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Abstract: Borel summation is applied iteratively in conjunction with self-similar iterated roots. In
general form, the iterative Borel summation is presented in the form of a multi-dimensional integral.
It can be developed only numerically and is rarely used. Such a technique is developed in the
current paper analytically and is shown to be more powerful than the original Borel summation. The
self-similar nature of roots and their asymptotic scale invariance allow us to find critical indices and
amplitudes directly and explicitly. The locations of poles remain the same with the uncontrolled
self-similar Borel summation. The number of steps employed in the course of iterations is used as
a continuous control parameter. To introduce control into the discrete version of the iterative Borel
summation, instead of the exponential function, we use a stretched (compacted) exponential function.
For the poles, considering inverse quantities is prescribed. The simplest scheme of the iterative Borel
method, based on averaging over the one-step and two-step Borel iterations, works well when lower
and upper bounds are established by making those steps. In the situations when only a one-sided
bound is found, the iterative Borel summation with the number of iterations employed as the control
works best by extrapolating beyond the bound. Several key examples from condensed matter physics
are considered. Iterative application of Borel summation leads to an improvement compared with a
conventional, single-step application of the Borel summation.

Keywords: self-similar root approximants; critical amplitide; critical index; optimization; control
parameters

1. Preliminaries

Consider the case when a certain problem could be reduced to explicitly finding a real,
sign-definite, positive-valued function f (x) of a real variable x. Let the function possess
the power-law asymptotic behavior characterized by the large-variable exponent β and
amplitude A

f (x) ' Axβ (x → ∞) . (1)

The class of power laws, f (x) = xβ, is scale-invariant, i.e.,

f (λx) = Λ f (x), (2)

where Λ = λβ. The property (2) becomes an asymptotic scale invariance if it holds only
in some limit, say of x → ∞, as in relation (1). The most studied example of power laws
is represented by critical phenomena in thermodynamic systems. That explains why we
use terminology with critical index β and critical amplitude A. The approach to infinity is
often of primary interest, and one should be able to calculate A and β.

To properly take into account the asymptotic scale invariance of the physical prop-
erties, one should think of approximation schemes that inherently possess such property.
Such analytical self-similar Borel approximations with the asymptotic property of scale
invariance (1), were first discussed in [1] and developed further in [2].

In practice, the equations defining f (x) are very complicated. Even to such an extent
that only truncated asymptotic expansion

f (x) ' fk(x) (x → 0) , (3)
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at small variables could be extracted in the form of finite expressions

fk(x) =
k

∑
n=0

anxn , (4)

where a0 > 0. For simplicity, one may consider the function f (x)/a0.
The truncations are reflections of the complete, divergent or convergent series. Often

they are unbearably short. Together with the asymptotic conditions (1), they form the basis
of resummation procedures. To this end, the Borel summation of different shades could
be applied to define the effective sums of the functions with known truncation (4) [3–7].
Extensive references can be found in our recent paper [2].

Indubitably, the truncation with a finite number of coefficients should be extended to
all an. Such extension is made either by means of Padé approximants [8–10] or from the
knowledge of large-n asymptotics of an [5]. In many instances, only a pitiful number of
terms in expansion is available, and no information on high-order an is given whatsoever.
In addition, Padé approximants are not able to capture scale invariance with arbitrary β [11]
and are used for extrapolation to finite values of variable x. Self-similar approximants, on
the other hand, were designed to solve the problems with arbitrary β [11].

The method of iterative Borel summation, based on repeated application of the con-
ventional Borel summation, was suggested in [4]. The result of iterative Borel summation
is expressed in the form of a multi-dimensional integral. It is rarely used because of tech-
nical difficulties and can be developed only numerically. However, one can expect that
such a technique, if developed analytically, can be more powerful than the original Borel
summation.

(1) We suggest below the practical way to combine iterative Borel summation with the self-
similar approximants. The asymptotic scale invariance of the self-similar approximants
leads to factorization of the integrals in the limit of large x and to the relatively simple
analytical expressions for critical amplitudes A and critical indices β.

(2) Combined with some optimization procedures, the found integrals are applied for
the calculation of critical properties and indices. The controls are designed in order
to improve the convergence of the summation methods. To this end, the minimal-
difference conditions on critical amplitudes are imposed.

(3) The number of steps in the course of Borel-iterations could be considered as a continu-
ous control parameter. However, in order to introduce control into the discrete version
of the iterative Borel summation, we suggest using instead of the exponential e−x, a
stretched (compacted) exponential function e−xu

, with arbitrary positive parameters u.
(4) Some physical cases with fast-growing an, exemplified by the Schwinger model en-

ergy gap (Example 1), anharmonic oscillator ground state energy (Example 7), and
expansion factor of three-dimensional polymer (Example 6), are considered. The Bose
condensation temperature (Example 4) and Schwinger model ground state energy
(Example 5), with slow decay of the coefficients, are discussed as well. The situation
with fast-decaying coefficients, such as of the Lieb–Liniger model ground state energy
(Example 2), and optical polaron mass (Example 3), is discussed too.

