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Abstract. The problem considered in this paper is that of finding a point which is common to almost all the
members of a measurable family of closed convex subsets ofRn++, provided that such a point exists. The main
results show that this problem can be solved by an iterative method essentially based on averaging at each step
the Bregman projections with respect tof (x) =∑n

i=1 xi · ln xi of the current iterate onto the given sets.
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1. Introduction

1.1. In this paper we approach a particular version of thestochastic convex feasibility
problem(SCFP) formulated by Butnariu and Fl˚am [8]: Given a complete probability space
(Ä,A, µ) and a measurable point-to-set mapping Q:Ä→ Rn

++ having nonempty, closed
and convex values,find an almost common point x∗ of the sets Qω, i.e.,find a point x∗ ∈ Rn

++
such that

µ({ω ∈ Ä | x∗ ∈ Qω}) = 1, (1)

provided that such a point exists. Recall that the point-to-set mappingQ is calledmeasurable
if, for every closed subsetF ⊆ Rn, the set{ω ∈ Ä | Qω ∩ F 6= ∅} is measurable (in the
sense that it belongs toA). Note that ifQ is measurable, then, for eachx ∈ Rn, the set
{ω ∈ Ä | x ∈ Qω} is measurable and, therefore, formula (1) makes sense.

The SCFP stated above is a natural generalization of the well-knownconsistent convex
feasibility problem(CFP). A CFP is a particular SCFP in whichÄ is a finite set,A = 2Ä

is the collection of all subsets ofÄ and the measureµ : A→ [0, 1] is defined by

µ(A) =
∑
ω∈A

µω, (2)
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for some given positive real numbersµω, ω ∈ Ä, such that
∑

ω∈Ä µω = 1. In this par-
ticular case, the set of almost common points of the setsQω is exactly

⋂
ω∈Ä Qω, that is,

the problem of finding an almost common point of the given sets is exactly the problem of
determining an element of their intersection.

1.2. We study the SCFP, formulated above, under the assumption that

S:= cl conv

(⋃
ω∈Ä

Qω

)
⊆ Rn

++. (3)

The question we pose is whether, and under what additional conditions on the data of the
SCFP, sequences generated inRn

++ according to the following algorithmic scheme, which
we call theaveraged entropic projection method(AEPM), are well-defined and converge to
almost common points of the setsQω, ω ∈ Ä: Choose an arbitraryinitial point x0 ∈ Rn

++
and, for each integerk ≥ 0, let1

xk+1 =
∫
Ä

5ω(x
k)dµ(ω), (4)

where5ω(x) := 5Qω
(x) denotes the Bregman projection ofx onto the setQω with respect

to the functionf : Rn
++ → R given by

f (x) =
n∑

i=1

xi · ln xi . (5)

Recall that, according to Censor and Lent [9] , theBregman projection with respect to fof
a pointx onto the closed convex setK ⊆ Rn

++ is the (necessarily unique) minimizer over
K , denoted5K (x), of the functionalD f (·, x) : Rn

++ → R+ defined by

D f (y, x) = f (y)− f (x)− 〈∇ f (x), y− x〉, (6)
i.e.,

5K (x) = arg min{D f (y, x) | y ∈ K }. (7)

Lemma 2.2 in [9] ensures that5K (x) exists. Since the functionf defined by (5) is the
negative of Shannon’sentropy function, we call itnegentropyand the Bregman projections
with respect to itentropic projections.

According to Theorem 8.2.11 of Aubin and Frankowska [2], for eachx ∈ Rn
++, the

functionω→ 5ω(x) : Ä→ Rn
++ is measurable, and thus the average

5(x) :=
∫
Ä

5ω(x)dµ(ω) (8)

exists and belongs to [0,∞]n.Obviously, ifÄ is finite,A = 2Ä andµ is defined by (2), then

5(x) =
∑
ω∈Ä

µω ·5ω(x) ∈ S. (9)
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We prove in Section 2 that, if (3) holds, then5(x) exists and belongs toS even ifÄ is
infinite. This implies that the sequence{xk}k∈N, recursively defined by (4), exists and is
included inRn

++ no matter how the initial pointx0 is chosen inRn
++.

1.3. In this work we show that the answer to the question posed above is affirmative, i.e.,
sequences{xk}k∈N generated by the AEPM converge to almost common points of the sets
Qω. The convergence result is presented in Section 3. It gives an algorithm to solve SCFPs
which, in its specific framework, can be used as an alternative to the stochastic projection
method studied by Butnariu and Fl˚am [8]. Applied to CFPs, the AEPM represents a new
addition to a long list of existing techniques for finding common points of finite collections
of closed convex subsets ofRn which have nonempty intersection. The classical methods of
finding solutions of CFPs, based on computing metric projections onto the closed convex
setsQω, have recently been surveyed by Bauschke and Borwein [3] and Combettes [13]. The
AEPM we propose falls in the category of iterative algorithms introduced by Bregman [5]
and further developed by Censor and Lent [9] and others. They differ from the classical
methods by the essential feature that, at each iterative step, the new iterate is determined
by combining not metric projections but Bregman projections of the current iterate onto
the setsQω. The known algorithms in this category are either “sequential” in the sense that
each new iterate is computed by using the Bregman projection of the previous iterate on a
single setQω (see [1, 4, 5, 9–11, 14]) or “simultaneous” in the sense that the computation
of the new iterate requires determining the Bregman projection of the current iterate on all
setsQω (see [10, 11]). The AEPM, seen as a method for solving CFPs, is simultaneous. In
other simultaneous entropic projection based algorithms (see [10, 11])xk+1 is defined as
thegeometric meanof the individual entropic projections5ω(xk). In the AEPM,xk+1 is
determined as theweighted average(see (4) and (9)) of the individual entropic projections
5ω(xk), ω ∈ Ä. This fact represents an advantage of the AEPM because computation of
weighted averages is more efficient and less error prone than computation of geometric
means.

