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Abstract The present paper deals with the problem of cal-
culating queue length distributions in a polling model with
(exhaustive) k-limited service under the assumption of gen-
eral arrival, service and setup distributions. The interest for
this model is fueled by an application in the field of logis-
tics. Knowledge of the queue length distributions is needed
to operate the system properly. The multi-queue polling sys-
tem is decomposed into single-queue vacation systems with
k-limited service and state-dependent vacations, for which
the vacation distributions are computed in an iterative ap-
proximate manner. These vacation models are analyzed via
matrix-analytic techniques. The accuracy of the approxima-
tion scheme is verified by means of an extensive simulation
study. The developed approximation turns out to be accu-
rate, robust and computationally efficient.
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1 Introduction

A typical polling system consists of a number of queues, at-
tended by a single server in a fixed order. There is a huge
body of literature on polling systems that has developed
since the late 1950s, when the papers [29, 30] concerning
a patrolling repairman model for the British cotton industry
were published. Polling systems have a wide range of ap-
plications in communication, production, transportation and
maintenance systems. Excellent surveys on polling systems
and their applications may be found in [39, 41, 42] and in
[28].

The vast majority of the literature is concerned with the
two traditional service disciplines, the exhaustive and gated
policies. Exhaustive means that a queue must be empty be-
fore the server moves on, whereas in case of gated service
only those customers in the queue at the polling start are
served. Suggested references for readers who would like to
pursue their study of the exhaustive and gated policies are
[39, 41, 42]. The main drawback of these traditional policies
is the inability to prioritize among the different queues for
improving total system performance. A more sophisticated
service strategy offering this possibility is the k-limited ser-
vice strategy. Under this k-limited strategy the server con-
tinues working at a queue until either a predefined number
of k customers is served or until the queue becomes empty,
whichever occurs first. Note that the case k → ∞ is equiva-
lent to the exhaustive service strategy. In many applications
of polling systems, the objective function typically depends
not only on the mean queue lengths, but on the complete
marginal queue length distributions (an illustrative appli-
cation is described at the end of the present section). The
present paper, therefore, aims to study the marginal queue
length distributions in continuous-time polling systems with
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k-limited service under the assumption of general arrival,
service and setup distributions.

To this very day, not only hardly any exact results for
polling systems with the k-limited service policy have been
obtained [25, 36, 37, 47], but also their derivations give lit-
tle hope for extensions to more realistic systems. This defi-
ciency of exact results is due to the fact that the k-limited
service discipline does not satisfy a well-known branching
property independently ascertained by [17] and [38]. This
branching property causes a striking dichotomy in complex-
ity across the analysis of various polling systems, where the
k-limited service policy is on the wrong side of the border-
line implying that even mean queue lengths are in general
not known. In the absence of exact results for the marginal
queue length distributions, people have resorted to numeri-
cal approaches, such as the power series algorithm [2] and
techniques based on discrete Fourier transforms [26]. The
main disadvantage of both methods is that time and mem-
ory requirements are exponential functions of the number of
queues.

A feasible approximate approach for the queue length
distribution in a k-limited polling system is the decompo-
sition method, in which the polling system is decomposed
in vacation systems, for which the vacation distributions are
computed in an iterative approximate manner. At each step
in the iteration the mathematical analysis focusses on one
single queue, whereas the other queues in the system deter-
mine the length of the vacation period. This decomposition
method is adopted by the present research as well. We have
to remark that these decomposition methods seem to be ap-
plicable to a wide variety of queueing systems (see, e.g., [9,
18, 44, 45]). In the past, some systems related to the one of
the present paper have been studied by the decomposition
approach, i.e., a k-limited polling system with finite buffers
under the assumption of Poisson arrival processes [23] or a
k-limited polling system in combination with a reservation
mechanism [24]. The qualitative observations of these stud-
ies seem to carry over to the system of the present paper.

The key observation, which is at the same time the math-
ematical motivation of the present study, is the fact that it is
extremely important to capture the correlations among the
different queues, since these correlations have a significant
impact on the performance measures. Whereas [23] does not
take these dependencies into account, [24] proposes to take a
weighted sum of a completely uncorrelated and a perfectly
correlated system in each step of the iteration by using a
pre-defined mixing probability. Although the method of [24]
clearly outperforms the procedure that ignores the correla-
tions, this procedure is unable to compensate for correla-
tions in systems with only two queues and is also difficult to
apply for systems with more than two queues. That is, since
the quality of the procedure strongly depends on the mix-
ing probability, it is rather complicated to find an expression

of this probability providing accurate results over the en-
tire range of parameters. Further, the procedure of [24] is
based on generating functions, the numerical determination
of zeros and the numerical inversion of characteristic func-
tions, considerably increasing the computational time of the
algorithm. Finally, due to special features of the protocol
studied in [24] the correlations between the queue lengths
are relatively small compared to our system (e.g., in case
all queues have a service limit of 1 the correlations vanish),
which makes the approach of [24] well suited for that par-
ticular protocol.

Therefore, the goal of the present study is the develop-
ment of a computationally efficient iterative approximation
method for the marginal queue length distributions in the
k-limited polling model. The main challenge can be found in
the estimation of the correlations between the queue lengths
in each step of the iterative algorithm. The vast majority of
the literature on polling systems is devoted to delay figures,
while almost no attention has been given to the analysis of
such correlations. By using the recently developed mean
value analysis for polling systems of [48] as the starting
point, [32] derives heavy-traffic asymptotics for the covari-
ances between successive visit times in polling systems with
mixtures of gated and exhaustive service under the assump-
tion of Poisson arrivals. Subsequently, [32] proposes simple
closed-form approximations of these covariances for stable
systems, i.e., with load less than one. However, to the best
of our knowledge no results are known for the correlations
among queues in polling systems with k-limited service.

The key ideas of the approach undertaken in the present
paper for polling systems with k-limited service are as fol-
lows:

1. The dependence between the queue under consideration
and the other queues is taken into account by the intro-
duction of conditional vacations (also called intervisit pe-
riods), i.e., the length of the intervisit period is positively
correlated to the length of the preceding visit period.

2. The mutual dependencies of the other queues are approx-
imated via standard probabilistic arguments and the con-
ditional intervisit periods.

The main contribution of the present paper is the de-
velopment of a novel iterative approximation scheme for
k-limited polling systems with general arrival, service and
setup distributions. The algorithm developed in the present
paper only needs information on the first two moments of
all distributions. The accuracy of the approximation scheme
is verified by means of an extensive simulation study. The
approximation scheme turns out to be robust and compu-
tationally efficient, while the differences between the exact
and approximate values are small within a reasonable mar-
gin. In particular, the time complexity is only polynomial
in the number of queues and the service limits. The main
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building block of this algorithm is a k-limited service va-
cation model with state-dependent vacations, which has not
been studied before in the open literature. In this vacation
model, the vacation length depends on the length of the pre-
ceding visit period to the queue. As a spin-off, we present
an exact analysis for this vacation model with the help of
matrix-analytic techniques. A final word on the applicabil-
ity of the algorithm is that it can also be used as approxima-
tion for the exhaustive discipline by taking a “large” value
of the service limits. Therefore, our algorithm can also be
seen as extension of [13] for the exhaustive polling system
with Poisson arrivals.

The remainder of the present section is devoted to the ap-
plication that led us to this model. Although in the past the
k-limited strategy proved its merit in communication sys-
tems (see, e.g., [3, 7]), the specific application that raised
our attention is in the field of logistics. In many stochas-
tic multi-product single-capacity make-to-stock production
systems considerable setup times are incurred, i.e., the so-
called stochastic economic lot scheduling problem (SELSP)
[46]. The presence of these setup times in combination with
the stochastic environment are the key complicating factors
of the SELSP. On the one hand, one aims for short cycle
lengths, and thus frequent production opportunities for the
various products, in order to be able to react to the stochas-
ticity in the system. On the other hand, short cycle lengths
will increase the setup frequency, which has a negative in-
fluence on the amount of capacity available for production.
Consequently, this effect will hinder the timely fulfillment
of demand.

In the context of the SELSP, the exhaustive service dis-
cipline has been studied under the assumption of Poisson
demand processes by [14, 15]. A major drawback of this ex-
haustive policy is that one single product, for which a high
demand arrives in a certain period of time, may occupy the
machine for quite a while. The impacts of this phenomenon
on the other products are stock outs, highly variable cycle
lengths and high costs. The k-limited policy circumvents
this drawback and offers the possibility to the manager to
control both the setup frequencies and the cycle lengths.

