
Iterative Extensions of the Sturm/Triggs
Algorithm: Convergence and Nonconvergence

John Oliensis1 and Richard Hartley2,�

1 Department of Computer Science, Stevens Institute of Technology,
Castle Point on Hudson, Hoboken, NJ 07030

2 Australian National University and National ICT Australia

Abstract. We show that SIESTA, the simplest iterative extension of
the Sturm/Triggs algorithm, descends an error function. However, we
prove that SIESTA does not converge to usable results. The iterative
extension of Mahamud et al. has similar problems, and experiments with
“balanced” iterations show that they can fail to converge. We present
CIESTA, an algorithm which avoids these problems. It is identical to
SIESTA except for one extra, simple stage of computation. We prove
that CIESTA descends an error and approaches fixed points. Under weak
assumptions, it converges. The CIESTA error can be minimized using a
standard descent method such as Gauss–Newton, combining quadratic
convergence with the advantage of minimizing in the projective depths.

1 Introduction

The Sturm/Triggs (ST) algorithm [9] is a popular example of the factorization
strategy [10] for estimating 3D structure and camera matrices from a collection of
matched images. The factorization part of the algorithm needs starting estimates
of the projective depths λi

n, which [9] obtained originally from image pairs. After
[9], researchers noted that the λi

n can be taken equal or close to 1 for important
classes of camera motions [11][1][5]. For these motions, the algorithm becomes
almost a direct method, since it computes the structure/cameras directly from
the λi

n whose values are approximately known.
To improve the results of ST, several researchers proposed iterative exten-

sions of the method which: initialize the λi
n (typically) at 1, estimate the struc-

ture/cameras, use these estimates to recompute the λi
n, use the new λi

n to
recompute the structure/cameras, etc. [11][1][5][8][4]. One common use is for
initializing bundle adjustment [4]; for example, a few iterations can extend an
affine estimate computed via Tomasi/Kanade [10] to a projective initialization.
The iteration often gives much faster initial convergence than bundle adjustment
does [2]. Variant iterative extensions include [1][5][8][4]. Notably, [4] recommends
adding a “balancing” step [9] following the computation of the λi

n to readjust
� National ICT Australia is funded by the Australian Government’s Department of

Communications, Information Technology and the Arts And the Australian Research
Council through Backing Australia’s Ability And the ICT Research Centre of Ex-
cellence programs.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part IV, LNCS 3954, pp. 214–227, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Iterative Extensions of the ST Algorithm Convergence and Nonconvergence 215

their values toward 1. This keeps the λi
n near the correct values (for many classes

of motions) and also reduces the bias of the estimates [4].
This paper discusses the convergence of these iterations. Our theorems and

experiments show that the versions without balancing do not converge sensibly
and that the balanced iteration [4] can fail to converge. We propose CIESTA, a
simple algorithm which avoids these problems. We prove that CIESTA descends
an error function, that it iterates toward a ”best achievable” estimate, and that
these “best” estimates are stationary points of the error. CIESTA extends ST
to a sound iteration, replacing balancing with regularization. Since CIESTA
descends a known error function, it can be replaced by a standard descent method
such as Gauss–Newton, combining quadratic convergence with the advantage of
minimizing in the projective depths.

Notation. Given N quantities ζa indexed by a, we use {ζ} ∈ �N to denote the
column vector whose ath element is ζa. if A ∈ �M×N is a matrix, we define
{A} ∈ �MN as the column vector obtained by concatenating the columns of A.

