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Abstract

Recently, a data-driven model-free control design method has been proposed in
(7; 6) for linear systems. It is based on the minimization of a control criterion
with respect to the controller parameters using an iterative gradient technique.
In this paper, we extend this method to the case where both the plant and the
controller can be nonlinear. It is shown that an estimate of the gradient of the
control criterion can be constructed using only signal-based information obtained
from closed loop experiments. The obtained estimate contains a bias which depends
on the local nonlinearity of the noise description of the closed loop system which
can be expected to be small in many practical situations. As a side-effect the linear
model-free control design method is re-obtained in a new way.
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1 Introduction

The data-driven model-free control tuning method for linear systems, called
Iterative Feedback Tuning (IFT), described in (7; 6) has been shown to give
good results from both an experimental and industrial point of view: see e.g.
(1; 4; 6). This scheme is based on an iterative tuning of the controller pa-
rameter vector along the gradient direction of a control performance criterion.
The key contribution of (7; 6) was to show that an unbiased estimate of this
gradient can be constructed from filtered versions of the signals measured on
the closed-loop system. The construction of this gradient requires a “special
experiment” in which a finite record of the output of the closed-loop system
is recycled at the reference input of that system. The main advantage of this
iterative procedure is that it is model-free. Indeed, tuning algorithms that use
a model of the plant invariably give biased controllers, where the extent of the
bias depends on the flexibility of the model. Another benefit of this tuning
mechanism is that it only uses closed-loop “operating” data, i.e. there is no
need to open the control loop.

In this paper, we extend these results to the case where both the controller
and the plant can be nonlinear. Our main contribution is to show that it
is possible to obtain an estimate of the gradient by performing a series of
experiments on the closed loop system with reference signals close to one
another. The gradient estimate is formed as the difference between the output
signals of the different experiments. In the nonlinear case it is not possible to
obtain a totally unbiased estimate, a small bias term due to nonlinear noise
contribution cannot be removed. However, if the noise level is low and if the
closed loop performance is fairly good then this bias term will be small.

The total number of experiments per iteration is equal to the number of con-
troller parameters, n, plus two, i.e. one experiment for the generation of the
error signal and n+1 experiments for the estimation of the n gradient signals.
This should be compared with the linear case where three experiments are
enough. The difference is due to the fact that although linear transfer func-
tions commute, i.e., the order of the operators can be changed, this does not
hold in the nonlinear case.

Apart from the fact that the plant and controller can be nonlinear, the sug-
gested algorithm has the same properties as its linear sibling. For example,
stability is not guaranteed and has to be dealt with separately with some
other technique. This contribution concentrates on the nonlinear case and the
common features with the linear case are covered in (7; 6).

for Science, Technology and Culture. This work is also part of a project that was
funded as an ETH-internal project under a special grant approved by ETH research
administration. The scientific responsibility rests with its authors.
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Our method can be seen as an alternative to the obvious idea of computing
gradient estimates of the control criterion by performing experiments with
perturbed controller parameters. Indeed, in many practical situations it might
be safer to change the reference signal slightly than to experiment with the
control parameters.

The suggested tuning scheme becomes inconvenient when the number of con-
troller parameters is high since the number of necessary experiments in each
iteration of the minimization grows linearly with the number of parameters.
In such cases the insights described here can be used to motivate approximate
schemes which demands less experiments by including time-varying models,
see (8; 3).

The organization of the paper is as follows. Section 2 formulates the tuning
problem and Section 3 presents the idea of the nonlinear tuning algorithm.
This is then illustrated by a small example in Section 4. The analysis is given
in Section 5, where also the algorithm is formulated. Section 6 contains a
discussion on several issues related to the algorithm and the paper is concluded
in Section 7.

2 Problem setting

The true system is assumed to be a Single-Input Single-Output (SISO) non-
linear time-invariant system described by

S : yt = P (Yt−1, Ut, Vt) (1)

where P is a time-discrete unknown nonlinear operator describing the plant.
Here Ut, Yt−1, and Vt are vectors of lagged input signals ut−1, ut−2 . . . , lagged
output signals yt−1, yt−2, . . . , and lagged values of a white disturbance sig-
nals vt, vt−1, . . . , and yt is the output at time t. Of course, (1) could be a
consequence of a finite order difference equation.