The optimal base-stock levels in this system can be ob-
tained by solving standard newsboy problems for which the
complete queue length distributions in (k-limited) polling
systems are required. For more information on newsboy
problems, see, e.g., [50]. Moreover, in many telecommuni-
cation systems the single most important performance mea-
sure is often not an aggregate measure like the mean wait-
ing time, rather the probability that the delay exceeds a pre-
defined threshold. In view of both the described produc-
tion setting and the dimensioning of a telecommunication
network, the importance of an accurate approximation of
the complete queue length distribution, as obtained in the
present paper, is evident.

The rest of the present paper is organized as follows.
Section 2 gives, besides the introduction of the model and
further notation, a high-level view of the approximation
scheme. In Sect. 3 the approximations for the mean and the
variance of the conditional intervisit period are presented.
Building on these results, Sect. 4 analyses a k-limited vaca-
tion model with state-dependent vacations. Section 5 con-
tains an overview of the iterative procedure to calculate the
performance measures of interest. An extensive numerical
study to test the accuracy of the approximation algorithm is
presented in the penultimate section. Finally, the last section
describes the main conclusions of the present research and
indicates some possible directions for further research.

2 Model description and notation

We consider a system with one single server for N ≥ 2
queues, in which there is infinite buffer capacity for each
queue. The server visits and serves the queues in a fixed
cyclic order. We index the queues by i, i = 1,2, . . . ,N , in
the order of the server movement. When visiting queue i,
i = 1,2, . . . ,N , the server continues working at this queue
until either a predefined number of ki customers is served or
until the queue becomes empty, whichever occurs first. No-
tice that ki = ∞ amounts to the standard exhaustive service
policy.

Customers arrive at all queues according to independent
processes, of which the mean and second moment are de-
noted by E[Ai] and E[A2

i ], i = 1,2, . . . ,N , respectively.
The service times at queue i are independent, identically
distributed random variables with mean E[Bi] and second
moment E[B2

i ], i = 1,2, . . . ,N . When the server starts ser-
vice at queue i, a setup time Si is incurred of which the
first and second moment are denoted by E[Si] and E[S2

i ],
i = 1,2, . . . ,N , respectively. These setup times are identi-
cally distributed random variables, independent of any other
event involved. In particular, they are independent of the ser-
vice times.

The mean total setup time E[S] in a cycle is given by

E[S] =
N∑

i=1

E[Si].

The occupancy rate ρi at queue i is defined by

ρi = E[Bi]
E[Ai] ,

and the total occupancy rate ρ is given by ρ = ∑N
i=1 ρi .

Note that the occupation rates do not include the setup times.
Hence, especially for small values of the service limits ki the
effective load on the system is considerably higher.
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The cycle length Ci of queue i, i = 1,2, . . . ,N , is de-
fined as the time between two successive arrivals of the
server at this queue. It is well-known that the mean cycle
length is independent of the queue involved and is given by

E[C] = E[S]
1 − ρ

. (1)

This identity can be proved by observing that the amount of
work arriving during a cycle should on average equal the
amount of work departing during a cycle, i.e.,

ρE[C] = E[C] − E[S]. (2)

Unfortunately, higher moments of the cycle length are ana-
lytically intractable and, certainly, depend on the queue in-
volved.

The visit period Vi of queue i, i = 1,2, . . . ,N , is the time
the server spends servicing customers at queue i excluding
setup time. Since the server is working a fraction ρi of the
time on queue i, the mean of a visit period of queue i reads

E[Vi] = ρiE[C], i = 1,2, . . . ,N. (3)

Subsequently, the intervisit period Ii of queue i, the time
between a departure epoch of the server from queue i and
its subsequent arrival to this queue, is defined as

Ii := Ci − Vi, i = 1,2, . . . ,N.

A necessary and sufficient stability condition reads here
(see [16], for a rigorous proof in the special case of Poisson
arrivals)

ρ + E[S] max
1,2,...,N

1

E[Ai]ki

< 1. (4)

If the system is stable, (4) may be rewritten by using (1) as
follows

E[C]
E[Ai] < ki, i = 1,2, . . . ,N.

In words, this means that for a stable system the average
number of type-i customers arriving in a cycle is smaller
than the service limit ki , i.e., the maximum number of type-i
customers served in a cycle. Throughout the present paper,
the assumption is made that stability condition (4) is ful-
filled.

Our main interest is in Li , the queue length at queue i

at an arbitrary point in time, i = 1,2, . . . ,N . The main re-
sult of the present paper is the development of an iterative
scheme to approximate the complete distribution of Li . For
the special case of Poisson arrivals, our results for the queue
length distribution can be readily translated into results for
the distribution of the customer delay via the distributional
form of Little’s law [20].

We continue the present section with a high-level descrip-
tion of our approximation method. The key approximation
idea is that we decompose the original k-limited polling sys-
tem with N queues into a set of N separate k-limited sin-
gle-queue models with vacations. At each step in the itera-
tion the mathematical analysis focusses on one single queue
i, whereas the other queues in the system determine the
length of the vacation period (intervisit period) of queue i,
i = 1,2, . . . ,N . The bottleneck in this approximation is the
derivation of the distribution of the intervisit period, which
will be done in an iterative way. If we assume that the dis-
tribution of the intervisit period is known in step n of the
iteration, the distribution of the visit period in step n + 1 is
derived by means of a queueing analysis for the k-limited
single-queue model with vacations (see Sect. 4). On its turn,
the latter distribution can be used to compute the distribu-
tion of the length of the intervisit period in step n + 1 (see
Sect. 3).

Since it is more likely that a long (short) visit period is
followed by a long (short) intervisit period, conditional in-
tervisit periods are introduced. That is, the length of an in-
tervisit period is assumed to be positively correlated to the
number of customers served in the preceding visit period.
The subsequent two sections aim to answer the following
questions:

1. What are the first two moments of an intervisit period for
queue i given that l = 0,1, . . . , ki customers are served
in queue i in the preceding visit period (see Sect. 3).

2. What is the distribution of a visit period for queue i given
the first two moments of the conditional intervisit periods
(see Sect. 4).

3 Intervisit period

The present section computes the first two moments of an
intervisit period for queue i given that l = 0,1, . . . , ki cus-
tomers are served in queue i in the preceding visit period.
The input of the present section are the stationary probabil-
ities πi(l) that l customers are served during this visit pe-
riod of queue i. These probabilities follow from the analy-
sis of the vacation model in the previous iteration step as
expounded in Sect. 4. For presentation reasons, we omit
throughout this section the superscript n in all random vari-
ables denoting the corresponding iteration step n.

3.1 First moments

The intervisit period of a queue i is obviously positively
correlated to the preceding visit period of queue i, i =
1,2, . . . ,N . Therefore, we introduce so-called conditional
visit periods Vi(l), intervisit periods Ii(l) and cycles Ci(l)
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conditioned on the number of customers Di = l served in
the visit period of queue i, l = 0,1, . . . , ki .

The mean conditional cycle lengths may be approximated
by using approximate balance equations for Ci(l) as pro-
posed by [22],

(ρ − ρi)E[Ci(l)] + lE[Bi] ≈ E[Ci(l)] − E[S],
i = 1,2, . . . ,N, l = 0,1, . . . , ki, (5)

which equate the amount of work arriving (left hand side)
and the amount of work departing during conditional cycles
(right hand side). The balance equation (5) is obviously an
approximation, since it assumes balance within each con-
ditional cycle which may not hold. Notice the similarity
with the exact balance equation for the unconditional cy-
cle length, for which work-in is equal to work-out. Solving
(5) results in

E[Ci(l)] ≈ l · E[Bi] + E[S]
1 − ρ + ρi

,

i = 1,2, . . . ,N, l = 0,1, . . . , ki .

We extend the approximation of [22] by multiplying the in-
dividual values E[Ci(l)] with a scaling factor ci ∈ R in such
a way that the correct unconditional cycle length as given
by (1) is maintained, i.e.,

ci = E[C]
∑ki

l=0 πi(l)E[Ci(l)]
, i = 1,2, . . . ,N,

where πi(l) are obtained via the analysis of the vacation
model in the previous iteration step (see Sect. 4). This scal-
ing obviously facilitates the convergence and stability of the
algorithm.

