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Iterative Decoding for MIMO Channels
Via Modified Sphere Decoding

H. Vikalo, B. Hassibi, and T. Kailath

Abstract—In recent years, soft iterative decoding techniques
have been shown to greatly improve the bit error rate performance
of various communication systems. For multiantenna systems em-
ploying space–time codes, however, it is not clear what is the best
way to obtain the soft information required of the iterative scheme
with low complexity. In this paper, we propose a modification
of the Fincke–Pohst (sphere decoding) algorithm to estimate
the maximum a posteriori probability of the received symbol se-
quence. The new algorithm solves a nonlinear integer least squares
problem and, over a wide range of rates and signal-to-noise ratios,
has polynomial-time complexity. Performance of the algorithm,
combined with convolutional, turbo, and low-density parity check
codes, is demonstrated on several multiantenna channels. The
results for systems that employ space–time modulation schemes
seem to indicate that the best performing schemes are those that
support the highest mutual information between the transmitted
and received signals, rather than the best diversity gain.

Index Terms—Expected complexity, iterative decoding, low-den-
sity parity check (LDPC) codes, multiantenna systems, polyno-
mial-time complexity, space–time codes, sphere decoding, turbo
codes, wireless communications.

I. INTRODUCTION

RECENTLY, the pursuit of high-speed wireless data ser-
vices has generated a significant amount of activity in the

communications research community. The physical limitations
of the wireless medium present many challenges to the design
of reliable communication systems. As shown in [1], multi-
antenna wireless communication systems are capable of pro-
viding data transmission at potentially very high rates. In mul-
tiantenna systems, space–time [2], [3] (along with traditional
error-correcting) codes are often employed at the transmitter to
induce diversity. Furthermore, to secure high reliability of the
data transmission, special attention has to be payed to the re-
ceiver design. However, good decoding schemes may result in
high complexity of the receiver.

A low-complexity detection scheme for multiantenna systems
in a fading environment has been proposed in [4]. This detection
scheme (so-called “nulling and cancelling”), depending on
the adopted criterion, essentially performs zero-forcing or
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minimum-mean-square-error decision feedback equalization
on block transmissions. In [5], a technique referred to as
“sphere decoding” (based on the Fincke–Pohst algorithm [6])
was proposed for lattice code decoding and further adapted
for space–time codes in [7]. The sphere decoder provides the
maximum likelihood (ML) estimate of the transmitted signal
sequence and so often significantly outperforms heuristic nulling
and cancelling. Moreover, it was generally believed that sphere
decoding requires much greater computational complexity than
the cubic-time nulling and cancelling techniques. However,
in [8], an analytic expression for the expected complexity
of the sphere decoding has been obtained where it is shown
that, over a wide range of rates and signal-to-noise ratios
(SNRs), the expected complexity is polynomial-time (often
subcubic). This implies that in many cases of interest ML
performance can be obtained with complexity similar to nulling
and cancelling.

Another area of intense research activity is that of soft iter-
ative decoding. Such techniques have been reported to achieve
impressive results for codes with long codeword length. Fol-
lowing the seminal paper by Berrou et al. [9], there have been
many results on turbo decoding of concatenated codes, with
performances approaching the Shannon limit on single-input
single-output systems (see [10] and references therein). More
recently, low-density parity check (LDPC) codes, long ne-
glected since their introduction by Gallager [11], have also
been resurrected (see, e.g., [12] and [13]).

