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Abstract The goal of an object category discovery system

is to annotate a pool of unlabeled image data, where the set

of labels is initially unknown to the system, and must there-

fore be discovered over time by querying a human annotator.

The annotated data is then used to train object detectors in a

standard supervised learning setting, possibly in conjunction

with category discovery itself. Category discovery systems

can be evaluated in terms of both accuracy of the result-

ing object detectors, and the efficiency with which they dis-

cover categories and annotate the training data. To improve

the accuracy and efficiency of category discovery, we pro-

pose an iterative framework which alternates between opti-

mizing nearest neighbor classification for known categories

with multiple kernel metric learning, and detecting clusters of

unlabeled image regions likely to belong to a novel, unknown

categories. Experimental results on the MSRC and PASCAL

VOC2007 data sets show that the proposed method improves

clustering for category discovery, and efficiently annotates

image regions belonging to the discovered classes.
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1 Introduction

The acquisition of large collections of accurately labeled

training examples for learning object models has become

one of the most important problems in the field of object

recognition. When gathering labeled examples, the limiting

factor is most often the amount of manual labor required

to produce and curate the labels. The bottleneck of human

annotator effort has inspired researchers to develop more effi-

cient schemes to collect high-quality, labeled training data for

supervised object recognition algorithms (Collins et al. 2008;

Vijayanarasimhan and Grauman 2009; Branson et al. 2010;

Tian et al. 2007).

In general, the set of potential object labels is effectively

unbounded, and may grow over time. Rather than requir-

ing annotations to be drawn from a small, fixed vocabulary,

we may prefer a system which can continually and automat-

ically discover object categories. Category discovery typi-

cally occurs in two phases (which may be repeated sequen-

tially Lee and Grauman 2010): (1) group unlabeled image

regions under some appropriate notion of similarity, and (2)

request labels for the resulting groups from a human anno-

tator. These two steps highlight the design goals of a cate-

gory discovery framework. First, the system must discover

semantically coherent sets of image regions, a task which will

ultimately depend upon the quality of the similarity metric.

Second, the system should be both accurate and efficient in

its requirements on the human annotator.

In this work, we propose a novel iterative discovery frame-

work that uses multiple kernel metric learning to improve

category discovery. Our framework, as shown in Fig. 1, uses

an initial set of familiar categories to learn a distance func-

tion over image regions. Using the optimized distance, all

unfamiliar regions are grouped into clusters, and the most

prominent cluster is retrieved, and interactively annotated by
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Fig. 1 A set of images is partially labeled with familiar categories (e.g.,

car), while the remaining regions are left unlabeled. Both labeled (famil-

iar) and unlabeled regions are used to optimize a similarity space. At

each iteration, a new object category is discovered, and regions belong-

ing to the new category are now used to update the similarity space. The

system terminates when all regions have been labeled

a human as a potentially new category. Unlike previous work,

our interactive annotation model maintains a correctly anno-

tated training set, but still reduces the total effort required by

the human annotator. Finally, after each new set of labeled

regions is discovered, the distance function is updated to opti-

mize nearest neighbor retrieval, and the process repeats until

all instances are labeled.

1.1 Related Work

Previous work on category discovery has generally focused

on learning all categories at once via unsupervised learn-

ing (Tuytelaars et al. 2010; Lee and Grauman 2010), rather

than the iterative (one-at-a-time) approach taken here.

Unsupervised learning methods can be effective for cate-

gory discovery, as they require no labeled training data and

merely seek to discover latent structure in the data, e.g., clus-

ters (Grauman and Darrell 2006; Russell et al. 2006; Sivic et

al. 2005; Todorovic and Ahuja 2006; Zhu et al. 2012; Faktor

and Irani 2012) or hierarchies (Bart et al. 2008; Sivic et al.

2008) rather than learn explicit object models. The general

strategy of unsupervised methods is to uncover groupings of

images (or image regions) that share visual patterns, with the

hope that the majority of the images within a group come

from the same object category.

As region groupings are commonly found via clustering

or topic modeling (Russell et al. 2006; Lee and Grauman

2010; Galleguillos et al. 2011), the quality of any unsuper-

vised category discovery system will ultimately depend upon

how it determines similarity between image regions, and how

it finds groupings that result in new categories. Region sim-

ilarity may be defined in any number of ways, e.g., deriving

from feature descriptors, contextual cues, and so on. Recent

work has examined algorithms which optimize similarity for

classification (given labeled examples) (Frome et al. 2007;

Wang et al. 2010) or derive similarity from classifier response

on a set of known categories (Kang et al. 2012). However, to

the best of our knowledge, there has thus far been no study

of systematically optimizing a similarity function for use in

iterative category discovery.

The work of Lee and Grauman (2011) is the closest to

our work as it treats category discovery as an iterative pro-

cedure. The method focuses on selecting specific object

instances instead of optimizing the similarity space where all

instances are represented. The method approaches the “eas-

ier” instances first and then expands towards more complex

instances by starting with a fixed number of stuff (objects of

amorphous spatial extent) classifiers to discover classes of

things (rigid objects) (Forsyth et al. 1995; Heitz and Koller

2008), one category at a time. After each iteration, a new dis-

criminative object detector is trained and added to the system,

and the process repeats. In contrast with aggregating classi-

fiers and combining their outputs in each iteration, we start

the discovery process with few arbitrary object classes and

uncover new categories one class at a time and update the dis-

tance metric accordingly. As a result, the proposed method

retains a fixed number of parameters to define the distance

metric, rather than increasing the parameter space by adding

new discriminative classifiers (e.g., support vector machines)

at each iteration. Table 1 shows the key differences between

both strategies.

To our knowledge there are no other methods that learn

a similarity metric iteratively for object category discovery.

There is extensive work on learning a single similarity metric

from multiple kernels for multi-class problems (Gehler and

Nowozin 2009; Varma and Ray 2007; Vedaldi et al. 2009).

Table 1 Comparison between this work and Lee and Grauman (2011)

Method Objective Input Labeling Iterative approach

LG11 Clustering and

segmentation accuracy

Stuff classes Majority vote Identify easy instances first

and aggregate binary

classifiers at each iteration

Our framework Efficiency and label

accuracy

Arbitrary classes Largest subset Optimize similarity metric

at every iteration

The “objective” column corresponds to the specific focus of each algorithm, “input” is the type of classes required to perform discovery, “labeling”

is the strategy taken to label the segments as a new class, and “iterative approach” corresponds to how the framework learns a new model and

incorporates the newly labeled segments
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Although using a different similarity metric for each class

has been shown to perform well on these tasks, it is difficult

to scale to large datasets with many classes, and the predic-

tions from each classifier must be combined to yield a single

prediction. Galleguillos et al. (2010) describe a system to

learn a unified similarity metric that integrates appearance

with contextual features for detecting multiple object cate-

gories. Their multiple kernel learning algorithm is the closest

to our work, as it learns a unified similarity metric for nearest

neighbor classification.

1.2 The Proposed Framework

Initially, our framework assumes that a set of training images

has been partially annotated with a set of known (familiar)

categories, so that image regions corresponding to familiar

categories have been labeled (Fig. 1). The initial familiar cat-

egories may be chosen arbitrarily, and we do not place any

assumptions on which types of objects are initially labeled

(e.g., “objectness”), their contextual interactions or use clas-

sifiers trained with external data, as is done by other frame-

works (Lee and Grauman 2011). All remaining, initially unla-

beled image regions are assumed to belong to unfamiliar

categories.