The optimization conditions in the general form of minimal-difference or minimal-
derivative conditions were derived by V.I. Yukalov (1976). Yukalov also pioneered the
notion of self-similarity and development of the approximation theory along the lines of a
field-theoretic renormalization group.

Below, the method of iterative Borel summation is combined with self-similar ap-
proximants. The property of asymptotic scale invariance pertinent to the self-similar
approximations leads to factorization of the multi-dimensional integrals in the limit of large
x. The critical properties, indices and amplitudes can be found analytically. We argue that
the iterative application of Borel summation could lead to an improvement compared with
a single-step Borel summation. The number of iterations by itself can serve as a control
parameter. Alternatively, the control parameter could be introduced by modifying the form
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of Borel-transform by putting the stretched (compacted) exponential function in place of
the exponential.

2. Discrete and Continuous Version of Iterative Borel Summation

The iterative Borel summation starts with the transformation of the series (4)

Bk(x, b) =
k

∑
n=0

an

(Γ(1 + n))b xn , (5)

defined following [4]. In the book [4], only positive integers b are considered. We will also
consider such a case but will not be restricted to it. In view of introducing control into
the summation procedure, b can become real. With b = 1, we return to the conventional
Borel transform. With a larger integer b, the transform is meant to tame the series with an
growing as (n!)b (see, also, [5]). However, it also makes sense for arbitrary real and finite b.

The resulting series can be summed by means of self-similar approximants
B∗k (x, b) [1,2,11]. Then, the sought function f (x) is approximated by the expression

f ∗k (x, b) =
∫ ∞

0
. . .
∫ ∞

0
e−t1 e−t2 . . . e−tb B∗k (xt1t2 . . . tb, b) dt1dt2 . . . dtb . (6)

Assume that we know the value of the critical index β. The self-similar approximant
at large x behaves as

B∗k (x, b) ' Ck(b)xβ (x → ∞) . (7)

Therefore, the sought Function (6), in the limit x → ∞, reduces to

f ∗k (x, b) ' Ck(b)xβ
∫ ∞

0
. . .
∫ ∞

0
e−t1 tβ

1 e−t2 tβ
2 . . . e−tb tβ

b dt1dt2 . . . dtb . (8)

As a result, the large-variable behavior of the function acquires the form

f ∗k (x, b) ' Ak(b)xβ (x → ∞) , (9)

with the amplitude
Ak(b) = Ck(b) (Γ(1 + β))b . (10)

The exponent β appearing in the course of the iterative Borel transform is inherited by
the approximation for the sought function (see also [5] for the case of Borel transform). In
the course of calculations, we have to recognize that∫ ∞

0
e−ttβdt = Γ(1 + β).

Now, we have to specify the self-similar approximant B∗k (x, b) to be used in concrete
calculations. The self-similar iterated root approximants [11] have the following form:

R∗k (x, b) = a0

(((
(1 + P1x)2 + P2x2

)3/2
+ P3x3

)4/3
+ . . . + Pkxk

)β/k

, (11)

defining the parameters Pj = Pj(b), from the asymptotic equivalence with the transformed
series (5), e.g., for k = 4

R∗4(x, b) = a0

(((
(1 + P1x)2 + P2x2

)3/2
+ P3x3

)4/3
+ P4x4

)β/4

.

This gives the large-x asymptotic form

R∗k (x, b) ' Ck(b)xβ (x → ∞) , (12)



Symmetry 2022, 14, 2094 4 of 15

where the marginal amplitudes Ck(b) are

Ck(b) = a0

((
(P1(b)2 + P2(b))3/2 + P3(b)

)4/3
+ . . . + Pk(b)

)β/k
. (13)

e.g., for k = 4

C4(b) = a0

((
(P1(b)2 + P2(b))3/2 + P3(b)

)4/3
+ P4(b)

)β/4
.

In the discrete case of positive integer b, we consider the most simple and natural
sequences

A∗k =
Ak(1) + Ak(2)

2
, (14)

with positive integers k = 1, 2, 3, . . .. Of course, it could be easily extended to larger
integers, but it seems that for small integers the approach already works well enough.
The approach is also relatively easily amenable to optimization by means of some optimal
control technique considered in Section 3.

The simplest technical scheme of iterative Borel summation, based on averaging over
the one-step and two-step Borel iterations (14), works when lower and upper bounds
are established by Ak(1) and Ak(2). The sought answer A∗k is obtained by interpolation
between the two values. With only the discrete, positive integer b, there is no way to control
the convergence but only to observe it (or not).

