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Abstract— In this paper, an atmospheric phase screen (APS) 
compensation algorithm for a near real-time Ground-Based 
InSAR (GB-InSAR) over a mountainous area is investigated. A 
novel APS compensation scheme is proposed to compensate the 
fluctuated APS caused by a spatial 3D inhomogeneous refractivity 
index distribution without any a priori knowledge of moving 
location. The proposed method simultaneously addresses to 
identify moving pixels by a criterion of absolute velocity estimated 
by the Coherent Pixels Technique (CPT). The proposed method 
consists mainly of three steps; (1) the stratified APS compensation, 
(2) identification of moving pixel candidate, and (3) the residual
APS (remained APS after (1)) compensation by Kriging
interpolation. The steps mentioned above are iteratively applied in 
order to increase the accuracy of the whole process. In this
framework, we develop the 2D quadratic polynomial model of the
refractivity index with respect to slant range and topographic
height for modeling the stratified APS. Furthermore, a prediction
of the residual APS is achieved by applying the IRF-k Kriging
interpolation, taking into account the non-stationarity of the
residual APS. We evaluate the proposed method using zero-
baseline GB-DInSAR data over a mountainous area located in
Minami-Aso, Kumamoto, Japan through the near real-time post-
landslide measurement campaign.

Index Terms—Atmospheric phase screen, GB-SAR, DInSAR 

I. INTRODUCTION

round-based synthetic aperture radar (GB-SAR) has 
increasingly been used as a powerful remote sensing tool 
for environmental monitoring [1], [2]. With an advantage 

of temporally dense measurement compared to spaceborne or 
airborne SAR, differential SAR interferometry (DInSAR) 
applied to GB-SAR provides detail time-series information of 
land displacement. Besides, one of the benefits of GB-SAR is 
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recognized as its zero-baseline configuration as the preferred 
configuration of minimizing decorrelation sources on the 
interferometric phase.  

Although plenty of decorrelation sources are avoidable in 
zero-baseline GB-SAR configuration, the reflectivity change 
between the interferometric combination of two radar images 
incurs the strong atmospheric artifacts providing the phase 
delays, referred to as atmospheric phase screen (APS). The 
APS is the most relevant disturbance for a GB-SAR 
measurement, and it might eliminate a spatial signature of 
actual land deformation. Especially, when we work on near 
real-time monitoring for hazard anticipation of a steep 
mountainous slope, strong APS effects lead to a false alarm of 
an early-warning system. Accordingly, its compensation is 
highly required as post-processing to provide the correct 
displacement value.  

Some compensation approaches have been proposed for the 
GB-SAR application [3]–[11]. Most of the literature 
concentrates on the data-driven model-based statistical 
technique without any a priori meteorological information [4]–
[6] whereas the method in [7] proposed to use on-site
meteorological information to calibrate humidity-based APS
model. Under the assumption of homogeneous refractivity
cases such as the soft topography area, a model-based solution
assumes the linear relationship between APS and the position
in the range [4], [5]. In such a case, an estimated linear phase-
ramp is subtracted from the measured DInSAR image to
achieve APS-free results. On the other hand, a steep
topographic area does not hold a homogeneous assumption of
the refractivity over the observation area because of vertically
stratified refractivity. In [6], the multiple regression model
(MRM) was applied to compensate for the topography
correlated APS (vertically stratified APS) in a mountainous
slope using the external digital elevation model (DEM)
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information, referred to APS-MRM. By constraining the small 
scenario, the linear relationship between the refractivity index 
and topographic height is assumed in the MRM, leading to a 
quadratic model of the stratified APS.  

When we work on a mountainous slope measurement, the 
stratified APS is properly modeled by the APS-MRM. However, 
in the presence of a spatial 3D inhomogeneity of the refractivity 
distribution, the residual component of the APS after the 
stratified APS compensation must be taken into account. 
Furthermore, a simple linear relationship between a 
topographic height and a refractivity in the APS-MRM is no 
longer valid. In this case, the APS APSφ  presented within the 
troposphere can be expressed by mixing of the stratified APS 

strφ  and the residual APS resφ , where the resφ  includes a 
longer scale component longφ  due to the horizontal variation of 

refractivity and a short-scale component shortφ  [12]–[15], as 
 shortlongstrresstrAPS φφφφφφ ++=+=

. 

 (1) 

In spaceborne SAR applications, Numerical Weather 
Prediction (NWP) models have been proposed to model 
propagation delay in the atmosphere [16], [17] with the larger 
spatial scale, which is not easily applied to GB-SAR. Besides, 
the time-series InSAR analysis with a certain number of SAR 
images is able to mitigate the residual APS by means of 
spatiotemporal properties. A number of time-series InSAR 
approaches have been proposed [18]–[21], pioneered by the 
Permanent Scatterer Interferometry (PSI) [18], [19]. The PSI 
aims to identify the permanent scatterer (PS) pixels which are 
point-wise scatterers. Those advanced differential InSAR 
(DInSAR) algorithms treat the APS as spatially low frequency 
and temporally high-frequency signal [18], [20]–[22] relative to 
the deformation signal. Hence a spatial low-pass and temporal 
high-pass filtering possibly isolate APS from deformation 
signal if there is no seasonal trend and stratified APS which are 
the temporally correlated terms [23]. This spatiotemporal 
assumption is reasonable for the spaceborne SAR application 
since its acquisition interval is in the order of days. However, 
the APS is temporally correlated in the operation of near real-
time GB-SAR [24], [25] because the acquisition interval is 
usually in the order of minutes.  Therefore, in this particular 
case, a direct adaptation of conventional advanced DInSAR 
algorithm is not feasible. Accordingly, a modification is 
required for near-real-time GB-SAR measurements. 