Category discovery proceeds by clustering the unlabeled

image regions, and then querying for labels within the most

prominent cluster. Regions belonging to the majority cate-

gory within the cluster are labeled, and all remaining regions

are kept unlabeled for the next round (Fig. 2). Efficient cate-

gory discovery therefore relies upon the quality of the clus-

tering (i.e., label purity and size of clusters), which in turn

relies upon the quality of the underlying notion of region

similarity, i.e., the distance metric over region descriptors.

Fig. 2 Cluster labeling: the most prominent cluster is selected and

presented to a human annotator. The annotator selects the majority cat-

egory label of the objects in the cluster, and either (a) selects instances

that correspond to the majority category, or (b) removing instances that

don’t belong to the majority category. Regions belonging to the largest

subset within the cluster are labeled, and all remaining regions are kept

unlabeled for the next round

If we were provided with a fully labeled training set, the

distance metric could be optimized in one step to separate all

categories via standard techniques (Weinberger et al. 2006;

Galleguillos et al. 2010). However, because we do not know

to which category an unlabeled image region may belong, we

cannot directly optimize a similarity function to discriminate

between unfamiliar categories. Instead, we start by training a

similarity metric to discriminate between familiar categories

using k-nearest-neighbor retrieval. Our decision to optimize

for nearest neighbor accuracy is motivated by two ideas: first,

improving nearest neighbor provides a direct way to group

together unfamiliar regions (clustering under the learned met-

ric), and second, nearest neighbor naturally supports arbitrary

numbers of classes.

Moreover, because nearest-neighbor classification is

inherently multi-class, it automatically extends to new classes

without expanding the set of parameters to be learned. We

see this as a key advantage over previous methods, where the

detection of unfamiliar categories derives from the output

of a growing collection binary classifiers trained on specific

familiar categories (Lee and Grauman 2010, 2011).

1.3 Our Contributions

Our main technical contribution is an iterative category dis-

covery framework, based on a multiple-kernel extension to

the metric learning to rank (MLR) algorithm, which learns

an optimized distance metric over multiple, heterogeneous

input features. Additionally, we propose an interactive anno-

tation model which balances the efficiency of majority-vote

cluster labeling (Lee and Grauman 2011) with the accuracy

of one-at-a-time labeling.

The proposed method discovers object categories by

grouping image regions under the (iteratively) optimized dis-

tance metric. We present results of the method on diverse

datasets, and demonstrate that optimizing the distance met-

ric can significantly improve both efficiency and accuracy

compared to the native, unoptimized distance.

2 Iterative Category Discovery

We will first introduce notation and formalize the problem.

Table 2 gives a brief summary of the notation used throughout

this article.

Each image I in the image set is partitioned into segments

xi . We assume that each segment xi belongs to exactly one

object of class ℓi .

A labeled region is familiar, meaning that the label

belongs to the set of currently known categories. An unla-

beled region can be either familiar or unfamiliar, depend-

ing on whether its true label belongs to the set of currently

known categories. Familiar and unlabeled image regions are

123



118 Int J Comput Vis (2014) 108:115–132

Table 2 Notation used throughout this article.

Symbols Definition

I Image

xi Image segment (region)

L Set of known object classes,

familiar labels

ℓ0 unknown object class, unfamiliar label

Xm = {x1, x2, . . . } Labeled training regions (ground truth

segmentation)

Xf Labeled training segments (automatic

segmentation)

Xu Unlabeled segments (automatic

segmentation)

φt (·) Feature map for kernel t

W � 0 Positive semi-definite matrix

‖x − y‖W Mahalanobis distance defined by W

collected into the sets Xf and Xu respectively. All segments

are then collected to form the region set X = Xf ∪ Xu, which

is used to label all regions in Xu via iterative category dis-

covery (see Algorithm 1).

Each image segment xi ∈ X is represented by a collection

of m features φt (xi ) (t ∈ 1, 2, . . . , m), where each φt (xi ) rep-

resents xi in a reproducing kernel Hilbert space characterized

by a corresponding kernel function

kt (xi , x j ) =
〈
φt (xi ), φt (x j )

〉
.

At each iteration, object category discovery proceeds as

follows (illustrated in Fig. 3):

1. A unified similarity metric is learned on a collection of n

labeled points in the m feature spaces.

2. Unlabeled regions Xu are grouped by hierarchical clus-

tering with the optimized similarity metric.

3. The cluster c∗ with the smallest average intra-cluster dis-

tance is selected, and queried for the (possibly novel)

majority within-cluster label ℓ∗.

4. All regions xi ∈ c∗ belonging to ℓ∗ are selected and added

to Xf with label ℓ∗, and the remaining regions are kept

unlabeled.

5. The metric is updated by training again with the addi-

tional, newly labeled regions. The entire process repeats

until there are no remaining unlabeled regions.

As the learned space is optimized at each iteration for

nearest neighbor retrieval, we expect that similar points in

the space (belonging to the same class) are drawn closer, thus

generating clusters that are larger, tighter, and purer. Conse-

quently, iterative category discovery with the learned metric

should require fewer iterations to label all regions (compared

to using the native metric), and generalize better on novel test

regions. When clusters are tight, a visually homogenous clus-

ter is likely to be selected by the algorithm. If the selected

cluster is large, many segments may be labeled in each itera-

tion, and if the cluster also has high purity, then the majority

of the segments within the cluster will be labeled.

3 Optimizing the Space

The first step of our framework consists of learning an opti-

mized similarity function over image regions. Note that we

cannot know a priori which features will be discriminative

for unfamiliar categories. We therefore opt to include many

different descriptors, capturing texture, color, scene-level

context, etc. (see Sect. 5.1.) In order to effectively integrate

heterogeneous features, we turn to multiple kernel learning

(MKL) (Lanckriet et al. 2004). While MKL algorithms have

been widely applied in computer vision applications (Varma

and Ray 2007; Vedaldi et al. 2009), most research has focused

on binary classifiers (i.e., support vector machines), with rel-

Fig. 3 Iterative object class discovery: Initially, images are partitioned

into multiple segments, each of which are mapped into multiple feature

spaces, and then projected into the optimized similarity space learned

by MKMLR (Algorithm 3). Unlabeled segments are clustered in the

optimized space, and the cluster with the minimum intra-class average

distance is selected as a new class. A human annotator then supplies

a (possibly new) label for the largest category of segments within the

cluster. The newly labeled regions are addressed now as “familiar” seg-

ments and used to retrain the distance metric. The process is repeated

until all regions are labeled.
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Algorithm 1 Iterative category discovery

Input: Labeled segments Xf, unlabeled segments Xu

1: for each xi ∈ Xf ∪ Xu do

2: extract features φt (xi ) (t ∈ 1, 2, . . . , m)

3: end for

4: repeat

5: learn the distance metric W from segments Xf ∪ Xu (Algorithm 3)

6: cluster Xu under W → clusters {c1, c2, · · · , ck}

7: c∗ ← argmin dintra(c j ) (See Eq. 14)

8: query the majority category ℓ∗ within c∗

9: c+ ← {xi : xi ∈ c∗ ∧ ℓ(xi ) = ℓ∗}

10: c− ← {xi : xi ∈ c∗ ∧ ℓ(xi ) 
= ℓ∗}

11: Xf ← Xf ∪ c+

12: Xu ← Xu \ c+

13: L ← L ∪ ℓ∗

14: until all xi are labeled

atively little attention given to the optimization of nearest

neighbor classification and retrieval.