Then, the mean conditional intervisit periods Ii(·) can be
approximated in the following way,

E[Ii(l)] ≈ E[Ci(l)] − l · E[Bi],
i = 1,2, . . . ,N, l = 0,1, . . . , ki . (6)

Finally, we define a conditional visit period V
j
i (l) as the

length of the visit period of queue j given that in the pre-
ceding visit to queue i precisely l customers are served,
l = 0,1, . . . , ki . The mean of this random variable reads

E[V j
i (l)] ≈ ρjE[Ci(l)],

i = 1,2, . . . ,N, l = 0,1, . . . , ki,

j = i + 1, . . . ,N,1, . . . , i − 1, (7)

which completes the analysis of the conditional first mo-
ments.

We have to remark that the approximations of the present
subsection only compensate for the correlations between the

visit period and the immediately following intervisit period.
Although it is not inconceivable that one may come up with
more sophisticated approximations, the numerical evalua-
tion of Sect. 6 shows that our approximations are still very
effective in capturing the correlations among the queues.

3.2 Second moments

The goal of the present subsection is the development of an
approximation for the variance of the conditional intervisit
periods Ii(·). The starting point of our analysis are the un-
conditional intervisit periods Ii . Since the setup times are as-
sumed to be uncorrelated (see Sect. 2), the variance of such
an unconditional intervisit period Ii is given by

Var[Ii] =
∑

j �=i

Var[Vj ] +
∑

j

Var[Sj ]

+ 2
∑

j �=i

∑

k>j
k �=i

Cov[Vj ,Vk] +
∑

j
k �=i

Cov[Sj ,Vk], (8)

where the latter two summations include all the covariances
among the various visit periods and among the setup times,
respectively, within an intervisit period of queue i. There-
fore, the > sign in this summation means that queue k is
visited after queue j in this intervisit period.

The terms Var[Vj ] in the right-hand side of (8) represent
the variance of an unconditional visit periods Vj of queue j .
The second moment of such a visit period can be approxi-
mated as follows. Conditioning on the number of customers
served during the visit period of this queue and ignoring the
correlations between the length of the service times and the
number of customers served during the visit period yields

E[V 2
i ] =

ki∑

l=0

πi(l)E[V 2
i (l)] ≈

ki∑

l=0

πi(l)(lE[B2
i ]

+ l(l − 1)E[Bi]2), i = 1,2, . . . ,N,

with the remark that the probabilities πi(·) are still unknown
at this stage. These probabilities are obtained from the analy-
sis of the vacation model in the previous iteration step, see
Sect. 4. Now, the variance of Vi can be obtained via standard
probabilistic arguments.

Since the terms Var[Sj ] are assumed to be input of the
system (see Sect. 2), one does not need to approximate them.
By definition, the covariance terms Cov[Vj ,Vk] appearing
in (8) can be rewritten as

Cov[Vj ,Vk] = E[VjVk] − E[Vj ]E[Vk],

where the terms E[Vj ] and E[Vk] follow from (3). To com-
pute the unknown quantity E[VjVk], we condition on the
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number Dj of customers served in queue j during the last
visit period as follows

E[VjVk] =
kj∑

l=0

E[VjVk|Dj = l]πj (l)

≈
kj∑

l=0

lE[Bj ]E[V k
j (l)]πj (l),

where πj (l) follow from the analysis of Sect. 4 and E[V k
j (l)]

can be approximated by (7).
Finally, in case a queue k is visited before queue j in the

intervisit period of queue i, Vk and Sj are obviously uncor-
related. In case queue j is visited first, we assume indepen-
dence between setup times and visit periods as well, i.e.,

Cov[Sj ,Vk] ≈ 0,

and, thus, all terms in (8) have been specified. The numerical
results in Sect. 6 show that this assumption is valid as long
as the setup times are not too variable.

By definition, the coefficient of variation cIi
of an uncon-

ditional intervisit period is, subsequently, given by

cIi
=

√
Var[Ii]
E[Ii] , i = 1,2, . . . ,N.

We approximate the variance of the conditional intervisit pe-
riods Ii(·) by assuming equality of the coefficients of varia-
tion of all periods, i.e.,

Var[Ii(l)] ≈ c2
Ii

· E[Ii(l)]2,

l = 1,2, . . . , ki, i = 1,2, . . . ,N, (9)

where an approximation of E[Ii(·)] is given by (6). We add
that we have also experimented with other approximations
for the variance of conditional visit period such as assum-
ing equality of the coefficients of variation of all conditional
cycle lengths. Approximation (9), however, turned out to be
the most accurate one. Finally, notice that (9) is increasing
in l.

4 Visit period

The present section aims to compute the distribution of a
visit period for queue i given the first two moments of
the conditional intervisit periods as computed via (6) and
(9) in the preceding section. By means of matrix-analytic
techniques, we analyse a single-station vacation model with
k-limited service, in which the vacation length depends on
the length of the preceding visit period. The authors are
aware of only one other study in which this specific depen-
dency is studied under the restrictive assumption of Poisson

input [27]. Comprehensive surveys on vacation models can
be found in [10, 11, 40].

Since the present section is focussing on one single queue
i in a specific iteration step n, the subscript i and superscript
n are dropped from all random variables. Throughout the
present section, the distribution functions of the arrival and
the service times are needed. However, the only information
available for these random variables are the first two mo-
ments. A common way to obtain an approximate distribution
is to fit a phase-type distribution on the first two moments as
elucidated in Appendix 1 (cf., e.g., [43]). In the remainder
of the present section, we assume that the fitted distributions
are used as substitute for the arrival and service distributions
and that the number of phases needed equal nA and nB , re-
spectively.

In the preceding subsection, we have computed the first
two moments of the conditional intervisit periods I (·) con-
ditioned on the exact number of customers served in the
preceding visit period. To keep the size of the state space
for the k-limited vacation model manageable, some of these
intervisit periods are aggregated. That is, we draw a distinc-
tion between intervisit periods I (0), I (k) and I (∗) in which
there have been zero, the maximum number or any other
number of customers served in the preceding visit period,
respectively. In case the service limit at a queue equals one,
only I (0) and I (1) have to be distinguished. The period I (∗)

is, thus, defined as,

I (∗) :=
k−1∑

l=1

π(l)I (l),

with first two moments,

E[I (∗)] :=
k−1∑

l=1

π(l)E[I (l)], and

E[I (∗)2] :=
k−1∑

l=1

π(l)E[I (l)2],

where π(l) follow from the previous iteration step. We have
to remark that we have tested this aggregation of intervisit
periods for a wide variety of cases, from which we con-
cluded that it has only negligible (negative) impact on the
results, which is outweighted by the gain in efficiency.

In sum, the system under consideration is a single-server
k-limited vacation model with three different kinds of inter-
visit periods dependent on the number of customers served
in the preceding visit period. In order to construct these in-
tervisit periods in an efficient way, we introduce the auxil-
iary mutually independent random variables Ĩ (∗) and Ĩ (k),
which are independent of I (0) as well. These random vari-
ables satisfy

I (∗) = Ĩ (∗) + I (0), and I (k) = Ĩ (k) + I (∗),
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which is always possible since the variances of the condi-
tional intervisit periods are increasing in l as shown in (9).
Thereupon, phase-type distributions are fitted on I (0), Ĩ (∗)

and Ĩ (k) (see Appendix 1 for further details) in such a way
that the first two moments of I (∗) and I (k) are correct. If we
assume that the number of phases needed for the description
of I (0), Ĩ (∗) and Ĩ (k) equal nI (0), n

Ĩ(∗)
and n

Ĩ(k)
, respec-

tively, the total number nI of phases for the intervisit process
is given by nI = nI (0) + n

Ĩ(∗)
+ n

Ĩ(k)
.

The k-limited vacation model can be described by a
continuous-time Markov process with states (i, j,m). The
state variable i = 0,1, . . . denotes the total number of cus-
tomers in the specific queue under consideration, whereas
the state variable j = 1,2, . . . , nA indicates the phase of the
arrival process A. Finally, m = 1,2, . . . , nD indicates the
phase of the departure process D, which is the combination
of the service process and vacation processes I (0), Ĩ (∗) and
Ĩ (k). These latter two processes can be modeled by one sin-
gle variable, since the server is either serving customers or
is on vacation. When the server is serving customers, one
has to keep track of the phase of the service process and of
the number of customers already served in the correspond-
ing visit period. On the other hand, when the server is on
vacation the phase of the corresponding vacation period is
needed. Consequently, the total number of states for the de-
parture process is nD = k × nB + nI . The phases of this
departure process are grouped as follows: first, we group
all phases related to the k service processes and, then, the
phases of Ĩ (k), Ĩ (∗) and I (0).