1.4. The AEPM, whenever applicable, is an alternative to the expected (metric) projec-
tion method of solving SCFPs presented in [8]. It was observed in [8] and [6, Section 3]
that SCFPs for finding numerical solutions of Fredholm type integral equations or of best
approximation problems inL∞ as well as minimization problems for differentiable convex
functionals over compact subsets ofRn involve setsQω which are hyperplanes or half
spaces. Such SCFPs can be efficiently solved by the expected projection method because
the metric projections onto hyperplanes and half spaces are easily computable using explicit
formulae (see, for instance, [1, Section 5]). However, if the geometry of the setsQω is
more complicated (i.e., nonpolyhedral), then computing metric projections onto them is
rather difficult. In specific situations, determining entropic projections may be easier and,
then, application of the AEPM proposed here provides an alternative device. An example
illustrating this fact is given in Section 4. In general, computing the entropic projections
required by the AEPM can be demanding. This leads to the question whether, and under
what conditions, one can guarantee convergence of algorithms for solving SCFPs similar to
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the AEPM in which the negentropyf is replaced by a function other than the square of the
norm. Replacing the negentropy in the AEPM by the square of the norm one obtains the
expected metric projection method mentioned above. Having a large pool of such functions
would allow users to fit the method of solving particular SCFPs to the nature of the sets
Qω involved in such a manner that the effort of computing the corresponding Bregman
projections is reduced (see Section 4).

1.5. The question asked above points to another interesting problem: Can the proofs of
the main results in this work (namely, Proposition 2.5(ii), Proposition 3.2 and Theorem 3.3)
be extended to functions other than the negentropy and the square of the norm? In this
respect, a careful analysis of our arguments reveals that these results are based on two
features of the negentropy which are common to a large class of convex functions: The
property of being very convex and the convexity ofD f on int(dom( f ))× int(dom( f )).
The notion of a very convex function is a generalization of the notion of a uniformly con-
vex function discussed in [19]. Very convex functions are defined in Section 2 via the
newly introduced concept of modulus of local convexity (see Definition 2.2) whose basic
properties are emphasized in general terms by Proposition 2.4. The proof of Proposition
2.5(ii) can be adapted to show that, iff is any very convex function with solid closed
domain and if the functionf is differentiable on int(dom( f )), then the integral5(x) in
which entropic projections are replaced by the general Bregman projections with respect
to f exists and belongs to dom( f ) for eachx ∈ int(dom( f )). Thus, the existence of the
sequences{xk}k∈N defined by (4) can be ensured in a more general framework provided that
S ⊂ int(dom( f )). The convergence analysis of{xk}k∈N (i.e., the proof of Theorem 3.2)
follows the pattern of proof devised by Iusem and De Pierro [16] and Butnariu and Censor
[7]. However, in the convergence proof we use particular properties of the negentropy,
namely the convexity ofD f (·, ·) onRn

++ ×Rn
++ and the relationship between the modulus

of local convexity of the negentropy and the modulus of local convexity of the function
g(t) = t · lnt (see (14)). The properties of the modulus of local convexity of the negen-
tropy used in the proof of Theorem 3.2 are shared with all uniformly convex functions
(in spite of the fact that the negentropyf is not uniformly convex). Thus, we conjecture
that, by following the basic ideas of our analysis, new algorithms for solving SCFPs can
be developed.

1.6. One can approach SCFPs inRn with other techniques in addition to the expected
projection method and the averaged entropic projection method discussed above. One
such technique, pointed out to us by a referee, consists of reformulating the SCFP as a
stochastic programming problem in the sense of Wets [20]. More precisely, the SCFP
can be seen as a minimization problem for the average of the indicator functionsIQω

to
which the Progressive Hedging Algorithm of Rockafellar and Wets [18] can be applied. In
practice, solving the SCFP in this way amounts to approximating solutions of a sequence
of nonlinear programming problems. The relative advantage of the methods of solving
SCFPs via iterative averaging of Bregman projections onto the setsQω is that, in specific
circumstances as those discussed in Section 1.4, they allow us to avoid computationally
costly nonlinear optimization procedures.
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2. Modulus of local convexity: existence ofΠ(x)

2.1. In this section we show that the averaged entropic projection5(x) defined by (8)
exists and belongs toS for any x ∈ Rn

++. As noted in Section 1.2, the measurability of
the mappingω → 5ω(x) : Ä → Rn

++ is guaranteed. Thus it remains to prove that this
mapping is integrable (in the sense that the integral of each one of its coordinates is finite).
To do this we need the following notions and results.

2.2. Let U be a nonempty, convex and open subset ofRn and letg : U → R be a convex
function. Recall (see, for instance, [17, Lemma 1.2] or [12, Proposition 2.1.2]) that the
right hand side derivative ofg at a pointx ∈ U in a directiond ∈ Rn, defined by

g◦(x, d) = lim
τ↘0

g(x + τd)− g(x)

τ
, (10)

exists, is finite and satisfies

g◦(x, y− x) ≤ g(y)− g(x). (11)

This allows us to introduce the following notions.