Crucial to both turbo and LDPC decoding techniques is
the use of the probabilistic (“soft”) information about each
bit in the transmitted sequence. For multiantenna systems
employing space–time codes it is not clear what is the best
way to obtain this soft -information with low complexity. As
noted in [14], where turbo-coded modulation for multiantenna
systems has been studied, if soft information is obtained by
means of an exhaustive search, the computational complexity
grows exponentially in the number of transmit antennas and
in the size of the constellation. Hence, for high rate systems
with a large number of antennas, the exhaustive search proves
to be practically infeasible. Therefore, heuristics are often
employed to obtain soft channel information [14]. [Also, see
[15] and the references therein for a related work in the
context of multiuser detection.] In [16] and [17], two variations
of the sphere decoding algorithm have been proposed for
estimating the soft information. In [17], sphere decoding has
been employed to obtain a list of bit sequences that are “good”
in a likelihood sense. This list is then used to generate soft
information, which is subsequently updated by iterative channel
decoder decisions.
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In this paper, we propose a multiple-input multiple-output
(MIMO) detector, based on a modification of the original
Fincke–Pohst algorithm, which efficiently obtains soft in-
formation for the transmitted bit sequence. This modified
Fincke–Pohst algorithm essentially performs a maximum a
posteriori (MAP) search and thus provides soft information
for the channel decoder. The channel decoder’s output is then
fed back to the Fincke–Pohst MAP (FP-MAP) for the next
iteration. [Note that the channel decoder may be iterative as
well, as in the cases when the channel code is turbo or LDPC.]
Our method differs from that of [17] in that the sphere decoder
is modified (to allow for the introduction of soft information
from the iterative decoder), that the detector performs MAP
search, and that FP-MAP is repeated for each iteration. The
fact that FP-MAP is repeated for each iteration does not
necessarily mean that the technique of [17] is computation-
ally more efficient. In particular, due to the feedback from
the channel decoder, each consecutive iteration of FP-MAP
results in a fewer number of points that are used to generate
soft information, whereas the size of the list in [17] is kept
fixed. Our very preliminary simulation results show that list
sphere decoding and FP-MAP have comparable performance
and complexity. Detailed quantitative analysis and compar-
ison of the two techniques, and determining regimes where
one is superior to the other, is certainly worth examining.
However, it goes beyond the scope of this paper and will
not be investigated here.

In addition to the schemes with traditional modulation
techniques, we study the multiantenna systems employing
space–time (S–T) codes. S–T coding is a modulation technique
that imposes spatial and temporal correlation onto a transmitted
sequence of modulated symbols. It has been developed to
fully exploit the spatial diversity provided by a wireless link.
There has been a tremendous amount of the research activities
in the field (see, e.g., [2] and [3]). In this paper, we focus
on linear-dispersive (LD) codes of [19] and employ them in
multiantenna systems where the transmitted data are encoded
with powerful channel codes. We show that the LD codes allow
for an efficient implementation of the FP-MAP algorithm, and
illustrate the excellent performance of the proposed scheme via
simulations. The LD codes are designed to optimize the mutual
information between the transmitted and received signals.
Maximizing the mutual information is a necessary condition
to obtain the excellent performances promised by the powerful
channel codes. We illustrate this by means of comparison
with a space–time modulation scheme that does not optimize
the above-mentioned mutual information—in particular, an
orthogonal design [3].

This paper is organized as follows. The channel model and
problem statement are in Section II. The Fincke–Pohst algo-
rithm is described and the calculation of its expected complexity
is outlined in Section III. In Section IV, we introduce the MAP
modification of the Fincke–Pohst algorithm and discuss its com-
plexity. In Section V, we present performance simulations of
the FP-MAP algorithm in multiantenna systems both with and
without space–time (LD) coding. The channel codes that we
consider are convolutional, turbo, and LDPC codes. We con-
clude this paper in Section VI.

II. SYSTEM MODEL

We assume a discrete-time block-fading multiantenna
channel model, where the channel is known to the receiver.
This is a reasonable assumption for communication systems
where the signaling rate is much faster than the pace at which
the propagation environment changes, so that the channel may
be learned, e.g., via transmitting known training sequences.

During any channel use the transmitted signal
and received signal are related by

(1)

where is the known channel matrix and
is the additive noise vector, both composed of indepen-

dent, identically distributed complex-Gaussian entries (0,
1). If we assume that the entries of and have unit variance,
then is the expected received SNR. The channel is used mul-
tiple times to transmit a vector of data.