Recently, multiple kernel large margin nearest neighbor

(MKLMNN) has been proposed as a method for integrating

heterogeneous data in a nearest-neighbor setting (Galleguil-

los et al. 2010). Like the original LMNN algorithm (Wein-

berger et al. 2006), MKLMNN attempts to find a linear pro-

jection of data such that each point’s target neighbors (i.e.,

those with similar labels) are drawn closer than dissimilar

neighbors by a large margin. While this notion of distance

margins is closely related to nearest neighbor prediction, it

does not optimize for the actual nearest neighbor accuracy.

Instead, we will derive a multiple kernel extension of the

metric learning to rank algorithm (MLR) (McFee and Lanck-

riet 2010), which optimizes nearest neighbor retrieval more

directly by examining the ordering of points generated by the

learned metric. Before deriving the multiple kernel extension,

we first briefly review the MLR algorithm for the linear case.

3.1 Metric Learning to Rank

Metric learning to rank (MLR, Algorithm 2) (McFee and

Lanckriet 2010) is a metric learning extension of the Struc-

tural SVM algorithm for optimizing ranking losses (Joachims

2005; Tsochantaridis et al. 2005).

Whereas SVMstruct learns a vector w ∈ R
d , MLR learns

a positive semi-definite matrix W (denoted W � 0) which

defines a distance

dW (i, j) := ‖i − j‖2
W = (i − j)TW (i − j).

MLR optimizes W by evaluating the quality of rankings

generated by ordering the training data by increasing dis-

tance from a query point. Ranking quality may be evaluated

and optimized according to any of several metrics, including

precision-at-k, area under the ROC curve, mean average pre-

cision (MAP), etc. Note that k-nearest neighbor accuracy can

also be interpreted as a performance measure over rankings

induced by distance.

Although ranking losses are discontinuous and non-

differentiable functions over permutations, SVMstruct and

MLR resolve this issue by encoding constraints for each

training point as listed in Algorithm 2. Here, X is the train-

ing set of n points, Y is the set of all possible rankings (i.e.,

permutations of X ), yx is the true or best ranking1 for x ∈ X ,

�(yx , y) is the loss incurred for predicting y instead of yx

(e.g., decrease in precision-at-k), and ξx is a slack variable as

in the standard soft-margin SVM (Cortes and Vapnik 1995).

〈W, ψ(x, y)〉F is the score function which evaluates how

well the metric W agrees with the input–output pair (x, y),

encoded by the feature map ψ .

Algorithm 2 Metric Learning to Rank (McFee and Lanckriet,

2010)

Input: data X = {x1, x2, . . . , xn} ⊂ R
d ,

true rankings y1, y2, . . . yn ,

slack trade-off C > 0

Output: d × d matrix W � 0

min
W�0, ξ

tr(W ) +
C

n

∑

x∈X

ξx

s. t.∀x ∈ X , ∀y ∈ Y :

〈W, ψ(x, yx )〉F ≥ 〈W, ψ(x, y)〉F + �(yx , y) − ξx

To encode input–output pairs, MLR uses a variant of the

partial order feature (Joachims 2005) adapted for distance

ranking:

ψ(x, y) :=
∑

i∈X +
x , j∈X −

x

yi j

D(x, i) − D(x, j)

|X +
x | · |X −

x |

D(x, i) := −(x − i)(x − i)T. (1)

Here, X +
x and X −

x ⊆ X denote the sets of positive and nega-

tive results with respect to example x (i.e., points of the same

category or different category), and

yi j :=

{
+1 if i precedes j in y

−1 if j precedes i in y
.

With this choice of ψ , the rule to predict y for a test point

x is to simply sort i ∈ X in descending order of

〈W, D(x, i)〉F = −〈W, (x − i)(x − i)T〉F = −‖x − i‖2
W .

(2)

Equivalently, sorting by increasing distance ‖x − i‖W yields

the ranking needed for nearest neighbor retrieval.

1 In this setting, a true ranking is any ranking which places all relevant

results before all irrelevant results.
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Note that unlike classification-based metric learning algo-

rithms (e.g., Weinberger et al. 2006), MLR readily supports

the inclusion of unlabeled data. For a labeled point xi , the

irrelevant set X
−
i may include unlabeled (unfamiliar) exam-

ples Xu, and no additional label structure or constraints need

be assumed between the unlabeled examples. In the con-

text of iterative category discovery, this enables the algo-

rithm to push unfamiliar regions away from labeled (familiar)

regions, without having to collapse unlabeled data together

(by assuming a single no label category for all unlabeled

regions) or pushing all unlabeled data apart (by assuming an

individual dummy category for each unlabeled region).

Although Algorithm 2 lists exponentially many con-

straints, cutting-plane techniques can be applied to quickly

find an approximate solution (Joachims et al. 2009).

3.2 Multiple Kernel Metric Learning

The MLR algorithm, as described in the previous section,

produces a linear transformation of vectors in R
d . In this

section, we first extend the algorithm to support non-linear

transformations via kernel functions, and then to jointly learn

transformations of multiple kernel spaces.

3.2.1 Kernel MLR

Typically, non-linear variants of structural SVM algorithms

are derived by observing that the SVMstruct dual program

can be expressed in terms of the inner products (or ker-

nel function) between feature maps: 〈ψ(x1, y1), ψ(x2, y2)〉.

(see, Tsochantaridis et al. 2005.) However, to preserve the

semantics of distance ranking (Eq. 2), it would be more nat-

ural to apply non-linear transformations directly to x while

preserving linearity in the structure ψ(x, y). We therefore

take an alternative approach in deriving kernel MLR, which

is more in line with previous work in non-linear metric learn-

ing (Globerson and Roweis 2007; Galleguillos et al. 2010).

We first note that by combining Eqs. 1 and 2 and exploiting

linearity of ψ , the score function can be expressed in terms

of learned distances:

S(W, x, y) := 〈W, ψ(x, y)〉F

=
∑

i∈X +
x , j∈X −

x

yi j

‖x − j‖2
W − ‖x − i‖2

W

|X +
x | · |X −

x |
. (3)

Let φ : X → H denote a feature map from X to a repro-

ducing kernel Hilbert space (RKHS) H. Inner products in H

are computed by a kernel function

k(x1, x2) = 〈φ(x1), φ(x2)〉H .

Let L : H → R
n be a linear operator on H which will define

our learned metric, and let ‖L‖HS denote the Hilbert-Schmidt

operator norm 2 of L .

Next, we define a score function in terms of L , which, as

in Eq. 3, compares learned distances:

SH(L , x, y) :=
∑

i∈X +
x , j∈X −

x

yi j

dL(x, j) − dL(x, i)

|X +
x | · |X −

x |
.

dL(x, i) := ‖L(φ(x)) − L(φ(i))‖2 (4)

We may now formulate an optimization problem similar to

Algorithm 2 in terms of L:

L∗ = argmin
L ,ξ

‖L‖2
HS +

C

n

∑

x∈X

ξx s. t.

∀x, y : SH(L , x, yx ) ≥ SH(L , x, y) + �(yx , y) − ξx . (5)

The choice of ‖L‖2
HS as a regularizer on L allows us to

invoke the generalized representer theorem (Schölkopf et al.

2001). It follows that an optimum L∗ of Eq. 5 admits a rep-

resentation of the form

L∗ = M�T,

where M ∈ R
n×n , and � ∈ Hn contains the training set

in feature space: �x = φ(x). By defining W = MT M and

K = �T�, we observe two facts:

dL(x, i) = ‖L∗φ(x) − L∗φ(i)‖2

= ‖M�Tφ(x) − M�Tφ(i)‖2

= ‖Kx − Ki‖
2
MT M

= ‖Kx − Ki‖
2
W , (6)

and ‖L∗‖2
HS = tr (W K ) , (7)

where for any z, Kz := �Tφ(z) = [k(x, z)]x∈X is a column

vector of the kernel function evaluated at a point z and all

training points x .

