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Abstract

Background: Clustering is one of the most commonly used methods for discovering hidden
structure in microarray gene expression data. Most current methods for clustering samples are
based on distance metrics utilizing all genes. This has the effect of obscuring clustering in samples
that may be evident only when looking at a subset of genes, because noise from irrelevant genes
dominates the signal from the relevant genes in the distance calculation.

Results: We describe an algorithm for automatically detecting clusters of samples that are
discernable only in a subset of genes. We use iteration between Minimal Spanning Tree based
clustering and feature selection to remove noise genes in a step-wise manner while simultaneously
sharpening the clustering.

Evaluation of this algorithm on synthetic data shows that it resolves planted clusters with high
accuracy in spite of noise and the presence of other clusters. It also shows a low probability of
detecting spurious clusters. Testing the algorithm on some well known micro-array data-sets
reveals known biological classes as well as novel clusters.

Conclusions: The iterative clustering method offers considerable improvement over clustering in
all genes. This method can be used to discover partitions and their biological significance can be
determined by comparing with clinical correlates and gene annotations. The MATLAB® programs
for the iterative clustering algorithm are available from http:/linus.nci.nih.gov/supplement.html

Background

Clustering is one of the most common methods for dis-
covering hidden structure in micro-array gene expression
data. Clustering of samples has been used to discover new
disease taxonomies [1-3]. Cluster analysis is often per-
formed with hierarchical [4], K-means [5] or Self-Organ-
izing Map [6] algorithms, using the entire set of genes as
the basis for calculating pair-wise distances between sam-
ples. This gives equal weights to the expression of all genes
and may be effective in cases where there is a large differ-

ence between subsets of samples (e.g. comparing samples
of normal and cancerous tissues). Many diseases, though,
are characterized by small numbers of genes that differen-
tiate between different disease states. Giving equal weight
to relevant and irrelevant genes will obscure this differ-
ence. Figure 1 shows an example, where clustering in all
genes masks the biological differences between samples
with BRCA1 and BRCA2 mutation (data from Hedenfalk
etal [7])
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Hierarchical clustering of BRCA data using all genes.
Hierarchical clustering of BRCA data using centered correla-
tion with average linkage. Inclusion of all genes in the cluster-
ing swamps out the differences between samples with
BRCAI and BRCA2 mutation.

In this article we propose an iterative algorithm, where we
initially do a clustering using all the genes. This clustering
(which gives a binary partition of the samples) is used to
select genes that differentiate between the two clusters.
The clustering is done again, but this time, only in the set
of genes that was selected in the previous iteration. This
alternation between clustering and feature selection con-
tinues until there is no change in the set of genes (and par-
tition) between two iterations. The final gene set is
removed, and the process repeated on the remaining
genes to find other partitions. The algorithm generates a
set of binary partitions, along with corresponding sets of
genes which differentiate the clusters present in these
partitions.

Similar approaches have been used in other algorithms.
Ben-Dor et al [8] use simulated annealing to efficiently
search the space of all binary sample partitions. Xing and
Karp [9] use a Normalized Cut algorithm to restrict the
search to only the promising partitions and use a similar
method of iteration between clustering and feature selec-
tion. Von Heydebreck et al [10] and Tang et al [11] present
algorithms that select sample partitions and correspond-
ing gene sets by defining a measure of partition quality
and then using greedy search (in the former) and simu-
lated annealing (in the latter) to maximize this measure.
Iteration between cluster analysis and gene selection is
also used in the "gene shaving" algorithm of Hastie et al
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[12]; though their goal was clustering of genes rather than
samples.

Algorithm

We use a Minimal Spanning Tree (MST) based algorithm
[13,14] for clustering along with the Fukuyama-Sugeno
clustering measure. Gene selection is done on the basis of
the two-sample t-statistic with pooled variance. In the
next three subsections we will look in detail at the cluster-
ing and feature selection aspects before presenting the for-
mal algorithm.

Minimal spanning trees

Let V= {x;, x,..., x} be a set of points with distances d;; =
d(x;x;) defined between all x;and x;. A tree on V' is a graph
with no loops whose vertices are elements of V and edge
lengths are d;. A minimal spanning tree (MST) is a tree that
connects all points such that the sum of the length of the
edges is a minimum. An MST can be efficiently computed
in O(N2) time (including distance calculations) using
either Prim's [13] or Kruskal's [14] algorithm.