For multiview geometry, we use the notation of [4]. Let Xn ≡
(
Xn; Yn; Zn; 1

)

∈ �4 represent the homogenous coordinates of the nth 3D point (we use ‘;‘ to
indicate a column vector), with n = 1, 2, . . . , Np, and let xi

n ≡
(
xi

n; yi
n; 1

)
∈ �3

be its homogenous image in the ith image, for i = 1, . . .NI . Let M i ∈ �3×4

be the ith camera matrix, and let M ∈ �3NI×4 consist of the M i concatenated
one on top of the other. Define the structure matrix X ∈ �4×Np so that its
nth column Xn is proportional to Xn. Neglecting noise, we have λi

nxi
n = M iXn,

where the constants λi
n are the projective depths. We use λ ∈ �NINp to denote

the vector of all the projective depths ordered in the natural way. Let W =
W (λ) ∈ �3NI×Np be the scaled data matrix consisting of the xi

n multiplied by
the projective depths, with W(3i−2):3i

n = λi
nxi

n. ST exploits the fact that, for
known λi

j and zero noise, the matrix W has rank ≤ 4 and factors into a camera
matrix times a structure matrix.

2 Simplest Iterative Extension of the ST Algorithm

Let Ŵ (λ) be a matrix with rank ≤ 4 that gives the best approximation to
W (λ) under the Frobenius norm: Ŵ (λ) ≡ arg minrank(Y)≤4 ‖W (λ) − Y ‖. Given
the SVD W (λ) = UDV T , we have the standard result Ŵ (λ) = UD̂V T , where
D̂ is obtained from D by zeroing all but the first four diagonal entries.

SIESTA repeatedly adjusts the λi
n to make the scaled data matrix W closer

to rank 4. Let λ(k) and W(k) ≡ W
(
λ(k)

)
give the estimates of the λi

n and W in
the the kth iteration. The algorithm is:

– Initialize the λi
n. By default we set all the λ

i(0)
n to 1.

– Iteration k, stage 1: Given the scaled data matrix W(k−1) ≡ W
(
λ(k−1)

)
,

compute its best rank ≤ 4 approximation Ŵ . Set Ŵ(k−1) = Ŵ .
– Iteration k, stage 2: Given Ŵ(k−1), choose λ(k) to give the closest matrix

of the form W(λ(k)), that is, λ(k) = arg minλ ‖W(λ) − Ŵ(k−1)‖.

216 J. Oliensis and R. Hartley

Remark 1. The SIESTA algorithm has a simple interpretation if one thinks of
the W(k) and ˆW(k) as points in �3NINp . For fixed image points xi

n, the set of
all {W (λ)} is a linear subspace of �3NINp which has dimension NINp since its
points are indexed by the NINp projective depths. We denote it by LNINp . Let Ω̂

denote the set of all points {Ŵ} in �3NINp coming from matrices Ŵ ∈ �3NI×Np

of rank ≤ 4. The SIESTA iteration can be rewritten as:

– Stage 1: Given
{
W(k−1)

}
, find the closest point

{
Ŵ(k−1)

}
from the set Ω̂.

– Stage 2: Given
{

Ŵ(k−1)
}

, find the closest point
{
W(k)

}
from LNINp .

Next we show that each SIESTA iteration “improves” the reconstruction.

Definition 1. Define E(W , Y) ≡ ‖W − Y ‖/‖W‖ and

Ê (λ) ≡ min
rank(Y)≤4

E(W (λ) , Y) = E(W , Ŵ) (SIESTA error).

The SIESTA error Ê measures the fractional size of the non-rank 4 part of W .

Proposition 1. The SIESTA error Ê
(
λ(k)

)
is nonincreasing with k.

Proof (sketch). Let θ(k) ≡ θ(W(k), Ŵ(k)) give the angle between the matrices
W(k) and Ŵ(k) considered as vectors in R3NINp . Its sine relates to the error Ê:

sin2(θ(k)) =
∣
∣
∣{W(k)} − {Ŵ(k)}

∣
∣
∣
2
/
∣
∣
∣{W(k)}

∣
∣
∣
2

= Ê
(
λ(k)

)
. (1)

SIESTA starts with a point in LNINp , finds the closest point from Ω̂, finds the
closest point to this from LNINp , etc. Since it computes the best approximation
each time, the angle between the two latest estimates from Ω̂ and LNINp is
nonincreasing, so θ(k) and Ê are nonincreasing.