Besides, the geostatistics theory has been used to 
stochastically model the uncertain spatial variation to be used 
for linear minimum-variance unbiased estimation, also known 
as the Kriging [26]. The spatial or temporal prediction is thus 
achieved by a weighted average of a linear combination of the 
observed data. Precise analysis of the structural characteristic 
by the geostatistical approach is thus appropriate for modeling 
of the short-scale APS component based on the elementary 
Kolmogorov turbulence theory [27]. Therefore, the analysis and 
inference of the structure-function and the covariance are 
essential to mitigate the fluctuated APS [15], [28]. Under the 
second-order stationarity assumption, the covariance function 
is inferred by a theoretical variogram to model the uncertain 
spatial variation [29]. However, if the moving pixels are 

involved in the covariance inference and the linear combination 

of the observed data to be used in the weighted averaging 
process, a spatial prediction leads to an ill-posedness. 
Nonetheless, an extrapolation of the APS from known 
motionless points by the Kriging has actually been done with a 
priori knowledge of moving areas such as glacier measurement 
in [15].  

In those backgrounds, a data-driven APS compensation 
method without any a priori knowledge of moving location for 
GB-SAR measurements is investigated in this paper. To 
achieve it, we herein propose a novel iterative APS 
compensation scheme incorporating the atmospheric 
disturbances shown in (1). The idea of the method is to 
iteratively identify and mask the moving pixels and perform the 
spatial extrapolation over the identified pixels. In this 
framework, the following contributions are involved in the 
novel compensation scheme; 
1) The 2D quadratic polynomial function of the refractivity 

index with respect to a slant range and a topographic 
height is introduced to be used for a stratified APS model.  

2) The intrinsic random function of order k (IRF-k) Kriging 
is introduced to extrapolate the residual APS.  

3) An iterative algorithm based on the advanced DInSAR 
algorighm is proposed to compensate the APS without any 
a priori knowledge of moving location.  

The proposed method is validated in a mountainous area. We 
deployed Ku-band FMCW GB-SAR as a near-real-time early 
warning system over the landslide affected slope in Minami-
Aso, Kumamoto, Japan. The presence of an anomalous 
refractivity distribution in our target area is experimentally 
validated by the in-situ meteorological measurement of weather 
stations in two locations. This observation assists to claim the 
necessity of modification of the conventional APS 
compensation technique for GB-SAR. 

II. A GB-SAR CAMPAIGN AND A MESOSCALE 
ATMOSPHERIC CONDITION 

A. An overview of the GB-SAR campaign 
Starting from the foreshock occurred on 14th April 2016, a 

series of earthquakes hit Kumamoto prefecture in the Kyusyu 
region of Japan [23]. As a consequence, at least 97 landslides 
were found, which mainly concentrated in the Aso caldera. The 

 
Fig.1. The deployed GB-SAR system. 
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most noticeable landslide has occurred in Minami-Aso located 

in the outer rim of the caldera destroyed a 200m Aso large 
bridge. A disaster restoration project was launched in order to 
reconstruct the damaged road and reinforce the landslide 
affected slope. In such a case, the unstable zone whose potential 
of post-landslide threatens the on-site operator. Under this 
situation, a GB-SAR system is deployed for risk mitigation 
from March 2017 up to now. Owing to its continuous operation 
mode [1], the deployed GB-SAR has the potential to issue an 
early warning in near-real-time.  

The GB-SAR system used in this study is an FMCW radar 
system, which allows the fast sampling rate with 5sec 
acquisition time shown in Fig. 1, developed by 
METASENSING [16]. This fast acquisition capability 
circumvents the anomalous APS caused by the refractivity 
change during aperture synthesis [24]. The system operates in 
Ku-band with a center frequency of 17.2GHz and a frequency 
bandwidth of 300MHz and has the capability of fully 
polarimetric acquisition. 

B. An atmospheric condition of the observation area 
The digital elevation model (DEM) of the Aso caldera is 

displayed in Fig. 2. As we can see, the Aso-caldera consists of 
the large-scale caldera with Aso volcano cone in the center, 
known as the double volcano. This landform consists of the 
basin between the outer rim of the caldera and the volcano cone. 
A unique cut line of the west part of the outer rim, which is a 
thin valley plays an important role in draining the water from 
the caldera.   

The atmospheric condition on the test area is drastically 
variated in time and space due to the local wind variations. The 
general mesoscale meteorological condition in the basin region 
proves a significant difference in a refractivity distribution 
between day-time and night-time. In order to investigate 
temporal meteorological behavior in our area, two weather 
stations are employed. In Fig. 2, locations of two weather 
stations are illustrated. The line of sight distance and relative 
height between two stations are 500m and 115m, respectively. 
One of the weather stations is installed just behind the GB-SAR 
location (station-1) and another weather station was installed in 
the middle of the slope (station-2). In this configuration, the 
temporal atmospheric parameters of different locations can be 
investigated. Two weather stations collected three-days data 
from 19:00 May 28th until 11:50 May 30th, 2019, with a time 

separation of 15min. Note that there is no precipitation during 

meteorological measurements. The measured time-series 
results of temperature and partial pressure of water vapor which 
are the parameters of the refractivity index are shown in Fig. 
3(a) and (b), respectively. The wind direction (0deg is set as 
north wind direction) measured in station-1 is shown in Fig. 
3(c). Furthermore, the refractivity index computed [30] through 
the measured atmospheric parameters is shown in Fig. 3(d). 