Definition. Themodulus of local convexity of the function g at the point x∈ U is the
functionνg(x, ·) : [0,∞)→ [0,∞] given by2

νg(x, t) = inf{Dg(y, x) | y ∈ U, ‖y− x‖ = t}, (12)

where

Dg(y, x) := g(y)− g(x)− g◦(x, y− x). (13)

The functiong is calledvery convexif , for eachx ∈ U, νg(x, t) > 0 whenevert > 0.

2.3. The notions of modulus of local convexity and of very convex functions introduced
here are not equivalent to the analogous notions of modulus of (uniform) convexity and,
respectively, uniformly convex function studied by Vladimirov et al. in [19]. Recall that
themodulus of convexityof g is the functionδg : [0,∞)→ [0,∞] defined by

δg(t) = inf

{
τ · g(y)+ (1− τ) · g(x)− g(τy+ (1− τ)x)

τ · (1− τ)
∣∣∣∣τ ∈ (0, 1), ‖y− x‖= t

}
,

and that the functiong is called uniformly convex ifδg(t) > 0 whenevert > 0. It follows
from Remark 4 in [19] that 0≤ δg(t) ≤ νg(x, t) for all t ∈ [0,∞) andx ∈ U . However,
in general,δg andνg are not equal. For instance, ifg : (0,∞)→ R is the function defined
by g(x) = x · ln x, then

νg(x, t) = min{Dg(x + t, x), Dg(x − t, x)}
= x ·

[(
1+ t

x

)
· ln
(

1+ t

x

)
− t

x

]
. (14)
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This shows that the functiong is very convex becauseνg(x, 0) = 0 and the functionνg(x, ·)
is strictly increasing on(0,∞) (its derivative is positive). Nevertheless, since for anyt > 0,
we have

0≤ δg(t) ≤ lim
x→∞ νg(x, t) = 0,

it follows thatδg(t) = 0 and that the functiong is not uniformly convex.

2.4. Our proof that the functionω→ 5ω(x) is integrable for eachx ∈ Rn
++ is based on

the properties of the modulus of local convexity summarized in the next result.

Proposition. If U is an open, convex and unbounded subset ofRn and if g : U → R is
a convex function, then, for each x∈ U, the functionνg(x, ·) is everywhere finite and has
the following properties:

(i) If c ∈ [1,∞), then, for any t ∈ [0,∞), νg(x, c · t) ≥ c · νg(x, t);
(ii) νg(x, ·) is nondecreasing and it is strictly increasing iff g is very convex;
(iii) νg(x, ·) is continuous from the right on[0,∞);
(iv) If ḡ : clU → R is a convex continuous function whose restriction to U is g and if

νg(x, ·) is continuous, then, for each t∈ [0,∞),

νg(x, t) = inf{Dḡ(y, x) | y ∈ clU, ‖y− x‖ = t}. (15)

Proof: SinceU is unbounded and convex one can find a pointy ∈ U at any distancet
from x. Thus,νg(x, ·) is everywhere finite. We prove the other statements point by point.

(i) It is sufficient to prove this statement forc > 1 andt > 0. In this case, letε be a positive
real number. According to (12), there exists a pointu ∈ U such that‖u− x‖ = c · t
and

νg(x, c · t)+ ε > Dg(u, x) = g(u)− g(x)− g◦(x, u− x). (16)

For everyα ∈ (0, 1), denoteuα = αu+ (1− α)x. Letβ = c−1 and observe that

‖uβ − x‖ = β · ‖u− x‖ = t. (17)

Note that, for anyα ∈ (0, 1),

α

β
uβ +

(
1− α

β

)
x = α

β
[βu+ (1− β)x] +

(
1− α

β

)
x = uα. (18)

The functionα → g(x+α(u−x))−g(x)
α

is nondecreasing on (0, 1) becauseg is convex
(see, for instance, [17, p. 2]). Therefore, by combining (10) and (16), we obtain

νg(x, c · t)+ ε > g(u)− g(x)− g(x + α(u− x))− g(x)

α
,
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for all α ∈ (0, 1). As a consequence,

νg(x, c · t)+ ε > α · g(u)+ (1− α) · g(x)− g(x + α(u− x))

α

=
α · g(u)+ (1− α) · g(x)− α

β
· g(uβ)−

(
1− α

β

) · g(x)
α

+
α
β
· g(uβ)+

(
1− α

β

) · g(x)− g(uα)

α

= β · g(u)+ (1− β) · g(x)− g(uβ)

β

+
α
β
· g(uβ)+

(
1− α

β

) · g(x)− g
(
α
β

uβ +
(
1− α

β

)
x
)

α
,

where the last equality results from (18). The first term of the last sum is nonnegative
becauseg is convex. Thus,

νg(x, c · t)+ ε >
α
β
· g(uβ)+

(
1− α

β

) · g(x)− g
(
α
β

uβ +
(
1− α

β

)
x
)

α

= 1

β
·
[

g(uβ)− g(x)−
g
(
x + α

β
(uβ − x)

)− g(x)
α
β

]
.

Lettingα↘0 and taking into account (16) and (10) we deduce that

νg(x, c · t)+ ε > c · Dg(uβ, x) ≥ c · νg(x, t).

Sinceε is an arbitrary positive real number, this proves (i).
(ii) Suppose thats andt are real numbers such that 0< s< t. Then,

νg(x, t) = νg

(
x,

t

s
· s
)
≥ t

s
· νg(x, s) ≥ νg(x, s), (19)

where the first inequality follows from (i). Thus,νg(x, ·) is nondecreasing. Ifg is very
convex, then the last inequality in (19) is strict and this shows that the functionνg(x, ·)
is strictly increasing on(0,∞). The converse is obvious. Hence, (ii) is proven.