The input signal is determined according to

C : ut = C(ρ, Ut, Rt, Yt) (2)

where the controller C is a linear or nonlinear operator on Rt, a vector of lagged
reference signals rt, rt−1, . . . , and Yt a vector of lagged outputs, yt, yt−1, . . . ,
and once again (2) could be a consequence of a finite order difference equation.
The controller is parameterized by a parameter vector ρ, with ρ ∈ D ⊂ IRn.
It is assumed that rt is independent of the noise sequence vt.

The plant, the controller and all closed-loop operators are assumed to be
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smooth functions of all their arguments. See, e.g., (5) for more details on such
smoothness assumptions. It is required that the closed-loop system in Figure 1
is incrementally BIBO stable, with initial conditions forgotten exponentially
fast independent of excitation. Also the effect of a disturbance at time t is
assumed to decay exponentially in time. This means that if two experiments
are performed on the closed loop system with close reference signals and close
noise sequences, then all other signals will also be close to another. This is a
key requirement for the tuning algorithm to be applicable.

An experiment of length N on the closed loop system is obtained by applying a
reference signal {rt}N

t=1. This reference and the noise sequence {vt}N
t=1 generate

trajectories of u and y. It is the system’s properties along these trajectories
which influence the control performance. The proposed algorithm depends on
the linearization of the plant, and controller, along these trajectories. At this
stage, the reference signal {rt}N

t=1 is assumed to be given and fixed. However, it
is a design variable which has to be chosen by the user and it will be discussed
later on.

We denote by u(ρ, r) and y(ρ, r) the input and output of (1) in feedback with
(2) as shown in Figure 1, i.e., {ut}N

t=1 and {yt}N
t=1 with input {rt}N

t=1 and
parameter ρ.

--
-
-

?r u(ρ, r) y(ρ, r)

v

C(ρ,U,R, Y ) P

Fig. 1. The nonlinear control loop

Let yd be the desired closed-loop response function to the reference signal r,
i.e. yd = Td(r) with Td some possibly nonlinear reference model. The error
between the achieved and the desired response is ỹ(ρ, r) = y(ρ, r) − yd. The
control design objective can be any smooth function of ỹ(ρ, r), and it is possible
to include also other signals, e.g., u(ρ, r). For simplicity, the squared error is
chosen, i.e., the tuning problem can be described as one of seeking

ρ∗ = arg min
ρ

J(ρ) (3)

with

J(ρ) =
1

2
E

1

N

N∑
t=1

[ỹt(ρ, r)]2. (4)
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The expected value is taken with respect to the probability distribution of the
noise. For more general criteria including an input signal penalty, see (7; 6).

The problem that is addressed is the minimization of (4) with respect to
the controller parameter vector ρ. Indeed, it is standard that one can seek a
solution for ρ to

0 = J ′(ρ) =
1

N

N∑
t=1

E [ỹt(ρ, r) ỹ′
t(ρ, r)] (5)

by taking repeated steps in the negative gradient direction

ρ[i + 1] = ρ[i] − γi H
−1
i J ′(ρ[i]) (6)

where Hi is some appropriate positive definite matrix, typically an estimate of
the Hessian of J and {γi} is a sequence of positive numbers that determines
the step size. Here ρ[i] denotes the controller parameter vector ρ at iteration
i.

The gradient J ′(ρ[i]) cannot be obtained exactly. Instead, it has to be esti-
mated and this contribution describes an algorithm for obtaining this estimate.

3 Heuristic explanation of the results

This section explains the idea of the gradient computation algorithm. The
gradient estimate is obtained by performing a series of experiments using
reference signals close to one another.

