ITERATIVE APPROXIMATION OF FIXED POINTS
 OF LIPSCHITZIAN STRICTLY PSEUDO-CONTRACTIVE MAPPINGS

C. E. CHIDUME

Abstract

Suppose $X=L_{p}$ (or l_{p}), $p \geq 2$, and K is a nonempty closed convex bounded subset of X. Suppose $T: K \rightarrow K$ is a Lipschitzian strictly pseudo-contractive mapping of K into itself. Let $\left\{C_{n}\right\}_{n=0}^{\infty}$ be a real sequence satisfying:

(i) $0<C_{n}<1$ for all $n \geq 1$,
(ii) $\sum_{n=1}^{\infty} C_{n}=\infty$, and
(iii) $\sum_{n=1}^{\infty=1} C_{n}^{2}<\infty$.

Then the iteration process, $x_{0} \in K$,

$$
x_{n+1}=\left(1-C_{n}\right) x_{n}+C_{n} T x_{n}
$$

for $n \geq 1$, converges strongly to a fixed point of T in K.

1. Introduction. Let X be a Banach space, $K \subseteq X$. A mapping $T: K \rightarrow K$ is said to be a strict pseudo-contraction if there exists $t>1$ such that the inequality

$$
\begin{equation*}
\|x-y\| \leq\|(1+r)(x-y)-r t(T x-T y)\| \tag{1}
\end{equation*}
$$

holds for all x, y in K and $r>0$. If, in the above definition, $t=1$, then T is said to be a pseudo-contractive mapping. Pseudo-contractive mappings have been studied by various authors (see e.g., $[\mathbf{1}, \mathbf{5}, \mathbf{6}, \mathbf{1 0}, \mathbf{1 1}, \mathbf{1 2}]$). Interest in such mappings stems mainly from the fact that a mapping T is pseudo-contractive if and only if $(I-T)$ is accretive [$\mathbf{5}$, Proposition 1], where, for a mapping U with domain $D(U)$ and range $R(U)$ in an arbitrary Banach space X, U is said to be accretive [5] if the inequality

$$
\begin{equation*}
\|x-y\| \leq\|x-y+s(U x-U y)\| \tag{2}
\end{equation*}
$$

holds for every x and y in $D(U)$ and for all $s>0$. If (2) holds only for some $s>0$, U is said to be monotone [12]. The mapping theory for accretive mappings is thus closely related to the fixed point theory of pseudo-contractive mappings.

The accretive operators were introduced independently by T. Kato [12] and F. E. Browder [5] in 1967. An early fundamental result in the theory of accretive operators, due to Browder [5], states that the initial value problem

$$
d u / d t+T u=0, \quad u(0)=\omega
$$

is solvable if T is locally Lipschitzian and accretive on X, a result which was subsequently generalized by R. H. Martin [16] to the continuous accretive operators.

In [2], J. Bogin considered the connection between strict pseudo-contractions and strictly accretive operators (defined below). He proved that U is a strict pseudocontraction if and only if $(I-U)$ is a strict accretive operator. He further proved a

[^0]fixed point theorem in Banach spaces for Lipschitz strict psuedo-contractions, and as a consequence obtained a mapping theorem of Browder for Lipschitzian strictly accretive operators.

Suppose now $X=L_{p}$ (or l_{p}), $p \geq 2$, and $K \subseteq X$. Suppose further that $T: K \rightarrow K$ is a Lipschitz strict pseudo-contraction with a nonempty fixed point set in K. Our objective in this paper is to prove that an iterative process of the type introduced by W. R. Mann [15] converges strongly to a fixed point of T.