(iii) First we show thatνg(x, ·) is continuous from the right at 0. To this end, let{tk}k∈N be
a sequence in (0, 1) converging nonincreasingly to 0. Applying (ii) and (i) we deduce

νg(x, 1) ≥ νg(x,
√

tk) = νg

(
x,

tk√
tk

)
≥ 1√

tk
· νg(x, tk).

Hence,

νg(x, 0) = 0≤ lim
k→∞

νg(x, tk) ≤ νg(x, 1) · lim
k→∞
√

tk = 0.
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This shows thatνg(x, ·) is continuous from the right at 0. Now suppose that 0< s<
t < ∞. Fix an arbitrary real numberε > 0. According to (12), there exists a point
yε ∈ U such that‖yε − x‖ = s and

νg(x, s)+ ε
4
> Dg(yε, x).

Applying (ii), we deduce that

0≤ |νg(x, t)− νg(x, s)| = νg(x, t)− νg(x, s) < νg(x, t)− Dg(yε, x)+ ε
4
.

The functionDg(·, x) is continuous onU (see (13)) becauseg andg◦(x, ·) are contin-
uous (cf. [17, Proposition 1.19 and Corollary 1.7]). Therefore, there exists a number
δ(ε) > 0 such that, for anyz ∈ Rn with ‖z− yε‖ < δ(ε), we havez ∈ U and

|Dg(z, x)− Dg(yε, x)| < ε

4
.

If 0 < t − s< δ(ε), then the vector

y′ε =
t

s
yε +

(
1− t

s

)
x

satisfies‖y′ε − yε‖ = t − s< δ(ε) and‖y′ε − x‖ = t . Hencey′ε ∈ U and

0≤ νg(x, t)− νg(x, s) < Dg(y
′
ε, x)− Dg(yε, x)+ ε

4
<
ε

4
+ ε

4
< ε.

This proves (iii).
(iv) Denote byν0 the right hand side of (15). Clearly,ν0 ≤ νg(x, t). Let ε > 0 be

arbitrarily fixed and observe that there existszε ∈ clU such that‖zε − x‖ = t and
ν0+ ε

4 > Dḡ(zε, x). If zε ∈ U , then

ν0+ ε
4
> Dḡ(zε, x) = Dg(zε, x) ≥ νg(x, t). (20)

Otherwise, there exists a sequence{zk}k∈N ⊂ U which converges tozε. For tk :=
‖zk − x‖ we have limk→∞ tk = t and, therefore, limk→∞ νg(x, tk) = νg(x, t) because
νg(x, ·) is continuous. Thus, there exists a positive integerkε such that, for any integer
k ≥ kε, we haveν0 + ε

4 > Dg(zk, x) andνg(x, tk) ≥ νg(x, t) − ε
4. By consequence,

if k ≥ kε, then

ν0+ ε
4
> Dg(z

k, x) ≥ νg(x, tk) ≥ νg(x, t)− ε
4
.

This and (20) imply that, for anyε > 0, we haveν0 + ε
2 > νg(x, t). The proof is

complete. 2

2.5. The next result emphasizes important features of the negentropyf . It shows that the
averaged entropic projection operator5(x) exists and belongs toSno matter howx ∈ Rn

++
is chosen.



P1: LMW/PMR/AVK P2: MVG/SFI P3: MVG/SFI QC: MVG

Computational Optimization and Applications KL425-02-Butnariu April 10, 1997 18:45

ITERATIVE AVERAGING OF ENTROPIC PROJECTIONS 29

Proposition.
(i) The function f: Rn

++ → R defined by(5) is a very convex function.
(ii) For each x∈ Rn

++ the averaged entropic projection5(x) = ∫
Ä
5ω(x)dµ(ω) exists

and belongs to S.

Proof:

(i) Let ḡ : [0,∞)→ R be the continuous convex function defined by

ḡ(x) =
{

x · ln x, if x > 0,
0, otherwise.

(21)

The function f̄ : Rn
+ → R given by

f̄ (x) =
n∑

i=1

g (xi ), (22)

is convex and continuous and its restriction toRn
++ is exactly f . Let

ν̄ f (x, t) = inf
{
D f̄ (y, x) | y ∈ Rn

+, ‖y− x‖ = t
}
.

Since the set{y ∈ Rn
+ | ‖y− x‖ = t} is compact inRn andD f̄ (·, x) is continuous on

this set, there existsy∗ ∈ Rn
+ such that‖y∗ − x‖ = t and

ν f (x, t) ≥ ν̄ f (x, t) = D f̄ (y
∗, x) =

n∑
i=1

Dḡ(y
∗
i , xi ).

Let g be the restriction of̄g to (0,∞) . The modulus of local convexity ofg is given
by (14) and is continuous int . Therefore, we can apply Proposition 2.4(iv) and obtain
that, for eachi ∈ {1, 2, . . . ,n},

Dḡ(y
∗
i , xi ) ≥ νg(xi , |y∗i − xi |).

Hence,

ν f (x, t) ≥
n∑

i=1

νg(xi , |y∗i − xi |). (23)

Whent > 0, we have‖y∗i − xi ‖ > 0 for at least one indexi . As noted in Section 2.3
the functiong is very convex. Consequently,νg(xi , |y∗i − xi |) > 0 for at least one
index i . This and (23) show that, ift > 0, thenν f (x, t) > 0, i.e., f is very convex.

