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Abstract— Single-carrier cyclic prefix (SCCP) has been pro-
posed as an alternative to orthogonal frequency division mul-
tiplexing (OFDM). While the implementation complexity of the
two schemes are comparable, SCCP avoids the peak-to-average
power ratio problem that plagues OFDM. Both OFDM and SCCP
receivers leverage the fast Fourier transform for computationally-
efficient frequency-domain equalization. For channels that are
significantly time-varying, however, frequency-domain equaliza-
tion alone is inadequate. Several OFDM receiver modifications
have been proposed for this time-varying case, including one
which uses linear pre-processing and iterative estimationto yield
excellent performance with low complexity. Here we design an
SCCP receiver based on similar concepts.1

I. I NTRODUCTION

Orthogonal frequency division multiplexing (OFDM) [1],
[2] has become a popular modulation format for digital
communication in the presence of time-dispersive multipath.
This is in large part due to the low complexity equalization
afforded by OFDM’s use of the fast Fourier transform (FFT).
OFDM has the disadvantage of large peak-to-average power
ratio (PAPR) relative to single-carrier systems, however,which
leads to the requirement for expensive transmitter power am-
plifiers. Single-carrier cyclic prefix (SCCP) was proposed as
an alternative to OFDM [3], [4]. Like OFDM, SCCP transmits
blocks of data separated by guard intervals and leverages FFTs
to accomplish frequency-domain equalization. Unlike OFDM,
SCCP transmits QAM symbols, thereby circumventing the
PAPR problem. Whereas OFDM uses oneN -point FFT at
the transmitter and another at the receiver, the SCCP employs
two N -point FFTs at the receiver and none at the transmitter.
Though SCCP’s asymmetry may not be advantageous, its
PAPR solution may be more important in some applications.

Fast circular convolution is an appropriate means of combat-
ing time-dispersive multipath fading, i.e., linear time-invariant
(LTI) channels. For channels that are alsofrequency-dispersive,
i.e., linear time-varying (LTV), circular convolution alone is
not sufficient [5]–[7]. A number of authors have recently
proposed modifications of OFDM for this doubly-dispersive
environment (see, e.g., [8]–[12] and the references therein).
In [12], O(N) low-complexity linear pre-processing was
employed in conjunction withO(N) iterative estimation to
yield excellent symbol estimation performance. This paper
investigates the applicability of [12] to receivers for SCCP
in doubly-selective channels. We shall see that, while many
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aspects of the OFDM modification [12] translate directly to
SCCP, there are a number of important differences between
the two systems.

In this extended abstract, we review the system model, sum-
marize our preliminary work, and present preliminary results.
We will use the following notation throughout:(·)t denotes
transpose,(·)∗ conjugate, and(·)H conjugate transpose.C(b)
denotes a circulant matrix with first columnb, D(b) the
diagonal matrix created from vectorb, F the unitary DFT
matrix, I the identity matrix, andik the kth column of I.
Expectation is denoted byE{·}, covariance byCov{b, c} :=
E{bcH} − E{b}E{cH}, element-wise multiplication by�,
the Kronecker delta byδ(·), and modulo-N by 〈·〉N .

II. SYSTEM MODEL

We uses = [s0, . . . , sN−1]
t to denote anN -block of (time-

domain) finite-alphabet symbols that is cyclically prepended
prior to transmission. The time-domain receivedN -vector,
after removal of the guard interval which is assumed at least
as long as the channel impulse response, can be written [3]

r = Htls + ν. (1)

Here ν contains i.i.d. zero-mean circular Gaussian noise
samples (independent ofs) with varianceσ2, Htl is a (time-
variant, circular) convolution matrix such that[Htl]n,l =
htl(n, 〈n − l〉N ), and htl(n, l) is the response of the channel
at time n to an impulse applied at timen − l. Time-domain
windowing with coefficient vectorb prior to theN -point DFT
of r yields the “frequency-domain” observationx:

x = F D(b)Htls + F D(b)ν (2)

= C(β)FHtlF
Ht + C(β)Fν (3)

= C(β)Hdft + C(β)w, (4)

where we have usedt := Fs, w := Fν, Hdf := FHtlF
H ,

β := Fb/
√

N and the circulant matrix propertyC(g) =
F D(

√
NF Hg)F H .