In the situations when only a one-sided bound is established, we suggest the itera-
tive Borel method with explicit optimization (15) and (16), with the number of iterations
employed as the control. The method is expected to be able to extrapolate beyond the
bound. Indeed, consider b, the number of iterations, as a continuous control parameter. As
the integral (8) is easy to define for integer b, introducing continuous b means to interpo-
late smoothly between the values of integral for discrete b. Such an approach is similar
to the way the Γ-function interpolates the factorial defined for discrete numbers [12]. It
seems reasonable to think that we can, in principle, after making an integer number of
iterations/steps, move backward (or forward) just a little bit, making only a part of a step.

Formally, with arbitrary b we are confronted with the enormously difficult problem
of how to define the integral over the continuum of variables [13]. However, we are
able to approach it constructively using explicit b analytical results for an integer number
of iterations b to interpolate to continuous b and only in the limit-case of large x. By
introducing the continuous b, we acquire a technical advantage since it becomes possible
to find b from some optimization conditions, designed to impose convergence on the
sequences of the Ak(b)-type [14].

In the spirit of [14], the differences

∆k,k+1 = Ak+1(bk)− Ak(bk) , (15)

with positive integers k = 1, 2, 3, . . ., are going to be the object of optimization. A set bk of
control parameters is defined as follows,

| ∆k,k+1(bk) |= minb | ∆k,k+1(b) |, (16)

with positive integer k = 1, 2, 3, . . .
However, the problems of high interest for physical applications with β = −1,−2,

appear to be divergent, or rather indeterminate, when treated by the self-similar Borel
summation techniques, since at β = −1,−2, . . ., the Γ-function has poles. In such cases,
some other types of summation could be used, as in the paper [2]. Otherwise, outside of
such cases, we can speak about determinate problems and employ the techniques already
discussed without reservations.
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There is a rather simple way to bypass the divergence. Let us consider an inverse
function to f (x) so that for large x

f (x)−1 ' Υ x−β. (17)

With such a critical index −β, there is no divergence in the formulas for negative integers.
Now, the resummed value of the critical amplitude Υ can be found by embracing the
techniques developed for calculating the amplitude A in Sections 2 and 3.

Again, at small x, the inverse function f (x)−1 could be represented as the truncated
power series. After the resummation procedure with some self-similar approximants,
applied to such series with the condition (17) at infinity, we will arrive at the resummed
amplitude Υ∗, and

A∗ ≡ 1
Υ∗

,

giving the sought value of the critical amplitude.
Thus, taking the inverse of the sought quantity restores the finiteness of the sought

quantity by discarding the poles. Consider that Weierstrass (1865) suggested defining the
inverse as the way to avoid discussing poles in the Γ-function (see [12]). We adapt the same
trick here but for purposes of resummation. A more sophisticated variant would include
a power transform with the power to be determined from some additional optimization
(see[15] and references therein).

We should also mention some valiant efforts by Luschny to find the definition of
Γ-function in such a way that poles are erased from the start (see his website and the paper
therein [12]). However, the standard definition through the integral is a part of the Borel
technique employed in the current paper. However, in principle, one can avoid integration
altogether if a Borel transform is corrected by means of Padé approximants [1], introduced
to restore asymptotic equivalence with the original truncation (4). Then it is possible to
change the definition of the Γ-function in the transformation of the series and perform an
inverse transformation.

Example 1. The massive Schwinger model in Hamiltonian lattice theory formulation [16,17]
describes quantum electrodynamics in two space-time dimensions. It also mimics quantum chro-
modynamics by including such refined features as the confinement, chiral symmetry breaking, and
a topological vacuum. It is also perhaps the simplest non-trivial gauge theory, and this makes it a
touchstone for the new techniques in high-energy physics. The spectrum of bound states is of interest
in the Schwinger model.

Let us consider the energy gap between the lowest and second excited states of the scalar boson
as a function ∆(z) of the variable z = (1/ga)4, where g is a coupling parameter and a, lattice
spacing. This energy gap at small z can be represented as a series

2∆(z) '∑
n

anzn (z→ 0) , (18)

with a rapid increase using absolute value coefficients

a0 = 1 , a1 = 6 , a2 = −26 , a3 = 190.66667 , a4 = −1756.66667 ,

a5 = 18048.33651 , a6 = −197905.20008 , a7 = 2.267368 ∗ 106 ,

and so on, up to the 13th order, as included in [17]. In the continuous limit, where the lattice spacing
tends to zero, the variable z tends to infinity, and the gap acquires the limiting form of a power-law

∆(z) ' 1.1284 z1/4 (z→ ∞) , (19)

with the large-variable critical amplitude A = 1.1284.
In the case of discrete iterations, using formula (14), we obtain for the large-variable critical

amplitudes the following estimates,
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A∗1 = 0.9562, A∗2 = 1.015, A∗3 = 1.0481, A∗4 = 1.0679, A∗5 = 1.0818,

A∗6 = 1.0916, A∗7 = 1.0992, A∗8 = 1.1051, A∗9 = 1.1099, A∗10 = 1.1139,

A∗11 = 1.1172 , A∗12 = 1.12 , A∗13 = 1.1224.