An iterative decoding scheme is shown in Fig. 1. The vector
of information bits is encoded with an error-correcting code
to obtain the vector of coded bits , which is then interleaved to
result in the vector . The vector is modulated onto a quadra-
ture amplitude modulation (QAM)-constellation. Assume that
each constellation symbol represents modulated bits (e.g.,
for a -QAM constellation, ). Then the modula-
tion is performed by taking blocks of vector of length
and mapping them (e.g., by means of a simple Gray mapping)
into -dimensional symbol vectors. The resulting symbols are
transmitted across the channel as described by model (1). There-
fore, a block of coded bits (corresponding to a single
symbol vector) is transmitted per each channel use. Let us de-
note these blocks of coded bits as . Assume,
for simplicity, that the total length of the vector is .
Then the entire vector can be blocked as

(2)

and transmitted in channel uses.
Consider that the th channel use (i.e., the block has

been modulated onto symbol vector and transmitted across
the channel). On the receiver side, the received vector and
a priori probabilities of the components of the symbol vector
, , are processed by an MIMO de-

tector in order to obtain both the estimated bits in the current
block and the reliability information about those decisions.
Let us denote bits in the block by .
The reliabilities of the decisions for the coded bits can be ex-
pressed in the form of a log-likelihood ratio (LLR) as

(3)

[Note: we will represent logical 0 with amplitude level 1, and
logical 1 with amplitude level 1.] Let us denote the reliability
information for the block by
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Fig. 1. System model.

and let denote a vector of concatenated blocks of reliabilities

collected over all uses of the channel. Then is a vector of
LLRs corresponding to all the bits in the vector .

The vector is deinterleaved to obtain vector , which is
then used by a channel decoder to form the estimate of the in-
formation bit vector , as well as to provide , the a poste-
riori reliability information for the coded bits vector . A pos-
teriori reliability information for the vector is obtained by
deinterleaving into . Let us denote the a posteriori reli-
ability information for the block by . Furthermore, as-
sume that the bits , in the block are
independent (which, for a long vector and an efficient inter-
leaver is a valid approximation). Then the a posteriori prob-
abilities for the components of the symbol vector (symbol
vector corresponding to the block ) can easily be found from

using the modulator mapping function. These probabilities
can now be used to run the MIMO

detector algorithm [i.e., evaluate (3)] once again. Hence, the
MIMO detector is an iterative one, and we use the described
scheme for iterative joint detection and decoding in an MIMO
system. [Note that for the first iteration of the MIMO detector,
we assume that all symbols are equally likely.]

The structure of the channel decoder depends upon the choice
of the error-correcting code. For a simple convolutional code,
the channel decoder is a simple soft-in soft-out decoder, such
as the Bahl, Cocke, Jelinek, and Raviv algorithm of [18]. When
the channel code is a powerful turbo code, then the channel de-
coder is iterative itself [10]. If the channel code is an LDPC, the
channel decoder employs message passing algorithms of [11].

The computational complexity of traditional algorithms
for evaluating (3) can be prohibitive for applications in mul-
tiantenna systems. Since the sphere decoding algorithm of
Fincke and Pohst can supply us with the ML estimate of
with reasonable complexity, one may speculate whether a
modification can be devised to yield soft information with low

complexity. To show that this can be done, and to describe how
to efficiently approximate the LLRs in (3), it is instructive to
review the original Fincke–Pohst algorithm [6].

III. FINCKE-POHST ALGORITHM

We assume that the components of the transmitted symbol
vector in (1) are from a complex-valued QAM constellation.
To state the ML detection as an integer least squares problem,
we first find the real-valued equivalent of the (1). To this end,
let , and let , and denote real vectors
obtained from , and , respectively, as

Furthermore, let be given by

Then the real-valued equivalent of (1) is given by

The ML detector maximizes the likelihood that was received
given that was sent

(4)

The search space is a finite subset of the (shifted) -di-
mensional integer lattice , which reflects the fact that the
unknown (complex) symbols are from a QAM constellation.
Therefore, is an -PAM constellation

where is usually a power of two.
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Since is known and the noise is zero-mean unit-variance
Gaussian, the conditional distribution of given is

Hence maximization (4) is equivalent to the optimization
problem

(5)

Problem (5) is referred to as an integer least squares problem
and is known to be NP-hard. Geometrically, it corresponds to
the search for the “closest” point in a skewed lattice to a
given -dimensional vector .

The basic idea of the FP algorithm is that rather than search
over the entire lattice, one should search only over lattice points
in a hypersphere of radius around . Then the closest lattice
point inside the hypersphere is the solution to (5). To perform
the search, however, one needs to 1) determine an appropriate
radius and 2) find the lattice points inside the sphere.

