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Iterative idea is combined with data-driven control and is used to design the feedforward controller and feedback controller
simultaneously. Consider one closed loop system with two controllers, the classical model-based control holds on the condition of
known plant. To alleviate the modeling process for plant, data-driven control is applied to design the two controllers. After these
two controllers are parametrized by two unknown parameter vectors, the iterative idea is introduced to identify these two
parameter vectors. Furthermore, for more general case of controllers, the closed relations between controllers and expected
transfer functions are derived.)en, the iterative idea is also introduced to achieve the controller design. To be of benefit for latter
stability analysis, some equities are derived for output-input sensitivity functions with three kinds of disturbances. Generally, after
formulating the problem of the controller design as one model-matching problem, the purpose of this paper is threefold. First, we
derive that, in case of two parametrized controllers, the iterative idea is performed to identify these two unknown parameter
vectors, even when parameters converge to their true values. Second, we show how to design the two controllers iteratively for
more general forms and find the closed relations between these controllers and expected closed loop transfer functions. )ird, we
provide some heuristic considerations on output-input sensitivity functions, which are of benefit for our stability analysis on data-
driven control. Finally, one example is given to show the feasibility of our proposed theories.

1. Introduction

Data-driven control is one new advanced control strategy in
theory and practice, due to its lack of system modeling
process. Classical control strategy, i.e., model-based control,
depends on the mathematical model greatly of the con-
sidered system or plant. More specifically, when to control
one plant in the open loop or closed loop, the first step is to
construct one mathematical model for this plant by using
first principle or system identification; then, this obtained
mathematical model is applied for the latter controller de-
sign or other missions. During the last 60 years, the main
task of system identification concerns on finding one ap-
proximated model to best fit the observed input-output data.
Based on this approximated model, a suitable controller is
designed under the condition that this identified model
converges to its real system. Generally, model-based control

includes two steps: system identification and controller
design. In recent years, researchers are thinking about how
to combine these two steps, i.e., designing controller directly
from the observed input-output data. )en, data-driven
control is generated to achieve the controller design from
data without the modeling process. Especially during our
information age, lots of observed data are very easy to yield,
so it is necessary to study data-driven control and apply it in
some real engineering fields, such as paper production, glass
production, and separation process like crystallization. To
alleviate the dependence on the identified model for the
controller, the notion of the data-driven approach is widely
studied in recent years. )e attracting property of the data-
driven approach is that the controller is designed directly
based on measured data. As the data-driven approach is still
in its infancy, different names are called in the references to
describe it, such as data-driven, data-based, and model-free.
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To the best of our knowledge, the principles between data-
driven approach and system identification are similar to
each other, as the measured data are applied to get the
mathematical model for the unknown plant in the
framework of system identification, but get the approxi-
mated controller for the case of the data-driven approach.
)e idea of direct data-driven control was first proposed in
machine learning; then, it attracted many researchers in the
advanced control field recently. Now, this data-driven
theory is widely applied in the control field, for example,
direct data-driven control, data-driven estimation, data-
driven detection, and data-driven optimization. )e
common property among them is that the measured data
are used to achieve our main goals; then, it means some
useful information are extracted from these measured data.
On the contrary, the data-driven approach needs lots of
measured data, i.e., the number of measured data is suf-
ficiently large. )is requirement is feasible in our infor-
mation period, and the data-driven approach was born to
overcome the limitation of the model-based approach, so
the data-driven approach is studied very popularly from
theory and practice application.

Due to no model identification process for data-driven
control, the unknown controllers, whatever feedback con-
troller and feedforward controller, are yielded through the
observed input-output data. We say that lots of information
exist in observed data, for example, information for system
modeling, information for controller design, and informa-
tion for fault detection. )e first is named as system iden-
tification, which is studied during these 40 years, but the
second corresponds to data-driven control, proposed in
these 10 years, so the research on system identification is
very mature, such as identification algorithm and conver-
gence analysis. In these 10 years, many detailed strategies for
data-driven control are proposed to generate the controller
from observed data, for example, virtual reference feedback
tuning control, subspace predictive control, iterative cor-
rection tuning control, and set membership predictive
control. All the above data-driven control strategies hold on
the condition that the observed data must be persistent
exciting or data informative, and it means all the implicit
modes in system and controllers are excited perfectly; then,
their complete properties are included in the observed data.
)e task of data-driven control is to apply some ways to
extract these useful properties for the system (system
identification) and controller (data-driven control). By the
way, the third information for fault detection corresponds to
testify the faults from the observed data, specifically in
UAVs’ formation control and modern war. For example, in
recent years, we have succeeded in applying ellipsoidal
approximation in target tracking for multi-UAVs’ formation
cooperative detection. Its essence is to identify the unknown
state from the observed data, as some important factors are
in the state estimation.