Note that the constraints in Eq. 5 render the program non-

convex in L , which may itself be infinite-dimensional and

therefore impossible to optimize directly. However, by sub-

stituting Eq. 6 into Eq. 4, we recover a score function of the

same form as Eq. 3, except with x, i and j replaced by their

corresponding kernel vectors Kx , Ki and K j . We may then

define the kernelized metric partial order feature:

2 The Hilbert-Schmidt norm is a natural generalization of the Frobe-

nius norm. For our purposes, this can be understood as treating L as a

collection of n elements vi ∈ H (one per output dimension of L), and

summing over the squared-norms: ‖L‖HS =
√∑

i 〈vi , vi 〉H.
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ψ K (x, y) :=
∑

i∈X +
x , j∈X −

x

yi j

DK (x, i) − DK (x, j)

|X +
x | · |X −

x |

DK (x, i) := −(Kx − Ki )(Kx − Ki )
T. (8)

Thus, at an optimum L∗, the score function can be repre-

sented equivalently as

SH(L∗, x, y) = 〈W, ψ K (x, y)〉F. (9)

Taken together, Eqs. 7 and 9 allow us to re-formulate Eq. 5

in terms of W and K , and obtain a convex program similar to

Algorithm 2. The resulting program may be seen as a special

case of Algorithm 3.

3.2.2 Multiple Kernel MLR

To extend the above derivation to the multiple kernel setting,

we must first define how the kernels will be combined. Let

H1,H2, . . . ,Hm each denote an RKHS, each equipped with

corresponding kernel functions k1, k2, . . . , km and feature

maps φ1, φ2, . . . , φm . From each space Ht , we will learn a

corresponding linear projection L t . Each L t will project to a

subspace of the output space, so that each point x is embedded

according to

x �→ {φt (x)}m
t=1 �→ [L t (φt (x))]m

t=1 ∈ R
nm,

where [·]m
t=1 denotes the concatenation of projections

L t (φt (x)). The (squared) Euclidean distance between the

projections of two points x and j is

dM(x, j) =

m∑

t=1

‖L t (φt (x)) − L t (φt ( j))‖2. (10)

If we substitute Eq. 10 in place of dL in Eq. 4, we can define

a multiple-kernel score function SM. By linearity, this can be

decomposed into the sum of single-kernel score functions:

SM ({L t }, x, y) :=
∑

i∈X +
x , j∈X −

x

yi j

dM(x, j) − dM(x, i)

|X +
x | · |X −

x |

=

m∑

t=1

SHt
(L t , x, y). (11)

Again, we formulate an optimization problem as in Eq. 5 by

regularizing each L t independently:

min
{L t },ξ

m∑

t=1

‖L t‖
2
HS +

C

n

∑

x∈X

ξx s. t.

∀x, y : SM({L t } , x, yx ) ≥ SM({L t } , x, y)

+ �(yx , y) − ξx . (12)

The representer theorem may now be applied indepen-

dently to each L t , yielding L∗
t = Mt�

T
t . We define positive

semi-definite matrices W t = MT
t Mt specific to each kernel

K t = �T
t �t . Similarly, for kernel K t , let ψ K

t be as in Eq. 8.

Equations 9 and 11 show that, at an optimum, SM decom-

poses linearly into kernel-specific inner products:

SM

(
{L∗

t }, x, y
)

=

m∑

t=1

〈W t , ψ K
t (x, y)〉F. (13)

We thus arrive at the Multiple Kernel MLR program

(MKMLR) listed as Algorithm 3. Algorithm 3 is a linear

program over positive semi-definite matrices W t and slack

variables ξx , and is therefore convex.

We also note that like the original score function (Eq. 3),

SM is linear in each yi j , so the dependency on y when

moving from MLR to MKMLR is essentially unchanged.

This implies that the same cutting plane techniques used by

MLR—i.e., finding the most-violated constraints—may be

directly applied in MKMLR without modification.

Algorithm 3 Multiple Kernel MLR (MKMLR)

Input: Training kernel matrices K 1, K 2, . . . , K m ,

true rankings y1, y2, . . . yn ,

slack trade-off C > 0

Output: n × n matrices W 1, W 2, . . . , W m � 0

min
W t �0, ξ

m∑

t=1

tr(W t K t ) +
C

n

∑

x∈X

ξx

s. t. ∀x ∈ X , ∀y ∈ Y :

m∑

t=1

〈W t , ψ K
t (x, yx )〉F ≥

m∑

t=1

〈W t , ψ K
t (x, y)〉F

+ �(yx , y) − ξx

4 Efficient Region Clustering and Labeling

As the final goal of an object category discovery framework is

to fully annotate all unlabeled regions, we include MKMLR

into an iterative framework that discovers object categories

by efficiently and accurately clustering image regions and

queries for cluster annotations.

In order to group together instances that belong to the

same object category, we perform agglomerative hierarchi-

cal clustering using the optimized distance function dM .

This bottom–up clustering considers the maximum distance

between a pair of objects, where each object belongs to a

different cluster, to be the distance between these two clus-

ters (complete linkage, Defays 1977). Our decision to use
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agglomerative clustering is motivated primarily by its speed

and simplicity.

After clustering, we select the prominent cluster c∗ with

the minimum average intra-cluster distance:

dintra(c) :=
1

|c| · (|c| − 1)

∑

p,q∈c
p 
=q

dM(x p, xq) (14)

c∗ ← argminc dintra(c). (15)

The prominent cluster is then shown to a human annota-

tor, which can either (a) mark the instances that correspond

to the largest subset of a particular category; or (b) mark the

instances that don’t belong to the majority category. There-

fore the human always chooses to perform the fewest assign-

ments in order to label the largest group of instances corre-

sponding to a single category.

Figure 4 shows different methods for iterative labeling. In

one extreme, the annotator labels one instance in each iter-

ation. This requires the highest level of effort, as the total

number of labels queried is equal to the number of unlabeled

(initially unfamiliar) instances in the dataset. Alternatively,

the system may present a cluster of instances to the annota-

tor and ask for the majority label, which is then applied to

all instances in the cluster (Lee and Grauman 2011). This

approach greatly reduces annotator effort, but may degrade

accuracy due to incorrect labeling of the training data when

the clusters are impure.

Our proposed labeling strategy lies between these two

extremes, and offers a compromise between accuracy and

efficiency. Like the majority vote approach of Lee and Grau-

man (2011), labeling the majority subset of a cluster allows

a single annotation to be applied to many instances, and

thus reduces annotator effort compared to the one-at-a-time

Fig. 4 Comparison between different labeling strategies: (left) label-

ing one instance per iteration, (middle) labeling the largest subset of

instances belonging to the same class, and (right) labeling all instances

using the majority class. Green check marks show the instances that are

annotated in each iteration, and incorrectly labeled instances are circled

in red. Annotator effort increases when fewer instances are labeled at

each iteration, and accuracy decreases when instances are incorrectly

labeled (Color figure online)

approach. However, by keeping minority instances unla-

beled, we ensure accurate labeling, which will allow for

a higher overall classifier accuracy. Table 1 illustrates the

main differences between Lee and Grauman (2011) and our

method.

