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ITERATIVE APPROXIMATION OF SOLUTION OF GENERALIZED

MIXED SET–VALUED VARIATIONAL INEQUALITY PROBLEM
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Abstract. In this paper, we consider a generalizedmixed set-valued variational inequality problem
which includes many important known variational inequality problems and equilibrium problem,
and its related some auxiliary variational inequality problems. We prove the existence of solutions
of the auxiliary variational inequality problems and suggest a two-step iterative algorithm and
an inertial proximal iterative algorithm. Further, we discuss the convergence analysis of iterative
algorithms. The theorems presented in this paper improve and generalize many known results
for solving equilibrium problems, variational inequality and complementarity problems in the
literature.
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