)e idea of data driven can be combined with other
control strategies, such as adaptive control, internal model
control, robust control, and model predictive control. It is
similar to a new concept-identification for control, proposed
in 2010s, to combine system identification and other control

strategies. Consider the case of data-driven model predictive
control, system identification is used to identify one function
estimation; then, this obtained function estimation is
substituted into the cost function for model predictive
control. As the number of references on data-driven control
is vast, we cannot list all of them here, so some are given to be
suitable for our own study. Data-driven control is applied to
minimize the energy consumption in [1], where the
mathematical equation for the energy consumption is
constructed as one linear state space system. Formulas for
data-driven control are analyzed, such as stabilization, op-
timality, and robustness in [2], where the detailed linear
feedback controller is expressed as one matrix form about
the data Hankel matrix.)e closed relations betweenmodel-
based control and data-driven control are studied to point
out the perspective for data-driven control [3]. Consider one
nonlinear feedback loop system [4], data-driven control is
introduced to design controllers with two degrees of free-
doms. And, set membership identification is more widely
studied for the case of unknown but bounded noise. Campi
and Weyer [5] proposed one new data-driven control
strategy, i.e., virtual reference feedback tuning control;
furthermore, finite sample properties of it are derived for the
finite sample data points. )en, this sample complexity is
considered for the classical linear quadratic regulator [6]; as
a consequence, this sample complexity is the required
number of data points which makes the control performance
to achieve the desired one. Last year, some researchers
started to derive data informativity for data-driven analysis
and control [7], from the point of persistency excitation [8].
One important condition on optimal input must be satisfied
to guarantee the Hankel matrix be full rank. As reinforce-
ment learning is very popular now, so this reinforcement
learning will be also introduced in control theory [9]; it tells
reinforcement learning will be a hot subject for data-driven
control in future. During these 3 years, we also publish some
contributions on data-driven control, for example, zonotope
parameter identification for data-driven control [10] and
finite sample properties for data-driven control [11]. )e
idea about combining data-driven control with adaptive
control is seen in [12], where Lyapunov stability is applied to
derive one parameter adjustment law, satisfying the stability
for the whole adaptive system. Research on piecewise affine
system identification are still done, for example, Bianchi and
Breschi [13] developed a general framework to alternate
between parameter estimation and sample mode assign-
ment. In reference [14], given a set of input-output data, the
identification of a switched nonlinear system for the un-
derlying system involves the simultaneous identification of
themode sequence. Due to the application of the data-driven
approach widely in the control field and the similar point
between data-driven approach and system identification, we
call their combination as identification for control, i.e.,
system identification for direct data-driven control. More
specifically, we describe a concise introduction or contri-
bution on system identification for direct data-driven
control, which belongs to the data-driven approach. In case
of the unknown but bounded noise, one bounded error
identification is proposed to identify the unknown systems
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with time varying parameters. )en, one feasible parameter
set is constructed to include the unknown parameter with a
given probability level. )e problem about how to construct
this confidence interval is solved by a linear approximation/
programming approach [15], which can identify the un-
known parameter only for the linear regression model.

Based on our previous contributions on data-driven
control [10–12], this paper introduces the iterative idea into
data-driven control, as the iterative idea exists in theory
and practice more widely. Roughly speaking, the parameter
converges to its true values as an iterative form until the
estimation error be zero. Consider one closed loop system
with two degrees of freedom controllers, i.e., feedback
controller and feedforward controller, data-driven control
strategy is used to design these two unknown controllers
from the observed input-output data. When given the
expected closed loop transfer function and expected sen-
sitivity function, the problem of designing these two un-
known controllers is reduced to one model-matching
problem, whose optimization variables correspond to the
two unknown controllers. Moreover, one cost function is
constructed based on the observed input-output data for
this model-matching problem. After formulating the
problem of the controller design as one model-matching
problem, the purpose of this paper is threefold. First, we
derive that, in case of two parametrized controllers, the
iterative idea is performed to identify these two unknown
parameter vectors, even when parameters converge to their
true values. Second, we show how to design the two
controllers iteratively for more general forms and find the
closed relations between these controllers and expected
closed loop transfer functions. )ird, we provide some
heuristic considerations on output-input sensitivity func-
tions, which are of benefit for our stability analysis on data-
driven control.

)is paper is organized as follows. In Section 2, the
structure of the considered closed loop system with two
unknown controllers i.e., feedback controller and feed-
forward controller, is formulated. For the sake of com-
pleteness, the classical model-based control is reviewed and
one short introduction on data-driven control is also
recalled from [10]. When the two unknown controllers are
parametrized by two unknown parameter vectors, re-
spectively, the iterative idea is proposed to identify these
two unknown parameter vectors in Section 3, which means
parameterized controllers design iteratively.)en, for more
general forms on these two unknown controllers, the de-
tailed relations between them and expected closed loop
transfer function are established in Section 4; then, the
iterative idea is applied again. In Section 5, more kinds of
noise and disturbances are considered in this same closed
loop system. )en, some derivations about output-input
sensitivity functions are given for our latter stability
analysis for data-driven control. In Section 6, one example
shows the effectiveness of the proposed iterative controller
design. Section 7 ends the paper with final conclusion and
points out the next interesting subject. Here, in this paper,
all the mathematical derivations are obtained by our own
contributions.