REmARK. For Lipschitz pseudo-contractions with a nonempty fixed point set, it is an open question, even in Hilbert spaces, whether or not an iteration process of the Mann-type will converge strongly to a fixed point of T (see [11, p. 504].
2. Preliminaries. For a Banach space X we shall denote by J the duality mapping from X to $2^{X^{*}}$ given by

$$
J x=\left(f^{*} \in X^{*}:\left\|f^{*}\right\|^{2}=\|x\|^{2}=\left\langle x, f^{*}\right\rangle\right)
$$

where X^{*} denotes the dual space of X and $\langle\cdot, \cdot\rangle$ denotes the generalized duality pairing. If X^{*} is strictly convex, then J is single-valued, and if X^{*} is uniformly convex, then J is uniformly continuous on bounded sets (see [18, 19]). Thus, by a single-valued normalized duality mapping, we shall mean a mapping $j: X \rightarrow X^{*}$ such that for each u in $X, j(u)$ is an element of X^{*} which satisfies the following two conditions:

$$
\langle j(u), u\rangle=\|j(u)\| \cdot\|u\|, \quad\|j(u)\|=\|u\| .
$$

The accretiveness (or monotonicity) for U defined in (2) can also be expressed in terms of the duality map J as follows (see [12]). For each $x, y \in D(U)$, there is some $j \in J(x-y)$ such that

$$
\begin{equation*}
\operatorname{Re}\langle U x-U y, j\rangle \geq 0 \tag{3}
\end{equation*}
$$

and (as was observed in [12]) if X is a Hilbert space, (3) is equivalent to the monotonicity of U in the sense of Minty [17].

Now let $K \subseteq X$. A mapping $A: K \rightarrow X$ is said to be strictly accretive if for each x, y in K there exists $\omega \in J(x-y)$ such that

$$
\begin{equation*}
(A x-A y, \omega) \geq k\|x-y\|^{2} \tag{4}
\end{equation*}
$$

for some constant $k>0$. Without loss of generality we shall assume $k \in(0,1)$.
In the sequel we shall assume that $L_{p}, p \geq 2$, has at least two disjoint sets of positive finite measure, X will denote L_{p} or $l_{p}(p \geq 2)$, and j will always denote the single-valued normalized duality maping of X into X^{*}. We shall need the following results.

Lemma 1. For the Banach space X, the following inequality holds for all x, y in X :

$$
\begin{equation*}
\|x+y\|^{2} \leq(p-1)\|x\|^{2}+\|y\|^{2}+2\langle x, j(y)\rangle \tag{5}
\end{equation*}
$$

Proof. For $X=L_{p}$ or $l_{p}, p \geq 2$, the following inequality holds (see, e.g., [7]). For all $x, y \in X$,

$$
(p-1)\|x+y\|^{2} \geq\|x\|^{2}+\|y\|^{2}+2\langle y, j(x)\rangle
$$

Now, replace x by y and y by $x-y$ to get

$$
\|x-y\|^{2} \leq(p-1)\|x\|^{2}+\|y\|^{2}+2\langle-x, j(y)\rangle
$$

Now replace x by $-x$ to obtain (5).

Lemma 2 (Dunn [9, p. 41]). Let β_{n} be recursively generated by

$$
\beta_{n+1}=\left(1-\delta_{n}\right) \beta_{n}+\sigma_{n}^{2}
$$

with $n \geq 1, \beta_{1} \geq 0,\left\{\delta_{n}\right\} \subseteq[0,1]$, and

$$
\begin{align*}
& \sum_{n=1}^{\infty} \sigma_{n}^{2}<\infty \tag{7a}\\
& \sum_{n=1}^{\infty} \delta_{n}=\infty \tag{7b}
\end{align*}
$$

Then $\beta_{n} \geq 0$, for $n \geq 1$, and $\beta_{n} \rightarrow 0$ as $n \rightarrow \infty$.
Lemma 3 (Bogin [2]). Let X be a Banach space, K a subset of X, and $U: K \rightarrow X$. Then, if U is a strict pseudo-contraction, $T=I-U$ is strictly monotone, with $k=(t-1) / t$.