A straightforward way to obtain an estimate of the gradient of the output
with respect to the controller parameters would be to perform a series of ex-
periments using the same reference signal but with slightly changed controller
parameters and then to form a numeric approximation of the gradient. The
estimate of y′

ρj
(ρ, r), the derivative of y(ρ, r) with respect to parameter j,

is obtained by performing two experiments with controller C(ρ, U, R, Y ) and
C(ρ + ∆ρj , U, R, Y ), and the estimate becomes

ŷ′
ρj

(ρ, r) =
y(ρ + ∆ρj , r) − y(ρ, r)

|∆ρj | (7)

Consider now the change of the control signal due to a small parameter change

u(ρ+∆ρj, r) = u(ρ, r)+C ′
ρj

(ρ, U, R, Y )∆ρj+∂Cy(ρ, U, R, Y )∆y+O(∆ρ2
j) (8)
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where O(x)/x < M when x → 0 for some finite M . The operator C ′
ρj

(ρ, U, R, Y )

denotes the derivative of the output of the controller when its inputs {rt}N
t=1

and {yt}N
t=1 are unaltered. For each j = 1, . . . n, it is a time function defined

on [1, N ]. The symbol ∂Cy(ρ, U, R, Y ) denotes a linear, time-varying operator
describing the mapping from small perturbations in {yt}N

t=1 to the controller
output function, given controller inputs {rt}N

t=1 and {yt}N
t=1. For future use,

∂Cr(ρ, U, R, Y ) and ∂Pu(Y, U, V ) are similarly defined. In Section 6 the lin-
earized operators are explained further.

If, instead, the parameters are kept unchanged but the reference signal is
changed slightly by ∆rj one obtains

u(ρ, r+∆rj) = u(ρ, r)+∂Cr(ρ, U, R, Y )∆rj+∂Cy(ρ, U, R, Y )∆y+O(∆r2
j ) (9)

Assume that it is possible to choose ∆rj so that (9) equals (8), that is, u(ρ +
∆ρj , r) = u(ρ, r+∆rj). Then the disturbance of the outputs, ∆y, also becomes
equal in the two equations (8) and (9). This means that

∂Cr(ρ, U, R, Y )∆rj = C ′
ρj

(ρ, U, R, Y )∆ρj

and, if the linear time-varying operators [∂Cr(ρ, U, R, Y )]−1 and C ′
ρj

(ρ, U, R, Y )
exist and if they are stable, then

∆rj = [∂Cr(ρ, U, R, Y )]−1C ′
ρj

(ρ, U, R, Y )∆ρj (10)

This trajectory {∆rj}N
t=1 is a small change of the reference signal giving the

same effect (up to first order terms) on the input, and hence output, signals as
if one had changed the control parameter. This means that an estimate of the
derivative with respect to one of the parameters can be obtained by taking the
difference of the outputs from two experiments with slightly different reference
signals, specified by (10). Combining (7) and (10) gives a method for the
estimation of the gradient by changing the reference signal instead of changing
the controller parameter vector ρ.

The change of the reference signal ∆rj in (10) must be sufficient small so that
the neglected terms in the Taylor expansions in (8) and (9) do not become too
large. On the other hand, too small ∆rj yields a poor signal to noise ratio.
This trade-off will be illustrated in the analysis in Section 5. Also, existence
and stability of [∂Cr(ρ, U, R, Y )]−1 and C ′

ρj
(ρ, U, R, Y ) will be discussed later.

4 A small illustration

In this section a small illustration of the algorithm is given. In (2; 9), other
examples can be found where the algorithm is used to tune a nonlinear con-
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troller, respectively, for an inverted pendulum with a flexible transmission and
for a chemical batch reactor.

The plant is described by the following equation

ẋt =x2
t + ut

yt =xt + vt. (11)

where vt is Gaussian white noise with standard deviation 10−5. The signals
are sampled with T = 0.01. The desired closed-loop system is a linear first
order system with a pole in −0.005 and a unit DC-gain.