Deletion of any edge from an MST results in two discon-
nected trees. Assuming the length of the deleted edge to be
¢ and denoting the sets of nodes in the two trees as V; and
V,, we have the property that there are no pairs of points
(x1,%,), %, € V3, x,€ Vysuch that d(x;x;) <o. Define the
smallest distance between any two points, one in V; and
the other in V,, as the separation between V; and V,. Then
we have the result that the separation is at-least &.

The significance of this result is that by deleting an edge of
length § we are assured of a partition where the two clus-
ters have a separation of at-least J. This means that if we
are interested in looking at all binary partitions with large
separations between the clusters, it is sufficient to look at
partitions obtained by deleting edges of the MST. Instead
of looking at all possible binary partitions (which number
2N-1-1) our algorithm looks only at partitions obtained by
deleting single edges from the MST (which number N-1).

Minimal Spanning Trees were initially proposed for clus-
tering by Zahn [15]. More recently, Xu et al have used MST
for clustering gene expression data [16].

Clustering measure

To compare the partitions obtained by deleting different
edges of the MST, we use the Fukuyama-Sugeno clustering
measure [17]. Given a partition S;, S, of the sample index

set S, with each S;, containing N, samples, denote by , the
mean of the samples in S;, and u the global mean of all

samples. Also denote by x;z the j-th sample in cluster S,.

Then the Fukuyama-Sugeno (F-S) clustering measure is
defined as
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FS(S) = i%[”ﬁ | = -ullz}
k=1j=1

Small values of FS(S) are indicative of tight clusters with a
large separation between clusters.

We have considered various other clustering measures.
The ideal clustering measure should show local minima at
each viable partition and have good performance even
with a large number of noisy features. We have found the
Fukuyama-Sugeno (F-S) measure to give the best perform-
ance in these two respects (Supplementary data - Addi-
tional file 1).

Feature selection

For a given partition with two clusters, we can ask if a par-
ticular gene shows sufficient differential expression
between samples belonging to the different clusters. A
gene which is very differently expressed in samples
belonging to different clusters can be said to be relevant to
the partition or to support the partition. There can be
many ways of measuring a gene's support for a partition.
Here we use the two sample t-statistic with pooled vari-
ance. The t-statistic is computed for each gene to compare
the mean expression level in the two clusters. Genes with
absolute t-statistic greater than a threshold Ty, are
selected. = The  percentile  threshold  parameter
Py €(0,100) is used to compute Ty, Tinresn 1S the
P/ 2-th percentile of a random variable distributed
according to Student's t-distribution with mean zero and
N-2 degrees of freedom (N is the number of samples).
Here we use the t-statistic as a heuristic measure of the
contribution of each gene to the selected partition; no sta-
tistical significance is implied.

The condition for selection of a gene becomes stricter with
each iteration. In the first iteration we choose genes with
absolute t-statistic greater than T,,s/2. This cutoff
increases linearly with the number of iterations until it
reaches Ty, This is done so that we do not lose any use-
ful genes by putting a too-stringent selection criterion
before the partition has evolved close to its final form.

The algorithm

Initially, an MST is created using all the genes; then each
binary partition obtained by deleting an edge from the
tree is considered as a putative partition. The partition
with the minimum value of the F-S clustering measure is
selected. The t-statistic is used to select a subset of genes
that discriminate between the clusters in this partition. In
the next iteration, clustering is done in this set of selected
genes. This process continues until the selected gene sub-
set converges (remains the same between two iterations),
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resulting in a set of genes and the final partition. Having
identified a partition and the associated set of genes, these
selected genes are removed from the pool of genes. This
prevents the algorithm from detecting the same partition
the next time. The whole process repeats in the pool of
remaining genes to find other partitions.