In the night time after sunset, radiative cooling of a 
mountainous slope makes overlying air cold and dense. In turn, 
the dense air sinks along the slope surface to the basin bottom, 
leading to a cold air accumulation [31]. This downward wind is 
often termed as the katabatic wind. As a result of the cold air 
pool in the basin floor, the temperature in the basin becomes 
much lower than the higher altitude slope, which is called 
temperature inversion. The observed temperature in Fig. 3(a) 

 
Fig. 2. The DEM image of the Aso caldera with the Aso volcano cone 
in the center and the location of two installed weather stations. A red 
circle indicates the GB-SAR observation area located in the outer rim 
of the caldera. The white arrows represent nocturnal wind direction. 
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Fig. 3. The temporal meteorological data collected by two weather 
stations with 15min time interval. (a) Temperature; (b) partial pressure 
of water vapor; (c) wind direction at station-1; (d) refractivity index. 
Black and gray solid lines show measured data by the station-1 and the 
station-2, respectively. 
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indicates this temperature inversion at midnight where the 
station-1 shows a lower value than the station-2 with ~3℃ 
difference in maximum. Besides, the unique wind process is 
made in the Aso caldera basin where the cold air formed in the 
Aso basin flows out from the valley in the west part of outer rim 
due to the pressure difference between inside and outside of 
caldera [32], indicated by white arrows in Fig. 2. The measured 
wind direction at station-1 shown in Fig. 3(c) shows this cold 
air wind, which indicates north wind direction (0deg) during a 
temperature inversion. This winding process possibly advects 
the air parcel from different locations. The partial pressure of 
water vapor between both stations shows a significant 
difference during a temperature inversion, which may be due to 
advection of high moist air by cold airflow in the basin floor, 
shown in Fig. 3(b). 

While after sunrise, the heated air in the basin is positively 
buoyant and starts to rise due to the insolation. This causes air 
circulation in the convective boundary layer [33]. This 
circulation process effectively transports the heated air over the 
slope to the entire basin, resulting in the breakup of temperature 
inversion formed during the night [34]. The breakup of 
temperature is shown in around 29th 08:10 in Fig. 3(a). 
Consequently, the atmospheric condition after the sunset is 
hashed by this local wind process.  

The advection flow by several local winds reveals the high 
variability between a nocturnal and diurnal atmospheric 
condition. Accordingly, atmospheric parameters such as 
temperature and water vapor are variated on a site-to-site 
atmospheric condition regardless of topographic height. As a 
result, the refractivity index in Fig. 3(d) shows a high temporal 
variation too, which is accordant temporal behavior with water 
vapor in Fig. 3(b).  

III. APS COMPENSATION PROCEDURE 
The APS compensation procedure consists of three steps, 

which can be simply summarized as follows; 
1) The stratified APS compensation (Section-III A) 
2) Identification of moving pixel candidate (Section-III C) 
3) The residual APS compensation (Section-III B) 

The first step dedicates to compensate the APS with respect 
to slant range and topographic height while the third step takes 
into account the remained APS. The critical part of the proposed 
method is involved in the second step which is discrimination 
between moving pixels and non-moving pixels. The above steps 
are iteratively applied in order to increase the accuracy of the 
whole process. The overall compensation procedure is 
explicitly demonstrated in Section III C.  

A. Stratified APS modeling and compensation 

The two-way propagation atmospheric phase term atmϕ , 
backscattered from slant range distance rs can be expressed by 
the refractivity index N(rs,t) which is a spatiotemporal function 
of the temperature T (K), the pressure P (in millibars), and the 
partial pressure of water vapor at the slant range rs and the time 
t, as 

 
∫−=
l

ss
c drtrN

c
ft ),(410)( 6

atm
π

ϕ , 
             (

2) 

where fc is the center frequency. The stratified APS can be 
obtained by taking a difference of the atmospheric phase as a 
function of a temporal separation T between time t1 and t2. 

 ( ) ( )1atm2atmAPS )( ttT ϕϕφ −= ,         (3) 

In a steep topographic scenario, the N is assumed to be 
related to a topographic height z by an exponential profile [35] 

 zseNzN α−=)( ,     (4) 

where Ns is the refractivity index at the sea-level, z is the height 
above the sea-level, and α  accounts for the decay parameter. 
Based on the in-situ meteorological measurements, Iglesias et 
al. reported that the N indicates a linear behavior with a 
topographic height [6]. In this experimental background, the N 
in (4) is further approximated by the first two terms of the 
Taylor series, as  

 zNNzN ss α−=)( , (5) 

Since (5) states a linear behavior with respect to the topographic 
height z, the differential refractivity index N∆  also becomes a 
linear function with respect to z.  

By substituting (5) into (2) and performing (3), the 
unwrapped stratified APS can be obtained as 

,
2

410),(

21

6
21

linearN
str

sds

dss
s

sc

rzr

zrNrN
c
ftt

⋅⋅′+⋅′=







 ∆−∆= −

ββ

απφ  
 
(6) 

where ( ) ( )12 tNtNN sss −=∆ , and zd is the height above the 

GB-SAR location. The unknown coefficients 1β ′  and 2β ′  are 
solved by the least-squares regression through the MRM as in 
[6].  

Because of a 3D spatial heterogeneity of atmospheric 
parameters presented over the mountainous slope, a distribution 
of the refractivity index becomes spatially heterogeneous too. 
Especially, the in-situ measurement demonstrated a spatial 
variation of meteorological parameters. In this case, the 
assumed linear function of the refractivity index with respect to 
a topographic height must be more generalized for estimating a 
global trend of the APS along the slant range axis. Here we 
model the refractivity index as a quadratic 2D polynomial 
function with respect to a topographic height z and a slant range 
r as 

( )
rzNzNzNzNzNN

rzN
⋅+⋅+⋅+⋅+⋅+= poly

5
2poly

4
poly
3

2poly
2

poly
1

poly
0

2Dpoly ,  (7) 

where poly
ηN  (η =0,1,2,3,4, and 5) represents the coefficients of 

the polynomial. Notice that the refractivity index in (7) is no 
longer a linear function with respect to height. By substituting 
(7) into (2) and performing (3), the unwrapped stratified APS 
can be obtained as 
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(8) 

The (8) states the stratified APS model based on the 2D 
polynomial function 2DpolyN  in (7). The LS regression is then 

performed to estimate the β  similarly as the APS-MRM 
method [6]. It is important to note that the more degree of the 
polynomial model in (7) increases, the more flexible fitting for 
the APS is achieved. However, an improper expansion will lead 
to an ill-fitted problem and may remove the local spatial 
signature which is a real displacement signal. Therefore, the 
stratified APS must be performed to compensate for only a 
global trend. 