(ii) It was noted in Section 1.2 that the functionω → 5ω(x) : Ä→ Rn
++ is measurable.

By the definition of the integral, the averaged entropic projection5(x) is the limit of
a coordinatewise nondecreasing sequence of elements ofRn

++ consisting of points of
the form

∑m
j=1µ(Ä j ) · 5ω j (x), whereÄ1, . . . , Äm is a partition ofÄ and, for each
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j ∈ {1, . . . ,m}, ω j ∈ Ä j (see Halmos [15, Theorem B, p. 85]). Each such point is a
convex combination of elements ofS. Therefore, if we show that the averaged entropic
projection5(x) is (coordinatewise) finite, then it will follow that5(x) must be an
element of the closed setS. In order to show this, letz ∈ Rn

++ be an arbitrary almost
common point of the setsQω, ω ∈ Ä. Set

I =
∫
Ä

‖5ω(x)− x‖dµ(ω).

This integral exists because the functionω→ 5ω(x) is measurable. It is sufficient to
prove thatI is finite because∫

Ä

‖5ω(x)‖dµ(ω) ≤ I + ‖x‖.

Observe that, for almost allω ∈ Ä,

ν f (x, ‖5ω(x)− x‖) ≤ D f (5ω(x), x) ≤ D f (z, x),

becausez is an almost common point of the setsQω, ω ∈ Ä. Since f is very convex,
we haveν f (x, 1) > 0. Also, according to Proposition 2.4(i), for eacht ∈ [1,∞), we
haveν f (x, t) ≥ t · ν f (x, 1). Hence, limt→∞ ν f (x, t) = +∞. Consequently, there
exists a numbert0 > 0 such thatD f (z, x) < ν f (x, t0). These show that, for almost all
ω ∈ Ä,

ν f (x, ‖5ω(x)− x‖) ≤ D f (z, x) < ν f (x, t0).

According to Proposition 2.4(ii), this can happen only if

‖5ω(x)− x‖ < t0, a.s.

Integrating this inequality we obtain thatI ≤ t0 and the proof is complete. 2

3. A convergence analysis of the AEPM

3.1. Proposition 2.5 ensures that, for any initial pointx0 ∈ Rn
++, the sequence{xk}k∈N

generated by the AEPM exists and is included inS. In this section we show that the sequence
{xk}k∈N converges and its limit is an almost common point of the setsQω, ω ∈ Ä. Our
convergence proof is based on the following fact.

Lemma. If K ⊆ Rn
++ is nonempty, convex and closed, then the entropic projection

5K : Rn
++ → K is continuous.

Proof: Let {xk}k∈N be a convergent sequence inRn
++ such thatx∗ := limk→∞ xk ∈ Rn

++.
Denoteyk = 5K (xk), k ∈ N. The sequence{yk}k∈N is bounded. Indeed, observe that for
an arbitrarily fixedz ∈ K and for allk ∈ N we have

D f (y
k, xk) ≤ D f (z, xk). (24)
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Since the functionD f (z, ·) is continuous, the sequence{D f (z, xk)}k∈N is bounded. Acc-
ording to (24), this implies that{D f (yk, xk)}k∈N is bounded too. By (6), this cannot happen
unless{yk}k∈N is bounded. Therefore,{yk}k∈N has an accumulation point and, obviously, all
accumulation points of{yk}k∈N are inK . We show that any accumulation point of{yk}k∈N

coincides with5K (x). This will imply

lim
k→∞

5K (x
k) = lim

k→∞
yk = 5K (x

∗),

that is,5K is continuous.
In order to prove that any accumulation pointy∗ of {yk}k∈N equals5K (x∗), let {ykp}p∈N

be a subsequence of{yk}k∈N which converges toy∗. According to [11, Theorem 2.2], for
each nonnegative integerp and for allz ∈ K ,

n∑
i=1

(
ln x

kp

i − ln y
kp

i

) · (zi − y
kp

i

) ≤ 0.

Letting p→∞ we get

n∑
i=1

(ln x∗i − ln y∗i ) · (zi − y∗i ) ≤ 0,

for all z ∈ K . Applying again Theorem 2.2 of [11], this impliesy∗ = 5K (x∗). 2

3.2. Now we apply Lemma 3.1 to obtain another useful result.

Lemma. If K ⊆ Rn
++ is nonempty, convex and closed, then the function8K : Rn

++ → Rn
+

defined by

8K (x) = D f (5K (x), x), (25)

is convex, differentiable and, for every x∈ Rn
++,

∂8K

∂xi
(x) = xi −5i

K (x)

xi
, 1≤ i ≤ n, (26)

where5i
K (x) denotes the i th coordinate of5K (x).

Proof: Let x, y ∈ Rn
++ andα ∈ (0, 1). Then,

8K (αx + (1− α)y) = D f [5K (αx + (1− α)y), αx + (1− α)y]

≤ D f [α5K (x)+ (1− α)5K (y), αx + (1− α)y]

≤ α · D f (5K (x), x)+ (1− α) · D f (5K (y), y)

= α ·8K (x)+ (1− α) ·8K (y),
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where the first inequality follows from the convexity ofK combined with the definition of
the entropic projection5K (see (7)) and the second inequality results from the convexity
of the functionD f : Rn

++ × Rn
++ → R. This shows that8K is convex. Now, in order to

prove that8K is differentiable atx ∈ Rn
++, let u ∈ Rn\{0} and suppose thatθ ∈ (0,∞) is

sufficiently small so thatx + θu ∈ Rn
++. Then, applying (7) twice, we get

θ−1 · [D f (5K (x + θu), x + θu)− D f (5K (x + θu), x)]