The algorithm of Fincke and Pohst does not address the
choice of , but it does propose an efficient way of finding all
the points inside the hypersphere. In particular, the algorithm
constructs a tree, whose nodes at the th level correspond
to the lattice points lying inside the sphere of radius and
dimension . To find the lattice points inside a sphere of
radius and dimension , the algorithm performs a depth-first
tree search over all lattice points of radius and dimensions

. The nodes in the tree that correspond to the
points outside the sphere are pruned. This is illustrated in
Fig. 2, for an dimensional lattice which has
points in each dimension (i.e., ). [Remark: We need the
tree-search interpretation for the discussion on the complexity
of the algorithms; further details can be found in [8].]

The search radius can be chosen according to the statistical
description of the noise. Note that is a

random variable with degrees of freedom. We choose the
radius to be a linear function of the variance of

where the coefficient is chosen in such a way that with a high
probability we find a lattice point inside a sphere

(6)

We find in (6) by a simple table lookup.

A. Computational Complexity of Fincke–Pohst Algorithm

As noted above, the FP algorithm performs a search over
all lattice points within a sphere of radius and dimensions

. Hence the complexity of the algorithm is
proportional to the number of lattice points visited. In general,
the algorithm has worst case and average complexity that is
exponential in the number of unknowns (see [8]). However,
in communications applications, as is implied by (1), the
vector is not arbitrary, but is a lattice point perturbed

Fig. 2. Tree-pruning interpretation of sphere decoding.

by additive noise with known statistical properties. Hence,
in this case, the expected complexity is a relevant figure
of merit. The expected complexity of the FP algorithm is
proportional to the expected number of lattice points that the
algorithm visits. We need two key ingredients to calculate
this expected number of lattice points (and, consecutively,
the expected complexity).

1) A probability that an arbitrary lattice point belongs
to a -dimensional sphere of radius around the transmitted
point ; it was shown in [8] that this probability is given
by the following incomplete gamma function

(7)

2) A technique for enumerating points in the lattice
with respect to the transmitted point ; in [8], an efficient
method for counting those lattice points that yield the same
argument of the gamma function in (7), based on certain
generating functions, is developed.

Using 1) and 2) above, one can find the number of lattice
points visited by Fincke–Pohst algorithm and, therefore, the
analytic expression for its expected complexity. The details
can be found in [8], e.g., the complexity of the FP algorithm
for a 2-pulse-amplitude-modulation (PAM) constellation is

(8)

For a 4-PAM constellation it is

(9)

where is the coefficient of in the polynomial

Similar expressions can be obtained for 8-PAM, 16-PAM,
etc., constellations.

For a wide range of and , the sphere decoding algo-
rithm has complexity comparable to cubic-time methods such
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as nulling and cancelling (cubic in ). As a general principle,
for a fixed , the complexity decreases by increasing the SNR

or by decreasing .

IV. MODIFIED FP ALGORITHM FOR MAP DETECTION

The MAP detector maximizes the posterior probability

(10)

Using Bayes’ rule

Further, by assuming that the symbols are inde-
pendent, we can write

Then, for a known channel in additive white Gaussian noise
(AWGN), (10) is equivalent to the optimization problem

(11)

For an iterative decoding scheme, we also require soft infor-
mation, i.e., the probability that each bit is decoded correctly.
To this end, consider the LLR defined in (3) and, as in Sec-
tion II, consider the th channel use (that is, the current
symbol vector is obtained by modulating coded block

onto an -PAM constellation)

(12)

Assuming independent bits , (12) becomes

where and denote so-called a priori and ex-
trinsic parts of the total soft information, respectively. [Note

that, when used in an iterative decoding scheme, it is only
that is passed to the other decoding block(s) in the

scheme.] Since the block is uniquely mapped into the
symbol vector , it follows that for an AWGN channel

(13)

Computing (13) over the entire signal space is of prohibitive
complexity. Instead, we constrain ourselves to those
for which the argument in (11) is small. [Note that these are the
signal vectors whose contribution to the numerator and denom-
inator in (13) is significant.]

Applying the idea of the Fincke–Pohst algorithm, we search
for the points that belong to the geometric body described by

(14)

where is the lower triangular matrix obtained from the QR
factorization of . (Note that this is no longer a hypersphere.)
The search radius in (14) can be chosen according to the sta-
tistical properties of the noise and the a priori distribution of .