Using the approach outlined in [12],b (or, equivalently,β)
can be designed to ensure that the matrixC(β)Hdf approx-
imates the banded structure illustrated in Fig. 1. Assuming
wide-sense stationary uncorrelated scattering (WSSUS) [13],
i.e., E{htl(n, l)h∗

tl(n − q, l − m)} = rt(q)σ
2
l δ(m) wherert(q)

denotes theq-lag autocorrelation normalized so thatrt(0) = 1
andσ2

l denotes the variance of thelth tap, window coefficients
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Fig. 1. Desired “banded” structure of matrix̆H = C(β)Hdf.

designed to maximize the signal to interference-plus-noise
ratio (SINR) inx are given by (5)-(7) below [12]

b̂? = v?

(

A � R,
(

σ2 +
∑

l

σ2
l

)

I − A � R

)

(5)

[A]m,n :=
sin
(

π
N

(2D + 1)(n − m)
)

N sin
(

π
N

(n − m)
) (6)

[R]m,n :=
∑

l

σ2
l rt(m − n), (7)

wherev?(B, C) denotes the principle generalized eigenvalue
[14] of the matrix pair (B, C). D is a design parameter
typically chosen asD = dfdNe+ 1 whenfd is the (channel-
use normalized) maximum Doppler frequency. Say that
C(β)Hdf = MD

(
C(β)Hdf

)
+ MD

(
C(β)Hdf

)
, whereMD(·)

is a mask operator which passes the elements in the shaded
area of Fig. 1 and zeros the rest, and whereMD(·) is the com-
plement ofMD(·). With proper window design, we claim that
MD

(
C(β)Hdf

)
≈ 0. Then, definingH̆ := MD

(
C(β)Hdf

)
and

C := C(β), we obtain theapproximatesystem model (8):
{

x = H̆t + Cw

t = Fs.
(8)

III. I TERATIVE ESTIMATION

In this section we focus on the estimation of the finite-
alphabet symbol vectors from x assuming (8) with known
H̆. Though channel estimation is an important issue, we do
not address it here for reasons of space. Our symbol estimation
procedure, illustrated in Fig. 2, is iterative.

Given current guesses of the log-likelihood ratios (LLRs) of
the symbols{sk} (which, on the first iteration, are set to zero),
the means and variances of the elements ins are calculated
as s̄ andv, respectively. These are then transformed into the
mean and covariance oft. Using linear MMSE estimation and
incorporating these mean/variance priors, the elements{tk}
are estimated one-at-a-time, leveraging the banded structure
of H̆ for complexity reduction. The resulting estimatest̂ are
then transformed back into thes-domain, from which the
LLRs are updated. To accomplish this last step we assume
a conditionally-Gaussian model for the estimates{ŝk}. The
procedure then repeats, starting with the most recent LLRs.A
more detailed description is given below. When appropriate,
we use the superscript(i) to denote theith iteration.

calculate
priors L-MMSE update

LLRs
LLRs s̄, v ŝt̂ LLRs

˛

˛

newFFT IFFT

Fig. 2. Iterative symbol estimation procedure.
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Fig. 3. Truncated observation model.