Varying the number k of clusters formed in each iteration

facilitates a trade-off between the total annotator effort, and

per-iteration effort. Large values of k yield smaller, purer

clusters, but also provide fewer labels in each iteration, so

more iterations are required. Small values of k provide larger,

impure clusters that take may take more effort to annotate,

but may result in an overall reduction in effort by requiring

fewer iterations to label the entire set.

5 Experiments

In this section, we evaluate the proposed method in two parts.

Because similarity learning lies at the core of our framework,

we first evaluate the learning algorithm by itself and compare

to previous work. Then, we evaluate the entire framework by

iteratively updating the similarity metric as new classes are

discovered.

In the first set of experiments (Sect. 5.2), we evaluate the

metric learning algorithm for a single iteration, according to:

(i) the accuracy of segment classification for both familiar and

unfamiliar categories, (ii) how well the similarities between

intra- and inter-class instances are learned, and (iii) the purity

of the clustering performed in the optimized space.

In the second set of experiments (Sect. 5.3), we evaluate

the iterative discovery framework by: (i) the efficiency of dis-

covering unfamiliar categories using the native and learned

metrics, (ii) the purity of the clustering performed at each

iteration, and (iii) the accuracy and label efficiency over time

of the entire system on held-out test data.

To evaluate the classification and clustering accuracy of

the proposed system, we use the MSRC (Winn et al. 2005)

and PASCAL 2007 (Everingham et al. 2007) databases. Our

selection of these datasets was motivated by three factors:

1. Both datasets contain at least 20 categories, multiple

objects per image, and present challenges such as high

intra-class, scale and viewpoint variability.

2. MSRC provides pixel-level ground truth labels for all the

objects in the scene, offering more detailed information

with which we can evaluate our framework.

3. PASCAL provides ground truth bounding boxes for a few

objects in each image, making the problem more difficult

in cases where segments with different labels fall inside

of the bounding boxes. This makes the evaluation more

realistic, as bounding boxes are a popular way of labeling

objects for recognition tasks.
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Fig. 5 Discovering object categories: Each test image is partitioned

into multiple segments, each of which are mapped into multiple kernel

induced feature spaces, and then projected into the optimized similarity

space learned by MKMLR (Algorithm 3). Each segment is classified as

belonging to a familiar or unfamiliar class by k-nearest-neighbor. Unfa-

miliar segments are then clustered in the optimized space, enabling the

discovery of new categories.

Using ground truth label information (e.g., masks or

bounding boxes), each image I in the image set is parti-

tioned into segments xi . Each segment xi belongs to exactly

one object of class ℓi ∈ L, where L is the set of familiar

object labels.

All segments derived from the set of images are collected

to form the region set X = Xm ∪ Xf ∪ Xu. The set Xm

contains all training segments xi derived from ground truth

annotations across all images.

Additionally, we partition each image I into overlapping

regions by running a segmentation algorithm multiple times.

We use stable segmentations (Rabinovich et al. 2006) to

obtain a set of overlapping segments at different scales, where

the number of regions per segmentation ranges from 2 to 10.

The goal of running several segmentations for the same image

is to find scales where objects and parts can be successfully

segmented. Only those segments that overlap more than 50 %

with a ground truth mask corresponding to a familiar label

in L are collected into the set Xf. The rest of the segments,

which lack (familiar) ground truth labels, are collected in the

set Xu.

Throughout, we will refer to segments corresponding to

familiar classes (i.e., Xm and Xf) as familiar segments, and

segments corresponding to unfamiliar labels (Xu) as unfa-

miliar segments.3

5.1 Features

Six different appearance and contextual features were com-

puted: SIFT, Self-similarity (SSIM), LAB color histogram,

PHOG, GIST contextual neighborhoods and LAB color his-

togram for Boundary Support. For each feature type, we

apply an RBF kernel over χ2-distances, with parameters set

to match those reported in (Galleguillos et al. 2010).

3 Familiarity refers to a segment’s true label, which may or may not be

available: an unlabeled or test segment may be familiar or unfamiliar.

5.2 Evaluation of the Optimized Similarity for a Single

Iteration

In order to evaluate the quality of the learned similarity space,

we assess the accuracy of predicting first whether or not a test

segment is familiar, and if so, its correct label. Therefore,

at test time, one-pass object category discovery proceeds as

follows (illustrated in Fig. 5):

1. A collection of test images I ′ are segmented multiple

times to form the test set X ′.

2. For each x ′ ∈ X ′, we use the optimized metric to locate

its k-nearest neighbors from the training set.

3. The k-nearest training segments are used to estimate a

distribution over the labels P(ℓ|x ′), where ℓ ∈ L ∪ {ℓ0},

and ℓ0 is a synthetic label given to all unlabeled training

segments Xu. A segment is assigned to its most probable

category:

ℓ(x ′) = argmax
ℓ∈L∪{ℓ0}

P(ℓ|x ′).

4. After classifying each x ′ ∈ X ′, all segments with pre-

dicted label ℓ0 are used as input to a clustering algorithm.

5. We use spectral clustering (Meila and Shi 2001)4 with

affinities defined by a radial basis function (RBF) kernel

on the learned distances:

Ai j = exp
(
−dM(x ′

i , x ′
j )/2σ 2

)
,

where dW (x ′
i , x ′

j ) is the squared (optimized) distance

between two test segments x ′
i and x ′

j , and σ is a band-

width parameter.

4 We chose spectral clustering over agglomerative clustering in this

set of experiments to facilitate direct comparison to Lee and Grauman

(2010).
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Table 3 Partitions for unfamiliar and familiar classes for (a) MSRC and (b) PASCAL VOC 2007.

Set Familiar class #s Unfamiliar class #s

(a) Bird, boat, body, book, car

1 cat, chair, dog, face, flower, grass 3–6, 8–10, Aeroplane, bicycle, building, tree, cow 1, 2, 7, 11, 20

road, sheep, sign, sky, water 12–19, 21

2 Body, book, building, car, cat, cow 5–9, 11–15, Aeroplane, bicycle, bird, boat, chair 1–4, 10, 16, 17,

dog, face, flower, grass, sign 18 road, sheep, sky, tree, water 19–21

3 Car, dog, flower, grass, tree, water 8, 12, 14, Aeroplane, bicycle, bird, boat, body, book, building 1–7, 9–11, 13,

15, 20, 21 cat, chair, cow, face, road, sheep, sign, sky 16–19

(b) Bicycle, boat, bottle, bus, car, cat

1 chair, dining table,dog, horse, person 2, 4–9, 11–13, Airplane, bird, cow, motorbike, tv 1, 3, 10, 14, 20

potted plant, sheep, sofa, train 15–19

2 Bicycle, bird, car, cat 2, 3, 7, 8, 10, Airplane, boat, bottle, bus, chair, cow, motorbike 1, 4–6, 9, 11, 14,

cow, dog, horse, potted plant, tv 12, 13, 16, 20 person, sheep, sofa, train 15, 17–19

3 Airplane, bicycle, bird, person, sheep 1–3, 15, 17 Boat, bottle, bus, car, cat, chair, cow, dining table 4–14, 16, 18–20

dog, horse, motorbike, potted plant, sofa, train, tv

Table 4 The number of known categories (L) and training and test

segments in each partition of the datasets. Xm are the training regions

obtained from ground truth segmentations (MSRC) and ground truth

bounding boxes (PASCAL). Xf are the familiar training segments, Xu

are the unlabeled segments, X ′
f are the familiar testing segments and X ′

u

are the unlabeled testing segments (all generated by automatic segmen-

tation)

MSRC PASCAL

Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

|L| 16 11 6 15 10 5

|Xm| 640 548 322 458 278 174

|Xf| 870 583 318 535 321 183

|Xu| 261 435 813 180 394 532

|X ′
f | 4124 3160 2375 583 330 206

|X ′
u| 1975 2939 3724 200 453 577

For experiments with MSRC, we use the same train and

test split as Lee and Grauman (2010) (hereafter referred to

as LG10), and the object detection split of PASCAL VOC

2007 (Everingham et al. 2007). We adopt three different parti-

tionings of each dataset into unfamiliar/familiar classes from

LG10 for comparison purposes. The different class parti-

tions are shown in Table 3 and statistics of each partition are

reported in Table 4.