The inputs to the algorithm are the gene expression matrix
{x,¢}, the maximum number of partitions to be found
MaxN, and percentile threshold Py, .. Py 1s used to
compute Ty,,,. The outer loop of the algorithm runs as
long as the number of discovered partitions is less than
MaxN,. The set of selected genes F is initialized to be the
set of all genes Fset and the cutoff ¢ is initialized as Ty, /
2. In the inner loop, an MST is created using the genes in
F, and for all partitions obtained by deleting single edges
from this MST, the F-S measure is calculated. For the par-
tition P* with the lowest F-S measure, genes are selected
from F based on the t-statistic. These selected genes form
the new gene set F,,,. If F,,, # F, the cutoff ¢ is increased
and another iteration of the inner loop is performed. If
F,,, = F, this means that the gene set has remained
unchanged between two iterations and the current parti-
tion P* along with the current gene set F is output. The
number of discovered partitions is increased and another
iteration of the outer loop is performed.

Since this is an unsupervised method, the partitions
picked might be indicative of biological differences that
are relevant, irrelevant (like age or sex of patients) or
unknown. We control the detection of chance partitions
(i.e. generated due to noise and not due to any biological
difference) by requiring a minimum of 2M (1 - P,,,;,/100)
genes in support of a partition (M is the total number of
genes); the algorithm is terminated if there are fewer.

P, Plays an important part in the kind of partitions that
are extracted. A value of P, close to 100 will preferen-
tially extract partitions that are supported by genes with
large differential expression between the two clusters. A
smaller value of P, will pick up partitions that are sup-
ported by larger number of genes with lower differential
expression between the clusters.

Py,..s» cannot be interpreted as a measure of the statistical
significance of the partitioning since we are doing both
the partitioning and the feature selection on the same set
of samples. Here we only use P, as a parameter for
selecting genes.

hres

Algorithm 1: Algorithm for iterative clustering

Input MaxN,, P o5 X, g

Fset < {1, 2...,n};
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N, < 0; /*Number of currently discovered partitions*/
Compute T ;.

While N, <MaxN, do

F < Fset;

T T jrosi]2;

While 1 do

If length of F < 2 M(1 - Py,,:/100) then

thres
/*Not enough genes support partitions*/
exit;
end

Create MST in feature set F with metric d;

Delete edges one at a time and calculate F-S measure for
each ensuring binary partition;

Find partition P* with the lowest F-S measure;
Compute t-statistic ¢, for all genes g € F for this partition;

Set F,

new

to the set of genes {g: | | >t};
IfF,, =FAND t =T, then
/*Feature set has converged */
output P* and F;

/*Remove genes in F from Fset*/

Fset < Fset \ F;

Ny,=N,+1;

break;

else
F<F,,
Increase t;

end

end

http://www.biomedcentral.com/1471-2105/5/126

Results

Synthetic data

We first tested the algorithm on synthetic data to compare
its performance against a hierarchical clustering method
at detecting planted partitions. We also estimated the
probability of detection of spurious partitions created by
noise (i.e. the false detection rate).

For both iterative clustering and hierarchical clustering,
we found that the probability of detecting the true parti-
tion depended only on the Euclidean distance between
the clusters in the partition, and for a fixed distance, is rel-
atively insensitive to the number of signal genes (Supple-
mentary data - Additional file 2).

Figure 2 shows the results of a logistic regression analysis
of the dependence of probability of detection of the true
partition on the distance between the clusters for both
clustering methods. Independent of the total number of
genes N, iterative clustering detects the planted partition
when the two clusters are separated by about half the dis-
tance compared to hierarchical clustering. For genes with
similar levels of differential expression, this means that
the iterative clustering method will detect clusters sup-
ported by a quarter of the number of genes required for
detection by hierarchical clustering.

The false detection rate was found to be very low: 0.012
for the correlation and 0.011 for the Euclidean distance.

Microarray data
To test whether classes with strong biological significance
can be discovered without knowledge of the class labels,
we tested the algorithm on three publicly available sets of
micro-array data.

1. BRCA mutation data reported by Hedenfalk et al [7]
with 6512 cDNA clones of 5361 genes for 7 samples with
BRCA1 mutation, 8 samples with BRCA2 mutation and 7
with sporadic breast cancer.

2. Leukemia data-set reported by Golub et al. [6]. Expres-
sions for 7070 genes are provided for 47 acute lymphob-
lastic leukemia (ALL) samples and 25 acute myeloid
leukemia (AML) samples.