B. Residual APS prediction in space 
In the theory of a random function (RF), a residual 

differential phase resφ  is considered to be the realization of a 

RF Z(x) of the spatial coordinate x. resφ  is further decomposed 

into two terms; longer scale component )(long xφ  and a short-

scale component )(short xφ  as shown in (1). Due to the presence 

of slowly varying deterministic function )(long xφ  known as 

drift, the mean of a RF is no more constant and varied slowly in 
space, indicating the non-stationarity of the RF and no finite 
variance, as commented by [12]. In this case, the inference of 
the covariance function is not straightforward because the 
covariance is defined under the second-order stationarity. 
Accordingly, the approach to infer the semivariogram of 

)(short xφ  (i.e., underlying semivariogram) in the presence of 
)(long xφ  must be taken into account. In the case of the non-

stationarity, mainly two geostatistical methods are found; 
universal Kriging and intrinsic random function of order k (IRF-
k) Kriging. Because the universal Kriging process falls into a 
circular problem where the drift form should be known in the 
Kriging system although the drift form should be estimated 
through the universal Kriging system, we herein apply the IRF-
k Kriging to predict resφ . The IRF-k Kriging is introduced for 
the simultaneous estimation of the drift model and the 
covariance function [28], [36]. In this method, the drift and the 
covariance are decomposed through increments of a sufficient 
order to filter out the drift and achieve stationarity [26].  

In IRF-k, resφ  turns to be a local model of the form 
 

)()(

)()()(

short
0

shortlongres

xx

xxx

φ

φφφ

∑
=

+=

+=
k

l

l
l fa , 

             
(9) 

where lα  represents the unknown coefficients and fl is known 
basis functions of spatial coordinates, (i.e., f1=x, f2=y, f3=x2, 

f4=y2, f5=xy). Considering a set of weights αw  applied to points 

αx , a linear combination of these weights with n random 

variables at locations αx  
 

∑
=

=
n

w
1

resres )()(
α

ααφφ ww , 
               

(10) 

is called to be an allowable linear combination of order k (ALC-
k) or generalized increment of order k, if following conditions 
are satisfied, 

 
).()( 0

1

xx l
n

l ffw =∑
=α

αα  
        (11) 

which hold for all monomials of order k≤ . By introducing 
10 −=w  into (11), the following condition is given 

 
0)(

0

=∑
=

n
lfw

α
αα x  

             (12) 

This equation explicitly indicates the filtering effect of fl (x) 
with respect to the set of points αx . If the linear combination 

∑ =
+

n
w

1 res )(
α ααφ hx  is second-order stationarity whatever 

the ALC-k w, its RF is called IRF-k.  
The covariance of generalized increment of order k is 

denoted by )(hK  and used to describe the correlation structure, 
namely generalized covariance (GC); 

∑∑∑
= ==

−=








 n nn

Kwww
1 11

res )()(Var
α β

βαβα
α

ααφ xxx  
   

(13) 

One challenging step in the IRF-k Kriging is the inference of 
the GC. In practice, the GC is modeled as the polynomial GC 
function [26], [37] 

 
∑
=

++=
m

i

i
iCK

0

12
0 )()( hhh θδ  

             (
14) 

where )(hδ  represents Kronecker delta function, 0C  and iθ  
account for unknown coefficients, as well as m indicates the 
number of the monomials. The model in (14) is assumed to be 
isotropic in this study where one can assume that the drift 
polynomial filter out the anisotropy [26], although many of 
literature have reported the influence of anisotropy in the 
turbulent APS [12], [14], [38]–[41]. The coefficients in (14) are 

constrained to 00 ≥C , 00 ≤θ , 02 ≤θ , and 201 3
10 θθθ −≥  

in order to satisfy the conditionally positive definite of 
polynomial GC. Assuming that the order k and the polynomial 
GC model in (14) are known, the problem of the GC inference 
downs to the determination of unknown coefficients of the GC 
model. The parameters 0C  and iθ  in (14) are iteratively 
estimated by the methods such that parameters are unbiased, 
and variance of the estimation error is minimized, namely 
iterative minimum variance unbiased quadratic estimation 
(MVUQ) algorithm [42], [43]. The further explanation of the 
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GC inference is demonstrated in Appendix.  
Now, we consider the spatial prediction of resφ  at the non-

sample location 0x  by a linear combination of the observed 

data )(res αφ x , 
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Minimizing the variance of ))()(( 0res0res xx φφ −∗  subjects to 
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(16) 
where lµ  represents the Lagrange multiplier. Finally, the 
weights can be obtained from (16) followed by inferring the 

)( 0res x∗φ  by (15).  

C. An iterative DInSAR-based APS compensation  
With a priori knowledge of the moving area, APS estimation 

over a moving area is straightforward by extrapolating the 
differential phase from the known motionless pixels through the 
methods mentioned in Section-III A and B. Yet, moving part 
over the measured area is often not known. When the moving 
pixels are involved in the polynomial GC inference and the 
linear combination of the observed data to be used in the 
weighted average in (15) due to the false identification, a spatial 
prediction leads to an ill-posedness. Therefore, the remained 
challenge is how to identify the moving pixels and exclude 
them in the residual APS prediction step as well as the stratified 
APS estimation step.  

The simple strategy is to employ a criterion of the velocity 
estimated by an advanced DInSAR algorithm since the 
estimated velocity in moving pixels is higher than non-moving 
pixels. Nonetheless, this is not straightforward for near-real-
time GB-SAR measurements because the residual APS and 
possible stratified APS errors are temporally correlated which 
are translated to certain velocity in the final result. 