A. Linear Estimation with Priors

The banded structure of̆H suggests that linear estima-
tion of a particular elementtk might be accomplished with
reasonable accuracy from the truncated observationxk :=
[xk−D, . . . , xk+D]t, with indices taken modulo-N , as opposed
to the full observationx. (See Fig. 3.) We hope to realize
substantial complexity reduction in doing so. Thus

xk = H̆kt + Ckw = H̆kFs + Ckw, (9)

whereH̆k contains rows{k − D, . . . , k + D} of H̆ andCk

contains rows{k − D, . . . , k + D} of C. The MMSE linear
estimate oftk given xk is [15]

t̂k = E{tk} + Cov(tk, xk)Cov(xk, xk)−1(xk − E{xk}).(10)

Recalling E{w} = 0, Cov(w, w) = σ2I, Cov(s, w) =
0, assuming uncorrelated{sk}, and definings̄ := E{s},
D(v) := Cov(s, s), and t̄ := Hs̄, (10) becomes

t̂k = t̄k + gH
k (xk − H̆k t̄) (11)

gk :=
(
H̆kF D(v)F HH̆H

k + σ2CkCH
k

)−1H̆kF D(v)F Hik
(12)

from which estimates ofs can be obtained as

ŝ = F H t̂ ⇔ ŝl = iH
l F H

∑

k

ik t̂k. (13)

B. A Conditionally Gaussian Model

Leveraging the finite-alphabet structure of the elements{sk}
and assuming reasonably largeN (to invoke the Central Limit
Theorem), we assume that the estimation error is Gaussian, or,
equivalently, that the estimates are conditionally Gaussian:

p(ŝ(i)

l |sl = b) =
1

σ(i)

l (b)
φ

(
ŝ(i)

l − µ(i)

l (b)

σ(i)

l (b)

)

, (14)

where φ(w) := 1√
π
e−w2

, µ(i)

l (b) := E{ŝ(i)

l |sl = b}, and

[σ(i)

l (b)]2 := Cov(ŝ(i)

l , ŝ(i)

l |sl = b). In the sequel, we restrict
ourselves to the BPSK alphabet so thatb ∈ {−1, +1}; QAM
extensions are straightforward but tedious (see, e.g., [16]).



From (13) and the definition ofµ(i)

l (b),

µ(i)

l (b) = iH
l F H

∑

k

ik E{t̂(i)k |sl = b}

= iH
l F H

∑

k

ik

(

t̄(i)k + g
(i)H
k

(
E{xk|sl = b} − H̆k t̄

(i)
))

(15)

= s̄(i)

l + iH
l F H

(∑

k

ikg
(i)H
k H̆k

)

F

︸ ︷︷ ︸

:= Q(i)H

il(b − s̄(i)

l )

= s̄(i)

l + Q(i)∗
l,l (b − s̄(i)

l ) = (1 − Q(i)∗
l,l )s̄(i)

l + Q(i)∗
l,l b (16)

where in (15) we used the fact thatE{xk|sl = b} =
H̆kF

(
s̄(i) + il(b− s̄(i)

l )
)

= H̆k t̄
(i)

+ H̆kFil(b− s̄(i)

l ). Next we
find an expression for[σ(i)

l (b)]2. Before doing so, however, it
will be convenient to note from (11) and (13) that

ŝ(i)

l = iH
l F H

∑

k

ik

(

t̄(i)k + g
(i)H
k

(
xk − H̆k t̄

(i)
))

= iH
l F H

∑

k

ik

(

t̄(i)k + g
(i)H
k

(
H̆kFs + CkFν − H̆kF s̄(i)

))

= s̄(i)

l + iH
l F H

(∑

k

ikg
(i)H
k H̆k

)

F (s − s̄(i))

+ iH
l F H

(∑

k

ikg
(i)H
k Ck

)

F

︸ ︷︷ ︸

:= P (i)H

ν

= s̄(i)

l + iH
l Q(i)H(s − s̄(i)) + iH

l P (i)Hν

= µ(i)

l (b) + iH
l Q(i)H

(
s − s̄(i) + il(s̄

(i)

l − b)
)