3. Lymphoma data-set reported by Alizadeh et al. [1] con-
taining 46 samples of tissues with diffuse large B-cell
lymphoma (DLBCL). Expressions for 4026 genes were
measured for each of these samples.

It must be noted that if class labels are already available
and the goal is to discover genes that differentiate between
samples of different classes, then class comparison and
class prediction methods exist that are more suitable [21].
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Figure 2

Detection probability vs. cluster separation. Probabil-
ity of detection of the planted partition as a function of the
distance between the clusters in the partition.

Such methods make use of the prior information (in the
form of class labels) to detect genes that are significantly
differentially expressed between the various classes. The
expression of these genes can be used to develop classifiers
that predict the class of new samples.

Our iterative method is for cases where no a-priori class
labels are assigned. Nevertheless, we have used data for
which class labels are known so that there is a ground
truth to which the results of the iterative method can be
compared. This is similar to what has been done by other
authors for validating the results of unsupervised cluster-
ing algorithms [8-11].

A-priori gene filtering and normalization performed were
similar to that done for the dataset by the original authors.
The iterative algorithm was then run with maximum
number of partitions N, = 10 and Py, = 0.999.

Table 1 shows the distribution of BRCA1 and BRCA2 sam-
ples present in the two clusters for the first four partitions
discovered in the BRCA dataset. The fourth partition
obtained from the BRCA data separates samples with
BRCA1 and BRCA2 mutations with one misclassification.
Figure 1 shows the result of hierarchical clustering on the
BRCA data-set. The tree structured clustering using all the
genes fails to differentiate between samples with BRCA1
and BRCA2 mutations. Figure 3 shows hierarchical clus-
tering using only the genes selected by the iterative cluster-
ing method (61 genes). BRCA1 and BRCA2 samples are
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Figure 3

Hierarchical clustering of BRCA data using selected
genes. Hierarchical clustering of BRCA data using only the
genes supporting Partition 4. BRCAI| and BRCA?2 are sepa-
rated with one misclassification.

separated into different branches of the tree with only one
misclassification.

With the Leukemia data-set, the first partition obtained
matches well with ALL-AML classification, with one clus-
ter containing 46 ALL samples (out of 47 total) and 1 AML
sample while the second cluster contains 24 AML samples
(out of 25 total) and 1 ALL sample (Table 2).

To see whether the gene set obtained in support of the par-
tition correlating with the AML/ALL classification truly
separates ALL and AML samples, we used a split-sample
method. The iterative algorithm was used on part of the
dataset (38 samples, corresponding to the "training set"
used in [6]) and several partitions were obtained. We did
not obtain exactly the same partitions as when the whole
dataset was used, but the second partition corresponded
well to the ALL/AML classification. It contained one
cluster with 25 ALL and no AML samples and another
cluster with 11 AML and 2 ALL samples. There were 252
genes that were selected in support for this partition.

If the 252 selected genes were truly discriminatory
between the ALL and AML samples, then we should be
able to separate the two classes in unknown data by unsu-
pervised clustering using these genes. This was verified by
clustering the rest of the samples in the dataset (contain-
ing 34 samples corresponding to the "testing set" used in
[6]) using these genes. Since the iterative algorithm uses a
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Table I: Results on BRCA data-set
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Partition number Cluster number BRCAI BRCA2 Number of genes
selected
| | 0 4 80
2 7 4
2 | 7 4 110
2 0 4
3 | 5 3 73
2 2 5
4 | 6 0 6l
2 | 8
Table 2: Results on Leukemia data-set
Partition number Cluster number AML ALL Number of genes
selected
| | | 46 578
2 24 |
2 | 4 29 650
2 21 18
3 | 25 38 108
2 0 9
4 | 20 27 8l
2 5 20

combination of MST and F-S measure to do clustering, we
performed the validation using a similar clustering
method. An MST was created using the 252 genes and
then the edge to be deleted selected according to mini-
mum F-S measure. This identical to the clustering method
used in the inner loop of the iterative clustering algorithm
(Algorithm 1).