The above sequence shows a good numerical convergence to the value of A∗ = 1.1224. The
upper bound achieved in a conventional one-step Borel summation, A13(1) = 1.16796, is sensible
too. In two steps, we also find a reasonable lower bound, A13(2) = 1.07689.

The best result A ≈ 1.268 achieved by optimization, according to (15) and (16), is inferior. It
appears to be close to the number 1.25(15) quoted in the paper [17]. We have also applied optimal
Mittag–Leffler summation [2] and estimated in the tenth order that A ≈ 1.2476± 0.0077, also
close to the estimates of [17]. The methods employed in [17] are very sophisticated, but the problem
is notoriously hard, as is also pointed out in [17]. However, the application of the discrete version of
iterative Borel summation works well—even better than the finite lattice result of 1.14(3) [17].

Example 2. Consider a one-dimensional Bose gas with contact interactions quantified by the non-
dimensional coupling parameter g. The ground-state energy E(g) of the Lieb and Liniger model [18]
can be written according to the latest results of [19] in the variables e(x) ≡ E

(
x2), g ≡ x2,

as follows

e(x) ' x2 (1− 0.4244131815783876 x + 0.06534548302432888 x2−
0.001587699865505945 x3 − 0.00016846018782773904 x4−
0.00002086497335840174 x5 − 3.1632142185373668 10−6 x6−
6.106860595675022 10−7 x7 − 1.4840346726187777 10−7 x8) .

(20)

In the limit of very strong interactions g→ ∞, another exact result

E(∞) =
π2

3
≈ 3.289868, (21)

was found by Tonks and Girardeau. In this case, β = −2, and we are confronted with the
indeterminate problem while attempting to reconstruct the strong-coupling amplitude based on the
information from the weak-coupling limit. Here, also E(∞) = A.

Using the Formula (14), but in application to the inverse series and then taking the inverse as
discussed above for the indeterminate case, we get rather poor results for the large-variable critical
amplitudes, with the best number A∗8 ≈ 4.91. The result achieved in conventional one-step Borel
summation, A8(1) = 4.506, is a little better. The sequence of one-step approximations seems to
converge rapidly and monotonously, improving with increasing k. However, the number of terms in
the truncated series is still not enough to closely approach the correct result.

Much better results are achieved by optimization according to (15) and (16). In higher orders,
we arrive at

A6 = 3.0642, A7 = 3.3192, A8 = 3.3898,

curiously corresponding to the negative optimal values of the parameter b, i.e.,

b5 = −0.7588, b6 = −0.4483, b7 = −0.2875.

That means an increase in the coefficients an by the iterative Borel-transform. Thus, taking the
inverse of the sought quantity restores the finiteness of the sought quantity at β = −2 by discarding
the pole in the Γ-function.

Generally speaking, this particular problem of extrapolation is not simple at all. We found
that conventional Padé approximants Pn,n+2 applied to the original series (21) failed completely.
The same is true for the self-similar Borel method realized by means of factor approximants [1] but
applied to the inverse of (21), as prescribed in the discussion above for the indeterminate case. The
optimal Borel–Leroy method of [2] fails to produce an optimum.

However, the performance of the optimal Mittag–Leffler method, A ≈ 3.5195, obtained from
the minimal-derivative condition imposed in the eight-order following the techniques of [2] is better.
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The latter result is close to results brought by application of the iterated roots to the original series
(even without Borel transform),

A6 = 3.8302, A7 = 3.6433, A8 = 3.527.

Example 3. Consider the problem of the effective mass of the Fröhlich optical polaron. A perturba-
tion theory in powers of the electron-phonon coupling constant g is well developed [20]. It gives the
following expansion at weak couplings,

m(g) ' 1 +
1
6

g + 0.0236276g2 (g→ 0). (22)

For strong couplings, the effective mass behaves as a power law [20],

m(g) ' Ag4 (g→ ∞) , (23)

with the amplitude
A = 0.022702 . (24)

For amplitude A, we have a determinate problem with β = 4. Using formula (14), we obtain
rather poor results for the large-variable critical amplitudes, with A∗2 = 0.00014864. The best result
is achieved by optimization according to (15) and (16),

A2(b1) = A1(b1) = 0.019841 (b1 = 2.7654).