+ iH
l P (i)Hν

(17)

and that, sinceE{s|sl = b} = s̄(i) − il(s̄
(i)

l − b),

E
{(

s − s̄(i) + il(s̄
(i)

l − b)
)(

s − s̄(i) + il(s̄
(i)

l − b)
)H |sl = b

}

= Cov(s, s|sl = b)

= D(v(i)) − ili
H
i v(i)

l . (18)

Using (17), (18), and the definition ofσ(i)

l (b),

[σ(i)

l (b)]2 = E
{(

ŝ(i)

l − µ(i)

l (b)
)(

ŝ(i)

l − µ(i)

l (b)
)H |sl = b

}

= iH
l Q(i)H

(

D(v(i)) − ili
H
l v(i)

l

)

Q(i)il + σ2iH
l P (i)HP (i)il

= q
(i)H
l D(v(i))q(i)

l − |Q(i)

l,l |2v
(i)

l + σ2‖p(i)

l ‖2 (19)

where q
(i)

l denotes thelth column of Q(i) and wherep
(i)

l

denotes thelth column ofP (i).

C. Log-Likelihood Ratio and Update of Priors

The a priori and a posteriori log likelihood ratio (LLR)
are defined asL(sl) := log P (sl=+1)

P (sl=−1) and L(sl|ŝ(i)

l ) :=

log
P (sl=+1|ŝ(i)

l
)

P (sl=−1|ŝ(i)
l

)
, respectively. The LLR update∆(ŝ(i)

l ) :=

L(sl|ŝ(i)

l ) − L(sl) can be shown to equal

∆(ŝl) = log
p(ŝ(i)

l |sl = +1)

p(ŝ(i)

l |sl = −1)

=
|ŝ(i)

l − µ(i)

l (−1)|2 − |ŝ(i)

l − µ(i)

l (+1)|2
[σ(i)

l (±1)]2

= 4
Re
(
Q(i)

l,l(ŝ
(i)

l − s̄(i)

l )
)

+ |Q(i)

l,l |2s̄
(i)

l

q
(i)H
l D(v(i))q(i)

l − |Q(i)

l,l |2v
(i)

l + σ2‖p(i)

l ‖2
(20)

where we used the facts thatσ(i)

l (+1) = σ(i)

l (−1) and
∣
∣ŝ(i)

l − µ(i)

l (−1)
∣
∣
2−
∣
∣ŝ(i)

l − µ(i)

l (+1)
∣
∣
2

=
∣
∣ŝ(i)

l − (1 − Q(i)∗
l,l )s̄(i)

l + Q(i)∗
l,l

∣
∣
2

−
∣
∣ŝ(i)

l − (1 − Q(i)∗
l,l )s̄(i)

l − Q(i)∗
l,l

∣
∣
2

= 4 Re
{(

ŝ(i)

l − (1 − Q(i)∗
l,l )s̄(i)

l

)
Q(i)

l,l

}

= 4 Re
{
Q(i)

l,l(ŝ
(i)

l − s̄(i)

l )
}

+ |Q(i)

l,l |2s̄
(i)

l (21)

since we will havēsi ∈ R with a BPSK alphabet.
Updating of the priors can be accomplished via

s̄(i+1)

l =
∑

b∈B
b · P (sl = b|ŝ(i)

l ) = tanh

(
L(sl|ŝ(i)

l )

2

)

(22)

v(i+1)

l =
∑

b∈B

(
b − s̄(i+1)

l

)2
P (sl = b|ŝ(i)

l ) = 1 − (s̄(i+1)

l )2 (23)

We set thea priori LLR for iteration i+1 equal to thea
posteriori LLR from iteration i. Denoting thea priori LLR
used in iterationi by L(i)(sl), we obtain the LLR update:

L(i+1)(sl) = L(sl|ŝ(i)

l ) = L(i)(sl) + ∆(ŝ(i)

l ). (24)

We should point out that a soft decoding algorithm could be
easily embedded within the bottom path of Fig. 2 (e.g., [16]).
If, on the other hand, hard symbol estimates are desired, they
can be generated viâ̂s(i)

l = sign
(
Re(ŝ(i)

l )
)

= sign
(
s̄(i)

l

)
=

sign
(
L(sl|ŝ(i)

l )
)
. An algorithm summary appears in Table I.