≤ θ−1 · [D f (5K (x + θu), x + θu)− D f (5K (x), x)]

≤ θ−1 · [D f (5K (x), x + θu)− D f (5K (x), x)]. (27)

Observe that

lim
θ↘0

D f (5K (x), x + θu)− D f (5K (x), x)

θ

= lim
θ↘0

n∑
i=1

[
ui −5i

K (x) ·
ln(xi + θ · ui )− ln xi

θ · ui
· ui

]
=

n∑
i=1

ui ·
(

1− 5
i
K (x)

xi

)
. (28)

According to Lemma 3.1, the entropic projection5K is continuous. Therefore,

lim
θ↘0

D f (5K (x + θ · u), x + θu)− D f (5K (x + θu), x)

θ

= lim
θ↘0

n∑
i=1

[
ui −5i

K (x + θu) · ln(xi + θ · ui )− ln xi

θ · ui
· ui

]
=

n∑
i=1

ui ·
(

1− 5
i
K (x)

xi

)
. (29)

Lettingθ ↘ 0 in (27) and taking into account (28) and (29), we obtain that the middle term
converges and its limit is the common limit of the left and the right hand sides, i.e.,8K is
differentiable and (26) holds. 2

3.3. Using the results above we are in a position to prove that AEPM generated sequences
converge to almost common points of the setsQω, ω ∈ Ä.

Theorem. For any SCFP which satisfies(3),and for each x0 ∈ Rn
++, the AEPM generated

sequence{xk}k∈N, having x0 as initial point, exists and converges to an almost common
point of the sets Qω, ω ∈ Ä.

Proof: The existence of the sequence{xk}k∈N follows from Proposition 2.5. We now
prove the convergence of{xk}k∈N. To this end, letz be an arbitrary almost common point
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of the setsQω, ω ∈ Ä. Denote8ω = 8Qω
, where8Qω

is the function given in (25) for
K = Qω. Define the function8 : Rn

++ → R by

8(x) =
∫
Ä

8ω(x) dµ(ω). (30)

This function is well-defined because the mappingω → 8ω(x) is measurable (it is the
composition of the measurable functionω→ 5ω(x)with the continuous functionD f (·, x))
and, for eachω ∈ Ä and allx ∈ Rn

++,

0≤ 8ω(x) ≤ D f (z, x). (31)

Observe that8 is convex because, for allω ∈ Ä, the functions8ω are convex (cf. Propo-
sition 3.2). Note that, ifx ∈ Rn

++ andu ∈ Rn\{0}, then there exists a real numberθ0 > 0
such that, for anyθ ∈ (0, θ0], x + θu ∈ Rn

++ and

〈∇8ω(x), u〉 ≤ 8ω(x + θu)−8ω(x)

θ
≤ 8ω(x + θ0u)−8ω(x). (32)

This is because the convexity of8ω implies that the mapping

θ → 8ω(x + θu)−8ω(x)

θ

is nondecreasing on(0, θ0]. Since the functionsω → 8ω(x + θ0u) − 8ω(x) andω →
〈∇8ω(x), u〉 are integrable (cf. Proposition 2.5(ii), Proposition 3.2 and (31)), the inequality
(32) allows us to apply the bounded convergence theorem in order to conclude that

lim
θ↘0

8(x + θu)−8(x)
θ

= lim
θ↘0

∫
Ä

8ω(x + θu)−8ω(x)

θ
dµ(ω)

=
∫
Ä

lim
θ↘0

8ω(x + θu)−8ω(x)

θ
dµ(ω)

=
∫
Ä

〈∇8ω(x), u〉 dµ(ω).

This and Proposition 3.2 show that8 is differentiable onRn
++ and

∂8

∂xi
(x) =

∫
Ä

xi −5i
ω(x)

xi
dµ(ω), 1≤ i ≤ n, (33)

where5i
ω(x) denotes thei th coordinate of5ω(x). Taking into account (4) and (33) we

deduce that, for each nonnegative integerk,

∂8

∂xi
(xk) = xk

i − xk+1
i

xk
i

, 1≤ i ≤ n. (34)
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By a specialization of [5, Lemma 1] we have that, for anyx ∈ Rn
++ and for almost all

ω ∈ Ä,

D f (5ω(x), x)+ D f (z,5ω(x)) ≤ D f (z, x). (35)

Observe that the functionu→ D f (u, x)+D f (z, u) is convex onRn
++. Therefore, Jensen’s

inequality applies and gives

D f (5(x), x)+ D f (z,5(x)) ≤
∫
Ä

[
D f (5ω(x), x)+ D f (z,5ω(x))

]
dµ(ω). (36)

Letting x = xk in (35) and in (36) and, after that, integrating the resulting inequality with
respect toω ∈ Ä, we obtain that, for each nonnegative integerk,

D f (x
k+1, xk)+ D f (z, xk+1) ≤ D f (z, xk). (37)

Summing up the inequalities in (37) corresponding tok = 0, 1, . . . ,m, we get

m∑
k=0

D f (x
k+1, xk) ≤ D f (z, x0)− D f (z, xk+1) ≤ D f (z, x0).