Discussion. Our result justifies the practice of applying a few iterations of
SIESTA to extend an affine estimate based on λi

n = 1 to a projective one,
which can be used to start bundle adjustment. Although we show below that
SIESTA does not converge correctly, this is not be a fatal flaw, since the drift
away from good estimates is extraordinarily slow and hence correctable.

3 Convergence Problems for Iterative Factorization

3.1 SIESTA Fails to Converge

Trivial minima. We begin by describing trivial minima. If we choose the λi
n zero

except in four columns, the matrix W(λ) will have all columns but four composed
of zeros. Then W(λ) will have rank ≤ 4, and the error Ê(λ) = E(W(λ), Ŵ(λ)) =
0 because W(λ) and its closest rank ≤ 4 matrix Ŵ(λ) are equal.

This set of λi
n gives a trivial minimum of the SIESTA error. Choosing all the

λi
n zero except in one row also gives a trivial minimum. Trivial minima are of

Iterative Extensions of the ST Algorithm Convergence and Nonconvergence 217

no interest, since they don’t give reasonable interpretations of the data. Unfor-
tunately, the proposition below shows that unless a non-trivial solution exists
with exactly zero error (meaning that the data admits a noise-free solution),
then the SIESTA algorithm must approach a trivial minimum, or possibly, in
rare circumstances, a saddle point of the error. Experiments on small problems
show that the algorithm approaches trivial minima, though extremely slowly.

Proposition 2. Every local minimum of the SIESTA error Ê is a global mini-
mum with zero error.

Proof. We can assume without loss of generality that every 3D point has nonzero
λi

n in some images, since otherwise we can eliminate these points and apply the
argument below to the remaining set of points.

We suppose that the SIESTA error Ê has a local minimum at λ. Let W =
W(λ) be the corresponding scaled data matrix. By the assumption just above,
W has no columns consisting entirely of zeros. Under these two conditions, we
will show that the error equals zero or, equivalently, that W has rank ≤ 4.

Consider a transformation that perturbs a matrix by multiplying its n-th
column by a value s. We denote this transformation by τnκ where κ = s2 − 1.
The reason for introducing the variable κ is that the subsequent computations
simplify when expressed in terms of κ. For κ = 0, the transformation τnκ is the
identity transformation and leaves the original matrix unchanged. It is evident
that applying τnκ to the matrix W = W(λ) is equivalent to multiplying the nth
column of the projective depths λi

n by s, so we can write τnk(W) = W(λτnk),
where λτnk equals λ except for the appropriate scaling of the nth column.

For the remainder of the proof, we write simply W , omitting the dependence
on λ. We denote τnκ(W) by Wτ , and the nearest1 rank ≤ 4 matrix to Wτ by Ŵτ .
Recall that, similarly, Ŵ is the closest matrix to W having rank ≤ 4. We may
also apply the transformation τnκ to Ŵ , resulting in a matrix (Ŵ)τ = τnκ(Ŵ).
This matrix has the same rank as Ŵ for s �= 0 and hence has rank ≤ 4, but, as
we shall see, it is in general distinct from Ŵτ . It is important to understand the
difference between (Ŵ)τ and Ŵτ .

As a first step, we show (under our assumptions above) that any κ �= 0 gives

Ê(Wτ) ≡ E(Wτ , Ŵτ) ≤ E(Wτ , (Ŵ)τ) = E(W , Ŵ) ≡ Ê(W) . (2)

The inequality in (2) follows simply from the definition of the error E and
the fact that Ŵτ is the closest matrix to Wτ having rank ≤ 4. Consider the
equality E(Wτ , (Ŵ)τ) = E(W , Ŵ). Noting that W and Wτ differ only in the
overall scale of their nth columns, we may compute

E(Wτ , (Ŵ)τ) = (κ|Rn|2 + ‖R‖2)/(κ|Wn|2 + ‖W‖2), (3)

where R = W − Ŵ , and Rn and Wn are the nth columns of R and W . Under
our assumption that W gives a local minimum, the derivative of this expression