Refer by level i to the set of states with i customers
in the system and group the states by these levels, so that
(i, j,m) precedes (i′, j ′,m′) if i < i′. Within each level,
the states are grouped according to the arrival phase, so that
(i, j,m) precedes (i, j ′,m′) if j < j ′. Lastly, the states are
ordered by the departure phase, so that (i, j,m) precedes
(i, j,m′) if m < m′. Now, one may verify that the introduced
Markov process is a quasi-birth-and-death (QBD) process
where the infinitesimal generator Q has the following block-
tridiagonal structure,

Q =

⎛

⎜⎜⎜⎜⎝

B00 B01 0 0 0 . . .

B10 A1 A0 0 0 . . .

0 A2 A1 A0 0 . . .

0 0 A2 A1 A0
...

...
. . .

. . .
. . .

⎞

⎟⎟⎟⎟⎠
.

Below we specify the submatrices in Q, where we use
the concept of Markovian Arrival Process (MAP) (see, e.g.,
[1]) to describe the arrival and departure processes. In gen-
eral, a MAP is defined in terms of a continuous-time Markov
process with finite state space {0, . . . ,m − 1} and genera-
tor G0 + G1. The element G1(i, j) denotes the intensity of
transitions from i to j accompanied by an arrival. For i �= j

element G0(i, j) denotes the intensity of the remaining tran-
sitions from i to j , while the diagonal elements G0(i, i)

are strictly negative and chosen such that the row sums of
G0 + G1 are zero.

The arrival process can be straightforwardly represented
by such a MAP, the states of which correspond to the phases
of this process. Its generator can be expressed as GA

0 + GA
1 ,

where the transition rates in GA
1 are the ones that correspond

to an arrival of a customer to the system. The transition rates
of the GA

0 and GA
1 matrices are listed in Appendix 2.

The MAP for the departure process with generator GD
0 +

GD
1 is a little more involved. All transitions related to the va-

cation periods do not cause departures and are, thus, within
GD

0 . Completion of a service process, obviously, leads to a
departure implying that the corresponding rates are in GD

1 .
Transitions within a service process not causing departures
are, of course, part of GD

0 . Further, we have to distinguish
between the situation when there are more than two cus-
tomers in the system or not. In the first situation, if a de-
parture is not the kth departure the next service process is
started and if it is the kth departure a new vacation period
is begun. To deal with the situations in which there are only
zero or one customers present, we have to introduce matri-
ces G̃D

0 and G̃D
1 , representing the transition within level 0

and the transitions from level 1 to level 0, respectively. We
can recognize two differences between these matrices and
GD

0 +GD
1 . First, when a service process is completed which

is not the kth service, a vacation period is commenced in-
stead of the next service. Second, when a vacation period is
finished, we jump to process I (0) instead of to the service
process of the first customer in the visit period. The tran-
sition rates for GD

0 , GD
1 , G̃D

0 and G̃D
1 are summarized in

Appendix 2.
Now, we are in the position to describe all the submatri-

ces in Q, i.e.,

B01 = GA
1 ⊗ InD

,

B00 = GA
0 ⊗ InD

+ InA
⊗ G̃D

0 ,

B10 = InA
⊗ G̃D

1 ,

A0 = GA
1 ⊗ InD

,

A1 = GA
0 ⊗ InD

+ InA
⊗ GD

0 ,

A2 = InA
⊗ GD

1 ,

where In is the identity matrix of size n and if A is an
n1 × n2 matrix and B an n3 ×n4 matrix the Kronecker prod-
uct A ⊗ B is an n1n3 × n2n4 matrix defined by

A ⊗ B =
⎛

⎝
A(1,1)B · · · A(1, n2)B

...
...

A(n1,1)B · · · A(n1, n2)B

⎞

⎠ .
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Fig. 1 Algorithm of [34] for
finding the rate matrix R, where
‖.‖ denotes a matrix-norm and ε

some positive number

N := A1

L := A0

M := A2

W := A1

dif := 1

while dif > ε

{
X := −N−1L
Y := −N−1M
Z := LY
dif := ‖Z‖
W := W + Z
N := N + Z + MX
Z := LX
L := Z
Z := MY
M := Z

}
R := −A0W−1

This completes the description of the QBD. If we let qi

denote the equilibrium probability vector of level i, the cor-
responding balance equations are given by

qn−1A0 + qnA1 + qn+1A2 = 0, n ≥ 2,

and

q0B00 + q1B10 = 0, (10)

q0B01 + q1A1 + qA2 = 0. (11)

Introducing the rate matrix R as the minimal nonnegative
solution of the nonlinear matrix equation

A0 + RA1 + R2A2 = 0,

it can be proved that the equilibrium probabilities satisfy
(see, e.g., [35])

qn+1 = qnR, n ≥ 1.

To determine this matrix R we use the algorithm devel-
oped by [34] as listed in Fig. 1. The vectors q0 and q1 follow
from the boundary conditions (10), (11), and the normaliza-
tion condition. This queue length distribution qi yields the
following expression for the distribution of the length of a
visit period,

π(l) = h(l)
∑k

i=0 h(i)
, l = 0,1, . . . , k, (12)

where h(l) is the total rate of jumps to a vacation period af-
ter serving l customers. To calculate h(l) we have to sum all

transition rates from a state where l −1, l = 1,2, . . . , k, cus-
tomers are served (or 0 customers when l = 0) to a vacation,
multiplied by the probability of being in that specific state.
Further, we recall that the indices of q·(·) within the brackets
correspond to lexicographically ordered states of the arrival
and departure processes. So,

h(0) =
nA∑

i=1

nI (0)∑

j=1

(q1((i − 1)nD + knB + n
Ĩ(k)

+ n
Ĩ(∗)

+ i)

× B00((i − 1)nD + knB + n
Ĩ(k)

+ n
Ĩ(∗)

+ i,

(i − 1)nD + knB + n
Ĩ(k)

+ n
Ĩ(∗)

+ 1)),

h(l) =
nA∑

i=1

nB∑

j=1

q1((i − 1)nD + (l − 1)nB + j))

× B10((i − 1)nD + (l − 1)nB + j,

(i − 1)nD + knB + n
Ĩ(k)

+ 1),

l = 1, . . . , k − 1,

h(k) =
nA∑

i=1

nB∑

j=1

r((i − 1)nD + (k − 1)nB + j)

× A2((i − 1)nD + (k − 1)nB + j,

(i − 1)nD + knB + 1),

where

r =
∞∑

i=1

qi =
∞∑

i=1

q1R
i−1 = q1(InA×nD

− R)−1,

which completes the analysis of the k-limited vacation
model.

5 Iterative algorithm

As described at the end of Sect. 2, the performance charac-
teristics of the k-limited polling system are approximated by
an iterative scheme. The algorithm is as follows.

Outline of the algorithm

• Step 0: Choose initial characteristics for all queues.
• Step 1: For i = 1 to N , determine the first two moments

of the conditional intervisit period Ii(·) for queue i from
(6) and (9), respectively.

• Step 2: For i = 1 to N , determine the distribution of the
visit period Vi from (12).

• Step 3: Repeat Step 1 and 2 until the characteristics for all
queues have converged.

• Step 4: For i = 1 to N , compute the performance mea-
sures of interest for queue i.
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Initialization In Step 0 of the algorithm, we have to
choose initial values for πi(l), l = 0,1, . . . , ki and i =
1,2, . . . ,N . The assumption is made that all of these prob-
abilities are zero except for πi(ki), i = 1,2, . . . ,N . Notice
that, via the approach developed in Sect. 3, the correct mean
cycle lengths are obtained as computed by (1). We note that
we have experimented with a large number of initial values,
from which we concluded that the starting values of the al-
gorithm have no, or at least negligible, impact on the results.

