sequences R0,R1, · · · ,Rr and S0,S1, · · · ,Sr

form propagating sequences, proving that R = B
propagates to S = A.

C. PROOF OF LEMMA 2
We first present two additional lemmas (using the notation

in Algorithm 1).

Lemma 4. Suppose that F is the set of faulty nodes, and that
G(V,E) satisfies the “sufficient condition” stated in Section 7.
Consider node i ∈ V−F . Letψ ≤ µ[t−1]. Then, for j ∈ {i}∪N∗i [t],

vi[t] − ψ ≥ ai (w j − ψ)

Specifically, for fault-free j ∈ {i} ∪N∗
i
[t],

vi[t] − ψ ≥ ai (v j[t − 1] − ψ)

Proof. In (2) in Algorithm 1, for each j ∈ {i}∪N∗
i
[t], consider

two cases:

• j is fault-free: Then, either j = i or j ∈ N∗
i
[t]∩ (V−F). In

this case, w j = v j[t−1]. Therefore,µ[t−1] ≤ w j ≤ U[t−1].

• j is faulty: In this case, f must be non-zero (otherwise, all
nodes are fault-free). By Corollary 2, |N−

i
| ≥ 2 f +1. Then

it follows that, in step 2 of Algorithm 1, the smallest f
values in ri[t] contain the state of at least one fault-free

node, say k. This implies that vk[t − 1] ≤ w j. This, in
turn, implies that µ[t − 1] ≤ w j.

Thus, for all j ∈ {i} ∪N∗
i
[t], we have µ[t − 1] ≤ w j. Therefore,

w j − ψ ≥ 0 for all j ∈ {i} ∪N∗i [t] (11)

Since weights in (2) in Algorithm 1 add to 1, we can re-write
that equation as,

vi[t] − ψ =

∑

j∈{i}∪N∗
i
[t]

ai (w j − ψ) (12)

≥ ai (w j − ψ), ∀ j ∈ {i} ∪N∗i [t] from (11)

For fault-free j ∈ {i} ∪N∗
i
[t], w j = v j[t − 1], therefore,

vi[t] − ψ ≥ ai (v j[t − 1] − ψ) (13)

Lemma 5. Suppose that F is the set of faulty nodes, and that
G(V,E) satisfies the “sufficient condition” stated in Section 7.
Consider fault-free node i ∈ V − F . Let Ψ ≥ U[t − 1]. Then, for
j ∈ {i} ∪N∗i [t],

Ψ − vi[t] ≥ ai (Ψ − w j)

Specifically, for fault-free j ∈ {i} ∪N∗
i
[t],

Ψ − vi[t] ≥ ai (Ψ − v j[t − 1])

Proof. The proof is similar to Lemma 4 proof. [16].

Proof of Lemma 2.

Proof. Since R propagates to L, as per Definition 6, there
exist sequences of sets R0,R1, · · · ,Rl and L0,L1, · · · , Ll, where

• R0 = R, L0 = L, Rl = R ∪ L, Ll = Φ, for 0 ≤ τ < l,
Lτ , Φ, and

• for 0 ≤ τ ≤ l − 1,

* Rτ ⇒ Lτ,

* Rτ+1 = Rτ ∪ in(Rτ ⇒ Lτ), and

* Lτ+1 = Lτ − in(Rτ ⇒ Lτ)

Let us define the following bounds on the states of the nodes
in R at the end of the s-th iteration:

M = max j∈R v j[s] (14)

m = min j∈R v j[s] (15)

By the assumption in the statement of Lemma 2,

M −m ≤
U[s] − µ[s]

2
(16)

Also, M ≤ U[s] and m ≥ µ[s]. Therefore, U[s] −M ≥ 0 and
m − µ[s] ≥ 0.

The remaining proof of Lemma 2 relies on derivation of the
three intermediate claims below.

Claim 1. For 0 ≤ τ ≤ l, for each node i ∈ Rτ,

vi[s + τ] − µ[s] ≥ ατ(m − µ[s]) (17)

Proof of Claim 1: The proof is by induction.
Induction basis: By definition of m, (17) holds true for τ = 0.
Induction: Assume that (17) holds true for some τ, 0 ≤ τ < l.
Consider Rτ+1. Observe that Rτ and Rτ+1−Rτ form a partition
of Rτ+1; let us consider each of these sets separately.