The set of nonlinear control laws is described by

ut = −(K1y
2
t + K2y

3
t ) + rt (12)

which contains two parameters with initial values [K1, K2] = [0.5, 0.5]. In
Figure 2 the closed-loop performance of the initial controller is depicted. No-
tice that the true plant and the assumed controller structure do not allow
exact matching of the desired closed-loop response for any setting of the con-
troller parameters, and accordingly the quality of the matching will be input
dependent.

0 5 10 15 20 25 30 35 40 45 50
−0.5

0

0.5

1

1.5

2

2.5

Fig. 2. Desired (dashed) and true (solid) plant output versus time when the system
is controlled by the initial controller.

The control performance criterion is chosen as in (4) and the desired output
signal yd is given by the dashed line in Figure 2. The minimum of the criterion
is computed by iterating (6) where J ′(ρ) is replaced by an estimate formed
from (5), (7) and (10). According to (10) there is one trajectory ∆rj for each
of the two control parameters. Using (12) C ′

ρj
(ρ, U, R, Y ) becomes

C ′
K1

=−y2
t (13)

C ′
K2

=−y3
t (14)
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and
∂Cr = 1 (15)

The derivative of the plant output with respect to the controller parameters
is now obtained, as described in Section 3, by performing three experiments
with reference signals rt, rt + ∆r1

i , and rt + ∆r2
i where

∆r1
i =−µi

1y
2
t

∆r2
i =−µi

2y
3
t

and where µi
j is a scaling constant chosen so that maxt |∆rj

i | = maxt |rt|/20.

In Table 1 the mean-square error J is shown for the initial controller and after
each of the 3 iterations of (6).

Iteration # J(ρ̂)

0 0.18

1 0.0097

2 0.0032

3 0.0029
Table 1
The value of the criterion of fit J(ρ) for the initial controller and after each of three
iterations.

The parameters of the final tuned controller are [K1, K2] = [2.36, −0.429] and
its performance is depicted in Figure 3. From the figure we make the following

0 5 10 15 20 25 30 35 40 45 50
−0.5

0

0.5

1

1.5

2

2.5

Fig. 3. Final tuned controller: Desired (dashed) and true (solid) plant output.

conclusions:

• The performance of the controller has been improved.
• The control is not perfect due to that the controller structure is not the

optimal one for this plant. This is natural since the purpose of the proposed
method is to tune a parameterized controller. Choosing the best control
structure is a different (but important) topic.
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• A different choice of reference signal would have given a different result.
Hence, the choice of reference signal is an important design variable.

In the following section the algorithm will be described in somewhat more
detail.

5 Analysis

Introduce the closed loop operators T and S as defined by the control loop of
Figure 1,

y(ρ, r)=T (ρ, r, v) (16)

u(ρ, r)=S(ρ, r, v) (17)

Consider the change of the output signal due to a small parameter change, it
can be described using the closed loop operator T

y(ρ + ∆ρ, r) = T (ρ + ∆ρ, r, v) = T (ρ, r, v) + T ′
ρ(ρ, r, v)∆ρ + O(∆ρ2) (18)

or using the plant operator P and the change of the control signal u, giving

y(ρ + ∆ρ, r) = y(ρ, r) + ∂Pu(Y, U, V )∆u + O(∆ρ2) (19)

For a given ∆ρ, these two expressions are equal, and by combining them one
obtains in the limit ∆ρ → 0

y′
ρ(ρ, r) = T ′

ρ(ρ, r, v) = ∂Pu(Y, U, V )u′
ρ(ρ, r) (20)

An expression of u′
ρ(ρ, r) follows from (8) if ∆ρ → 0

u′
ρ(ρ, r) = C ′

ρ(ρ, U, R, Y ) + ∂Cy(ρ, U, R, Y ) y′
ρ(ρ, r) (21)

Combining (20) and (21) gives an expression for the derivative of the output
signal

y′
ρ(ρ, r) = T ′

ρ(ρ, r, v) =

1

1 − ∂Pu(Y, U, V )∂Cy(ρ, U, R, Y )
∂Pu(Y, U, V )C ′

ρ(ρ, U, R, Y ) (22)