A necessary condition for to satisfy (14) readily follows:

(15)

Moreover, for every satisfying (15), we define

and obtain a stronger necessary condition for (14) to hold

The procedure continues until all the components of vector
are found. The FP-MAP algorithm can be summarized as fol-
lows.

Input: .

1) Set .
2) (Bounds for ) Set

.
3) (Increase ) . If

and , go to 3), else proceed. If
go to 5), else to 4).
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4) (Increase ) ; if , terminate
algorithm, else go to 3).

5) (Decrease ) If go to 6). Else

,
and go to 2).

6) Solution found. Save and go to 3).
Assume that the search yields the set of points

. The vector that minimizes (11)
is the solution to the MAP detection problem (10). The soft
information for each bit can be estimated from (13), by only
summing the terms in the numerator and denominator such
that . Note that the logarithms in (13) can be efficiently
computed using the standard log-MAP implementation [20].

A. Computational Complexity of FP-MAP Algorithm

The complexity of the FP-MAP algorithm can, in principle,
be found following the outline of the calculation of complexity
of the original Fincke–Pohst algorithm in Section III-A. How-
ever, the probability that an arbitrary point belongs to a -di-
mensional sphere of radius around the transmitted point
(which we need to compute the expected number of points the
FP-MAP algorithm visits) now becomes

(16)
The argument of this probability function is not as simple as
the one in (7), and the computation of the expected number of
points is much more difficult. First and foremost, (16) is a func-
tion of the a priori probabilities, which are generally not known
in advance to iterations. Second, since each point in a lat-
tice has a distinct a priori probability affiliated with it, argu-
ment of the probability function (16) will, in general, be dif-
ferent for each pair of points . Thus an efficient enumer-
ation that would help the complexity calculation cannot be done.
Hence, to compute the expected number of points, one needs to
consider all the possible pairs of points and the corre-
sponding probabilities (16) which, as the size of the problem in-
creases, clearly becomes rather cumbersome. However, we note
that since , we have

Hence from (7) and (16) it follows that, for the same choice of
radius

and we conclude that, for the same choice of , the expected
number of points that the FP-MAP algorithm visits is upper
bounded by the expected number of points visited by the orig-
inal sphere decoding algorithm. Thus, the expected complexity
of the FP-MAP is roughly upper bounded by the expected
complexity of the sphere decoding, for the same choice of .
[“Roughly” upper bounded because since the a priori proba-
bilities enter the algorithm, there are a few (two, to be exact)

additional operations per each visited point; this is accounted
for by changing (2 17) to (2 19) in (8) and (9).]

Therefore, the results of [8] suggest that the expected com-
plexity of the FP-MAP algorithm is polynomial in over a wide
range of rates and SNRs. Generally, we chose the search param-
eter so that there are sufficiently many points to make a good
approximation of (13).

V. SIMULATION RESULTS

In this section, we study performances of several multi-
antenna systems employing the FP-MAP algorithm for iterative
decoding.

Example 1 [Convolutional Code]: We consider the multi-
antenna system with transmit and receive an-
tennas. An information bit sequence with 9216 information bits
is encoded by a rate convolutional code with memory
length 2 and generating polynomials (feed-
forward) and (feedback). The coded se-
quence is modulated by means of simple Gray mapping onto a
16-QAM modulation scheme. On the receiver side, the FP-MAP
algorithm is used for soft detection.

Fig. 3 shows the bit error rate (BER) performance of the
system compared with the performance of the system em-
ploying maximum likelihood (hard) detection. The dashed line
in Fig. 3 denotes the SNR corresponding to the ergodic capacity
of the channel.

Fig. 4 compares the performance of the FP-MAP with that of
the soft nulling and cancelling (N/C) algorithm employed in the
same system. For each entry in a transmitted symbol vector, the
soft N/C algorithm cancels the previously decoded symbols and
obtains the soft information using the distribution of the noise.
[The soft N/C algorithm is similar to the soft minimum mean
squared error equalizer of [21]. Also, see [15] for an applica-
tion in multiuser context.] Prior to the soft N/C, symbols are
optimally ordered. The complexity of the soft N/C algorithm
is roughly cubic (due to the required QR-factorization of the
channel matrix). The FP-MAP even with a single iteration out-
performs four iterations of the soft N/C by 2 dB at BER of 10 .