We obtained two clusters with the first cluster containing
20 ALL and 1 AML samples while the second cluster con-
tained 13 AML and no ALL samples. This almost-complete
separation of ALL and AML in the testing data shows that
the genes selected by the iterative clustering are truly sup-
portive of the partition discovered in the training data.

The biological differences present in the Lymphoma data-
set were originally detected using hierarchical clustering
[1] after manual selection of genes. We have included our
results using the iterative method to show how successful
the iterative clustering algorithm is in picking out these
disease subclasses (Table 3). The third partition best cor-
responds to the subclasses discovered by Alizadeh et al.
One cluster has 24 GC B-like DLBCL samples and 7 Acti-
vated B-like DLBCL samples while the other cluster has 16
Activated B-like DLBCL samples.

The results from the iterative clustering algorithm is com-
pared to that obtained by Overabundance Analysis (OA)

[8] (Table 4) and CLIFF [9] (Table 5). Ben-Dor et al use the
Jaccard index [20] to measure the similarity of the parti-
tions discovered by OA to the true biological classes. For
comparison, we calculated the same index for partitions
discovered by iterative clustering. The Jaccard index ranges
from O for complete mismatch to 1 for complete match.

Both OA and iterative clustering pick out partitions corre-
sponding to the ALL/AML classification, though OA
detects it as the fourth partition while iterative clustering
detects it as the first partition. There is a small but definite
improvement in the Jaccard index for the results obtained
for the Lymphoma data by iterative clustering as com-
pared to OA.

Compared to CLIFF, iterative clustering picks a partition
in the Leukemia data that is marginally better (2 misclas-
sified as compared to 3 for CLIFF).

Discussion

We have presented a clustering method that uses a mini-
mal spanning tree to lead the search for partitions of sam-
ples that form good clusters. Iteration between minimal
spanning tree cluster analysis and feature selection is used
to converge onto partitions that form well separated clus-
ters and gene subsets that support these partitions.
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Table 3: Results on Lymphoma data-set
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Partition number Cluster number GC B-like DLBCL

Activated B-like DLBCL Number of genes selected

20
4
3

21

24

N —DN—N—N —

22 121
|
4 226
19
7 156
16
12 309

Table 4: Comparison of results with that obtained using Overabundance Analysis (Ben-Dor et al [8])

Data-set Jaccard index of first 4 partitions discovered by iterative Jaccard index of first 4 partitions discovered by
clustering Overabundance Analysis
Leukemia 0.906 0.469
0.424 0.344
0.454 0.469
0.378 0.949
Lymphoma DLBCL 0.452 0.362
0.429 0.324
0.611 0.354
0.343 0.350
Table 5: Comparison of results with that obtained using CLIFF (Xing and Karp [9])
Cluster number AML ALL
Iterative clustering | | 46
2 24 |
CLIFF | 0 44
2 25 3

At the convergence of each set of iterations, the result is a
partition of the samples and a set of genes that support
them. These genes are removed from the pool of genes
before searching for other partitions. This removes genes
that obscure other partitions supported by smaller num-
bers of less differentially expressed genes. Genes that sup-
port more than one partition will be selected in favor of
the partition for which their support is stronger.

Testing on synthetic data shows that the algorithm picks
out planted clusters with high accuracy and low false pos-
itive rate. Application of the algorithm to breast cancer,
leukemia and lymphoma data returns partitions with very
well separated clusters, some of which have a strong bio-
logical significance. The results are comparable to those

obtained by other similar algorithms, and superior to
those obtained by standard hierarchical clustering.

The kind of partitions discovered depends very much on
the value of Py, Values of P, close to 100 will give
preference to partitions that are supported by a small
number of very highly differentially expressed genes. On
the other hand, smaller values of P, will preferentially
detect partitions that are supported by a large number of
genes differentially expressed to a lesser degree. If the first
application of the algorithm returns several partitions that
are correlated with each other, then we could suspect that
there is one partition that is supported by a large number
of genes and run the algorithm again with a smaller value
of P, to detect all these genes. We have not been able to
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specify a single value of P, that works in all cases,
although the range of values we used (Py,,,q, = 99.9-99.95)
works well in most situations.