2. Preliminaries

We start by recalling the results given in [10, 11].

2.1. Closed Loop System with Two Controllers. Consider one
closed loop system with two controllers in Figure 1.

In Figure 1, r(t) is the external input signal, P(z) is the
unknown plant, and it can be denoted as one proper rational
transfer function form. C1(z) and C2(z) are two unknown
controllers, i.e., feedforward controller and feedback con-
troller, respectively. )e main task of this paper is to design
these two unknown controllers. u(t) and y(t) are the input
and output for the considered plant P(z). d(y) is one kind of
external disturbance, which will be extended in Section 5.
ε(t) � r(t) − C2(z)y(t) is the error signal, imposed on that
feedforward controller C1(z). During the framework of
data-driven control, two unknown controllers
C1(z), C2(z){ } are designed based on the observed input-
output data u(t), y(t){ }, while avoiding the system identi-
fication process for that unknown plant P(z). z is one time
shift operator, i.e., zu(t) � u(t − 1).

Observing Figure 1 again, two controllers exist in that
closed loop system simultaneously, i.e., the common unit
feedback is replaced by feedback controller C2(z). )e
benefit of these two controllers is that they cooperate with
each other to achieve the control mission. More specifically,
the considered closed loop with two controllers appears in
some practical engineers, such as flight control, servo
control, and predictive control.

Consider that, in Figure 1, we have the following rela-
tions such as

y(t1) � P(z)u(t) + d(t)

� P(z)C1(t)ε(t) + d(t),

ε(t) � r(t) − C2(t)y(t).

(1)

From above equation (1), the complete input-output
equation for r(t), y(t){ } is that

y(t) �
P(z)C1(z)

1 + P(z)C1(z)C2(z)
r(t)

+
1

1 + P(z)C1(z)C2(z)
d(t).

(2)

Set the transfer function from r(t) to y(t) be the
closed loop transfer function, and similarly, the other
transfer function from d(t) to y(t) is the sensitivity
function. For the sake of completeness, the classical
model-based control is formulated as follows, given the
expected closed loop transfer function and expected
sensitivity function as M(z) and S(z); then, the problem
of the controller design is to design the two controllers
C1(z), C2(z){ } so as to make the closed loop transfer
function and sensitivity function be equal to their own
expected forms M(z) and S(z). Generally, the classical
model-based control is formulated as the following
model-reference problem:
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min
C1(z),C2(z)

J1(θ, η) �
P(z)C1(z)

1 + P(z)C1(z)C2(z)
− M(z)



2

2

+
1

1 + P(z)C1(z)C2(z)
− S(z)



2

2

,

(3)
where ‖.‖22 is Euclidean norm and C1(z), C2(z){ } are two
optimization variables.

From [10], model reference problem (3) is solvable on
the condition that plant P(z) is known, so firstly the model
identification process is needed to give one mathematical
equation for that unknown plant P(z). To avoid this model
identification process for plant P(z), data-driven control is
applied.

2.2.Data-DrivenControl. Based on the above description on
classical model-based control, the reason about why that
plant P(z) exists in cost function (3) is that the input-output
data r(t), y(t){ } are used for the whole closed loop system,
not the input-output data u(t), y(t){ } with respect to that
unknown plant P(z). To be more precise, if the input-output
data u(t), y(t){ } around plant P(z) are observed, some
information about two unknown controllers C1(z), C2(z){ }
are included in these input-output data u(t), y(t){ }, not
r(t), y(t){ }.

Consider that given closed loop transfer functionM(z),
the relation between input u(t) and output y(t) is that

u(t) � C1(z, θ)ε(t)

� C1(z, θ) M
− 1
(z) − C2(z, η)( )y(t). (4)

Similarly, consider that given sensitivity function S(z), it
also holds that

u(t) � − C1(z, θ)C2(z, η)
S(z)

S(z) − 1
y(t). (5)

Equations (4) and (5) are the relations for input u(t) and
output y(t), corresponding to the given closed loop transfer
function M(z) and given sensitivity function S(z). Com-
bining equations (4) and (5) simultaneously, two unknown
controllers C1(z), C2(z){ } are designed through the fol-
lowing optimization problem:

min
C1(z),C2(z)

J2 C1(z), C2(z)( ) � 1

N
∑N
t�1

u(t) − C1(z) M
− 1
(z) − C2(z)( )y(t)[ ]2

+
1

N
∑N
t�1

u(t) + C1(z)C2(z)
S(z)

S(z) − 1
y(t)[ ]2,

(6)

whereM− 1(z) and S− 1(z) are two inverse transfer functions
and N is the number of observed data. From [10], that
unknown pant P(z) does not exist in cost function (6), i.e.,
no modeling process for plant P(z). Input-output data
u(t), y(t){ }Nt�1 are observed, and M(z), S(z){ } are given, so
only two controllers C1(z), C2(z){ } are optimization vari-
ables in cost function (6). )is is the essence for our con-
sidered data-driven control. All above detailed introduction
on closed loop system and data-driven control are seen in
our previous contributions [10, 11].