Again, the problem appears to be hard since all other methods of [1,2], and of the current paper,
fail when applied to the same number of terms. Only by adding one more trial term to the truncation
(22), and by applying the method of continued root approximants, did we obtain another reasonable
estimate from above, A ≈ 0.0252 [15].

3. Discrete Version of Iterative Borel Summation with Control

In order to introduce control into the discrete version of the iterative Borel summation,
we suggest taking another function instead of the conventional e−t. To this end, one can
consider a stretched (for 0 < u < 1), or compacted (for u > 1), exponential function e−tu

,
with arbitrary positive parameters u. The purpose of such substitution is to improve the
convergence of the summation methods.

The functions of such type were mentioned by Hardy on page 85 of the book [3]. Even
more generally, a two-parameter replacement e−tu

ta−1 was considered. For the purposes of
control, the simpler form with a = 1 will suffice. With u = 0, we arrive at the Borel–Leroy
summation already discussed in [1,2]. However, if we try the function from the exponential
class e−ut [21], the final results would not depend on u and can not be controlled.

The idea can be formalized if we consider the series with an behaving as
(

Γ( 1+n
u )

u

)b
. In

order to simplify the problem, we can remove such dependencies for any positive integer
b. To this end, consider the following generalization of the iterative Borel summation.
The generalized iterative Borel summation starts with the transformation of the series (4),
defined as

Bk,b(x, u) =
k

∑
n=0

an ub(
Γ( 1+n

u )
)b xn . (25)

Compaction will tend to increase the coefficients and stretching will tend to decrease
them. Such an effect is qualitatively different from the effect of the Borel–Leroy transform,
which always decreases the coefficients an.

The resulting series can be summed by means of self-similar approximants
B∗k,b(x, u) [1,2,11], designed as asymptotically equivalent to the transform (25). The sought
function is approximated by the expression with a stretched (compacted) exponential in
place of the familiar exponential, i.e.,
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f ∗k,b(x, u) =
∫ ∞

0
. . .
∫ ∞

0
e−tu

1 e−tu
2 . . . e−tu

b B∗k,b(xt1t2 . . . tb, u) dt1dt2 . . . dtb . (26)

The self-similar approximant at large x behaves as

B∗k,b(x, u) ' Ck,b(u)xβ (x → ∞) . (27)

In addition, the sought function (26), in the limit x → ∞, reduces to

f ∗k,b(x, u) ' Ck,b(u)xβ
∫ ∞

0
. . .
∫ ∞

0
e−tu

1 tβ
1 e−tu

2 tβ
2 . . . e−tu

b tβ
b dt1dt2 . . . dtb . (28)

The large-variable behavior of the function acquires the form

f ∗k,b(x, u) ' Ak,b(u)xβ (x → ∞) , (29)

with the amplitude

Ak,b(u) = Ck,b(u)

(
Γ( 1+β

u )

u

)b

. (30)

In the course of calculations, say with b = 1, we have to recognize that

∫ ∞

0
e−tu

tβdt =
Γ( 1+β

u )

u
.

By substituting the approximant or simply its asymptotic equivalent (25) into For-
mula (26), and also formally changing the order of summation and integration [6], we
return to the asymptotic equivalence with the original series (4). Obviously, as u = 1 we
recover the iterative Borel summation (6).

Assume that the critical index β is known. Let us once again employ for f ∗k,b(x, u) the
self-similar iterated root approximants [11], which have the following form

R∗k,b(x, u) =
a0 ub(
Γ( 1

u )
)b

(((
(1 + P1x)2 + P2x2

)3/2
+ P3x3

)4/3
+ . . . + Pkxk

)β/k

, (31)

with the parameters Pj = Pj(b, u), defined from the asymptotic equivalence with the
transformed series (25). The large-x asymptotic form is easily found,

R∗k,b(x, u) ' Ck,b(u)xβ (x → ∞) , (32)

where the marginal amplitudes Ck,b(u) are

Ck,b(u) =
a0 ub(
Γ( 1

u )
)b

((
(P1(b, u)2 + P2(b, u))3/2 + P3(b, u)

)4/3
+ . . . + Pk(b, u)

)β/k
. (33)

In order to calculate the critical amplitudes, we analyze the unconventional differences
for the critical amplitudes in k-th order, with b = 1, 2, in the spirit of [14],

∆k,2−1(uk) = Ak,2(uk)− Ak,1(uk) . (34)

The differences could measure the distance between approximations with different
numbers of discrete iteration steps but based on the same number of terms k from the (25).
Here, again, we already expect the convergence at the starting two steps of the procedure,
and strive to control the convergence through the explicit control parameter. In the case of
the discrete method (14), the control is implicit since it is expected that the second step is
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already “optimal” as it should be able to bring an improvement. The role of further steps is
yet to be investigated, but we first have to stumble on the proper example.