 A core idea of the proposed method is to iteratively find the 
candidates of moving pixels by an absolute velocity criterion 

based on the time-series DInSAR velocity result. Fig. 4 gives 
the example of the proposed iterative concept where red and 
blue color of pixels indicate the actual moving and non-moving 
pixels which have residual APS, respectively, with the color 
strength corresponding to the absolute velocity. In Fig. 4, we 
demonstrate three types of temporal behaviors; temporally 
correlated APS, temporally uncorrelated APS, and actual 
displacement which are shown in the left part of the figure. The 
simple velocity criterion may choose both the moving pixels 
and non-moving pixels which have the temporally correlated 
APS. The proposed method first chooses both pixels as the 
candidate of moving pixels (at the pixel identification of 1st 
iteration in Fig. 4). Then we exclude them and compensate the 
residual APS in original interferograms. In order to compensate 

 
Fig. 5. The work flow of the iterative APS compensation.  
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Fig. 4. A concept of the proposed iterative method. Stable pixels are shown by the circles with color strength corresponding to the velocity, where red and 
blue color represent the actual moving and non-moving pixels with residual APS, respectively. The time-series examples shown in the left part of the figure 
describe measured and estimated graphs with the black solid line and red dashed line, respectively.  
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for the residual APS, we perform the IRF-k Kriging to spatially 
extrapolate the APS from the non-identified pixels over the 
candidate of moving pixels. This process estimates the APS 
over the moving pixels followed by subtracting the estimated 
APS from each interferogram as compensation. After finishing 
the 1st iteration, the APS effect is suppressed over the identified 
pixels. Note that the accuracy of the APS estimation by Kriging 
prediction highly depends on the non-identified pixels. This 
means that if the local spatial signature of the residual APS is 
removed after excluding false identified pixels, Kriging 
prediction leads to bias prediction of a local spatial pattern of 
the residual APS. As a consequence, the residual APS is not 
adequately compensated and remained after the 1st iteration 
described in the compensated example of Fig. 4. The proposed 
method again addresses to identify the candidates of moving 
pixels from velocity results after the APS compensation in the 
1st iteration. In the second iteration, the false identification rate 
is reduced thanks to the residual APS compensation in the 1st 
iteration as shown in the 2nd iteration of Fig. 4. Consequently, 
the increased number of non-identified pixels leads to better 
prediction of residual APS. In this way, the proposed method 
iteratively increases the accuracy of a moving pixel 
identification and prediction of APS.  

The displacement retrieval section in our processing scheme 
is based on the Coherent Pixels Technique (CPT) developed 
initially been for spaceborne applications  [20], [22]. The CPT 
also has been applied to GB-SAR applications for 
discontinuous (non-real-time) measurements both in urban 
areas [44] and distributed scatterers of natural environments 
[45]. In zero-baseline GB-SAR, the time-series of 
interferometric differential phase can be modeled by a linear 
displacement model linearφ  and APSφ  as well as a possible non-

linear displacement linear-nonφ  with M interferograms 
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(17) 
where Ti (i=1,2,…,M) and v account for a time-separation 
between slave and master images and velocity of line of sight 
(LOS) displacement at the 2D position of the pixel x. 

A flow chart of the proposed method is shown in Fig. 5, as 
well as the step by step explanations of our algorithm, are given 
as follows. 
1) A set of the interferogram is created by available GB-SAR 

images acquired within a certain time span. Because the 
temporal decorrelation might be assumed as small in near-
real-time monitoring, a set of differential interferograms 
that uses the same master image is created to avoid 
redundant pairs which burden a computational cost.  

2) The stable pixels are selected as the Coherent Pixel (CP) 
candidates (CPC). The mean interferometric coherence 
criterion along the whole interferogram stacks is adopted 
in our method defined as 
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18) 

where s1 (master image) and si+1 (slave image) are the 
complex values corresponding to the same pixel forming 
an interferogram, ⋅ indicates the sample averaging with 
the assumptions of both the stationarity and the ergodicity 
which is realized by spatial averaging. The pixels with 
higher temporal mean coherence are selected as the CPCs.  

3) The stratified APS compensation is performed by the 
polynomial stratified APS model in (8) using the CPC for 
solving the unknown coefficients. Note that the phase 
wrapping caused by the stratified APS along the slant 
range must be unwrapped before compensation. After a 
global APS correction with respect to a height and a slant 
range, the remained differential phase is expressed as 

),,(),(
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       (19) 

where str_errorφ  is the possible stratified APS 
compensation error. 

4) In the proposed method, the CPT is employed to estimate 
the linear velocity at each CPC. Following three steps are 
applied in the CPT for velocity estimation; (I) a 
connection of each CPC by Delaunay triangulation 
forming a spatial network, (II) an estimation of the 
velocity in each connected arc towards minimizing a 
residual APS effect, (III) an integration of the estimated 
velocity in each arc to compute the absolute velocity at 
CPCs. The explicit explanation of the velocity estimation 
can be referred to [22]. At (II), the temporal coherence is 
evaluated in each arc. The arcs indicating lower temporal 
coherence than the pre-defined threshold are removed and 
only remained arcs are integrated at (III). Consequently, 
the remained pixels after (III) are called CPs.  

5) The CPs with an absolute velocity higher than the 
determined threshold velocityTh  are identified as 
candidates of moving pixels. After identification, we 
exclude the identified pixels from all interferograms.  

6) The polynomial GC is inferred using non-identified CPs. 
Subsequently, we predict the residual APS by performing 
the IRF-k Kriging interpolation over the identified pixels. 
These processes are applied to all interferograms. After a 
prediction of the residual APS, we subtract them from the 
original data to compensate residual APS as, 
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 (20) 
where res_errorφ  is the residual APS compensation error. 

Note that only strφ  is presented as the APS in (20). 

7) We then compensate strφ  by the polynomial stratified 
APS model. In the estimation step of the coefficients β , 
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the moving pixels are excluded from the interferograms in  
(20) so that we can avoid the undesired effect of 
displacement signals for solving the stratified APS model. 
After the compensation, the interferograms are expressed 
as 

),,(),(),(
),(

rorres_str_erlinearnonlinear
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  (21) 

where rorres_str_erφ  includes the error of both the residual 
and the stratified APS compensation.  