Proof. U is a strict contraction implies that for all $x, y \in K$, and $r>0, t>0$, we have

$$
\begin{aligned}
\|x-y\| & \geq\|(1+r)(x-y)-r t(U x-U y)\| \\
& =\|(1+r)(x-y)-r(t U x-t U y)\| .
\end{aligned}
$$

Thus, the mapping $(t U)$ is pseudo-contractive, so by [5], the mapping T_{t} defined by $T_{t}=I-(t U)$ is monotone. So, for each x, y in K there exists $j \in J(x-y)$ such that

$$
\left\langle T_{t} x-T_{t} y, j(x-y)\right\rangle \geq 0
$$

Observe that $T_{t}=I-(t U)=I-t(I-T)=t T-(t-1) I$, so that the above inequality yields

$$
t\langle T x-T y, j(x-y)\rangle-(t-1)\langle x-y, j(x-y)\rangle \geq 0
$$

which simplifies to

$$
\langle T x-T y, j(x-y)\rangle \geq \frac{(t-1)}{t}\langle x-y, j(x-y)\rangle=k\|x-y\|^{2},
$$

where $k=(t-1) / t$, establishing the lemma.

3. Main result.

THEOREM. Suppose K is a nonempty closed bounded convex subset of X and $T: K \rightarrow K$ is a Lipschitz strictly psuedo-contractive mapping of K into itself. Let $\left\{C_{n}\right\}$ be a real sequence satisfying:
(i) $0<C_{n}<1$ for all $n \geq 1$,
(ii) $\sum_{n=1}^{\infty} C_{n}=\infty$,
(iii) $\sum_{n=1}^{\infty} C_{n}^{2}<\infty$.

Then the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ generated by $x_{1} \in K$,

$$
\begin{equation*}
x_{n+1}=\left(1-C_{n}\right) x_{n}+C_{n} T x_{n} \tag{8}
\end{equation*}
$$

converges strongly to a fixed point of T.
Proof. The existence of a fixed point follows from Deimling [8].

Let p be a fixed point of T. Since T is strictly pseudo-contractive, then $(I-T)$ is strictly accretive. Thus, there exists some $k \in(0,1)$ such that for each x, y in K

$$
\operatorname{Re}\langle(I-T) x-(I-T) y, j(x-y)\rangle \geq k\|x-y\|^{2}
$$

In particular,

$$
\begin{equation*}
\operatorname{Re}\langle(I-T) x-(I-T) p, j(x-p)\rangle \geq k\|x-p\|^{2} \tag{9}
\end{equation*}
$$

From (8),

$$
\begin{aligned}
\left\|x_{n+1}-p\right\|^{2}= & \left\|\left(1-C_{n}\right)\left(x_{n}-p\right)+C_{n}\left(T x_{n}-T p\right)\right\|^{2} \\
= & \left(1-C_{n}\right)^{2}\left\|\left(x_{n}-p\right)+C_{n}\left(1-C_{n}\right)^{-1}\left(T x_{n}-T p\right)\right\|^{2} \\
\leq & \left(1-C_{n}\right)^{2}\left[\left\|x_{n}-p\right\|^{2}+C_{n}^{2}\left(1-C_{n}\right)^{-2}(p-1)\left\|T x_{n}-T p\right\|^{2}\right. \\
& \left.+2 C_{n}\left(1-C_{n}\right)^{-1}\left\langle\left(T x_{n}-T p\right), j\left(x_{n}-p\right)\right\rangle\right]
\end{aligned}
$$