D. Efficient Implementation

Many of the quantities in the algorithm outlined in Table I
have structures that lead to efficient computation.

CkCH
k is a sub-block ofCCH = C(F (b� b∗)/

√
N), the

latter of which requiresO(N log N) operations to compute.
Furthermore, the Toeplitz nature ofCCH implies that the
subplotCkCH

k is identical for everyk. Thus,C0C
H
0 can be

calculated once and used for all iterations and allk.
Although H̆k is an (2D + 1) × N matrix, it contains

only 4D + 1 non-zero columns. Thus, calculation of̆Hk t̄
(i)

and H̆H
k g

(i)

k requireO(D2) operations and must be doneN
times per iteration. Calculation of

∑N−1
k=0 H̆H

k g
(i)

k iH
k requires

O(ND2) operations and must be done once per iteration.
Calculation ofF D(v(i))F H requiresO(N log N) operations
and must be done once per iteration. GivenF D(v(i))F H ,
calculation of H̆kF D(v(i))F HH̆H

k and H̆kF D(v(i))F Hik

requireO(D3) andO(D2) operations, respectively, for eachk.
Note that the matrix inverse used to computegk is performed



L(0)(sl) = 0 ∀l
for i = 0 . . . ,

for l = 0 . . . N − 1,
s̄(i)

l
= tanh(L(i)(sl)/2)

v(i)

l
= 1 − (s̄(i)

l
)2

end
t̄
(i) = Fs̄(i)

for k = 0 . . . N − 1,
g

(i)

k
=

`

H̆kF D(v(i))FHH̆H
k

+ σ2CkCH
k

´

−1
H̆kF D(v(i))FHik

t̂(i)
k

= t̄(i)
k

+ g
(i)H

k
(xk − H̆k t̄

(i))
end

Q(i) = FH
“

PN−1

k=0
H̆H

k
g

(i)

k
iH
k

”

F

P (i) = FH
“

PN−1

k=0
CH

k g
(i)

k
iH
k

”

F

ŝ(i) = FH t̂
(i)

for l = 0 . . . N − 1,

L(i+1)(sl) = L(i)(sl) + 4
Re{Q(i)

l,l
(ŝ(i)

l
− s̄(i)

l
)} + |Q(i)

l,l
|2s̄(i)

l

q
(i)H

l
D(v(i))q(i)

l
− |Q(i)

l,l
|2v(i)

l
+ σ2‖pi‖

2

end
end

TABLE I

SUMMARY OF ITERATIVE SYMBOL ESTIMATION ALGORITHM.

on a(2D+1)×(2D+1) matrix. Thus, for computation{g(i)

k },
we requireO(ND3) operations.

To update the likelihoods{L(i)(sk)}N−1
k=0 , we are espe-

cially interested in the computation of{q(i)H
k D(v(i))q(i)

k }N−1
k=0 ,

{Q(i)

k,k}N−1
k=0 , and {‖p(i)

k ‖2}N−1
k=0 . Direct computation of these

quantities eliminates the need to explicitly computeQ(i) and
P (i). For brevity we omit superscripts(i) in the sequel.