This shows that the series
∑∞

k=0 D f (xk+1, xk) converges and, therefore, that

lim
k→∞

D f (x
k+1, xk) = 0. (38)

Let g : (0,∞)→ R be the function defined byg(t) = t · ln t . Then,

D f (x
k+1, xk) =

n∑
i=1

Dg
(
xk+1

i , xk
i

)
,

where, for eachi, Dg(x
k+1
i , xk

i ) ≥ 0. This, together with (12) and (38), implies that, for
eachi ∈ {1, . . . ,n},

0 ≤ lim
k→∞

νg
(
xk

i ,
∣∣xk+1

i − xk
i

∣∣) ≤ lim
k→∞

νg
(
xk

i ,
∣∣xk+1

i − xk
i

∣∣)
≤ lim

k→∞
Dg
(
xk+1

i , xk
i

) ≤ lim
k→∞

D f (x
k+1, xk) = 0,

i.e.,

lim
k→∞

νg
(
xk

i ,
∣∣xk+1

i − xk
i

∣∣) = 0, 1≤ i ≤ n. (39)

Observe that, according to (37), the sequence{D f (z, xk)}k∈N is nonincreasing and bounded
from above byγ := D f (z, x0). The set{u ∈ Rn

++ | D f (z, u) ≤ γ } is bounded in
Rn and contains the sequence{xk}k∈N. Thus, {xk}k∈N is bounded. Also, according to
Proposition 2.5(ii),{xk}k∈N ⊂ S ⊆ Rn

++ (cf. (3)) and this shows that infk∈N xk
i > 0, for
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eachi ∈ {1, 2, . . . ,n}. These facts, combined with (14), imply that the equalities in (39)
are satisfied only if

lim
k→∞

∣∣xk+1
i − xk

i

∣∣
xk

i

= 0, 1≤ i ≤ n.

According to (34), this means

lim
k→∞
∇8(xk) = 0. (40)

The bounded sequence{xk}k∈N has a convergent subsequence{xkp}p∈N. Let x∗ =
lim p→∞ xkp . Note thatx∗ ∈ S ⊂ Rn

++ because{xk}k∈N ⊂ S and S is closed. The
function8 is convex and, therefore, for anyy ∈ Rn

++, we have

8(y)−8(x∗) = (8(y)−8(xkp))+ (8(xkp)−8(x∗))
≥ 〈∇8(xkp), y− xkp〉 + 〈∇8(x∗), xkp − x∗〉.

Since{xkp}p∈N is bounded, the right hand side of the last inequality converges to zero as
p → ∞ by (40). Thus, lettingp → ∞ on both sides of the last inequality, we obtain
8(y) ≥ 8(x∗), for all y ∈ Rn

++. This shows thatx∗ is a minimizer of8 overRn
++. Note

that8 is nonnegative and that8(z) = 0. Hence,8(x∗) = 8(z) = 0. According to (30),
this means that∫

Ä

D f (5ω(x
∗), x∗) dµ(ω) = 0,

i.e., D f (5ω(x∗), x∗) = 0 for almost allω ∈ Ä. Observe thatD f (y, x) vanishes if and only
if x = y. Consequently, we have5ω(x∗) = x∗ for almost allω ∈ Ä. This proves thatx∗

is an almost common point of the setsQω, ω ∈ Ä.
Observe that (37) was proven above for an arbitrary almost common pointzof the setsQω,

ω ∈ Ä. This means that it still holds forz= x∗. Therefore, the sequence{D f (x∗, xk)}k∈N

is nonincreasing. Hence, this sequence converges and it must have the same limit as its
subsequence{D f (x∗, xkp)}p∈N, i.e.,

lim
k→∞

D f (x
∗, xk) = lim

p→∞ D f (x
∗, xkp) = 0. (41)

Since, for eachk ∈ N,

D f (x
∗, xk) =

n∑
i=1

Dg
(
x∗i , xk

i

)
,

and the terms of the last sum are nonnegative, we deduce from (41) that

lim
k→∞

Dg
(
x∗, xk

i

) = 0, 1≤ i ≤ n,
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and, as a consequence (see (12)),

lim
k→∞

νg
(
xk

i ,
∣∣x∗i − xk

i

∣∣) = 0, 1≤ i ≤ n.

The boundedness of{xk}k∈N and the fact that infk∈N xk
i > 0, 1 ≤ i ≤ n, combined with

(14), show that this can happen only if

lim
k→∞

∣∣x∗i − xk
i

∣∣
xk

i

= 0, 1≤ i ≤ n,

that is, only if

lim
k→∞

∣∣x∗i − xk
i

∣∣ = 0, 1≤ i ≤ n.

This means that{xk}k∈N converges tox∗ which is an almost common point of the sets
Qω, ω ∈ Ä. The proof is complete. 2

4. An example and comments

4.1. In this section we demonstrate how the AEPM works and illustrate the idea mentioned
in Sections 1.3 and 1.4 that employing Bregman projection type methods for solving the
SCFP can have computational advantages when the functionf with respect to which the
Bregman projections are computed is fitted to the nature of the setsQω in the given problem.
To this purpose we consider the following example.

LetÄ be the interval [a, b] and, for eachi ∈ {0, 1, 2, . . . ,n}, let φi : Ä→ (0,∞) be a
continuous function. For eachω ∈ Ä, we consider the functiongω : Rn

+ → R given by

gω(y) =
n∑

i=1

φi (ω) · yi · ln yi + φ0(ω), (42)

with the usual convention that 0· ln 0 = 0. We want to find an elementx∗ ∈ Rn
++ which,

for all ω ∈ Ä, satisfiesgω(x∗) ≤ 0. To this end, observe that, for eachω ∈ Ä, the set

Qω =
{
z ∈ Rn

+ | gω(z) ≤ 0
}

(43)

is convex and closed and that finding a pointx∗ as mentioned above, is equivalent to finding
a common element of the setsQω, ω ∈ Ä. We assume that the setsQω have common
points (that is,

⋂
ω∈Ä Qω 6= ∅) and that (3) is satisfied.