8) The phase of the linear displacement linear_estφ  is again 
estimated by CPT technique.  

9) Repeat the steps from 5) to 8) until the specified number 
of loops loopN . 

10) After finishing an iteration, the phase residue is calculated 
by subtracting the estimated linear model linear_estφ  from 
the interferometric phase as 
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  (22) 

 Since APS has already been compensated, the phase 
residue in (22) represents the non-linear component. The 
final product includes both linear and non-linear 
displacement. 

IV. EXPERIMENTAL RESULTS 
In this paper, the APS compensation is developed mainly for 

the near-real-time measurement scheme in the framework of 
continuous operation. Notably, we consider the fast 
displacement possibly occurred within a short period. Thus it is 
desirable to validate the performance of the proposed method 
by means of a series of GB-SAR images acquired within a short 
period. First, the performance of the proposed method through 
the simulated displacement with presented APS over the test 
area is presented. For this purpose, we use two hours of data 
acquired from 05:48 to 07:48 on 4th May 2019 because these 
data include severe APS fluctuation. During this time-span, our 
GB-SAR obtains 25 images in total with a 5min time interval. 
Afterward, the dataset with soil erosion over the earthwork area 

 
Fig. 6. (a) GB-SAR HH polarization reflectivity image of the 
landslide affected mountainous slope located in the Aso-mountain 
acquired at 7:43, 4th May, 2019; (b) Mean interferometric 
coherence processed by 25 images with 5min time interval 
acquired within two-hours from 5:48 to 7:48.  

 

(a) (b)

 
Fig. 7. Stratified APS compensation results by the APS-MRM for 
interferometric pair1 ((a) and (c)) and pair2((b) and (d)). (a), (b) (black 
dot) Differential phase and (red circle) estimated stratified APS 
projected on the range axis. 

 

The picture can't be displayed.

 
Fig. 8. Stratified APS compensation results by the proposed polynomial 
model for interferometric pair1 ((a) and (c)) and pair2((b) and (d)). 

 

The picture can't be displayed.
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is used for evaluation. Thus three types of datasets in total are 
presented for validation purposes.  

In Fig. 6(a) and (b), we show the GB-SAR reflectivity image 
of HH-polarization and the mean interferometric coherence 
processed by 25 images from 05:48 to 07:48 on 4th May 2019 
as a supplement to visually understand the radar image and 
temporal stability in the test area.  

A. Investigation of the stratified APS  
The performance of the polynomial stratified APS model is 

first evaluated. In this evaluation, the pixels with mean 
interferometric coherence higher than 0.85 from the 5 × 3 
(range × cross-range) multi-looked images, are used for 
solving the unknown coefficients β  of the polynomial model 
in (8). The two pairs of the measured differential phase are 
selected for visualization of estimated phase change of both the 
APS-MRM and the polynomial stratified APS model along 
with a slant range. The first interferometric pair (pair1) is 
formed by images acquired at 05:48 and 07:03, 29th Nov. 2019. 
While the second interferometric pair (pair2) is formed by 
images acquired at 05:48 and 07:13, 29th Nov. 2019 (pair2).  

First, we present the estimation and compensation results by 
the APS-MRM model. Fig. 7(a) and (b) show the differential 
phase changes and the estimated APS by the APS-MRM 
projected on a range axis for the two interferometric pairs. 
Notice how both global differential phase trends in Fig. 7(a) and 
(b) are not estimated by the APS-MRM where the measured 

phase difference and the estimated APS show a significant error 
between them. This error implies that a linear refractivity 
distribution model in (5) is no longer valid in our area. As a 
result, the phase residues of the stratified APS remain in the 
compensated GB-SAR images shown in Fig. 7(c) and (d). 

On the other hand, Fig. 8 shows the differential phase 
changes and the estimated APS by the polynomial stratified 
APS model in (8) projected on a range axis for the pair1 and 
pair2. Global trends of the stratified APS for both pairs are now 
compensated. Notice that the stratified APS errors remained in 
Fig. 8 (c) and (d) are much smaller than the errors in Fig. 7 (c) 
and (d), yielding an improvement of the presented stratified 
APS modeling.  

B. The residual APS images and those spatial variogram 
Three examples of the interferograms after compensating the 

stratified APS taken on 4th May are shown in Fig. 9(a)-(c), 
respectively. Since a global trend with respect to a slant range 
and a topographic height are removed, a lateral variation and a 
local change of the refractivity are presented. Local blob shapes 
of the residual APS are found in Fig. 9(a) and (b) while a slow 
variation is exhibited in Fig. 9(b). Such the slow variation 
behaves as a drift component in the RF. To illustrate the 
stationarity of the residual APS in Fig. 9(b), the omnidirectional 
and directional variogram of 0deg (parallel to cross-range 
direction), 45deg, -45deg, and 90deg are shown in Fig. 10. 
Notice that the directional-variogram shows a strong variation 
in terms of the direction. Especially, directional-variograms in 
0deg and 45deg show a hyperbolic curve, which implies a 
presence of the drift component, representing the space-varying 
mean of the RF [26]. This result states that our data exhibit the 
non-stationarity of the RF. 

C. Evaluation through the simulated displacement 
In order to compare between retrieved displacement velocity 

with true value, we simulate the linear displacement with the 
maximum velocity of -1mm/h where the negative sign 
corresponds to the direction from the target to the GB-SAR 
sensor, as well as a spatial extent of the simulated displacement 
is expressed by a 2D Gaussian function.  