That is, y′
ρ(ρ, r) is obtained by filtering C ′

ρ(ρ, U, R, Y ) through a time-varying
linear filter, as depicted in Figure 4. [Notice that the incremental BIBO sta-
bility assumption of Section 2 guarantees stability of the linear time-varying
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--
C ′

ρj
(ρ,U,R, Y ) u′

ρj
(ρ, r) y′ρj

(ρ, r)+

+
∂Pu(Y,U, V )

∂Cy(ρ,U,R, Y )

Fig. 4. Generation of u′
ρj

(ρ, r) and y′ρj
(ρ, r)

feedback loop in Figure 4] We will now describe how this filtering will actually
be obtained by differencing the outputs of two experiments.

Consider the output from a first experiment on the plant, where the signals
from this experiment are indexed with “1”.

y1(ρ, r) = T (ρ, r, v1) (23)

Suppose that we perform a second experiment on the system with a slightly
perturbed reference signal r+∆r. Denote the corresponding output by y2(ρ, r+
∆r). Then, using the small signal assumption on ∆r and a smoothness assump-
tion on T , we have that

y2(ρ, r + ∆r) = T (ρ, r + ∆r, v2) =

T (ρ, r + ∆r, v1) + ∂Tv(ρ, r + ∆r, v1)∆v + O(∆v2)

= T (ρ, r, v1) + ∂Tr(ρ, r, v1)∆r + ∂Tv(ρ, r + ∆r, v1)∆v + O(∆r2) + O(∆v2)
(24)

where v2 is the disturbance during the second experiment and ∆v = v2 − v1.
The last terms, O(∆r2) and O(∆v2) describe the approximation due to the
Taylor expansion in ∆r and ∆v. Combining (23) and (24) gives

y2(ρ, r + ∆r) − y1(ρ, r) =

∂Tr(ρ, r, v1)∆r + ∂Tv(ρ, r + ∆r, v1)∆v + O(∆r2) + O(∆v2) (25)

An expression of ∂Tr(ρ, r, v1) using input-output operators can be obtained
with calculations similar to those which gave T ′

ρ(ρ, r, v) in (22),

∂Tr(ρ, r, v1) =
1

1 − ∂Pu(Y, U, V1)∂Cy(ρ, U, R, Y )
∂Pu(Y, U, V1)∂Cr(ρ, U, R, Y )

(26)
Now, if ∆r is chosen according to (10) as ∆rj for some given j, it follows
from (25) and (26) that ∂Tr(ρ, r, v1)∆rj , the first term of (25), equals the
y′

ρj
(ρ, r)∆ρj : see (22). The rest of the terms in (25) give a disturbance to the

estimate.

It follows from the problem setting that the noise sequence v2 in the second
experiment is different from v1. This gives the disturbance terms ∂Tv(ρ, r +
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∆r, v1)∆v and O(∆v2) in (25). The first one of these also exists if the system
is linear, but the second one is a nonlinear effect due to the fact that different
noise sequences give slightly different trajectories and linearizations. It follows
that if the noise level is low and if the closed-loop performance is fairly good
so that the noise sequence does not influence the trajectories substantially,
then the term O(∆v2) should be small.

As with the nonlinear contribution of the noise, the remaining disturbance
term in (25), O(∆r2), is also due to that the trajectories become slightly
different when r is changed between different experiments. However, since the
size of ∆r is a user-designed parameter, it can be chosen so that a good balance
is obtained between signal to noise ratio and the bias caused by O(∆r2) and
O(∆v2).

To conclude, by choosing ∆r to be a scaled version of (10) and by performing
two experiments with r and r + ∆r and then, using (25), one obtains an
estimate of y′

ρj
.

We can now formulate the tuning algorithm.

5.1 Experimental generation of the gradient

If the local linear [∂Cr(ρ, U, R, Y )]−1 operator exists and if it is stable, define
the signals

r̃j(ρ) = [∂Cr(ρ, U, R, Y )]−1 C ′
ρj

(ρ, U, R, Y ) for j = 1, · · · , n. (27)

which can be computed given the data trajectories r and y from the first
experiment.