A set uk of control parameters is defined as follows,

| ∆k,2−1(uk) |= minu | ∆k,2−1(u) |, (35)

with positive integers k = 1, 2, 3, . . .. The controls are devised to minimize the differences.
Composing the sequences prescribed by such formulas, we find the related approximate
values uk for the control parameters.

It is possible to investigate different, conventional sequences of ∆k,n

∆k,k+1 = Ak+1,1(uk)− Ak,1(uk) , (36)

with positive integers k = 1, 2, 3, . . ., as described in [14]. Such differences could measure
the distance between approximations with the same number of discrete iteration steps but
based on the different number of terms from the (25).

A set uk of control parameters is defined as follows,

| ∆k,k+1(uk) |= minu | ∆k,k+1(u) |, (37)

with positive integers k = 1, 2, 3, . . ..

Example 4. Below, we calculate the critical amplitude for the ground state of the Schwinger model
from the expansions given dependent on the dimensionless variable x = m/g. Here m stands for
electron mass and g is the dimensional coupling parameter. The energy of a vector boson f mass
M(x) is E = M− 2m.

The expansion at small-x for the ground-state energy is is given by the following
truncation [22–25],

E(x) ' 0.5642− 0.219x + 0.1907x2 (x → 0) . (38)

In the large-x limit [25–27], there is another truncation

E(x) ' 0.6418x−1/3 (x → ∞) . (39)

Let us add to the expansion (38) one more trial, cubic term a3x3, with a very small a3 set to
zero. Using Formula (14), we obtain an, at most, reasonable estimate for the large-variable critical
amplitude A∗3 = 0.7436.

The optimization according to (34) and (35) fails altogether with no non-trivial solutions to
the problem. One-step Borel summation, however, gives a rather good number, A3,1(1) = 0.6562.
Good results are also achieved by the optimization according to (15) and (16)

A2 = 0.564, A3 = 0.6333.

An even better result is achieved by optimization according to (36) and (37). In the third order,
we arrive at

A3,1(u2) = A2,1(u2) = 0.6442 (u2 = 1.5449).

The latter result is almost as good as our previous estimate 0.6426 [28], which, in addition,
had taken into account the known values of the correction-to-scaling exponents.

For comparison, we also calculated A by the optimal methods of [2]. The results from the new
methods appear to be better than one can find from the optimal Borel–Leroy summation, A ≈ 0.6. It
is also better than A ≈ 0.62 from the optimal Mittag–Leffler summation.

Example 5. The ideal uniform Bose gas is unstable below the condensation temperature T0. The
repulsive atomic interactions stabilize the system. Introducing interactions shifts the transition
temperature T0 to the value of Tc. The shift ∆Tc ≡ Tc − T0 is considered as linear in the parameter
γ ≡ ρ1/3as. Namely,



Symmetry 2022, 14, 2094 10 of 15

∆Tc

T0
' c1γ (γ→ 0) ,

where as stands for atomic scattering length, and ρ is gas density. Monte Carlo simulations
(see [29,30] and multiple references therein), give c1 = 1.3 ± 0.05 . The coefficient c1 can be
defined [31–33] as the strong-coupling limit

c1 = lim
g→∞

c1(g) ≡ A. (40)

of a function c1(g) with the expansion

c1(g) ' 0.223286g− 0.0661032g2 + 0.026446g3 − 0.0129177g4 + 0.00729073g5 , (41)

as the effective coupling parameter g→ 0. The problem of finding A is undetermined.
Using Formula (14), but in application to the inverse series and then taking the inverse as

discussed above for the indeterminate case, we get rather reasonable results for the large-variable
critical amplitudes, with the number A∗4 ≈ 1.30288, obtained after resummation in the fourth order
of perturbation theory.

A close result is achieved by optimization according to (34) and (35), as in the fourth order, we
arrive at

A4,2(u4) = A4,1(u4) = 1.33898, (u4 = 1.34757).

The results obtained above by the two methods agree with Monte–Carlo simulations and appear
to be of the same quality as the results from the optimal Borel–Leroy summation, A ≈ 1.28676 [2].
It is particularly close to A ≈ 1.33967, obtained by the optimal Mittag–Leffler summation [2].

4. From Amplitude to Index

The title of Section 4 is meant to say that the critical indices can be found by using the
very same techniques that are already developed for critical amplitudes.

Let us deal now with a function with power-law asymptotic behavior

f (x) ' Axβ (x → ∞),

but with unknown critical index β and amplitude A. The critical exponent can be expressed
as the limit of a diff-log function ψ(x)

β = lim
x→∞

x
d

dx
ln f (x) ≡ lim

x→∞
xψ(x), (42)

where ψ(x) ≡ d
dx ln f (x), as shown, e.g., in [11,34,35].