Convergence criterion After Step 1 and 2 we check
whether the iterative algorithm has converged by compar-
ing the probabilities πi(·), i = 1,2, . . . ,N , in the (n − 1)th
and nth step. We decide to stop when the maximum of the
absolute values of the differences is less than ε; otherwise
we repeat Step 1 and 2. Hence, the convergence criterion is

max
l=0,1,...,ki

∣∣π(n)
i (l) − π

(n−1)
i (l)

∣∣ < ε, ∀i = 1,2, . . . ,N,

where ε is chosen to be 10−4. Of course, we may use other
stop-criteria as well, e.g., mean queue lengths or mean inter-
visit periods.

Complexity analysis The complexity of this method is as
follows. Within the iterative algorithm, solving a subsys-
tem consumes most of the time. In one single iteration step
N subsystems are solved. The number of iterations needed
is difficult to predict, but in practice this number is about
10 to 15 iterations. The time consuming part of solving a
subsystem is the calculation of the R-matrix. This can be
done in O(n3

i ) time, where ni is the size of the R matrix of
subsystem i. Then, the time complexity of one iteration be-
comes O(N maxi (n

3
i )). This means that the time complexity

is polynomial in the number of queues, the service limits and
the number of phases for each process.

6 Numerical evaluation

The present section reports on an extensive numerical
study designed to assess the accuracy of the approxima-
tion method developed. We compare the first two moments
and tail probabilities of the queue length distribution with
the ones produced by discrete event simulation. Each sim-
ulation run is sufficiently long such that the widths of the
95% confidence intervals of the performance measures of
interest are smaller than 1%. A first important remark is
that the computation time of our algorithm is considerably
less than the simulation time, which can mount up to fifteen
minutes or more. This inefficiency of simulation techniques
for (k-limited) polling systems has been observed before by,
e.g., [2].

6.1 Parameter setting

We use a broad set of parameters for the tests. The number of
queues in the system is varied between 2, 5 and 10, whereas
the service limits are either 1, 5 or 10. The total load on the
system varies between 0.45, 0.60 and 0.75; as mentioned in
Sect. 2 this load does not include the setup times. Hence,
especially for small values of the service limits ki the ef-
fective load on the system is considerably higher. For this
reason, some cases are unstable, meaning that (4) does not
hold, and are thus removed from the test bed.

The squared coefficients of variation of the interarrival,
service and setup times for each queue are identical and are
varied between 0.25 and 2 and between 0.25 and 1, respec-
tively. We have to remark that we envision production sys-
tems as the main application for the present paper (see also
Sect. 1). Since the variations in the setup and service times
tend to be small in such systems—in contrast to telecommu-
nication systems where heavy-tailed random variables are
common—we only consider cases in which these variations
are indeed relatively small. Furthermore, we test cases for
which the setup times are 10 times smaller than the service
times and cases for which setup and service times are equal.

Furthermore, both balanced and imbalanced polling sys-
tems are considered. In the balanced cases we set the arrival
rates of all queues equal to 1. We test imbalance in the aver-
age interarrival times by making the load of the most heavily
loaded queue 10 times higher then that of the least heavily
loaded queue, and by letting the arrival rates of the other
queues change linearly such that the overall mean arrival
rate is maintained at 1. For example, in case of 5 queues we
get arrival rates (0.182,0.591,1.000,1.409,1.818). Testing
imbalance in the service times proceeds along the same
lines. This leads to a total of 3425 = 2592 test cases, which
are summarized in Table 1. After removing the unstable

Table 1 Test bed

Test bed

Parameter Notation Value

Low Medium High

Number of queues N 2 5 10

Load ρ 0.45 0.60 0.75

Service limit ki 1 5 10

SCV interarrival times Ai 0.25 1 2

SCV service times Bi 0.25 – 1

SCV setup time Si 0.25 – 1

Imbalance interarrival times IAi
1:1 – 1:10

Imbalance service time IBi
1:1 – 1:10

Ratio service and setup times IBi/Si
1:1 – 10:1

Number of instances 2592
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cases, we end up with a total of 2088 cases. For further ref-
erence, we have classified the values for each parameter in
the categories low, medium and high.

The performance measures under consideration in the
present numerical study are the mean, standard devia-
tion, 0.90-quantile and 0.95-quantile of the marginal queue
length distributions, where the α-quantile of the distribution
of a random variable X can be defined as the smallest value
x such that

P[X ≤ x] ≥ α.

The importance of the quantiles of the queue length distrib-
utions lies in the fact that the optimal base-stock levels in the
production application described in Sect. 1 precisely equal
these quantiles.

6.2 Results

Table 2 summarizes the performance of the approach devel-
oped in the present paper showing the average errors and
for four error-ranges the percentage of the cases which fall
in that range. Overall, we can say that for all performance
measures the average error is around 7%, while the errors
are for the majority of the cases less than 10%. We believe
that these errors are in general satisfactory in view of the
complexity of the system under consideration: we study a
k-limited service discipline—containing the exhaustive pol-
icy as special case—under the assumption of general arrival
processes, whilst the fact that our interest is in the complete
queue length distribution constitutes an additional compli-
cating factor.

To give this statement a more scientific basis, we com-
pare the performance of our approach to the standard de-

Table 2 Overall results approach of present paper

Errors approach of present paper

Aver. (%) 0–10% 10–20% 20–30% >30%

Mean queue lengths 7.26 76.25 17.77 5.12 0.86

SD queue lengths 8.34 71.02 20.16 5.51 3.30

0.90-quantile 6.58 75.62 14.80 5.75 3.83

0.95-quantile 7.33 73.37 15.95 6.80 3.88

Table 3 Overall results standard approach

Errors standard approach

Aver. (%) 0–10% 10–20% 20–30% >30%

Mean queue lengths 15.40 40.95 30.94 15.61 12.50

SD queue lengths 15.26 40.37 29.98 16.91 12.74

0.90-quantile 13.45 57.95 16.52 11.69 13.84

0.95-quantile 13.26 54.02 17.10 14.08 14.80

composition approach. In such a standard decomposition ap-
proach the dependencies among the individual queues are
completely ignored. That is, the intervisit periods are as-
sumed to be independent of the length of the preceding visit
period, thus the need for conditional cycles and conditional
(inter)visit periods cancels, and the correlations among the
individual visit periods are set equal to zero. Remark that
the application of this standard approach to k-limited polling
systems has not been published in the open literature.

The results for the latter approach are listed in Table 3.
Comparing this table to Table 2, we can conclude that our
approach not only halves the mean errors for all perfor-
mance measures, but also that the standard approach, in con-
trast to our approach, quite often results in more than 30%
error. This observation clearly underpins the statement made
in the introduction that it is extremely important to cap-
ture the correlations among the different queues, since these
correlations have a significant impact on the performance
measures. In particular, the performance of the standard ap-
proach significantly degrades as the total load increases as
shown in Table 5, which is in agreement with the result of
[32] that the correlation between successive visit times con-
verges to one as the total load tends to one for the cases of
exhaustive and gated polling systems with Poisson arrivals.
Table 4 shows that the accuracy of our approach decreases in
heavy traffic as well; the decrease in accuracy is, however,
not so severe as for the standard decomposition approach
(see, also, Sect. 6.3).

It would also be interesting to compare the performance
of our approach to the one of the alternative approach devel-
oped in [24]. In this study, it is proposed to take a weighted

Table 4 Relative errors for approach of present paper as function of
total utilization ρ

Errors approach of present paper as function of ρ (%)

Low Medium High

Mean queue lengths 4.43 6.72 11.64

SD queue lengths 5.20 6.23 14.95

0.90-quantile 4.11 5.87 10.67

0.95-quantile 4.63 6.50 11.85

Table 5 Relative errors for standard approach as function of total uti-
lization ρ

Errors standard approach as function of ρ (% )

Low Medium High

Mean queue lengths 8.22 14.54 25.88

SD queue lengths 8.32 14.09 25.78

0.90-quantile 10.11 9.22 22.75

0.95-quantile 6.06 11.71 25.55
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sum of a completely uncorrelated and a perfectly corre-
lated system in order to capture the correlations among the
queues. A good choice of the desired mixing probability is
an interesting problem in itself and the probability used in
[24] has not been developed for the k-limited polling sys-
tem covered in the present paper, rather for a modification
of this system, i.e., inclusion of a reservation mechanism.
Directly applying the same mixing probability to our set-
ting would certainly wrong the approach of [24] leading to
an unfair comparison. Essentially, this observation reveals a
weakness of the procedure of [24]: the quality of this proce-
dure strongly depends on the choice of the mixing probabil-
ity. Taking the above into account, we confine ourselves to
a more qualitative comparison between the two approaches.
That is, when comparing the errors reported in [24] to the
ones listed in Table 2, one can conclude that they are of the
same order of magnitude. The approximation method of [24]
has, however, only been tested in a system with smaller in-
herent dependencies for the special case of Poisson arrivals.
We have to remark that Tables 6, 7, 8 and 9 show that the in-
terarrival distribution has no or at least negligible effect on
the accuracy of our approach.