so that

$$
\begin{aligned}
\left\|x_{n+1}-p\right\|^{2} \leq & \left(1-C_{n}\right)^{2}\left\|x_{n}-p\right\|^{2}+C_{n}^{2}(p-1) L^{2}\left\|x_{n}-p\right\|^{2} \\
& -2 C_{n}\left(1-C_{n}\right)\left\langle T p-T x_{n}, j\left(x_{n}-p\right)\right\rangle \\
= & \left(1-C_{n}\right)^{2}\left\|x_{n}-p\right\|^{2}+(p-1) C_{n}^{2} L^{2}\left\|x_{n}-p\right\|^{2} \\
& -2 C_{n}\left(1-C_{n}\right)\left\langle T p-T x_{n}, j\left(x_{n}-p\right)\right\rangle \\
& -2 C_{n}\left(1-C_{n}\right)\left\langle x_{n}-p, j\left(x_{n}-p\right)\right\rangle \\
& +2 C_{n}\left(1-C_{n}\right)\left\langle x_{n}-p, j\left(x_{n}-p\right)\right\rangle \\
= & \left(1-C_{n}\right)^{2}\left\|x_{n}-p\right\|^{2}+(p-1) L^{2} C_{n}^{2}\left\|x_{n}-p\right\|^{2} \\
& +2 C_{n}\left(1-C_{n}\right)\left\|x_{n}-p\right\|^{2} \\
& -2 C_{n}\left(1-C_{n}\right)\left\langle x_{n}-T x_{n}-p+T p, j\left(x_{n}-p\right)\right\rangle \\
= & {\left[\left(1-C_{n}\right)^{2}+2 C_{n}\left(1-C_{n}\right)\right]\left\|x_{n}-p\right\|^{2}+(p-1) L^{2} C_{n}^{2}\left\|x_{n}-p\right\|^{2} } \\
& -2 C_{n}\left(1-C_{n}\right)\left\langle(I-T) x_{n}-(I-T) p, j\left(x_{n}-p\right)\right\rangle \\
\leq & {\left[\left(1-C_{n}\right)^{2}+2(1-k) C_{n}\left(1-C_{n}\right)\right]\left\|x_{n}-p\right\|^{2} } \\
& +(p-1) L^{2} C_{n}^{2}\left\|x_{n}-p\right\|^{2} \\
\leq & {\left[\left(1-C_{n}\right)^{2}+2(1-k) C_{n}\left(1-C_{n}\right)\right]\left\|x_{n}-p\right\|^{2}+d^{2} C_{n}^{2}, }
\end{aligned}
$$

where

$$
d=(p-1)^{1 / 2} L \sup _{n \geq 1}\left\|x_{n}-p\right\|
$$

and clearly, by adding $(1-k)^{2} C_{n}^{2}\left\|x_{n}-p\right\|^{2}$ to the right side of the above inequality, we obtain

$$
\begin{aligned}
\left\|x_{n+1}-p\right\|^{2} & \leq\left[\left(1-C_{n}\right)^{2}+2^{(1-k)} C_{n}\left(1-C_{n}\right)+(1-k)^{2} C_{n}^{2}\right]\left\|x_{n}-p\right\|^{2}+d^{2} C_{n}^{2} \\
& =\left[1-(1-k) C_{n}\right]^{2}\left\|x_{n}-p\right\|^{2}+d^{2} C_{n}^{2}
\end{aligned}
$$

Set $\rho_{n}=\left\|x_{n}-p\right\|^{2}, 1-\gamma_{n}=\left[1-(1-k) C_{n}\right]^{2} \geq 0$ to obtain

$$
\begin{equation*}
\rho_{n+1} \leq\left(1-\gamma_{n}\right) \rho_{n}+C_{n}^{2} d^{2} \tag{10}
\end{equation*}
$$

The inequality (10) and a simple induction now yield

$$
\begin{equation*}
0 \leq \rho_{n} \leq B^{2} \alpha_{n} \quad \text { for all } n \geq 1 \tag{11}
\end{equation*}
$$

where $\alpha_{n} \geq 0$ is recursively generated by

$$
\begin{equation*}
\alpha_{n+1}=\left(1-\gamma_{n}\right) \alpha_{n}+C_{n}^{2}, \quad \alpha_{1}=1 \tag{12}
\end{equation*}
$$

and $B^{2}=\max \left\{\rho_{1}, d^{2}\right\}$.
Observe that $1-\gamma_{n}=\left[1-(1-k) C_{n}\right]^{2}$ so that

$$
\gamma_{n}=(1-k) C_{n}\left[2-(1-k) C_{n}\right]
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \gamma_{n}=2(1-k) \sum_{n=1}^{\infty} C_{n}-(1-k)^{2} \sum_{n=1}^{\infty} C_{n}^{2}=\infty \tag{13}
\end{equation*}
$$