The partitions and supporting gene sets detected by the
use of this algorithm must be further analyzed using gene
annotation and clinical data to determine whether they
are biologically relevant and worth further investigation.
The significance of the detected partitions must be further
investigated by evaluating the clinical correlates of
patients in different clusters. Clinical observations made
on patients, like survival duration, response to therapy
and grade of tumor can be compared among the clusters
obtained to see if there are any detected partitions whose
clusters are correlated with clinical features.

Another, complementary, approach is to analyze the
genes that are differentially expressed between two clus-
ters for regulatory relationships with each other or prior
known influence on the disease in question. Software
tools for searching gene annotations [18], and exploring
PubMed and GeneCards for prior published relationships
among given genes [19] are available.

The results of these two approaches can help the biologist
to formulate hypotheses about the significance of the par-
titions as well as the role of the selected genes in influenc-
ing the course of the disease. Examples of this process can
be seen in [1] and [2].

Methods

Synthetic data were created by generating normally dis-
tributed expression profiles for each gene. Each planted
partition is supported by a fraction of the genes (called
signal genes) which were differentially expressed between
the two clusters. Each signal gene is differentially
expressed to the same extent. The expressions were nor-
mally distributed; x,, N (0,0.52) for samples s belonging

5,8~
to cluster 1 and x,, N (c,0.52) for samples belonging to
cluster 2. The rest of the genes are not differentially
expressed and are called noise genes and are distributed
according to a normal distribution N (0,0.52). If we have
k signal genes, each differentially expressed by ¢ between

the two clusters, the Euclidean distance between the clus-
ter-means will be D, = cJ/k .

Sets of synthetic data were generated for number of genes
M =1000 and M = 10000 with varying fraction of signal
genes gand distance between cluster means D,. Each set of
data was analyzed both by the iterative and the hierarchi-
cal clustering method (using average linkage). The itera-
tive clustering method was used to obtain the first
partition discovered using the Euclidean distance (Py,,y, =
99.95). Hierarchical clustering was used to obtain a tree,

http://www.biomedcentral.com/1471-2105/5/126

and the branch at the highest level was split to produce a
partition.

The match of these two partitions with the true partition
was calculated and the detection accuracy was assigned 1
if the match was greater than 75% and 0 otherwise. A
logistic regression analysis was used to model the depend-
ence of the probability of detection on the distance
between the clusters D,.

To estimate the false detection rate, the algorithm was run
on synthetic data containing 10 - 100 samples with P, .,
= 99.9. Each sample is a 1000-dimensional vector drawn
from a multivariate normal distribution. Thus any clusters
detected can be expected to be spurious clusters formed by
chance.

For the micro-array data, the iterative method was used to
detect the first 10 partitions, (P, = 99.9) using (1-corre-
lation coefficient) as the distance measure for the MST.
For the BRCA data, we also clustered the data using stand-
ard hierarchical clustering using centered correlation as
the distance metric [4] to compare the results of our algo-
rithm with that obtained by clustering with respect to all
genes.

Additional material

Additional File 1

Comparison of clustering measures Synthetic data was created with 100
samples and 1000 genes containing clusters embedded in the first 50
genes. The other 950 genes were normally distributed noise. There are
three clusters in the first 50 genes: Samples 1 through 20, samples 21
through 70 and samples 71 through 100. For each binary partition of the
points S; = {1, 2..., i}, S, = {i+1, i+2..., 100}, we calculated the cluster-
ing measure. The figure shows the value of the measure for each split
point. It can be seen that the Average Linkage and Xie-Beni [22] meas-
ures have weak minima and they suffer from extreme values for unbal-
anced splits. The Log-Likelihood measure has performance similar to the
F-S measure but has extreme values for unbalanced splits.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-5-126-S1.eps]

Additional File 2

Detection of true partition for different data parameters Sets of syn-
thetic data were generated for 1000 and 10000 total number of genes
with varying fraction of signal genes € and distance between cluster means
D.. The figure shows detection of planted partition for various values of €
and D.. Blue points are data for which the percentage match between the
first discovered partition and the planted partition is less than 75%. The
red points are data for which the match is greater than 75%. Detection
(match > 75%) depends only on the distance between the clusters for both
hierarchical and iterative clustering.

Click here for file
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