Example 2 [Turbo and LDPC Codes]: We study the multi-
antenna system of Example 1 , where the trans-
mitted data are encoded with powerful turbo and LDPC codes.

First consider the case where the 9216-bits-long information
sequence is encoded with a rate parallel concatenated
turbo code. The constituent convolutional codes of the turbo
code are the same as the convolutional code described in Ex-
ample 1. The modulation scheme is 16-QAM. The FP-MAP al-
gorithm is used to obtain soft information, which is passed onto
the turbo decoder. For each iteration of the FP-MAP, the turbo
decoder performs eight iterations of its own. Fig. 5 shows the
BER performance of the system.

Fig. 6 shows the BER performance of the same system
, but now the data are encoded with a rate

LDPC code of length 1088 and column weight 4. Furthermore,
4-QAM modulation scheme is employed. When the LDPC de-
coder receives soft information from FP-MAP, it performs eight
iterations before passing what it infers about the coded bits back
to the FP-MAP detector.
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Fig. 3. BER performance ofM = N = 4 system employing rate 1/2, 9216-bits-long convolutional code, 16-QAM, FP-MAP.

Fig. 4. Comparison of BER performances for FP-MAP and soft N/C employed on M = N = 4 system with rate 1/2, 1000-bits-long convolutional code,
16-QAM.

Following the convention, the dashed vertical lines in Figs. 5
and 6 denote the capacity limits, i.e., they denote the smallest
SNR required for reliable transmission at the given data rate of

the system. This means that the error probability of the best code
transmitting at smaller SNR than the one denoted by the dashed
lines approaches one as the code length approaches infinity. The
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Fig. 5. BER performance of M = N = 4 system employing rate 1/2 turbo code, 16-QAM, FP-MAP.

Fig. 6. BER performance of M = N = 4 system employing rate 8/9 LDPC code, 4-QAM, FP-MAP.

turbo coded scheme in Fig. 5 gets 3.3 dB close to capacity. At
BER of 10 , it outperforms the convolutional code with perfor-
mance in Fig. 3 by approximately 3 dB. The rate of the system
is 8 bits per channel use. The LDPC code, on the other hand, is
about 4.5 dB away from capacity of the system in which it is em-
ployed; the data rate in this system is 7.1 bits per channel use.

Although the LDPC code is outperformed by the turbo code,
it proves to be an interesting alternative, especially in light of
the complexity exponents shown in Fig. 7. At
SNR 10 dB, both schemes have BER 10 . As indicated
in Fig. 7, for such SNR, the complexity of the detection in the
system employing the (high rate) LDPC code and 4-QAM mod-
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Fig. 7. Maximum mutual information and complexity exponents for 4-QAM and 16-QAM constellations,M = N = 4 system.

ulation is approximately cubic in , while the complexity in
the system with the (1/2 rate) turbo code and 16-QAM modula-
tion is significantly higher. So, although the mutual information
plots in Fig. 7 imply that the system with 16-QAM modulation
scheme is more efficient, the system that employs 4-QAM mod-
ulation is much more favorable from the complexity point of
view.

Example 3 [Systems Employing Both Channel and
Space–Time Codes]: Here we consider performance of the
LDPC codes in a multiantenna system with linear dispersive
(LD) space–time modulation scheme of [19]. A linear-dis-
persion code imposes correlation onto a symbol sequence by
transmitting (over channel uses) columns of the matrix
defined as

where and are fixed matrices, and
are complex scalars. The particular choice of

scalars , typically coming from a QAM constellation,
determines a specific codeword from the code that is determined
by the set of matrices . The rate of the LD code is

.
Assume that . By collecting vectors

received over uses of channel into matrix , and col-
lecting corresponding noise vectors into matrix ,
the input/output relation of the multiantenna system can be ex-
pressed as

(17)

In [19], it was shown that (17) can be written as

(18)

where
, and

. Furthermore,
the 2 2 real valued equivalent channel matrix is
given by

...
...

. . .
...