Table 6 Relative errors for mean queue lengths

Errors mean queue lengths (%)

Parameter Low Medium High

N 8.96 7.17 5.74

ρ 4.43 6.72 11.64

ki 9.35 6.91 6.39

Ai 6.70 6.96 8.14

Bi 6.79 – 7.74

Si 6.92 – 7.61

IAi
7.32 – 7.19

IBi
5.17 – 9.51

IBi/Si
5.07 – 8.67

Table 7 Relative errors for SD queue lengths

Errors SD queue lengths (%)

Parameter Low Medium High

N 8.77 10.21 6.16

ρ 5.20 6.23 14.95

ki 9.39 7.87 8.18

Ai 6.56 8.25 10.22

Bi 7.72 – 8.97

Si 8.18 – 8.51

IAi
8.21 – 8.51

IBi
6.07 – 10.78

IBi/Si
5.65 – 10.07

More specifically, Tables 6 through 9 show the detailed
results for our approach, when fixing one parameter at a cer-
tain level. When a row is partially empty, it means that this
parameter is only tested on two levels. Our approximation
method seems to be fairly insensitive to different parameter
settings. In this respect, the parameter having the largest im-
pact on the performance is the total utilization ρ as earlier
illustrated in Table 5. Moreover, we observe that imbalance
in the service times and an increase in the setup times have
negative impact on the accuracy, whereas the accuracy of
our approach increases as the service limits become larger.
This latter observation tempts one to use the approach of the
present paper as approximation for the exhaustive policy as
well as touched upon in Sect. 7. In the next subsection, we
present results for various asymptotic regimes in order to
study the effect of the individual parameters even further.

Remark 6.1 In the past, so-called pseudo-conservation
laws, intensity-weighted sums of mean delays, have been
applied quite often to develop accurate and elegant approx-
imations for mean delays in polling systems (and, thus,
mean queue lengths as well). Throughout the present pa-
per, we have deliberately left this approach aside, because

Table 8 Relative errors for 0.90-quantile

Errors 0.90-quantile (%)

Parameter Low Medium High

N 9.50 5.87 4.49

ρ 4.11 5.87 10.67

ki 8.55 6.43 5.60

Ai 6.65 5.79 7.31

Bi 6.15 – 7.02

Si 6.47 – 6.69

IAi
6.84 – 6.26

IBi
4.63 – 8.67

IBi/Si
5.23 – 7.45

Table 9 Relative errors for 0.95-quantile

Errors 0.95-quantile (%)

Parameter Low Medium High

N 7.61 9.23 5.25

ρ 4.63 6.50 11.85

ki 9.29 6.90 6.60

Ai 6.59 7.51 7.87

Bi 7.02 – 7.64

Si 7.08 – 7.57

IAi
7.67 – 6.90

IBi
5.04 – 9.78

IBi/Si
5.85 – 8.27
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our approach does not use this technique and because this
technique only gives approximations for mean performance
measures for the special case of Poisson arrivals (for more
information see, e.g., [4] and the references therein). An
additional complexity that shows up when applying pseudo-
conservations laws to polling systems with k-limited ser-
vice is that in such systems these laws still contain some
unknown terms that have to be approximated as indepen-
dently shown by [5] and [12]. Note that the most accurate
algorithm [6] based on such a pseudo-conservation law can
still give up to 20% errors for the mean delays in k-limited
polling systems.

6.3 Asymptotic regimes

The foregoing subsection showed the accuracy of the de-
veloped approximation for a wide range of cases. The test
bed is, undoubtedly, not only representative for practical in-
stances of the production application motivating the present
research but also for most applications in communication
systems. In the present subsection we, however, want to test
the applicability of the approximation beyond all limits and
test the accuracy of the approximation in the following as-
ymptotic regimes:

1. Highly variable setup and/or service times
2. Heavy traffic, i.e., ρ ↑ 1
3. Large setup times, i.e., E[S] → ∞
4. Large number of queues, i.e., N → ∞

Before we discuss these regimes in detail, it is impor-
tant to stress that for none of these regimes any, qualitative
or quantitative, results are known for the k-limited policy.
However, there are (partial) asymptotic results known for the
less intricate exhaustive and gated policies (and, sometimes,
for branching-type policies). We mention these results in the
present subsection. First of all, we want to give the reader a
feeling for what might happen for the k-limited discipline

Table 10 Test bed for highly variable setup and/or service times

Test bed

Parameter Value(s)

N 5

ρ 0.6

ki 5

c2
Ai

1

c2
Bi

1 4 16

c2
Si

1 4 16

IAi
1:1

IBi
1:1

IBi/Si
1:1

Number of instances 9

Table 11 Relative errors for highly variable setup and/or service times
(c2

Si
= 1)

Errors for highly variable setup and/or service times (c2
Si

= 1)

c2
Bi

= 1 c2
Bi

= 4 c2
Bi

= 16

P S P S P S

Mean queue lengths 3.8 13.3 14.6 23.6 32.8 40.8

SD queue lengths 3.2 14.0 17.6 28.3 39.4 50.2

0.90-quantile 0.0 33.3 25.0 25.0 38.6 38.6

0.95-quantile 0.0 25.0 20.0 20.0 41.7 50.0

Table 12 Relative errors for highly variable setup and/or service times
(c2

Si
= 4)

Errors for highly variable setup and/or service times (c2
Si

= 4)

c2
Bi

= 1 c2
Bi

= 4 c2
Bi

= 16

P S P S P S

Mean queue lengths 11.1 20.3 19.1 27.9 33.6 41.5

SD queue lengths 9.4 21.1 18.4 30.3 37.1 48.6

0.90-quantile 0.0 0.0 25.0 25.0 44.4 44.4

0.95-quantile 0.0 25.0 16.7 33.3 34.4 50.8

Table 13 Relative errors for highly variable setup and/or service times
(c2

Si
= 16)

Errors for highly variable setup and/or service times (c2
Si

= 16)

c2
Bi

= 1 c2
Bi

= 4 c2
Bi

= 16

P S P S P S

Mean queue lengths 27.4 35.8 30.3 38.5 36.7 44.4

SD queue lengths 28.9 42.4 27.5 41.9 31.8 45.6

0.90-quantile 33.3 33.3 28.6 42.9 36.4 45.5

0.95-quantile 25.0 37.5 33.3 44.4 33.3 46.7

Table 14 Test bed for heavy traffic

Test bed

Parameter Value(s)

N 5

ρ 0.75 0.8 0.85 0.9 0.95

ki 3 5

c2
Ai

1

c2
Bi

1

c2
Si

1

IAi
1:1

IBi
1:1

IBi/Si
10:1

Number of instances 10
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Table 15 Relative errors for heavy traffic (k = 3)

Errors for heavy traffic (k = 3)

ρ = 0.75 ρ = 0.8 ρ = 0.85 ρ = 0.90 ρ = 0.95

P S P S P S P S P S

Mean queue lengths 0.8 41.7 0.3 49.4 0.1 58.2 1.8 68.5 15.5 68.5

SD queue lengths −16.5 38.0 −20.2 46.7 −19.0 57.1 −7.8 69.5 26.0 85.3

0.90-quantile 0.0 50.0 0.0 33.3 0.0 50.0 −14.3 50.0 16.2 71.4

0.95-quantile 0.0 33.3 0.0 50.0 −16.7 66.7 −10.0 70.0 22.9 85.1

Table 16 Relative errors for heavy traffic (k = 5)

Errors for heavy traffic (k = 5)

ρ = 0.75 ρ = 0.8 ρ = 0.85 ρ = 0.90 ρ = 0.95

P S P S P S P S P S

Mean queue lengths −4.0 39.4 −6.8 46.7 −10.4 55.2 −14.6 65.4 −11.5 78.9

SD queue lengths −29.0 35.7 −42.3 43.7 −52.4 53.7 −51.6 65.9 −19.0 82.1

0.90-quantile 0.0 50.0 0.0 33.3 0.0 50.0 −33.3 66.7 −20.2 82.0

0.95-quantile 0.0 33.3 0.0 50.0 −40.0 60.0 −33.3 66.7 −20.1 82.8

in the corresponding regimes. Secondly, these results for the
exhaustive and gated policies clearly show that polling sys-
tems display aberrant behavior in these asymptotic cases im-
plying that one cannot expect to be able to develop one sin-
gle algorithm which is accurate both in standard traffic set-
tings and for all possible asymptotic regimes.