Note that the number of examples in PASCAL VOC 07

is smaller than in MSRC. This is because PASCAL images

may contain unlabeled regions5, and few objects are labeled

in each image. Training segmentations were sub-sampled in

order to preserve balance within the training set with respect

to the bounding box regions. We retain only the largest two

segments per object in each image.

5 Weak labeling in PASCAL dataset makes it difficult to evaluate due

to background segments without ground truth.

5.2.1 Classification of Unfamiliar Segments

We evaluate the learned similarity space by computing clas-

sification accuracy over the full test set (X ′
f ∪ X ′

u). For each

partition (Set 1, 2, 3) of MSRC and PASCAL, we train a met-

ric with MKMLR on the entire training set. For comparison

purposes, we repeat the experiment on metrics learned by

MKLMNN, as well as the “native” feature spaces formed by

taking the unweighted combination of base kernels. At test

time, a segment is predicted to belong either to one of the

familiar classes in L, or the unfamiliar class ℓ0. The overall

accuracy is reported in Table 5.

When there are fewer familiar classes from which to

choose, the problem becomes easier because more test seg-

ments must belong to the unfamiliar class. This trend is

demonstrated by the increasing accuracy of each algorithm

from Set 1 (5 unfamiliar classes) to Set 2 (10 unfamiliar) and

Set 3 (15 unfamiliar).
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In MSRC, where image regions are densely labeled, we

observe that MKMLR consistently outperforms MKLMNN

and the native space, although the gap in performance is

largest when more supervision is provided. In PASCAL,

however, we observe that the unweighted kernel combina-

tion achieves the highest accuracy for Sets 2 and 3, i.e., the

sets with the least supervision. This may be attributed to

MKLMNN and MKMLR over-fitting the training set, which

for PASCAL is considerably smaller than that of MSRC (see

Table 4). The over-fitting in question is primarily an artifact

of using a weakly labeled dataset (PASCAL07) to simulate

the annotation process in our experiments. In a live setting

with human annotators, all segments (including background)

may receive categorical annotations, as in the MSRC setting.

5.2.2 Intra-Class Versus Inter-Class Affinities

Our second evaluation replicates an experiment on MSRC

Set 1 in LG10 (Table 1, Lee and Grauman (2010)), and mea-

sures the accuracy of the learned distance function indepen-

dent of clustering. A distance matrix is computed for all pairs

of test segments predicted to be unfamiliar by the segment

classification step, and for each test segment, the remaining

segments are ranked by increasing distance. Then, using the

ground-truth labels, the average precision of each ranking is

computed for each test segment, and the resulting scores are

combined to form a mean average precision (MAP) score.

Relying on the segment classification step to determine

which points are familiar and unfamiliar may introduce

bias to the evaluation. We therefore repeat the above exper-

iment using ground-truth familiar and unfamiliar labels.

Table 6 shows the MAP results by first classifying the regions

between familiar and unfamiliar. Table 7 shows the MAP

results assuming perfect familiar/unfamiliar classification.

For completeness, we again compare the performance of

MKMLR to MKLMNN6 as well as Kernel MLR (KMLR)

on the unweighted average kernel K̂ :=
∑

t K t .

We observe in the unbiased evaluation (Table 7) that

MKMLR outperforms the other methods under considera-

tion for all categories. We also note that in the self-biased

evaluation (Table 6), MKMLR achieves significantly higher

familiar/unfamiliar accuracy than the alternative methods.

5.2.3 Cluster Purity

Our third evaluation concerns the purity of clusters dis-

covered in the test data. Again, we compare the native

(unweighted) kernel combination, MKLMNN, and MKMLR

on each partition of MSRC and PASCAL. For each set, we

6 In Table 6, MKLMNN (Galleguillos et al. 2010) has no MAP score

for class tree because there was only one test segment of that class

predicted as unfamiliar.

Table 5 Nearest-neighbor classification accuracy of MKMLR,

MKLMNN, and the native feature space, including the unfamiliar class

ℓ0

Algorithm Set 1 Set 2 Set 3

MSRC Native 0.51 0.59 0.71

MKLMNN 0.61 0.57 0.69

MKMLR 0.62 0.61 0.72

PASCAL07 Native 0.31 0.58 0.74

MKLMNN 0.32 0.51 0.67

MKMLR 0.33 0.54 0.70

The best scores are in bold

replicate the experiment of LG10 (Lee and Grauman 2010,

Fig. 5), and using the ground-truth labels, perform spectral

clustering in the optimized space on the test segments belong-

ing to unfamiliar classes. We vary the number of clusters from

2 to 35, and for each of them, compute the average purity

(Zhao and Karypis 2001) of the clustering, where a cluster

B’s purity is defined as

purity(B) := max
ℓ∈L

∣∣{x ′ ∈ B ∧ ℓ(x ′) = ℓ}
∣∣

|B|
.

For each number of clusters, we generate 10 different cluster-

ings, and report the average purity. The resulting mean purity

curves are reported in Fig. 6.

We observe that in almost all cases, the mean purity

achieved by MKMLR lies (significantly) above that of the

native space, and is often significantly above that achieved

by MKLMNN.

The reduced purity scores for PASCAL (relative to

MSRC) can be attributed to two facts. First, the sparsity of

ground truth labels in PASCAL indicates that the evaluation

here is somewhat less thorough than for MSRC. Second,

as described in Sect. 5.2.1, the reduced size of the train-

ing set leads to some over-fitting by both MKLMNN and

MKMLR. However, we stress that the reduction in perfor-

mance is largely an artifact of sparse ground-truth annotation,

which would be overcome in practice by dense annotations

produced by the proposed interactive evaluation scheme with

a human annotator.

5.3 Iterative Discovery

In this section, we evaluate the annotator efficiency and pre-

dictive accuracy of the full iterative category discovery sys-

tem.

5.3.1 Efficient Iterative Clustering

While Lee and Grauman (2011) also address iterative cate-

gory discovery, their experimental evaluation focuses primar-

ily on clustering and segmentation accuracy. Our goal differs
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Table 6 Comparison of MAP

scores for MSRC Set 1 for

segments predicted to be

unfamiliar. Acc f and Accu are

the average accuracy of

predicting segments as familiar

and unfamiliar respectively

The best scores are in bold

Methods Airplane Bicycle Building Cow Tree Acc f Accu

LG10 0.36 0.21 0.32 0.41 0.36 – –

Native 0.61 0.37 0.30 0.40 0.55 0.68 0.40

MKLMNN 0.75 0.51 0.38 0.71 – 0.85 0.42

KMLR (avg.) 0.66 0.45 0.35 0.40 0.49 0.81 0.45

MKMLR 0.84 0.58 0.38 0.41 0.70 0.95 0.54

slightly, in that we are primarily concerned with the efficiency

of acquiring accurate labels (Table 1). We therefore evaluate

our framework in terms of the number of iterations required

to label all regions. We report performance in terms of the

relative improvement over the worst case scenario, in which

each image region is labeled independently. Fewer iterations

means that more labels are acquired in each iteration, thereby

reducing annotator effort.