In this evaluation, the threshold of mean interferometric 
coherence is chosen to be 0.85 from the 5× 3 (range× cross-
range) multi-looked images for CPC selection. As a result, 
82020 CPs are finally chosen based on the temporal coherence 
criterion whose threshold is 0.96. In addition, the proposed 
method needs to determine a threshold of the absolute velocity

velocityTh  at the moving pixel candidate identification step. In 

fact, the accuracy of the compensated results depends on 
velocityTh  as discussed in the after-mentioned Section V. In this 

section, we select 0.1mm/h as the velocityTh . Besides, the 

selection of neighbor pixels to be included in the estimation by 
the IRF-k Kriging is an important issue. In theory, the minimum 
mean square error is achieved when all pixels are included [26], 
but this is not practical from the processing-time point of view. 
Hence in this evaluation, 300 non-identified CPs are randomly 
selected within the range of 200m at each estimated pixel. 

Fig. 11 (a)-(c) show the APS compensated velocity at CPs 

 
Fig. 9.  (a)-(c) Examples of the residual APS after applying the stratified 
APS compensation. The labels on the top of each figure indicate the 
acquisition time of the master and slave GB-SAR images with the 
format year-month-day-hour-minute.  

 

(a) (b) (c)

 
Fig. 10. Derived experimental variogram for different angles from the 
interferometric pair of Fig. 9(b) where direction of 0deg corresponds 
to cross-range direction.  
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projected on DEM. The estimated velocity result before a 
residual APS compensation is shown in Fig. 11 (a) where this 
is equivalent to the linear velocity of the CPT method for GB-
SAR described in [45] (hereafter we simply denote as CPT). 
While the compensation results by the proposed method at the 
first and the second iteration are shown in Fig. 11(b) and (c), 
respectively. Note that the simulated displacement is added to 
the middle of the slope indicated by a solid circle in Fig. 11(c). 
In addition, root-mean-square (RMS) in non-moving pixels is 
described in Fig. 11(a)-(c) as an APS error index. From Fig. 
11(a), we notice that the residual errors are presented in the 
whole slope area. This result clearly reveals that the residual 

APS in each interferogram is translated to errors in a linear 
velocity estimation in the CPT showing RMS of 0.2mm/h. 
While the results after compensation of the residual APS by the 
proposed method in Fig. 11(b) and (c) yield less RMS than Fig. 
11(a). Although some velocity errors can be found in the first 
iteration indicated by the dashed white circle in Fig. 11(b), these 
errors are successively suppressed in the second iteration.  

In order to validate the accuracy of the velocity estimation, 
the scatter plot for Fig. 11(a), (b), and (c) between the actual 
simulated velocity and the estimated velocity are exhibited in 
Fig. 11(d), (e), and (f), respectively. Notice that the CPT 
method results in a bias estimation of the displacement velocity 
due to the presented residual APS. On the other hand, the scatter 
plots for the first and the second iteration of the proposed 
method show a smaller bias than the CPT. As a quantitative 
analysis, RMS error (RMSE) is derived for all results in Fig. 11. 
The proposed method of first and the second iteration yield 
RMSE of 0.10mm/h and 0.07mm/h, while the CPT shows 
0.23mm/h. This comparison analysis demonstrates that the 
proposed method improves the APS compensation.  

D. Evaluation through the dataset with soil erosion 
 The GB-SAR operated by Tohoku University has been 

employed to monitor the displacement over the landslide 
affected mountainous slope as an early warning issue. We have 
conducted this campaign for operators who work on earthwork. 
They routinely use the excavators as the earthwork. As a part of 

 
Fig. 12. The areas introducing differential phase after the earthwork due 
to the wind-driven soil erosion indicated by white dash circles. 

 
 
 

Earthwork by excavators

 
Fig. 11. (a)-(c) APS compensated velocity results at CPs by both the CPT and the proposed method projected on the DEM; and (d)-(f) scatter plots of the 
actual velocity versus the estimated velocity in the simulated displacement pixels. (a) and (d) Results obtained by the CPT; (b) and (e) the proposed method 
at the first iteration; (c) and (f) the proposed method at the second iteration. White dashed circle in (b) indicates the residual error in the first iteration, and 
the white solid circle indicates the simulated displacement location.   
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this work, several excavators constructed the paths on the slope 
by filling soil. In fact, the phase difference is daily measured 
over soil accumulated location after finishing earthwork, which 
might be caused by wind-driven soil erosion. Fig. 12 shows the 
earthwork location indicating phase difference in the test area. 
We herein use datasets which include the differential phase of 
soil erosion for validation purposes. Among the dataset with 
soil erosion, we choose the two datasets measured at 17:58 to 
19:58 on 26th as well as 15:58 to 17:58 on 27th Nov. 2019 
because those show significant heterogeneous APS. The 
retrieved velocity results of those datasets are shown in Fig. 13 
(a)-(c) and Fig. (d)-(f) respectively with the velocity threshold 

velocityTh  of 0.1mm/h where Fig. 13 (a) and (d) represents 

results by the CPT, (b) and (e) are the results by the proposed 
method at the first iteration as well as (c) and (f) show second 

iteration of the proposed method for datasets of 26th and 27th. 
Note that the red circles in Fig. 13(a) and (d) indicate soil 
erosion locations, corresponding to the white circle in Fig. 12. 
In addition, we derive the RMS over the pixels except for 
earthwork locations for a quantitative comparison of APS error, 
described in each result. All the results in Fig. 13 clearly show 
a certain velocity in those circled earthwork locations. 
Nonetheless, the CPT results in Fig. 13(a) and (d) include the 
APS effect over the whole slope area with the RMS of 
0.22mm/h and 0.22mm/h, respectively. While the proposed 
compensation reduces the APS effect which can visually be 
understood from Fig. 13 (b), (c), (e), and (f) as well as 
suppressed RMS. For both datasets, the results by the proposed 
method with the second iteration yield lower RMS than those 
with the first iteration. From this fact based on the experimental 
results, it is clear that the iteration strategy within our scheme 
leads to the improvement of the final velocity result. 