3. Parametrized Controller Design

Parametrized controller is always common in practice, such
as the PID controller. )e merit of the parametrized con-
troller is to change the formal controller design to one
problem of parameter estimation. It means after the pa-
rameter is identified, then the controller is obtained through
the simple substitution.

For convenience, two controllers C1(z), C2(z){ } are
parametrized by two unknown parameter vectors θ and η,

respectively, i.e., (C1(z, θ), C2(z, η)). As a consequence, the
parametrized forms are listed as follows:

C1(z, θ) � αT(z)θ,

C2(z, η) � βT(z)η,

α(z) � α1(z), α2(z), . . . , αn(z)[ ]T,
β(z) � β1(z), β2(z), . . . , βn(z)[ ]T,

θ � θ1, θ2, . . . , θn[ ]T,
η � η1, η2, . . . , ηn[ ]T,

(7)

where in equation (7), α(z) and β(z) are two known or-
thogonal basic functions and θ, η{ } are tow unknown pa-
rameter vectors with suitable dimension n. After two
unknown controllers C1(z), C2(z){ } are parametrized by
two unknown parameter vectors θ, η{ }, i.e., C1(z), C2(z){ },
then corresponding optimization problem (6) is rewritten as
that

r (t) ε (t) u (t)

d (t)

y (t)
C1 (z)

C2 (z)

P (z)
+

–

+

Figure 1: Closed loop system with two controllers.
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min
θ,η

J3(θ, η) �
1

N
∑N
t�1

u(t) − C1(z, θ) M
− 1
(z) − C2(z, η)( )y(t)[ ]2

+
1

N
∑N
t�1

u(t) + C1(z, θ)C2(z, η)
S(z)

S(z) − 1
y(t)[ ]2.

(8)
And, the parametrized closed loop system is replotted in

Figure 2.
Observing optimization problems (6) and (7), the

controller design is reduced to identify those unknown
parameter vectors θ, η{ }. As the pointwise infimum of a
family of affine function of θ, η{ } is concave, so those two
terms in equation (7) are convex function. Moreover, the
first term is rewritten as

u(t) − C1(z, θ) M
− 1
(z) − C2(z, η)( )y(t) � u(t)

− αT(z)θM− 1
(z)y(t) − αT(z)θβT(z)ηy(t).

(9)

It corresponds to one geometric programming; then, use
the variables defined as x � log θ and y � log η, so θ � ex and
η � ey, and it can be changed as one simple linear optimization
problem. )ere are lots of optimization methods for solving
equation (7), such as least squares method, first order gradient
method, and set membership method. Whatever optimization
methods are used, the iterative idea is introduced to identify the
two unknown parameter vectors θ, η{ }. Generally, the com-
plete parameter estimation process with the iterative idea is
formulated as follows.

Step 1: given two initial parameter vectors θ0, η0{ }.
Step 2: compute the first parameter vector through
solving the following optimization problem, and de-
note it as θ̂1:

θ̂1 � argmin
θ

J3 θ, η0( )

�
1

N
∑N
t�1

u(t) − C1(z, θ) M
− 1
(z) − C2 z, η0( )[ ]y(t)[ ]2

+
1

N
∑N
t�1

u(t) + C1(z, θ)C2 z, η0( ) S(z)

S(z) − 1
y(t)[ ]2.

(10)

Step 3: similarly, compute the second parameter vector
through solving one optimization problem, and denote
it as η̂1:

η̂1 � argmin
η

J3 θ0, η( )

�
1

N
∑N
t�1

u(t) − C1(z, θ) M
− 1
(z) − C2(z, η)( )y(t)[ ]2

+
1

N
∑N
t�1

u(t) + C1(z, θ)C2(z, η)
S(z)

S(z) − 1
y(t)[ ]2.

(11)

Step 4: iterate to generate parameter estimation θ̂2:

θ̂2 � argmin
θ

J3 θ, η̂1( )

�
1

N
∑N
t�1

u(t) − C1(z, θ) M
− 1
(z) − C2 z, η̂1( )( )y(t)[ ]2

+
1

N
∑N
t�1

u(t) + C1(z, θ)C2 z, η̂1( ) S(z)

S(z) − 1
y(t)[ ]2.

(12)

Step 5: iterate to generate parameter estimation η̂2:

η̂2 � argmin
η

J3 θ̂1, η( )

�
1

N
∑N
t�1

u(t) − C1 z, θ̂1( ) M− 1
(z) − C2(z, η)( )y(t)[ ]2

+
1

N
∑N
t�1

u(t) + C1 z, θ̂1( )C2(z, η)
S(z)

S(z) − 1
y(t)[ ]2.