1) Computation of{qH
k D(v)qk}N−1

k=0 : From the definition
of Q and the results in the appendix, we know that

Qn,m =
1√
N

2D∑

d=−2D

ej 2π

N
nd[Fad]〈m−n〉

N
(25)

where ad is the dth sub-diagonal of
∑N−1

k=0 H̆H
k gkiH

k , i.e.,
[ad]m =

[∑N−1
k=0 H̆H

k gkiH
k

]

〈d+m〉
N

,m
. Writing αd = Fad

andαd,m = [αd]m, we find

qH
k D(v)qk =

N−1∑

n=0

|Qn,k|2vn (26)

=
1

N

N−1∑

n=0

vn

2D∑

d,l=−2D

e−j 2π

N
n(l−d)αd,〈k−n〉

N
α∗

l,〈k−n〉
N

(27)

=
1

N

N−1∑

m=0

v〈k−m〉
N

2D∑

d,l=−2D

e−j 2π

N
(l−d)(k−m)αd,mα∗

l,m(28)

where we usedm = 〈k − n〉N so thatn = 〈k − m〉N , If
we defineβm(d, l) := αd,mα∗

l,mej 2π

N
(l−d)m and D(d, l) :=

D([e−j 2π

N
(l−d)·0, . . . , e−j 2π

N
(l−d)(N−1)]), then

[
qH

0 D(v)q0, qH
1 D(v)q1, . . . , qH

N−1 D(v)qN−1

]t

=
1

N

2D∑

d,l=−2D

D(d, l) C(v)β(d, l) (29)

=
1√
N

2D∑

d,l=−2D

D(d, l)F D(F Hv)F Hβ(d, l) (30)

Thus computation of{qH
k D(v)qk}N−1

k=0 can be accomplished
by calculating a few FFTs for each combination of{d, l},
requiring a total ofO(D2N log N) operations.

2) Computation of{Qk,k}N−1
k=0 : From (25), we know that

Qk,k = 1√
N

∑2D

d=−2D αd,0e
j 2π

N
kd. We could either calculate

{Qk,k}N−1
k=0 directly in O(DN) operations or via an IFFT in

O(N log N) operations since[Q0,0, Q1,1, . . . , QN−1,N−1]
t =

F H [α0,0, α1,0, . . . , αN−1,0]
t.

3) Computation of{‖pk‖2}N−1
k=0 : Recall thatpk = Pik

whereP = F H ∑

k CH
k gkiH

k F . If ḡk is a length-N zero-
padded version ofgk such that [ḡk]〈k−D+n〉

N
= [gk]n

for n ∈ {0, . . . , 2D + 1}, then CH
k gk = CH ḡk. This

implies that P = F HCH ∑

k ḡkiH
k F = F HCHḠF =

D(b∗)F HḠF , where Ḡ ∈ CN×N is constructed usinḡgk

as its kth column and, by definition,C = F D(b)F H .
This yields ‖pk‖2 =

∑

n |bn[F HḠF ]n,k|2. Note thatḠ is
banded with2D+1 active diagonals. In the appendix we study
matrices of the formF HḠF and find that[F HḠF ]n,k =

1√
N

∑D

d=−D ej 2π

N
ndαd,〈k−n〉

N
, where nowαd = F Had such

that ad is thedth sub-diagonal ofḠ. Thus

‖pk‖2 =
1

N

N−1∑

n=0

∣
∣
∣
∣
∣
b∗n

D∑

d=−D

ej 2π

N
ndαd,〈k−n〉

N

∣
∣
∣
∣
∣

2

(31)

=
1

N

N−1∑

n=0

|bn|2
D∑

d,l=−D

e−j 2π

N
n(l−d)αd,〈k−n〉

N
α∗

l,〈k−n〉
N

(32)

=
1

N

N−1∑

m=0

|b〈k−m〉
N
|2

D∑

d,l=−D

e−j 2π

N
(l−d)(k−m)αd,mα∗

l,m (33)

Reusing the definitionsβm(d, l) := αd,mα∗
l,mej 2π

N
(l−d)m and

D(d, l) := D([e−j 2π

N
(l−d)·0, . . . , e−j 2π

N
(l−d)(N−1)]), we have

[
‖p0‖2, ‖p1‖2, . . . , ‖pN−1‖2

]t

=
1

N

D∑

d,l=−D

D(d, l) C(b � b)β(d, l) (34)

=
1√
N

D∑

d,l=−D

D(d, l)F D
(
F H(b � b)

)
F Hβ(d, l) (35)

Thus {‖pk‖2}N−1
k=0 can be calculated using a few FFTs for

each combination of{d, l}, requiring a total ofO(D2N log N)
operations.