4.2. We reduce the problem of finding a pointx∗ in
⋂
ω∈Ä Qω to a SCFP as follows. We

provideÄ with the probability structure(A, µ), whereA is the family of all Lebesgue
measurable subsets ofÄ andµ = (b−a)−1 ·λ, andλ denotes the Lebesgue measure onÄ.
The probability space(Ä,A, µ) is complete and the point-to-set mappingQ : Ä→ Rn

+,
which assigns to eachω ∈ Ä the closed convex setQω, is measurable (its graph is closed).



P1: LMW/PMR/AVK P2: MVG/SFI P3: MVG/SFI QC: MVG

Computational Optimization and Applications KL425-02-Butnariu April 10, 1997 18:45

ITERATIVE AVERAGING OF ENTROPIC PROJECTIONS 37

Note that, for everyx ∈ Rn
+, the functionω→ gω(x) : Ä→ R is continuous. Therefore,

any almost common point of the setsQω, ω ∈ Ä, is a point in
⋂
ω∈Ä Qω. This is so because

if z is an almost common point of the given sets andz /∈ ⋂ω∈Ä Qω, thengω0(z) > 0, for
someω0 ∈ Ä and this impliesgω(z) > 0 for all ω ∈ N0 ∩ [a, b], whereN0 is an open
neighborhood ofω0; this is a contradiction sinceµ(N0 ∩ [a, b]) > 0. Hence, the problem
of finding a pointx∗ ∈ ⋂ω∈Ä Qω is exactly the SCFP of finding an almost common point
of the setsQω, ω ∈ Ä.

4.3. Under the assumptions made in Section 4.1, Theorem 3.2 guarantees the convergence
of each AEPM generated sequence to a common point of the setsQω, ω ∈ Ä. For
determining an AEPM generated sequence we would like to have an explicit formula for
computing the entropic projections required in (4). To this end we have to solve, for every
fixed x ∈ Rn

++, the optimization problem


min D f (y, x)
such that
gω(y) ≤ 0, y ∈ Rn

+,
(44)

where f̄ is defined in (22). The Kuhn-Tucker conditions for this optimization problem
(note that, according to [4, Theorem 3.12], the optimum of (44) is necessarily a point in
Rn
++) are

{
ln yi − ln xi + α · φi (ω) · (ln yi + 1) = 0, 1≤ i ≤ n,
gω(y) = 0,

whereα ≥ 0 represents the Lagrange multiplier. The solution of this system of equations
is the vectory with the coordinates

yi = exp

(
−α · φi (ω)− ln xi

α · φi (ω)+ 1

)
, 1≤ i ≤ n, (45)

whereα is a positive solution of the equation

n∑
i=1

φi (ω) · α · φi (ω)− ln xi

α · φi (ω)+ 1
· exp

(
−α · φi (ω)− ln xi

α · φi (ω)+ 1

)
− φ0(ω) = 0. (46)

This equation can be solved by standard numerical procedures.

4.4. Theorem 4.4 in [8] ensures that the SCFP formulated in Section 4.1 can be also
approached with the expected metric projection method of Butnariu and Fl˚am [8]. This
method, applied to the given SCFP, produces sequences which converge to common points
of the setsQω,ω ∈ Ä, defined in (43). Computing the metric projectionPω(x) of the point
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x onto the setQω amounts to solving the optimization problemmin‖y− x‖2
such that
gω(y) ≤ 0, y ∈ Rn

+.
(47)

Compared with the relatively simple way of solving (44) which practically consists of
computing a positive solution of (46) and of using (45), finding a solution of (47) may be
computationally costly. In fact, writing down the Kuhn-Tucker conditions for the optimiza-
tion problem (47) shows that this requires numerical computation of a solutionα, y1, . . . , yn

to the system{
2 · (yi − xi )+ α · φi (ω)(ln yi + 1) = 0; 1≤ i ≤ n,
gω(y) ≤ 0.

4.5. The relative easiness with which the entropic projections5ω(x) were determined in
Section 4.3 advocates the AEPM in this specific case. In other situations the expected metric
projection method may be more friendly than the AEPM. In fact, this happens when one has
to solve SCFPs like those required for computing the inverse of the Radon transform in com-
puted tomography (see [8, Section 6]). This is a SCFP similar to that in Section 4.1 but with

Qω := {z ∈ Rn | 〈a(ω), z〉 = b(ω)}. (48)

In this case,

Pω(x) = x + b(ω)− 〈a(ω), x〉
‖a(ω)‖2 · a(ω).

However, computing the entropic projection5ω(x) onto the setQω defined in (48), pro-
vided that they exist, is rather complicated. It can be shown that, ifQω

⋂
Rn
++ 6= ∅ for all

ω ∈ Ä, then

5i
ω(x) = xi · [vω(x)]an(ω),

wherevω(x) is the unique positive solution of the equation

n∑
i=1

ai (ω) · xi · vai (ω) = b(ω).

The comparison of the AEPM and of the expected metric projection method emphasizes
the practical meaning of the conjecture in Section 1.5 that our results concerning the con-
vergence of the AEPM can be extended to procedures based on functions other than the
negentropy and the square of the norm.
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Notes

1. All over this paper the integral of a vector function is the vector of the integrals of its coordinates.
2. We use the convention that the infimum of the empty set is+∞.
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