6.3.1 Highly variable setup and/or service times

The first case, as summarized in Table 10, investigates the
impact of the squared coefficient of variation of both the
setup and service times. Thereto, these quantities are var-
ied between 1, 4 and 16. Tables 11, 12 and 13 summarizes
the results for this case. In these tables, and all other tables
throughout this subsection, the values in the column P refer
to the relative errors of the approach of the present paper,
whereas column S shows the relative errors of the standard
approach. As observed from these tables, the accuracy of our
approach is somewhat disappointing. The reason for this ob-
servation is perdu in the way of conditioning introduced in
Sect. 3. That is, we condition on the number of customers
served without taking the length of each service period into
account. In case of highly variable service times this can
cause difficulties. Conditioning on the length significantly
complicates our analysis, since the length of a visit period
is continuous, has an infinite support and is more difficult
to be monitored. For the impact of the variance of the setup
times similar observations apply, where the assumption of
independence between setup and (subsequent) visit periods
is the main reason for the decrease in accuracy. Finally, we
should stress that the standard approach again clearly tastes

Table 17 Test bed for large setup times

Test bed

Parameter Value(s)

N 5

ρ 0.6

ki 100

c2
Ai

1

c2
Bi

1

c2
Si

1

IAi
1:1

IBi
1:1

IBi/Si
1:1 1:2 1:4 1:8 1:16 1:32

Number of instances 6

defeat. Also, the alternative approach of [24] brings no re-
lief, since this approach has specifically been developed for
deterministic distributions.

6.3.2 Heavy traffic

Next, we analyze the case as shown in Table 14, where we
increase the total load as follows: ρ = 0.75, 0.8, 0.85, 0.9,
0.95 to study the effect of heavy traffic. We have to stress
that also in the extensive test bed examined in the previous
subsection we studied (many) heavy-traffic cases. However,
in the present paragraph the system reaches saturation due
to an increase in the traffic intensity, whereas in the previ-
ous subsection the system got saturated mainly due to the
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Table 18 Relative errors for large setup times

Errors for large setup times

IBi/Si
= 1 : 1 IBi/Si

= 1 : 2 IBi/Si
= 1 : 4 IBi/Si

= 1 : 8 IBi/Si
= 1 : 16 IBi/Si

= 1 : 32

P S P S P S P S P S P S

Mean queue lengths 2.6 11.0 3.0 8.2 3.3 6.4 3.6 5.5 3.6 4.8 3.9 4.7

SD queue lengths 2.5 11.7 3.4 10.2 4.7 9.7 6.3 9.9 7.5 10.1 8.5 10.5

0.90-quantile 0.0 33.3 0.0 0.0 0.0 14.3 7.7 7.7 8.3 8.3 6.5 6.5

0.95-quantile 0.0 0.0 0.0 0.0 11.1 11.1 6.7 6.7 7.1 10.7 7.4 9.3

magnitude of the setup times. The difference between these
two regimes is enormous, which can be observed by com-
paring the rigorously proven results in [33] and [49] for the
complete class of branching-type policies under Poisson ar-
rival processes. That is, [33] studies the system under an in-
crease of the traffic intensity, which shows that a diffusion
limit applies and that the gamma distribution is prevalent,
for example, in the scaled cycle lengths and the marginal
queue lengths at polling instants. In contrast, [49] analyzes
the effect of an increase of the setup times obtaining a fluid
limit with a central role for the deterministic distribution re-
vealing itself again, e.g., in the scaled cycle lengths and the
marginal queue lengths at polling instants.

Let us now return to the k-limited policy of the present
paper, for which none of these (asymptotic) results have
been obtained. The results are depicted in Tables 15 and 16,
which show that the accuracy of our approach significantly
decreases as the total load increases. Moreover, it is not a
difficult task to construct cases for which this decrease in ac-
curacy is even more severe. The smaller accuracy in heavy
traffic is due to the fact that the correlation between visit
periods matters a lot in this regime; a small error in the ap-
proximation causes a snowball effect in the course of the
iterations having an enormous effect on the final outcome.
Intuitively, one would expect that the duration of the visit pe-
riods becomes degenerate for the k-limited policy in heavy
traffic which may be exploited in an improvement of our
algorithm in such a regime. Finally, our approach, in com-
parison with the standard approach, wins by a mile.

6.3.3 Large setup times

The present case studies the effect of large setup times
on the accuracy of the approximation. Therefore, we per-
turb the ratio between service and setup times as follows:
IBi/Si

= 1 : 1,1 : 2,1 : 4,1 : 8,1 : 16,1 : 32, while the values
of the other parameters are shown in Table 17. The results
are summarized in Table 18, from which we can conclude
that our approach remains accurate in the limit of increas-
ing setup times. Moreover, we see that also the standard ap-
proach produces acceptable results indicating that the corre-
lations between queues remain small as the setup times in-
crease. In fact, [49] proves for branching-type policies that

Table 19 Test bed for large number of queues

Test bed

Parameter Value(s)

N 2 4 8 16 32 64

ρ 0.6

ki 5

c2
Ai

1

c2
Bi

1

c2
Si

1

IAi
1:1

IBi
1:1

IBi/Si
1:1

Number of instances 6

the system behaves as a deterministic system (with no cor-
relations at all) in the limit of increasing deterministic setup
times.

6.3.4 Large number of queues

In this paragraph we examine whether the number of queues
significantly affects the quality of the approximation. The
detailed input parameters are provided in Table 19, but the
most important feature is that we vary the number of queues:
N = 2,4,8,16,32,64. The results given in Table 20 show
that the accuracy of both our approach and the standard
approach increases as the number of queues in the system
becomes larger. The reason for this is that an increase of
the number of queues has a stabilizing effect on the cycle
lengths, and thus also on the delays, which facilitates the
approximation. For analytical results on polling systems in
the limit of N → ∞, where the total load and total setup
times are held at fixed values, we refer to, e.g., [8, 21]. Note
that in the limit the system has no distinction of different
service disciplines since the load at each queue is infinitesi-
mally small.
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Table 20 Relative errors for large number of queues

Errors for large number of queues

N = 2 N = 4 N = 8 N = 16 N = 32 N = 64

P S P S P S P S P S P S

Mean queue lengths 8.7 15.9 4.7 14.8 2.5 9.8 1.4 5.6 −0.8 2.3 −1.9 2.2

SD queue lengths 5.9 18.2 3.6 15.8 2.3 10.0 1.4 5.6 −0.5 2.6 −2.1 1.9

0.90-quantile 0.0 25.0 0.0 0.0 0.0 33.3 0.0 0.0 0.0 0.0 0.0 0.0

0.95-quantile 0.0 20.0 0.0 25.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

7 Conclusions

In the present paper, we have created a novel iterative
approximation scheme for k-limited polling systems with
general arrival, service and setup distributions to compute
the complete queue length distributions. The multi-queue
polling system has been decomposed into single-queue va-
cation systems with state-dependent vacations and k-limited
service. We have analyzed this vacation model by means of
matrix-analytic techniques under the assumption of general
arrival, service and vacation processes. The main challenge
was found in the computation of the correlations among the
queues in each step of the iterative scheme. The accuracy of
the approximation scheme has been validated via an exten-
sive simulation study. The developed approximation turned
out be accurate, robust and computationally efficient. As
shown in Sect. 6.3, possible improvement of the algorithm
may be obtained in heavy traffic and in cases with highly
variable input. The numerical evaluation has shown that the
algorithm converged relatively fast; a rigorous proof of con-
vergence is, however, left as subject of further research.