V. DISCUSSION 
The above evaluation reveals the reasonable compensation 

results of the proposed method with fixed threshold values 
which are the key factor to determine the final performance. 
Here we discuss the effectiveness of the velocity threshold 
value in the final velocity estimation. Furthermore, the 
feasibility of implementation into a near-real-time monitoring 
scheme is noted.  

 

Fig. 14. The error values as changing velocity threshold. (a) The RMS 
values at non-moving pixels; (b) RMSE values at moving pixels. 
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Fig. 13. The retrieved velocity results with soil erosion indicated by red circles in (a) and (d) at CPs by both the CPT and the proposed method projected on 
the DEM obtained by datasets on (a)-(c) 26th and (d)-(f) 27th November, 2018. (a) and (d) Results obtained by the CPT; (b) and (e) the proposed method at 
the first iteration; (c) and (f) the proposed method at the second iteration. RMS of APS affected pixels are shown in each figure. 
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A. Velocity threshold effect 
In order to visualize the dependency of the velocity threshold 

in our method, we quantitatively evaluate the RMS in non-
moving pixels as well as RMSE in moving pixels, shown in Fig. 
14(a) and (b), respectively where we evaluate through the 
dataset mentioned in Section-IV C with simulated displacement. 
In this evaluation, we test the proposed method until 4-times the 
iteration. In Fig. 14(a), RMS of non-moving pixels shows a 
clear trend of error suppression as increasing the number of 
iteration. Besides, the RMS becomes lower when we choose a 
higher velocity threshold value. However, the RMSE of moving 
pixels reveals the increasing trend of error for the threshold of 
0.25 and 0.3. In addition, the RMSE for the threshold of 0.2 
shows an error increase from the third iteration. This error 
propagation might be caused because some of the moving 
pixels are involved in the Kriging system. In this case, the 
Kriging results in the bias estimate, degrading the compensation 
accuracy. Hence, the trade-off exists in our method between 
RMS in non-moving pixels and RMSE in moving-pixels, and 
the velocity threshold needs to be carefully considered. 

B. Feasibility of near-real-time measurement   
We present the fully automatic APS compensation algorithm 

which is necessary for a continuous operational mode. Since 
our method based on CPT, a certain number of GB-SAR images 
are required. Therefore, a near-real-time concept, in this case, 
means estimating the APS compensated displacement with the 
shortest delay possible after stacking GB-SAR images [25], 
which is an important consideration for an early warning issue. 
The system performs the proposed method when M images are 
stacked and wait until the next M images. Time-series 
displacement is thus obtained by accumulating the 
displacement estimated in each group of the image stack. Hence, 
in principle, the more increase acquisition, the shorter delay of 
each processing can be realized. In practice, a computational 
cost in each compensation has to be dealt with where it must 
not exceed the period between each processing. A 
computational cost of our proposed method highly depends on 
several factors such as the number of interferograms, the 
number of CPC, the number of iteration loopN , as well as the 

number of neighbor pixels n at the estimation step of the 
)( 0res x∗φ  in (15). Besides the velocity threshold, we need to 

deal with the above factors which consequently improve the 
total system performance in a near real-time monitoring 
scheme.  

VI. CONCLUSION 
A novel APS compensation for a near-real-time GB-SAR 

measurement over a mountainous area has been proposed in this 
paper.  

The higher variation of meteorological conditions is revealed 
by in-situ meteorological measurements due to the basin 
structure of the target area formed by the outer rim of the 
caldera and the volcano cone.  

As for the stratified APS, the conventional APS-MRM 
technique is modified accordingly for the case with the presence 

of a high spatial inhomogeneous refractivity by introducing the 
2D quadratic polynomial function of the refractivity index with 
respect to a slant range and a topographic height. With the 
polynomial GC model, the residual APS components including 
longer scale components and short-scale are predicted by the 
IRF-k Kriging interpolation, taking into account the non-
stationarity. In the framework of the proposed method, the 
candidates of moving pixels are iteratively identified by an 
absolute velocity criterion estimated by the CPT.  

The proposed method has been tested with GB-SAR data 
acquired over the test area. In this evaluation, the proposed 
polynomial stratified APS model demonstrated the reasonable 
estimation and compensation capability of a global differential 
phase trend. The proposed APS compensation scheme yielded 
lower APS error and higher estimation accuracy of the 
simulated displacement than the CPT. The analysis through the 
datasets with soil erosion over the earthwork shows APS error 
suppression with the proposed method. Furthermore, the results 
demonstrate the applicability of an iterative strategy of our 
method where the results are improved with increasing iteration. 
However, improper setting of the velocity threshold reveals the 
degradation of results with an increase of the iteration. 
Therefore, the velocity threshold should be carefully 
determined based on the knowledge of the predicted 
displacement phenomenon.  

Finally, the practical consideration in terms of the 
computational cost of the proposed compensation processing is 
noted. This is important to realize the near-real-time monitoring 
scheme which is highly required for the early-warning issue.  

APPENDIX 
PRACTICAL DETERMINATION OF GENERALIZED COVARIANCE 

Prior to an adaptation of the IRF-k Kriging, several steps are 
required to determine the order k and the GC model in practice. 
First, we need to perform the trend analysis so that the order k 
of the trend can be determined. In this process, we iteratively 
find the optimal order k of the polynomial by evaluating the 
residual phase after subtracting the fitted order k polynomial 
from the original phase.  We then define the optimal structure 
of the GC. Among all possible GC structures, following five 
models of polynomial GC are practically evaluated;  
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We further perform cross-validation to choose the optimal 
GC model. In cross-validation, APS are predicted at test data 
pixels chosen within observed data sets, and errors between the 
predicted and the measured values are calculated, referred to the 
mean squared error of prediction (MSEP) as 

 
[ ]

2

1
resres )()(1MSEP ∑

=

∗ −=
m

i
iim

xx φφ  
             (

A2) 

Subsequently, the model minimizing the MSEP is chosen as 
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the optimal GC model. After all the above procedures, the IRF-
k Kriging is finally applied to estimate the resφ . 
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