To evaluate the accuracy and efficiency of our iterative

framework, we simulate a human annotator that uses ground-

truth labels to correctly annotate the largest subset of a cluster.

Different data sets containing different numbers of famil-

iar (seed) object categories are generated for these experi-

ments. These sets consist of between one and eight different

randomly chosen object categories, and for each set we gen-

erate 18 different random sets of familiar/unfamiliar classes.

The number of clusters computed in each iteration is fixed to

10, and the number of neighbors used for learning the metric

is 15 in all experiments. Object categories considered in our

experiments belong to the MSRC image database, which is

composed of 21 different classes. In the terminology of Heitz

and Koller, these classes can be grouped into two categories:

things and stuff (Heitz and Koller 2008). Things refer to dis-

crete, man-made, or rigid objects—e.g., a person, car, chair,

etc.—that can be identified from the appearance in a small

region around the object. Stuff refers to regions of amorphous

spatial extent that are more naturally classified based on tex-

ture or color, such as sky, grass, or water. The images used

in the experiments correspond to the training data split used

in previous experiments.

Figure 7 shows the efficiency of our framework when

discovering categories iteratively on the randomly gener-

ated sets. We compare our framework (learned metric) to

the native metric by considering sets composed of different

Table 7 Comparison of MAP scores for MSRC Set 1 on true unfamiliar

segments

Methods Airplane Bicycle Building Cow Tree

Native 0.65 0.43 0.33 0.36 0.57

MKLMNN 0.68 0.50 0.44 0.59 0.59

KMLR (avg.) 0.72 0.46 0.38 0.46 0.59

MKLMLR 0.81 0.55 0.45 0.71 0.66

The best scores are in bold

numbers of seed classes. Each curve corresponds to the aver-

age percentage of iterations required to label all unfamiliar

instances. We observe that on average we need a smaller

percentage (<6 % of the total iterations to label all regions.

The worst case involves using 100 % of the iterations—i.e.,

labeling only one instance per query—and the best case pos-

sible would to require <1%—i.e., labeling all instances of a

category per query.

We also observe that the learned metric significantly out-

performs the native metric across all numbers of seed classes,

indicating that improving the underlying similarity metric

can indeed reduce the human annotator effort. However,

even without optimizing the similarity metric, the interac-

tive annotation model still provides substantial benefits over

one-at-a-time labeling. In general, for both learned and native

metrics, the percentage of iterations required to label all

instances decreases with the number of initial seed classes.

We compare the number of iterations of the two metrics using

the Wilcoxon sign-rank test (Wilcoxon 1945). The largest p

value for all sets is 1.9609e − 04 (for 8 initial seeds).

From these experiments, we identify the set of classes that

deliver the best and worst percentage of iterations for a given

number of initial seeds.

Table 8 shows examples of worst and best cases found

in our experiments using the native metric, as well as using

our framework (learning the similarity metric). Class num-

bers in bold correspond to stuff categories. We observe that

worst cases in the native space are mostly composed by things

rather than stuff categories, meanwhile there is no obvious

correlation for those using the learned metric. This indicates

that our framework is unbiased to the type of category (stuff

vs. things) that is used as initial set in order to efficiently label

all instances.

5.3.2 Accurate Iterative Clustering

In order to assess the predictive accuracy of the iterative anno-

tation framework, we evaluate the average purity of a discov-

ered category using the randomly generated sets described

in the previous section. Table 9 shows the average purity of

a new discovered category given the number of seed classes.

The average purity corresponding to the learned metric is usu-

ally higher for most of the sets than using the native space
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(Table 9), and tends to increase with the number of initial

seed classes. The optimized metric outperforms the native

metric as we obtain comparable (or better) average purity

across all sets of initial seeds classes but with much fewer

queries required on average (as shown in Fig. 7).

As the average purity increases with respect to the dif-

ferent number and type of seed sets when optimizing the

space, we investigate how efficiency and purity are affected

when using different numbers of clusters in the grouping step

of our algorithm (Algorithm 1). Figure 8 illustrates differ-

ent results obtained using 10, 20 and 30 clusters per iter-

ation for all sets. Figure 8a depicts the mean purity of a

discovered class obtained using our framework. Error bars

show that cluster purity can vary around 10 % for different

number of initial classes when using different numbers of

clusters. The results demonstrate that increasing the num-

ber of clusters improves the purity of the discovered clus-

ters. The number of clusters that offers the best purity with-

out compromising on efficiency is found to be around 20

clusters.

Figure 8b presents the efficiency of our method mea-

sured by the percentage of total iterations and number of

iterations respectively. In the case of 30 clusters per iter-

ation, our framework is still extremely efficient as it exe-

cutes < 20 % of the total iterations needed to label all

instances. While the number of iterations decreases when

using more seed classes, it becomes clear that the difference

between using 30 and 20 clusters is small (with respect to

the total) and therefore the trade off between purity and effi-

ciency becomes evident when choosing the right number of

clusters.
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Table 8 Average percentage of

total iterations required to label

all instances using the native

and learned metric respectively

Examples of (a) best and (b)

worst cases considering

different number of seed classes

Class numbers in bold

correspond to stuff categories

Native metric Best case Worst case

N Object categ. % Object categ. %

1 5 12.69 1 13.76

2 5,19 10.64 1,17 13.31

3 9,10,21 10.44 17,19,21 11.94

4 7,10,13,19 9.65 1,4,6,18 11.61

5 3,7,15,16,18 7.86 2,4,9,12,17 10.54

6 5,7,13,15,16,19 8.04 1,3,4,5,8,11 9.99

7 9,12,15,16,17,20,21 7.23 4,5,9,10,13,18,21 9.02

8 3,5,7,12,13,16,20,21 6.36 1,2,5,6,8,11,12,17 8.43

Learned metric Best case Worst case

N Object categ. % Object categ. %

1 20 5.16 12 7.33

2 15,20 3.86 1,10 7.05

3 4,19,21 4.20 10,12,18 7.21

4 1,4,16,20 4.19 6,8,11,21 6.30

5 3,7,15,16,18 3.32 3,10,11,12,21 5.46

6 8,9,13,15,17,20 2.64 1,6,7,8,12,14 5.95

7 9,12,15,16,17,20,21 2.54 1,6,10,11,14,19,21 5.62

8 1,4,5,9,12,13,17,21 2.60 2,3,10,11,12,14,17,20 4.48

Table 9 Average purity for native and learned metric

Metric 1 2 3 4 5 6 7 8

Native 0.49 0.49 0.52 0.53 0.57 0.53 0.56 0.62

Learned 0.48 0.54 0.58 0.61 0.58 0.60 0.55 0.63

Mean purity of a discovered cluster is shown for each set of initial seed classes

The best scores are in bold

0 2 4 6 8 10
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of Seed Classes

A
v
e
ra

g
e
 C

lu
s
te

r 
P

u
ri
ty

 

 

10 clusters

20 clusters

30 clusters

(a)

1 2 3 4 5 6 7 8
2

4

6

8

10

12

14

16

18

20

Number of Seed Classes

A
v
e
ra

g
e
 P

e
rc

e
n
ta

g
e
 o

f 
It
e
ra

ti
o
n
s
 R

e
q
u

ir
e
d

 

 

10 clusters

20 clusters

30 clusters

(b)

Fig. 8 Experimental results for our framework using 10, 20 and 30 clusters per iteration. a Mean purity results of a discovered class with error bars

for the mean curves, b percentage of total iterations. Experiments are computed using the randomly generated familiar/unfamiliar sets described in

5.3.1
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Fig. 9 Average classification accuracy on held-out instances versus the

effort required by the human annotator. Accuracy at each step computed

by considering only the currently discovered categories. Discovered

categories are labeled using the majority vote and the largest subset

approach

5.3.3 Accuracy Versus Effort

Our final experiment measures the effort associated with

labeling the discovered classes at each iteration, and how the

accuracy of the system improves over time. We replicated

the experimental setup of Lee and Grauman (2011) to eval-

uate label efficiency and classifier accuracy as follows. The

MSRC data was first randomly partitioned 40/60. From the

40 % partition, we extracted five initial stuff seed categories:

grass, sky, road, tree and water. Given those seed instances,

the system is then allowed to discover the remaining unfamil-

iar categories on the 60 % subset. At each iteration we mea-

sure the classification accuracy of the remaining unfamiliar

instances from the 40 % subset; note that these instances are

merely used for evaluation, and do not influence the cate-

gory discovery algorithm. Unlike Lee and Grauman (2011),

we do not use any external data to train classifiers to generate

candidate segments.