To conclude, the iterative symbol estimation algorithm out-
lined in Table 1 requires onlyO(D2N log N) operations per
iteration to estimateN symbols.

IV. SIMULATION RESULTS

In Fig. 4 we plot the simulated (uncoded) symbol error rate
versus SNR:= −10 log10 σ2 for BPSK in WSSUS Rayleigh
fading channels (generated using Jakes model [13]) with
uniform power delay profile and unit energy (i.e.,

∑

l σ2
l = 1).

The SCCP block length isN = 128 and both the channel delay
spread and guard interval length areN/4 samples. Each trace
represents results averaged from 5000 channel realizations.
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Fig. 4. Symbol error rate versus SNR after 10 iterations forN = 128 and
WSSUS Rayleigh fading with various cases of{fd, D}.

The performance of the iterative algorithm was measured
after 10 iterations and compared to joint linear MMSE esti-
mation of s from x (see, e.g., [12]), an expensive technique
requiringO(N3) operations per data block, and two versions
of the matched-filter bound (MFB). Thetrue MFB represents
the performance of the optimum detector ofsk assuming that
{sl, l 6= k} are known. As such, it relies on the true system
model (1) as opposed to the approximate model (8). We define
theapproximate matched filter bound(AMFB) to be the MFB
for the approximate model (8). The AMFB lower bounds the
performance of our iterative algorithm, which leverages the
banded structure of̆H for complexity reduction.

Figure 4 shows that the iterative algorithm significantly
outperforms the joint linear MMSE, even though the latter
will be more computationally intensive for largeN . The
iterative algorithm performs quite close to the AMFB, which
indicates that the iterative algorithm is doing a good job of
soft interference cancellation. The gap between AFMB and
MFB reflects the cost of the banded approximation (8).

V. CONCLUSIONS

In this paper we presented a two-stage receiver for SCCP
in doubly-dispersive channels. The first stage consists of low-
complexity linear preprocessing—here taking the form of
time-domain windowing—whose goal is to truncate the effec-
tive Doppler response in an SINR-optimal fashion. The second
stage consists of an iterative symbol estimation algorithm
which uses the results of previous iterations to perform soft
interference cancellation. As with classical SCCP (and OFDM)
equalization techniques, the proposed iterative receiverhas
an implementation complexity of onlyO(log N) operations
per symbol. Simulations suggest that the performance of the
proposed receiver comes within about 2dB of the MFB, far
surpassing that of the classical linear-MMSE receiver (which
ignores the finite-alphabet symbol property). As the iterative

algorithm evolves log-likelihood ratios, a soft decoding stage
could easily be embedded (e.g., [16]) to further improve
performance.

APPENDIX

SayH ∈ C
N×N has the banded structure of Fig. 1 but with

2PD+1 active diagonals. Now definean,m := [H]〈n+m〉
N

,m

for n ∈ Z and m ∈ {0, 1, . . . , N − 1}, so that[H ]n,m =
an−m,m. The vectorad := [ad,0, . . . , ad,N−1]

t collects the el-
ements on thedth sub-diagonal ofH , so thatH is completely
described by the2PD + 1 vectors{a−PD, . . . , aPD}.

ExaminingB = F HHF , we find that

Bn,m =
1

N

N−1∑

k=0

N−1∑

l=0

ej 2π

N
nkak−l,le

−j 2π

N
lm

=
1

N

PD∑

d=−PD

ej 2π

N
nd

N−1∑

l=0

ad,le
−j 2π

N
l(m−n)

=
1√
N

PD∑

d=−PD

ej 2π

N
nd[Fad]〈m−n〉

N
.
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