At each iteration step i of the controller parameter tuning, use n + 2 exper-
iments with the fixed controller C(ρ[i], U, R, Y ). The corresponding reference
signals are 



r1
i = r,

r2
i = r + µi

1 r̃1(ρ[i]),

...
...

...

rn+1
i = r + µi

n r̃n(ρ[i]),

rn+2
i = r

(28)

with the size of the scalars µi
j, j = 1, · · · , n, chosen so that a good trade-

off between bias and variance in the estimate is obtained. The corresponding

11



output and disturbance signals are, respectively, denoted by yk
i and vk

i , for
k = 1, · · · , n + 2. We have the following estimates

ỹ(ρ[i], r) = yn+2
i − yd (29)

ŷ′
ρj

(ρ[i], r) =
1

µi
j

(yj+1
i − y1

i ) (30)

for j = 1, · · · , n. Thus ŷ′
ρj

(ρ[i], r) is a noisy estimate of y′
ρj

(ρ[i], r). Note that
the noise terms in ŷ′(ρ[i], r) are independent of the noise of ỹ(ρ[i], r). This
is the motivation for the (n + 2)-th experiment. In a low noise situation, if
an additional small bias contribution can be accepted, this experiment can
be omitted with its corresponding output replaced by the output of the first
experiment.

The estimate of the gradient of J is then obtained as

Ĵ ′(ρ[i]) =
1

N

N∑
t=1

ỹt(ρ[i], r) ŷ′
t(ρ[i], r). (31)

A biased estimate Ĥi of the Hessian is obtained using

Ĥi =
1

N

N∑
t=1

ŷ′
t(ρ[i], r) [ŷ′

t(ρ[i], r)]T . (32)

An unbiased estimate of the Hessian is of less priority than an unbiased es-
timate of the gradient. The reason for this is that the estimate (32) of the
Hessian is always positive definite so that the parameter update is always in
a descent direction of the criterion. This is enough to guarantee convergence
to the true minimum of the control performance.

If the control cost includes a control signal penalty an estimate of u′(ρ[i], r) is
also necessary. It can be obtained by combining (21) with (30). The iterative
algorithm is obtained by replacing J ′(ρ[i]) by Ĵ ′(ρ[i]) and Hi by Ĥi in (6).

The algorithm is now described with the following steps:

(1) Start with a stabilizing controller C(ρ[0], U, R, Y ).
(2) With the current controller C(ρ[i], U, R, Y ) in the loop, perform one ex-

periment on the actual system.
(3) Generate the signals r̃j(ρ[i]) as in (27).
(4) Perform n experiments as in (28).
(5) Perform the n + 2th experiment and compute y(ρ[i], r) − yd.
(6) Compute the estimates ŷ′

ρj
(ρ[i], r) of the gradient signals y′

ρj
(ρ[i], r) as

shown in (30).
(7) Compute Ĵ ′(ρ[i]) and Ĥi as shown in (31) and (32).
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(8) Update the parameter vector using

ρi+1 = ρi − γi Ĥ
−1
i Ĵ ′(ρ[i]) (33)

(9) If further tuning is necessary, goto Step 2.

6 Discussion

• Exactly as in the linear IFT, the reference signal must be chosen with great
care. The controller will only be tuned for those signals used in the experi-
ments. The general recommendation is to choose a “typical” reference signal
which excites the important modes.

• The controller optimization procedure converges to a local minimum of the
design criterion under the condition of bounded signals, i.e. it is assumed
that stability is preserved while iterating. The variable step size is also the
principal ingredient in proving convergence of the algorithm in the presence
of process noise. These features are analogous to the linear version of IFT
and we refer to (7; 6).

• The initial state of the system will influence the estimate. Because of the
assumption of exponential stability, the extent of its influence will decrease
with increased experimental duration.