At each iteration of category discovery, the most promi-

nent cluster is labeled, and all labeled instances are used to

learn a similarity metric.

Once the metric has been learned, we evaluate nearest-

neighbor classification accuracy on the held-out instances,

and record the mean accuracy. We measure the effort of label-

ing instances as the number of “clicks” performed by the user

to label the largest subset, divided by the total number of

instances. For comparison purposes, we also test the label-

ing strategy of Lee and Grauman (2011) where each cluster

is entirely labeled by its majority label.

We also simulate an unsupervised baseline, in which the

selected cluster at each iteration is completely assigned a new

class label with no human annotator intervention, so the num-

ber of classes discovered is equal to the number of iterations.
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Fig. 10 Average classification accuracy on held-out instances versus

the effort needed to label instances in the training set. Accuracy is com-

puted by considering all 16 object classes at each iteration, including

those yet to be discovered

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Effort

A
v
e

ra
g

e
 a

c
c
u

ra
c
y

 Largest subset

 Majority label

 Unsupervised

 Fully supervised

Fig. 11 Average classification accuracy on held-out instances versus

the effort needed to label instances in the training set. Accuracy is com-

puted by considering segments to belong to a familiar or unfamiliar

class at each iteration

At each iteration, the metric is learned using the newly dis-

covered class, and classification accuracy is computed using

the ground truth labels.

Figure 9 shows the average familiar-category accuracy

achieved on held-out data versus the effort demanded by the

human annotator for both labeling strategies, as well as the

fully supervised and the unsupervised baseline. While the

majority label strategy terminates earlier, the incorrect anno-

tations negatively impact accuracy, and it is quickly domi-

nated by the more conservative, largest-subset labeling strat-

egy.

Figure 10 shows the accuracy across all categories,

including those which have not yet been discovered (in
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which case, the system should predict ℓ0/unfamiliar). Again,

the majority-label strategy is more efficient in terms of

effort, but since it cannot revise potentially mislabeled data,

its accuracy is limited. Moreover, the majority-labeling

strategy is not guaranteed to discover categories which

never become the majority of a cluster. In contrast, the

largest-subset strategy eventually matches and overtakes the

accuracy of majority-label while still only using a frac-

tion of the labels, and converges to the fully supervised

case.

Figure 11 shows the accuracy of classifying segments to

be familiar or unfamiliar (ℓ0). Similarly to Fig. 9, the largest-

subset strategy outperforms the accuracy of majority-label

and converges to the fully supervised case. As expected, the

accuracy of the unsupervised framework remains more than

10 % below of our framework’s accuracy.

These figures illustrate that the proposed method achieves

higher prediction accuracy than the majority-label approach,

and converges to the accuracy achieved by the fully-labeled

setting. The unsupervised and majority label approaches do

not converge to the fully supervised case.

Figure 12 show examples of segments discovered by our

framework at certain iterations. Our automatic segmenta-

tion (Rabinovich et al. 2006) tends to over segment the image,

which is reflected in some of these examples (specially iter-

ation 106). We observe less variability in the segments dis-

covered within the initial iterations, while they become more

visually diverse when the number of iterations increases. In

addition, we see that the number of segments in the clus-

ters decreases in later iterations. Segments in iteration 9 (air-

planes) contain small parts of other classes (road, building),

which is one of the shortcomings of the automatic segmenta-

tion. However, a sufficient portion of the object’s area is con-

tained within the segment to yield accurate clustering. Alter-

natively, iterations 1, 17 and 36 have segments that contain

only one object class, and only minimal parts of the object

are missing. Segments in iteration 106 (bicycles) are primar-

ily over-segmentations, but may also span multiple objects.

Fig. 12 Examples of categories discovered at each iteration. The number before the image set indicates the iteration in which the segments received

their annotation. Classes discovered: (1) flower, (9) aeroplane, (17) face, (36) building, (80) sign, (106) bicycle
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Fig. 13 Examples of segment clusters, annotated with majority-subset membership. The discovered classes are: (1) car, (2) book, (3) aeroplane

and (4) cow. Segments highlighted in (red) belong to minority categories, and are not labeled in the iteration (Color figure online)

Nonetheless, the resulting segments are still visually similar,

and they are correctly grouped together under the learned

metric.

Examples of clusters with human annotations are shown

in Fig. 13. Each cluster contains a predominant class, which

represent more than 70 % of the segments. Cluster 1 con-

tains mostly cars and car parts, and only 3 segments out

of 17 correspond to different classes (airplanes, sign). We

observe that the outliers in this cluster are visually similar

with the segments belonging to main class. Similarly, the

segments in clusters 2 and 4 present visually similar infor-

mation, however only segments belonging to the largest sub-

set (categories book and cow) are annotated in this itera-

tion. Cluster 3 shows examples of segments generated by

the automatic segmentation corresponding to small objects

(parts of planes and buildings). Given the limited infor-

mation that these segments carry, they are difficult to dis-

cover within the same iteration. Our framework successfully

groups these segments together and labels them as the same

category.

6 Conclusion

We have introduced a novel framework for iterative object

class discovery. The proposed method iteratively discovers

new object categories by efficiently and accurately group-

ing image regions under the optimized distance metric. Our

experimental results demonstrate that improving region simi-

larity can greatly reduce human annotation efforts: the human

annotator needs only to supply a fraction of labels to achieve

comparable accuracy to the fully annotated setting, and the

proposed annotator interaction model maintains the accuracy

of training data.

Appendix: Implementation

The implementation uses the 1-slack margin-rescaling cut-

ting plane algorithm (Joachims et al. 2009) to solve for all

W t within a prescribed tolerance ǫ = 0.01. We further con-

strain each W t to be a diagonal matrix. This simplifies the

semi-definite program to a linear program. For m kernels

and n training points, this also reduces the number of para-

meters needed to learn from O(mn2) (m symmetric n-by-n

matrices) to mn.

In all experiments with MKMLR, we choose the rank-

ing loss � as the normalized discounted cumulative gain

(NDCG) (Järvelin and Kekäläinen 2002) truncated at 10.

Slack parameters C and kernel bandwidth σ for spectral clus-

tering were found by cross-validation on the training set. For

testing, we fix k = 17 as the number of nearest neighbors

for classification across all experiments. Multiple stable seg-

mentations were computed—9 different segmentations for

each image—each of which contains between 2 and 10 seg-

ments, resulting in 54 segments per image (Rabinovich et al.

2006; Shi and Malik 2000).
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