...

where

where , and where the vector
, denotes the th column of the MIMO

channel matrix .
Note that entries of the vector in (18) come from an

-PAM constellation. Therefore, one can pose the MAP detec-
tion problem as

(19)

where is the a priori probability of the th component of the
vector . Equation (19) allows for an efficient implementation
of the FP-MAP algorithm.

We consider a multiantenna system where the data are en-
coded by the -rate LDPC code of length 1088 (the same
LDPC code is used in Example 2). Fig. 8 shows the performance
of the 2 2 system employing the 4-QAM modulation scheme
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Fig. 8. BER performance of M = N = 2 system employing R = 4 LD code and rate 8/9 LDPC code, 4-QAM modulation, FP-MAP.

Fig. 9. BER performance of M = 3; N = 1 system employing R = 2 LD code and rate 8/9 LDPC code, FP-MAP.

and a rate LD code (see [19, Section 4] for the con-
struction of this LD code). The significant coding gain due to use
of the LDPC code is evident.Even without S–T coding, LDPC
code would yield good performance, as illustrated in Example
2. However, S–T coding is necessary in systems with fewer re-

ceive than transmit antennas, to provide as many equations as
there are unknowns and ensure feasibility of decoding (when

, the Fincke–Pohst algorithm is exponential in ).
Performance of such a system, with and , em-
ploying an LD code is shown in Fig. 9.
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Fig. 10. Comparison of BER performances of LD code vs. V-BLAST (rate R = 4) employed on M = N = 2 system, using rate 8/9 LDPC code, FP-MAP.

Fig. 11. Comparison of BER performances of LD code versus orthogonal design on M = 3; N = 1 system. Both schemes employ rate 8/9 LDPC code. The
system using the LD code uses 64-QAM; the system using orthogonal design uses 256-QAM so that both have rate R = 6. The FP-MAP is used for detection.

We have focused on LD codes. One can ask whether any S–T
code would suffice, i.e., would any modulation scheme support
the excellent performance of the powerful channel codes? Based

on extensive simulations, we believe that the answer is negative:
S–T modulation schemes need to maximize the mutual informa-
tion between the input and output signals. In fact, the dispersion
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matrices of the LD code are actually chosen to maximize the
mutual information between and

(20)

for a particular of interest and an appropriate power constraint.
So, the LD codes satisfy the required criterion. Interestingly,
V-BLAST also satisfies this condition. Indeed, as shown in
Fig. 10, the multiantenna system employing an LDPC channel
code and V-BLAST performs almost as well as the scheme
with an LD code ([19, (36)]). Of course, there is an additional
gain that the LD code obtains by spreading the signals across
space and time more efficiently than V-BLAST. On the other
hand, if an S–T code throws away some information [i.e., if
it violates (20)], then the system performance is inferior in
comparison to the S–T code designed with (20) in mind. This
is illustrated in Fig. 11, where we compare performance of
the LD code of Fig. 9 with the orthogonal S–T code ([3]; also
[19, (35)]). The orthogonal design does not satisfy (20) and the
performance of the system is clearly much worse than of that
employing the LD code.

VI. CONCLUSION

In this paper, we developed a modification of the sphere de-
coding algorithm to perform the MAP detection and efficiently
estimate soft information. We considered the expected com-
plexity of the algorithm and found it is closely related to the ex-
pected complexity of the original sphere decoding. In fact, over
a wide range of rates and SNR, the FP-MAP algorithm has ex-
pected complexity that is polynomial in the number of transmit
antennas.

When combined with soft iterative decoding schemes,
the proposed detection algorithm FP-MAP provides close to
capacity performances of multiantenna systems. This was
demonstrated on systems employing both turbo and LDPC
codes. Furthermore, we illustrated performance of the FP-MAP
algorithm in multiantenna systems that employ linear disper-
sive space–time modulation scheme as well as powerful LDPC
channel codes. Our results imply that in order to obtain the re-
markable performance of the iterative decoding, the space–time
techniques need to optimize for the mutual information be-
tween the transmitted and received symbols. Thus, the design
paradigms that constructs codes based on mutual information
appear to be very reasonable.

Detailed quantitative analysis of the FP-MAP algorithm, its
comparison with other decoding techniques, and determining
regimes where a particular technique is superior to the others
is certainly worth examining and may be investigated in future
work.
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