With minor adjustments, the algorithm developed can be
carried over to variants of the considered polling systems,
e.g., systems with batch arrivals, discrete-time polling sys-
tems or systems with finite buffers. Application of our algo-
rithm to polling systems with so-called gated-type k-limited
service, i.e., the servers serves only k customers in a queue
who arrived before the server’s visit, is also not inconceiv-
able. A related remark is that for deterministic service times
the k-limited coincides with the time-limited strategy with
fixed time limits, i.e., each queue has a time limit after which
it relinquishes the server. By choosing service times with a
negligible coefficient of variation as input, the algorithm of
the present paper can also be used for the evaluation of this
time-limited policy. Moreover, due to the efficiency of the
algorithm, it could be used directly as approximation for the
standard exhaustive and gated policy as well by choosing a
‘large’ value for the service limits. In that sense, our algo-
rithm may be considered as extension of the procedure of
[13] for exhaustive and gated polling systems, which relies
on a Poisson assumption.

Finally, the algorithm of the present paper may be ex-
tended to the computation of derivatives of performance
measures with respect to the service limits. Such an exten-
sions would allow application of gradient methods to opti-
mize systems performance and sensitivity analysis with re-
spect to these control variables. Due to the low computa-
tional complexity of the developed procedure, it can be used
as subroutine in such an optimization procedure.

Acknowledgement The authors would like to thank Onno Boxma
for several helpful discussions.

Appendix 1

To obtain an approximating distribution of a positive ran-
dom variable X, one may fit a phase-type distribution on the
mean E[X] and the coefficient of variation cX by using the
following approach [43]. First of all, a random variable X is
defined to have to a Coxian distribution of order k if it has to
go through up to at most k exponential phases, where phase
n has rate μn, n = 1,2, . . . , k. It starts in phase 1 and after
phase n, n = 1,2, . . . , k − 1, it ends with probability 1 −pn,
whereas it enters phase n + 1 with probability pn. Finally,
pk is defined to equal zero.

Now, the distribution of X is approximated as follows.
If c2

X > 1, then the rate and coefficient of variation of the
Coxian2 distribution matches with E[X] and cX , provided
the parameters are chosen as (cf. [31]):

μ1 = 2/E[X], p1 = 1

2c2
X

, and μ2 = p1μ1.

If 1/k ≤ c2
X ≤ 1/(k − 1) for some k ≥ 2, then the rate

and coefficient of variation of the Erlangk−1,k distribution,
which is a special case of a Coxian distribution of order k,
matches with E[X] and cX , provided the parameters are cho-
sen as (cf. [43]):

pn = 1, n = 1,2, . . . , k − 2,

pk−1 = 1 −
kc2

X −
√

k(1 + c2
X) − k2c2

X

1 + c2
X

,

μ1 = μ2 = · · · = μk = (k − p)E[X].
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Of course, also other phase-type distributions may be fitted
on the mean and the coefficient of variation, but numerical
experiments suggest that choosing other distributions only
has a minor effect on the results, as shown in [19].

Appendix 2

The transition rates of the GA
0 and GA

1 matrices as defined
in Sect. 4 are given by

−μA
i = GA

0 (i, i), i = 1,2, . . . , nA,

pA
i μA

i = GA
0 (i, i + 1), i = 1,2, . . . , nA − 1,

(1 − pA
i )μA

i = GA
1 (i,1), i = 1,2, . . . , nA,

with pA
i and μA

i the parameters of the fitted phase-type dis-
tributions for the arrival processes.

Subsequently, the transition rates for GD
0 and GD

1 as in-
troduced in Sect. 4 are

−μB
i = GD

0 (jnB + i, jnB + i),

j = 0, . . . , k − 1, i = 1, . . . , nB,

pB
i μB

i = GD
0 (jnB + i, jnB + i + 1),

j = 0, . . . , k − 1, i = 1, . . . , nB − 1,

(1 − pB
i )μB

i = GD
1 (jnB + i, (j + 1)nB + 1),

j = 0, . . . , k − 1, i = 1, . . . , nB,

−μ
Ĩ(k)
i = GD

0 (knB + i, knB + i),

i = 1, . . . , n
Ĩ (k)

,

p
Ĩ(k)
i μ

Ĩ(k)
i = GD

0 (knB + i, knB + i + 1),

i = 1, . . . , n
Ĩ (k)

− 1,

(1 − p
Ĩ(k)
i )μ

Ĩ(k)
i = GD

0 (knB + i, knB + n
Ĩ(k)

+ 1),

i = 1, . . . , n
Ĩ (k)

,

−μ
Ĩ(∗)
i = GD

0 (knB + n
Ĩ(k)

+ i, knB + n
Ĩ(k)

+ i),

i = 1, . . . , n
Ĩ (∗)

,

p
Ĩ (∗)
i μ

Ĩ (∗)
i = GD

0 (knB + n
Ĩ(k)

+ i, knB + n
Ĩ(k)

+ i + 1),

i = 1, . . . , n
Ĩ (∗)

− 1,

(1 − p
Ĩ(∗)
i )μ

Ĩ(∗)
i = GD

0 (knB + n
Ĩ(k)

+ i,

knB + n
Ĩ(k)

+ n
Ĩ(∗)

+ 1),

i = 1, . . . , n
Ĩ (∗)

,

−μ
I(0)
i = GD

0 (knB + n
Ĩ(k)

+ n
Ĩ(∗)

+ i,

knB + n
Ĩ(k)

+ n
Ĩ(∗)

+ i),

i = 1, . . . , nI (0),

p
I (0)
i μ

I (0)
i = GD

0 (knB + n
Ĩ(k)

+ n
Ĩ(∗)

+ i,

knB + n
Ĩ(k)

+ n
Ĩ(∗)

+ i + 1),

i = 1, . . . , nI (0) − 1,

(1 − p
I (0)
i )μ

I (0)
i = GD

0 (knB + n
Ĩ(k)

+ n
Ĩ(∗)

+ i,1),

i = 1, . . . , nI (0),

and for G̃D
0 and G̃D

1 (see again Sect. 4) we have

(1 − pB
i )μB

i = G̃D
1 (jnB + i, knB + n

Ĩ(k)
+ 1),

j = 0, . . . , k − 2, i = 1, . . . , nB,

(1 − pB
i )μB

i = G̃D
1 ((k − 1)nB + i, knB + 1),

i = 1, . . . , nB,

−μ
Ĩ(k)
i = G̃D

0 (knB + i, knB + i),

i = 1, . . . , n
Ĩ (k)

,

p
Ĩ(k)
i μ

Ĩ (k)
i = G̃D

0 (knB + i, knB + i + 1),

i = 1, . . . , n
Ĩ (k)

− 1,

(1 − p
Ĩ(k)
i )μ

Ĩ(k)
i = G̃D

0 (knB + i, knB + n
Ĩ(k)

+ 1),

i = 1, . . . , n
Ĩ (k)

,

−μ
Ĩ(∗)
i = G̃D

0 (knB + n
Ĩ(k)

+ i, knB + n
Ĩ(k)

+ i),

i = 1, . . . , n
Ĩ (∗)

,

p
Ĩ (∗)
i μ

Ĩ (∗)
i = G̃D

0 (knB + n
Ĩ(k)

+ i, knB + n
Ĩ(k)

+ i + 1),

i = 1, . . . , n
Ĩ (∗)

− 1,

(1 − p
Ĩ(∗)
i )μ

Ĩ(∗)
i = G̃D

0 (knB + n
Ĩ(k)

+ i,

knB + n
Ĩ(k)

+ n
Ĩ(∗)

+ 1),

i = 1, . . . , n
Ĩ (∗)

,

−μ
I(0)
i = G̃D

0 (knB + n
Ĩ(k)

+ n
Ĩ(∗)

+ i,

knB + n
Ĩ(k)

+ n
Ĩ(∗)

+ i),

i = 1, . . . , nI (0),

p
I (0)
i μ

I (0)
i = G̃D

0 (knB + n
Ĩ(k)

+ n
Ĩ(∗)

+ i,

knB + n
Ĩ(k)

+ n
Ĩ(∗)

+ i + 1),

i = 1, . . . , nI (0) − 1,

(1 − p
I (0)
i )μ

I (0)
i = G̃D

0 (knB + n
Ĩ(k)

+ n
Ĩ(∗)

+ i,

knB + n
Ĩ(k)

+ n
Ĩ(∗)

+ 1),

i = 1, . . . , nI (0),
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where pB
i , pĨ(k)

i , pĨ(∗)
i , pI (0)

i , μB
i , μĨ(k)

i , μĨ(∗)
i and μ

I(0)
i are

the parameters of the fitted phase-type distributions for the
service and intervisit processes.
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