(13)

Step i: based on the obtained parameter estimations
θ̂i− 1, η̂i− 1{ }, the new parameter estimations θ̂i, η̂i{ } are
computed iteratively:

θ̂i � argmin
θ

J3 θ, η̂i− 1( ),
η̂i � argmin

η

J3 θ̂i− 1, η( ). (14)

When the following inequality holds, then terminate the
above iterative process:

θ̂i − θ̂i− 1
 2 + η̂i − η̂i− 1

 2≤ ε, (15)

where ϵ is one positive value with sufficient small, for ex-
ample, ε � 0.1.

Equation (14) embodies our iterative idea, and it means
when to compute the ith parameter estimation θ̂i, the other
parameter estimation η in the cost function is substituted by
its i − 1th parameter estimation η̂i− 1. And, it is the same
process for computing η̂i.

r (t) ε (t) u (t)

d (t)

y (t)
C1 (z, θ)

C2 (z, η)

P (z)
+

–

+

Figure 2: Closed loop system with two parametrized controllers.
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4. Iterative Controller Design

)e parametrized controllers (C1(z, θ), C2(z, η)) are con-
sidered in Section 3, where the problem of the controller
design is changed to the parameter estimation. As those two
unknown parameter vectors θ, η{ } exist in cost function (7)
as the multiply form, so our proposed iterative idea is in-
troduced to identify them separately. During all of our
previous contributions, we do not concern on the closed
relations between the close loop transfer functions and their
expected forms M(z), S(z){ }. Here, our tasks are to find
these closed relations and apply them into design more
general controllers (C1(z), C2(z)) iteratively.

Combining equations (4) and (5), two controllers
(C1(z), C2(z)) must satisfy that

C1(z) M
− 1
(z) − C2(z)( )y(t) � − C1(z)C2(z)

S(z)

S(z) − 1
y(t).

(16)
It means that

M− 1
(z) − C2(z) � − C2(z)

S(z)

S(z) − 1
,

(S(z) − 1)M− 1
(z) − (S(z) − 1)C2(z) � − C2(z)S(z),

(S(z) − 1)M− 1
(z) + C2(z) � 0.

(17)
)en, feedback controller C2(z) is yielded as follows:

C2(z) �
1 − S(z)

M(z)
. (18)

Equation (18) shows after we have the expected closed
loop transfer function M(z) and expected sensitivity
function S(z), then feedback controller C2(z) is easily ob-
tained from equation (18), so the next question is to get the
other feedforward controller C1(z). After simple but tedious
calculations, we have the following equities:

C2(z)M(z) �
P(z)C1(z)C2(z)

1 + P(z)C1(z)C2(z)
,

1 − C2(z)M(z) � 1 −
P(z)C1(z)C2(z)

1 + P(z)C1(z)C2(z)

�
1

1 + P(z)C1(z)C2(z)
,

1 − C2(z)M(z)[ ]P(z)
M(z)

�
P(z)

1 + P(z)C1(z)C2(z)

×
1 + P(z)C1(z)C2(z)

P(z)C1(z)
,

�
1

C1(z)
.

(19)

)en, the feedforward controller C1(z) is yielded as that

C1(z) �
M(z)

1 − C2(z)M(z)[ ]P(z), (20)

and substituting equation (18) into (20), then we have

C1(z) �
M(z)

1 − C2(z)M(z)[ ]P(z) � M(z)

S(z)P(z)
. (21)

Observing equations (18) and (21), whenM(z) and S(z)
are known in advance, then feedback controller C2(z) is
obtained easily, but plant P(z) is needed to derive the
feedforward controller C1(z). As a consequence, feedback
controller C2(z) can be generated from these two expected
transfer functions M(z), S(z){ }, but information of plant
P(z) is needed in feedforward controller C1(z). Here, the
problem about information P(z) and designing C1(z) can
be handled by the iterative idea. Generally, the complete
controller design process for more general controllers is
formulated as follows:

Step 1: given two expected or design transfer functions
M(z), S(z){ }

Step 2: compute the feedback controller C2(z) directly
by

C2(z) �
1 − S(z)

M(z)
. (22)

Step 3: choose one initial feedforward controller C0
1(z)

as

C0
1(z) �

M(z)

S(z)P0(z)
, (23)

where P0(z) is the initial plant

Step 4: using C0
1(z) and fixed C2(z), determine plant

P1(z) as

P1(z) � argminP(z)
P(z)C0

1(z)

1 + P(z)C0
1(z)C2(z)

− M(z)



2

2

.