• Set Rτ: By assumption, for each i ∈ Rτ, (17) holds true.
By validity of Algorithm 1 (proved in Theorem 3), µ[s] ≤
µ[s + τ]. Therefore, setting ψ = µ[s] and t = s + τ + 1 in
Lemma 4, we get,

vi[s + τ + 1] − µ[s] ≥ ai (vi[s + τ] − µ[s])

≥ ai α
τ(m − µ[s]) due to (17)

≥ ατ+1(m − µ[s]) due to (3)

and because m − µ[s] ≥ 0

• Set Rτ+1−Rτ: Consider a node i ∈ Rτ+1−Rτ. By definition
of Rτ+1, we have that i ∈ in(Rτ ⇒ Lτ). Thus,

|N−i ∩ Rτ| ≥ f + 1

In Algorithm 1, 2 f values (f smallest and f largest) re-
ceived by node i are eliminated before vi[s + τ + 1] is
computed at the end of (s+ τ + 1)-th iteration. Consider
two possibilities:

– Value received from one of the nodes in N−
i
∩Rτ is not

eliminated. Suppose that this value is received from
fault-free node p ∈ N−

i
∩ Rτ. Then, by an argument

similar to the previous case, we can set ψ = µ[s] in
Lemma 4, to obtain,

vi[s + τ + 1] − µ[s] ≥ ai (vp[s + τ] − µ[s])

≥ ai α
τ(m − µ[s]) due to (17)

≥ ατ+1(m − µ[s]) due to (3)

and because m − µ[s] ≥ 0

– Values received from all (there are at least f + 1)
nodes in N−

i
∩ Rτ are eliminated. Note that in this

case f must be non-zero (for f = 0, no value is
eliminated, as already considered in the previous
case). By Corollary 2, we know that each node must
have at least 2 f + 1 incoming edges. Since at least

f + 1 values from nodes in N−
i
∩ Rτ are eliminated,

and there are at least 2 f +1 values to choose from, it
follows that the values that are not eliminated4 are
within the interval to which the values from N−

i
∩Rτ

belong. Thus, there exists a node k (possibly faulty)
from whom node i receives some value wk – which
is not eliminated – and a fault-free node p ∈ N−

i
∩Rτ

such that

vp[s + τ] ≤ wk (18)

Then by settingψ = µ[s] and t = s+τ+1 in Lemma 4,
we have

vi[s + τ + 1] − µ[s] ≥ ai (wk − µ[s])

≥ ai (vp[s + τ] − µ[s]) by (18)

≥ ai α
τ(m − µ[s]) due to (17)

≥ ατ+1(m − µ[s]) due to (3)

and because m − µ[s] ≥ 0

Thus, we have shown that for all nodes in Rτ+1,

vi[s + τ + 1] − µ[s] ≥ ατ+1(m − µ[s])

This completes the proof of Claim 1.

Claim 2. For each node i ∈ V − F ,

vi[s + l] − µ[s] ≥ αl(m − µ[s]) (19)

Proof of Claim 2: Note that by definition, Rl = V − F . Then
the proof follows by setting τ = l in the above Claim 1.

Claim 3. For each node i ∈ V − F ,

U[s] − vi[s + l] ≥ αl(U[s] −M) (20)

The proof of Claim 3 is similar to the proof of Claim 2 [16].

Now let us resume the proof of the Lemma 2. Note that
Rl =V− F . Thus,

U[s + l] = max
i∈V−F

vi[s + l]

≤ U[s] − αl(U[s] −M) by (20) (21)

and

µ[s + l] = min
i∈V−F

vi[s + l]

≥ µ[s] + αl(m − µ[s]) by (19) (22)

Subtracting (22) from (21),

U[s + l] − µ[s + l]

≤ U[s] − αl(U[s] −M) − µ[s] − αl(m − µ[s])

= (1 − αl)(U[s] − µ[s]) + αl(M −m)

≤ (1 − αl)(U[s] − µ[s]) + αl
U[s] − µ[s]

2
by (16)

≤ (1 −
αl

2
)(U[s] − µ[s])

This concludes the proof of Lemma 2.

4At least one value received from the nodes in N−
i

is not
eliminated, since there are 2 f + 1 incoming edges, and only
2 f values are eliminated.