When the small-variable expansion for the original function is given by the sum fk(x),
we can find the small-variable expression for the diff-log function

ψk(x) =
d

dx
ln fk(x), (x → 0),

The expansion of ψk(x) leads to the truncated series

ψk(x) =
k

∑
n=0

dnxn . (43)

However, for x → ∞, we have to require

ψ(x) ' β xδ,

where the “critical amplitude” is the sought critical index β, and the “critical index” is fixed
to δ ≡ −1, to make the limit (42) existent.
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In such formulation, we can calculate the critical index β similar to some peculiar
amplitude and apply the technique of self-similar approximants described above for the
critical amplitudes. However, the case of δ = −1, appears to be divergent, or indeterminate,
when treated by the self-similar Borel summation technique of [1], since at δ = −1, the
Γ-function has a pole. In such a case, some other types of summation could be used, as in
the paper [2]. There is also some simple way to avoid the divergence.

To this end, let us consider an inverse diff-log function, so that for large x

ψ(x)−1 ' γ x−δ. (44)

With such a critical index, there is no divergence in the formulas of [1]. Now, the resummed
value of the critical amplitude γ can be found by fully embracing the techniques developed
for calculating amplitude A in Sections 2 and 3. We will literally follow the same formulas
with A faithfully replaced by β and the known critical index set to unity.

Of course, at small x, the inverse diff-log function could be represented as the truncated
power-series. After the resummation procedure with some self-similar approximants,
applied to such series with the condition (44) at infinity, we will arrive at the resummed
amplitude γ∗, and

β∗ ≡ 1
γ∗

,

where β∗ gives the sought value of the critical index β. The iterative Borel summation is
fully applicable now as well. For instance, the program just sketched could be adapted for
the factor approximants [1], giving even more methods of self-similar Borel summation, in
addition to the four methods of finding the critical indices discussed in [1].

Example 6. Consider the problem of critical index calculation for the much-revered quantum
anharmonic oscillator. The expansion of ground-state energy E(g) in powers of the coupling g
results in a divergent series. The coefficients an in very high orders can be found in Refs. [36,37].
The strong-coupling behavior is

E(g) ' 0.667986 g1/3 (g→ ∞) . (45)

First, let us discuss the results of a discrete iteration. Using formula (14), but in application to
the inverse series and then taking the inverse as discussed above for the indeterminate case, we get
rather reasonable results for the large-variable critical amplitudes, with the best number

β∗4 = 0.334432,

obtained in the fourth order of perturbation theory. The calculations stopped naturally at k = 4
because for k > 4 in two-step Borel summation, only complex solutions were obtained. The result
achieved in conventional one-step Borel summation, β4(1) = 0.382946, is sensible too. In two steps,
we also find a reasonable number, β4(2) = 0.296829. Together, they provide an upper and lower
bound on the energy.

A close result is achieved by optimization according to (34) and (35). In the fourth order, we
arrive at the two very close solutions,

β4,2(u4) = β4,1(u4) = 0.3394 (u4 = 1.14768),

and
β4,2(u4) = β4,1(u4) = 0.32377 (u4 = 5.76971).

Their average equals 0.33162± 0.00785.
The results obtained above by the two methods agree well with the exact 1/3. The results from

the two methods appear to be of the same quality as achieved by the optimal Borel–Leroy summation,
β ≈ 0.324663 [2]. It is particularly close to β ≈ 0.330762 obtained by the optimal Mittag–Leffler
summation [2].
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Rather sophisticated and painstaking Borel summation technique of [5] based on the adaptation
of Lipatov’s asymptotic expression for the coefficients an at infinity, and on a very large number of
the weak-coupling coefficients, gives comparable (but, nevertheless, to our surprise, worse) results of
β ≈ 0.317± 0.032.

One can think that precise knowledge of large n coefficients an is somewhat redundant when
the critical index at infinity is concerned. Such redundancy also holds for some other examples
presented above when critical amplitudes are of main interest. That is not to say that knowledge
of large n coefficients an is not relevant at all, in particular when one is concerned with achieving
the quality of exact solutions numerically. For accurate calculations with a small number of an
and incomplete pre-knowledge of their large n behavior, it is more important to be able to take the
sought limit as x → ∞ explicitly, obtain the critical amplitudes (indices) in analytical form, and
analyze/optimize it further if needed.

The results obtained by the two other optimization techniques discussed in the current paper,
are still sensible but inferior. Optimization according to (15) and (16) gives at best case, β ≈ 0.306.
Similar quality is achieved by optimization according to (36) and (37). In the fourth order, we find
at best, β ≈ 0.302.