(24)

Step 5: substitute P1(z) into C1(z) to give one new
feedforward controller C1

1(z), i.e.,

C1
1(z) �

M(z)

S(z)P1(z)
. (25)

Step i: iterate to compute the ith plant Pi(z) and the ith
feedforward controller Ci1(z):

Pi(z) � argminP(z)
P(z)Ci− 11 (z)

1 + P(z)Ci− 11 (z)C2(z)
− M(z)



2

2

,

Ci1(z) �
M(z)

S(z)Pi(z)
.

(26)
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When the following inequity holds, then terminate the
above iterative process:

Pi(z) − Pi(z)
 2 + Ci1(z) − C

i− 1
1 (z)

 2 ≤ ε. (27)

Comment: the above iterative process solves the iden-
tification for plant P(z) and feedforward controllerC1(z), as
feedback controller C2(z) is known from the given transfer
functions M(z), S(z){ }. )en, the the iterative process is
related with plant P(z) and feedforward controller C1(z)
within the framework of data driven control.

5. Design Analysis

)e above theoretical analysis about the iterative design for
data-driven control concerns on the closed loop system in
Figure 1. As only output disturbance d(t) exists in Figure 1,
so it is one ideal case. But on the contrary in practice, maybe
three kinds of disturbances appear in the considered closed
loop system in Figure 3, i.e., output disturbance, input
disturbance, and measurement noise.

In Figure 3, d(t) denotes output disturbance, d1(t)
denotes the input disturbance, and d2(t) is measurement
noise.

Similarly, for Figure 3, some relations hold based on the
linear system theory. For notational clarity, we abbreviate
the parameter vectors θ, η{ } in following mathematical
derivations:

y(t) � d(t) + P(z)u(t)

� d(t) + P(z) d1(t) + C1(z) r(t) − C2(z) y(t) + d2(t)( )[ ][ ],
(28)

i.e.,

1 + P(z)C1(z)C2(z)[ ]y(t) � d(t) + P(z)d1(t)
+ P(z)C1(z)r(t) − P(z)C1(z)C2(z)d2(t).

(29)

)en,

y(t) �
d(t) + P(z)d1(t) + P(z)C1(z)r(t)

1 + P(z)C1(z)C2(z)

−
P(z)C1(z)C2(z)d2(t)

1 + P(z)C1(z)C2(z)
.

(30)

From equation (30), one transfer function from output
disturbance d(t) to plant output y(t) is defined as follows,
i.e., output sensitivity function:

Syd(z) �
1

1 + P(z)C1(z)C2(z)
. (31)

Similarly, the transfer function from measurement noise
disturbance d2(t) to plant output y(t) is that noise sensi-
tivity function:

Syd2(z) � −
P(z)C1(z)C2(z)

1 + P(z)C1(z)C2(z)
. (32)

)e transfer function from input disturbance d1(t) to
plant output y(t) is that

Syd1(z) � −
P(z)

1 + P(z)C1(z)C2(z)
. (33)

)e transfer function from excited input r(t) to plant
output y(t) holds that

Syr(z) �
P(z)C1(z)

1 + P(z)C1(z)C2(z)
. (34)

Observing equations (31) and (32), it holds that

Syd(z) − Syd2(z) � 1. (35)

If considered in the frequency domain, we have

Syd(z)
∣∣∣∣∣ ∣∣∣∣∣ + Syd2(z)∣∣∣∣∣ ∣∣∣∣∣ � 1. (36)

Similarly, from equations (31) and (34), we have

Syd(z) + Syr(z) � 1. (37)

Denote by S1(z) as the change of closed loop transfer
function Syr(z) with the change of plant P(z). )en, this
S1(z) is derived as follows in detail:

S1(z) �
zSyr(z)/Syr(z)( )
(zP(z)/P(z))

�
zSyr(z)

zP(z)
×
P(z)

Syr(z)
. (38)

From equation (34), (zSyr(z)/zP(z)) is computed as
follows:

zSyr(z)

zP(z)
�
C1(z) 1 + P(z)C1(z)C2(z)[ ]

1 + P(z)C1(z)C2(z)[ ]2
−
P(z)C1(z)C1(z)C2(z)

1 + P(z)C1(z)C2(z)[ ]2
�

C1(z)

1 + P(z)C1(z)C2(z)[ ]2,
(39)

and combining equation (38) into (39), we see that

S1(z) �
zSyr(z)

zP(z)
×
P(z)

Syr(z)

�
C1(z)

1 + P(z)C1(z)C2(z)[ ]2 × P(z)
×
1 + P(z)C1(z)C2(z)

P(z)C1(z)

�
1

1 + P(z)C1(z)C2(z)
.

(40)

r (t) ε (t) u (t)

d (t)d1 (t)

d2 (t)

y (t)
C1 (z, θ)

C2 (z, η)

P (z)
+ +

+

–

+

+

+

+

Figure 3: Extended closed loop system with three disturbances.

Mathematical Problems in Engineering 7



From equations (40) and (32), we get

S1(z) − Syd2(z) �
1

1 + P(z)C1(z)C2(z)

+
P(z)C1(z)C2(z)

1 + P(z)C1(z)C2(z)

� 1.