• The requirement of small deviations of the reference signals between the
different experiments in (28) might give poor excitation of the system. This
is an inherited problem of the proposed method due to that it relies purely
on experimental data and does not use any model of the plant. The size
of the deviations is a trade-off between noise sensitivity and bias due to
nonlinearity. If the linearization of the plant is changing slowly as function
of the reference signal during an experiment, which is common in many
practical problems, then the excitation can be made larger. Note also that
in real problems, where we always have nonlinear plants, a linear control
design is made at some signal level with a limited validity outside the design
conditions. Hence, also in the linear design case we have a similar problem.

Also, in the proposed nonlinear IFT setting, poor signal to noise ratio can
always be compensated by performing longer experiments. By repeating the
reference signal several times it is possible to make the noise contribution
arbitrarily small.

• The linear IFT is easily obtained. Assume that (1) and (2) reduce to

yt = P ut + vt,

ut = C(ρ, U, R, Y ) = Cr(ρ)rt + Cy(ρ)yt
(34)

where P is the transfer function describing the plant, and Cr(ρ) and Cy(ρ)
are linear transfer functions.
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Then, considering a parameter ρj in Cr(ρ), and since ∂Cr(ρ) = Cr(ρ) (27)
simplifies to

r̃j(ρ) =
1

Cr(ρ)

dCr(ρ)

dρj
rt (35)

and from (22) and the fact that linear time-invariant filters commute it now
follows that

y′
ρj

(ρ, r) =
dCr(ρ)

dρj

1

Cr(ρ)
Gcrt (36)

where

Gc =
PCr

1 − PCy

is the closed loop transfer function.
This means that only one experiment with reference signal rt is necessary

to obtain the derivative with respect to all the parameters in Cr(ρ); the

result is filtered through dCr(ρ)
dρj

1
Cr(ρ)

to obtain the result with respect to a

specific parameter ρj .
In the same way, to obtain the derivative for a parameter in Cy(ρ) one

obtains

y′
ρj

(ρ, r) =
dCy(ρ)

dρj

1

Cr(ρ, q)
Gcyt

which is an experiment with yt as reference signal. Hence, estimates of
y′(ρ, r) (and u′(ρ, r)) can be obtained by only two experiments thanks to
the fact that the operators commute.

This gives a different description of the Model-Free Tuning applied to
linear systems than the one given in (6; 7).

• To generate r̃j one must filter the gradient signals through [∂Cr(ρ, R, Y )]−1

which has to exist and to be stable. The linear filter equation looks like

∆ut = ∂Cr(ρ, R, Y )∆rt =
T0 + T1q

−1 + · · ·+ Tmq−m

S0 + S1q−1 + · · ·+ Snq−n
∆rt

where q−1 is the backward shift operator, q−1ut = ut−1. The coefficients
T0, . . . , Tm and S0, . . . , Sn are evaluated along the trajectories of the ex-
periments which makes them time dependent. The inverse becomes

∆rt =
S0∆ut + S1∆ut−1 + · · · + Sn∆ut−n − T1∆rt−1 + · · · − Tm∆rt−m

T0

and it exists if T0 6= 0 for all t. Hence, an existence test can easily be included
in the algorithm. In the event of instability, there is in the linear case an easy
work-around using non-causal filtering which might be possible also in some
nonlinear problems, but in general it is hard to apply. A simple, practical,
solution would be to include a test of the obtained ∆r in the algorithm so
that one can stop the tuning in such cases.
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7 Conclusions

In this paper, we have presented a nonlinear extension of the controller op-
timization method proposed in (7; 6). It is shown that one can obtain an
estimate of the gradient experimentally using n+2 experiments on the actual
system with slightly different reference signals.

If the initial controller is fairly good and the noise level is moderate so that
the output trajectories from different experiments are close to another then
the bias in the gradient estimate can be expected to be small.

The algorithm offers a safer alternative than if the gradient is estimated by
changing the parameter values. The tools used in the algorithm are easy to
implement or readily available in commercial software packages. A numerical
simulation example with an experimental-based generation of the gradient
illustrates the algorithm.
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