Example 7. A perturbation theory for the expansion factor α(g) of three-dimensional polymer
leads to a series in a single dimensionless interaction parameter g. The parameter quantifies the
repulsive interaction between segments of the polymer chain [38,39]. As g → 0, the expansion
factor can be presented as the truncated series of the same type as for the anharmonic oscillator, with
the coefficients

a0 = 1 , a1 =
4
3

, a2 = −2.075385396 a3 = 6.296879676 ,

a4 = −25.05725072, , a5 = 116.134785 , a6 = −594.71663 .

The strong-coupling behavior of the expansion factor as g→ ∞ is power-law

α(g) ∝ gβ.

It was found numerically in the paper [40], β ≈ 0.3508, and a slightly lower result, β ≈ 0.3504,
was obtained in [41]. Earlier, in [39], it was also found numerically that β ≈ 0.3544.

Again, we have to consider the indeterminate case. The quite sensible upper bound, β5(1) =
0.3596, is achieved in conventional one-step Borel summation applied to the inverse series and by
taking the inverse of the result. In two-steps we also find a reasonable number for a lower bound,
β5(2) = 0.3405. Their average gives β∗5 = 0.35002. The corresponding sequence

β∗1 = 0.2999, β∗2 = 0.3147, β∗3 = 0.3281, β∗4 = 0.3402, β∗5 = 0.35002,

is numerically convergent.
A good result is achieved by optimization according to (34) and (35), as in the fifth order

β5,2(u5) = β5,1(u5) = 0.3553 (u5 = 1.87665).

The method of (36) and (37) fails to produce the solutions with positive u. Optimization
according to (15) and (16) in the fifth-order finds three very close solutions

0.3496, 0.3504, 0.3531.

Their average and variance give the estimate of 0.351± 0.00151.
The results from the three variants of iterative Borel methods appear to be of the same quality as

achieved by the optimal Borel–Leroy summation, β ≈ 0.3512 [2]. They are close also to β ≈ 0.3504
obtained by the optimal Mittag–Leffler summation [2]. The results of self-similar Borel summation
with factor approximants β ≈ 0.3726 [1] are higher than those obtained from all other approaches.
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5. Concluding Remarks

The method of iterative Borel summation [4] is combined with self-similar
approximants [1,2]. The property of asymptotic scale invariance pertinent to the self-
similar approximations leads to factorization of the multi-dimensional integrals in the
limit of large x. The critical properties, indices and amplitudes are considered as a limit at
infinity and can be found analytically.

The iterative application of Borel summation leads to an improvement compared with
a conventional, single-step Borel summation technique. Novel methods of control are
introduced to accelerate the convergence of the iterative Borel summation. The number of
iterations by itself can serve as an explicit (or implicit) control parameter. Furthermore, the
control parameter could be introduced by more traditional means by modifying the form
of Borel transformation by putting the stretched (compacted) exponential function in place
of the exponential.

In all cases, the controls are introduced in such a way that the locations of poles remain
the same with the original self-similar Borel method [1]. For such special points, considering
inverse quantities is recommended so that the original schemes remain applicable. Such an
approach is different from the regularization schemes of Borel–Leroy and Mittag–Leffler
summations [2], where the control parameters eliminate poles at negative integers.

The simplest technical scheme of iterative Borel summation based on averaging over
the one-step and two-step Borel iterations (14), works well when lower and upper bounds
are established. The scheme works well, as could be expected, for the cases with fast-
growing an, exemplified by the Schwinger model energy gap (Example 1), anharmonic
oscillator ground state energy (Example 7), and expansion factor of three-dimensional
polymer (Example 6). The Bose condensation temperature (Example 4) and Schwinger
model ground state energy (Example 5), with slow decay of the coefficients, are still
covered by the very same method. The quality of approximations appears to be better
or not worse compared to some other versions of Borel summation and also to various
advanced resummation and numerical techniques. In particular, good results are obtained
for the very hard problem of the Schwinger model energy gap.

However, in the situations with fast-decaying coefficients, when only a one-sided
bound is established, the iterative Borel summation with optimization (15) and (16), with
the number of iterations employed as the control, still works by extrapolating beyond the
bound. Specifically, the cases of Lieb–Liniger model ground state energy (Example 2) and
optical polaron mass (Example 3) are covered by the method. For the former problem, we
verify the good quality of the novel expansions in the weak-coupling limit by a successful
extrapolation to the strong-coupling limit. Thus, the methods of iterative Borel summation
of the current paper can be adapted to various types of an and applied not only to the cases
with factorial growth of an.

For future work, we have in mind the following. Iterative versions of the Borel–
Leroy and Mittag–Leffler transforms deserve to be studied as well and compared with the
techniques presented in the paper. Furthermore, it is of interest to study Padé approximants
modified for criticality, as well as factor approximants in place of iterated roots. Such
techniques have a certain advantage over the iterated roots in allowing to also cover the
case of β = 0.
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