(41)

Equation (41) tells us that closed loop transfer function
Syr(z) will always change with plant P(z), but with plant
P(z) changes, one equity always holds.

)e above analysis corresponds to the output sensitivity
function. But the input sensitivity function is extremely
important in the design of the underlying linear controller
used in adaptive control. More specifically, the modulus of
the input sensitivity function should be low at high fre-
quencies in order to assure a good robustness of the system
with respect to additive unstructured uncertainties located
in the high frequency region.

From equation (30), we have

y(t) − d(t) �
d(t) + P(z)d1(t) + P(z)C1(z)r(t)

1 + P(z)C1(z)C2(z)

−
P(z)C1(z)C2(z)d2(t)

1 + P(z)C1(z)C2(z)
− d(t)

�
P(z)d1(t)

1 + P(z)C1(z)C2(z)
+

P(z)C1(z)r(t)

1 + P(z)C1(z)C2(z)

−
P(z)C1(z)C2(z)d2(t)

1 + P(z)C1(z)C2(z)
−
P(z)C1(z)C2(z)d(t)

1 + P(z)C1(z)C2(z)
.

(42)
)en,

u(t) �
d1(t)

1 + P(z)C1(z)C2(z)
+

C1(z)r(t)

1 + P(z)C1(z)C2(z)

−
C1(z)C2(z)d2(t)

1 + P(z)C1(z)C2(z)
−

C1(z)C2(z)d(t)

1 + P(z)C1(z)C2(z)
.

(43)
Similarly, four input sensitivity functions are defined as

Sud(z) � −
C1(z)C2(z)

1 + P(z)C1(z)C2(z)
,

Sur(z) �
C1(z)

1 + P(z)C1(z)C2(z)
,

Sud1(z) �
1

1 + P(z)C1(z)C2(z)
,

Sud2(z) � −
C1(z)C2(z)

1 + P(z)C1(z)C2(z)
.

(44)

Similarly, set S2(z) as the change of the input sensitivity
function Sud(z) with the change of plant P(z), i.e., S2(z) is
given that

S2(z) �
zSud(z)

zP(z)
×
P(z)

Sud(z)

�
C2

1(z)C
2
2(z)

1 + P(z)C1(z)C2(z)[ ]2 × P(z)

×
1 + P(z)C1(z)C2(z)

C1(z)C2(z)

�
P(z)C1(z)C2(z)

1 + P(z)C1(z)C2(z)
.

(45)

)en, it holds that

S2(z) + Sud1(z) � 1. (46)

Similarly, we also have that

zSur(z)

zP(z)
×
P(z)

Sur(z)
+ Sud1(z) � 1. (47)

Equation (46) means that the relation about the input
sensitivity function Sud(z) changes with plant P(z), and
equation (47) shows the input sensitivity function Sur(z)
varies with plant P(z). )en, similarly, other equations hold
for other input sensitivity functions Sud1(z) and Sud2(z).

6. Simulation Example

Now, we propose one example to illustrate the nature of the
above results. )en, the data-driven control strategy is ap-
plied in controlling one brake-by-wire system whose
structure is plotted in Figure 4.

)e brake-by-wire (BBW) technology basically cuts the
physical link between the pedal and the braking system itself.
Nowadays, almost every car in the world has conventional
braking systems, and the pedal is directly connected to the
brakes to apply the pressure to the wheels. For BBW systems,
sensors and actuators read the amount of pressure the driver
applies to the pedal, and this force is transferred to all the
brakes by the braking actuator. )e automotive industries
have been focused on improving the performance of braking
systems when talking about safety and efficiency; for that,
brake-by-wire systems have continuously been studied and
enhanced. A BBW system is mainly composed by a pedal
which sends a braking signal to an ECU where the signal is
processed and some control algorithms are executed, and as
an output, an electrical signal is sent to a dc motor which
transmits the movement to an actuator for generating
pressure over the braking pads to perform the braking action
desired by the driver. A main characteristic of a BBW system
is the type of actuator that is being employed; there are
electrohydraulic (EHB) and electromechanical (EMB) ac-
tuators. )e main difference between them is that EHB is
based on an hydraulic system triggered by an electric motor
or pump, while the EMB just employs an electric motor as an
actuator for generating braking torque.

)e closed loop control is the most common scheme for
controlling systems. For this scheme, 2 controllers were
tested, the SMC and the PID. Both controllers were designed

8 Mathematical Problems in Engineering



based on the data-driven control. As the closed loop con-
trollers needed to be improved in speed (from responses of
hundred of milliseconds to few milliseconds), a feedforward
control was proposed. )e signals pressure-current in open
loop was plotted and analyzed. As can be observed, the
system describes a kind of exponential form with hysteresis.
On the contrary, the plot generated by the error between the
system with the best PID control and the system response
represent a polynomial with hysteresis. )e experimentation
setup was determined. A set of experimentations were
delimited in order to extract from the laboratory BBW
system the most relevant information e.g., the rise time,
current vs. position relationship, and pressure vs. position
relationship.