Furthermore, $\sum_{n=1}^{\infty} C_{n}^{2}<\infty$ implies $\lim _{n \rightarrow 0} C_{n}=0$.
Consequently, there is a sufficiently large N such that $n \geq N$ implies $\gamma_{n} \in[0,1]$. For $j \geq 1$, put $\beta_{j}=\alpha_{N+j}, \delta_{j}=\gamma_{N+j}$, and $\sigma_{j}=C_{N+j}$. Observe that (iii) implies

$$
\begin{equation*}
\sum_{j=1}^{\infty} \sigma_{j}^{2}=\sum_{j=1}^{\infty} C_{N+j}^{2}<\infty \tag{14}
\end{equation*}
$$

So, from $\beta_{1}=\alpha_{N+1} \geq 0$, (13), and (14), it follows from Lemma 2 that $\alpha_{n} \rightarrow 0$ as $n \rightarrow \infty$, so that (11) implies $\rho_{n} \rightarrow 0$ as $n \rightarrow \infty$, i.e., $\left\|x_{n}-p\right\| \rightarrow 0$ as $n \rightarrow \infty$, so that $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges strongly to p.

REMARK 2. It is a consequence of the above proof that, under the hypotheses of the theorem, the fixed point of T must be unique. The element $p \in F(T)$, where $F(T)$ denotes the set of fixed points of T, was arbitrarily chosen. Suppose now there is a $p^{*} \in F(T)$ with $p^{*} \neq p$. Repeating the argument of the theorem relative to p^{*}, one sees that (8) converges to both p^{*} and p, showing that $F(T)=\{p\}$.

The author wishes to thank the referee for drawing his attention to reference [8], and for valuable suggestions.

References

1. N. A. Assad and W. A. Kirk, Fired point theorems for set-valued mappings of contractive type, Pacific J. Math 43 (1972), 553-562.
2. J. Bogin, On strict psuedo-contractions and a fixed point theorem, Technion preprint series No. MT-219, Haifa, Israel, 1974.
3. F. E. Browder, The solvability of nonlinear functional equations, Duke Math. J. 30 (1963), 557566.
4. __, Nonlinear monotone and accretive operators in Banach spaces, Proc. Nat. Acad. Sci. U.S.A. 61 (1968), 388-393.
5. _, Nonlinear mappings of nonexpansive and accretive type in Banach spaces, Bull. Amer. Math. Soc. 73 (1967), 875-882.
6. F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl. 20 (1967), 197-228. MR 36 \#747.
7. W. L. Bynum, Weak parallelogram laws for Banach spaces, Canad. Math. Bull. 19 (1976), 269275.
8. K. Deimling, Zeros of accretive operators, Manuscripta Math. 13 (1974), 365-374.
9. J. C. Dunn, Iterative construction of fixed points for multivalued operators of the monotone type, J. Funct. Anal. 27 (1978), 38-50.
10. J. A. Gatica and W. A. Kirk, Fixed point theorems for Lipschitzian pseudo-contractive mappings, Proc. Amer. Math. Soc. 36 (1972), 111-115.
11. T. L. Hicks andd J. R. Kubicek, On the Manni iteration process in a Hilbert space, J. Math. Anal. Appl. 59 (1977), 498-504.
12. T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 508-520.
13. W. A. Kirk, A fixed point theorem for local pseudo-contraction in uniformly convex spaces, Manuscripta Math. 30 (1979), 89-102.
14. __, Remarks on psuedo-contractive mappings, Proc. Amer. Math. Soc. 25 (1970), 820-823.
15. W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510.
16. R. H. Martin, Jr., A global existence theorem for autonomous differential equations in Banach spaces, Proc. Amer. Math. Soc. 26 (1970), 307-314.
17. G. J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J. 29 (1962), 541-546.
18. V. L. Smul'yan, Sur la dérivabilité de la norm dans l'espace de Banach, C. R. (Dokl.) Acad. Sci. URSS 27 (1940), 255-258.
19. _, Sur les topologies différentes dans l'espace de Banacch, C. R. (Dokl.) Acad. Sci. URSS 23 (1939), 331-334.

Department of Mathematics, University of Nigeria, Nsukka, Nigeria

[^0]: Received by the editors April 21, 1985 and, in revised form, October 7, 1985.
 1980 Mathematics Subject Classification (1985 Revision). Primary 47H15; Secondary 47H05.