Experiments’ considerations:

(a) A position sweep is necessary to verify the longitudes
of the dead zone and the operative zone

(b) If the position of the dead zone and the active zone is
the same, all the experiments will start in the dead
zone (from constant current (4 amperes)). )is
experiment aims to graph the dead zone and the
operative zone for the master piston of the system.

)e master piston has 2 main states, dead zone and
operative zone, and a characterization map was realized in
order to obtain a direct relation between the piston position
and the pressure generated into the calipers. )e setpoint
signal for this experiment will be a step signal with 4 amperes
of magnitude that will be fed to the system in order to obtain
the position and pressure responses.

)emost effective closed loop structure for BBW is given
in Figure 5, where the pressure controller is the feedforward
controller and the feedback effect corresponds to position
control. At the cost of an additional measure, the piston
position proves dynamically favorable for the control of the
BBW system.

To analyze the data, the input signals as well as outputs of
the 12 experiments are plotted in 5 different graphics:
current displacement, current pressure, displacement
pressure, time displacement, and time pressure.)e graphics
are shown in Figure 6; furthermore, two more graphics are
obtained by plotting the displacement and pressure against
the time as it is shown in Figure 7.

Assume that the BBW system is one linear system, whose
transfer function form is given as

P(z) �
(z − 1.2)(z − 0.4)

z(z − 0.3)(z − 0.8)
. (48)

)e pressure controller in feedforward part C1(z, θ) is
used as

C1(z, θ) � αT(z)θ �
z2

z2 − z

z

z2 − z

1

z2 − z
[ ]

θ1

θ2

θ3


. (49)

Pressure

controller
BBW

Position

controller

Figure 5: Closed loop structure BBW.

4

3

2

1

0

–1

–2

–3
0 100 200 300 400 500 600 700 800 900 1000

Figure 6: 5 different graphics.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
–2

0

2

4

6

8

10

12

14

16

Original

Model 1

Model 2

Model 3

Model 4

Model 5

Figure 7: Other two graphics.

Figure 4: Brake-by-wire system.
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Its true form is given as

C1(z, θ) � αT(z)θ �
z2

z2 − z

z

z2 − z

1

z2 − z
[ ]

0.86

0.2

0.1


,

(50)

where this true form is unknown, and it is used to analyze
the controller performance here.

)e expected closed loop transfer function M(z) is
chosen as that

M(z) �
z(z − 1) 0.86z4 − 1.1z3 + 3.9z2 + 0.8z + 0.48( )

z7 − 3z6 − 0.96z5 − 0.72z4 − 0.93z3 + 3.9z2 + 0.8z + 0.48
. (51)

No expected sensitivity function S(z) is considered, i.e.,
S(z) � 0. )en, based on equation (18), feedback controller,
i.e., position controller, is that

C2(z) �
1 − S(Z)

M(z)
�

1

M(z)
. (52)

Applying those input signals in Figures 6 and 7 in the
considered closed loop system and collecting the corre-
sponding output signals, set the number of data points be
2000, and then, data-driven control and iterative idea are
proposed to identify that unknown plant P(z) and design
the pressure controller C1(z). )e initial parameters,
existing in C1(z), are set as follows:

θ � 0.75 0.25 0.15[ ]T. (53)

Due toM(z) and S(z) are given in advance, then C2(z) �
((1 − S(Z))/M(z)) � (1/M(z)) is easily yielded. To show the
control performance for designing that pressure control, we
compare the closed loop output signals with respect to the true
system P(z), C1(z), C2(z){ } and the estimated system
P̂(z), Ĉ1(z), C2(z){ }, respectively. If these two closed loop
output signals are the same or their error is tolerable, then we
can regard that the estimated system converges to its true
system, i.e., P̂(z)⟶ P(z), Ĉ1(z)⟶ C1(z). Figure 8 shows

these two output signals. )e red curve is the true closed loop
output signals, and the black dots correspond to the estimated
closed loop output signals. From Figure 8, we see they cor-
respond to each other, expect for the higher and lower part.
Within the interval [8,16], the true outputs coincide with the
estimated outputs.

7. Conclusion

In this paper, data-driven control is proposed to design two
controllers, existing in one closed loop system simulta-
neously. Firstly, we parametrize controllers by two param-
eter vectors and then apply the iterative idea to identify
them. Secondly, for more general controllers, the iterative
idea is also introduced to identify the unknown plant and
design controllers. )irdly, the output-input sensitivity
functions are defined for three kinds of disturbances; then,
our derived results show that some equities do not vary with
the change of the plant. Stability analysis based on the
output-input sensitivity functions is our next work.

Data Availability

)e data used to support the findings of this study are
available from the corresponding author upon request.
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