1 The nearest matrix need not be unique.

218 J. Oliensis and R. Hartley

with respect to κ must be zero. Computing the derivative at κ = 0, and setting
the numerator to zero leads to ‖W‖2 |Rn|2 − ‖R‖2 |Wn|2 = 0, which gives

|Rn|2/|Wn|2 = ‖R‖2/‖W‖2, (4)

i.e., the left–hand ratio has the same value for any n. After substituting in (3),

E(Wτ , (Ŵ)τ) = ‖R‖2/‖W‖2 = E(W , Ŵ) (5)

for all values of κ, as required. This proves (2).
Suppose we could make the inequality in (2) strict for arbitrarily small val-

ues of κ. In fact, we cannot do this, since if we could the error Ê would be
strictly decreasing at λ and W(λ) rather than having a local minimum as as-
sumed. Therefore, for all κ less than some small value, we have the equality
E(Wτ , Ŵτ) = E(Wτ , (Ŵ)τ). This means that (Ŵ)τ is a closest rank ≤ 4 ma-
trix to Wτ for all sufficiently small κ, regardless of which column n is scaled by
the transform. We will prove the proposition by showing that this can hold only
if W already has rank ≤ 4. First, we need a lemma.

Lemma 1. If a matrix Ŵ is a closest matrix having rank ≤ r to a matrix W,
then R�Ŵ = RŴ� = 0, where R = W − Ŵ.

Proof (sketch). Write Ŵ = AB, where A has r columns, take derivatives of
‖W − AB�‖2 with respect to the entries of A or B, and set them to zero.

We return to the proof of the proposition. Since Ŵ is a closest rank ≤ 4 matrix
to W , the lemma gives RŴ� = 0. As argued above, we can choose κ �= 0
small enough so that (Ŵ)τ is a closest rank ≤ 4 matrix to Wτ , regardless of
what n we choose for τnk. For such κ, the lemma gives Rτ (Ŵ)τ� = 0 , where
Rτ = Wτ − (Ŵ)τ , and it follows that RŴ� −Rτ (Ŵ)τ� = 0. Since W and Wτ ,
and similarly R and Rτ , differ only in the scaling of their n-th columns, we may
easily compute the matrix RŴ� −Rτ (Ŵ)τ�: Its (p, q)-th entry equals κRp

nWq
n.

Since κ �= 0 and our arguments hold regardless of the n we choose for τnk, we
have Rp

nWq
n = 0 for all values of n, p, and q.

We assumed that W has no columns consisting entirely of zeros. Thus, each
column n of W contains a non-zero entry Wq

n, so for each n we must have Rp
n = 0

for all p, which means that column n of R is zero. Hence R = 0 and W gives
zero error, which is what we set out to prove.

Remark 2. Intuitively, Proposition 2 holds because the trivial minima are so
destabilizing that one can always reduce the error by moving toward one.

SIESTA can be useful despite our result. (5) suggests that the error can be
very flat and SIESTA’s descent to a trivial minimum extremely slow. In trials on
realistic data, the SIESTA error drops quickly from its start at λi

n = 1 but never
approaches a trivial minimum; in fact, it descends so slowly after a few hundred
iterations (with ΔÊ ≤ O(10−11)) that one can easily conclude wrongly that it
has converged. What seems to happen is that SIESTA approaches an almost
minimum—a saddle point that would be a minimum if it weren’t destabilized
by the trivial minima—and then slows, usually still with λi

n ≈ 1.

Iterative Extensions of the ST Algorithm Convergence and Nonconvergence 219

All this suggests that the destabilization from the trivial minima is weak, only
becoming important at small error values. If we can compensate for it, e.g., by
‘balancing’, this might turn the saddles into minima giving correct estimates. In
trials, SIESTA does give good estimates once it slows. Although its error has no
usable minima, the saddle points may serve as useful ‘effective minima.’

3.2 Other Iterative Extensions of ST

Mahamud et al. [7][8] proposed an iteration similar to SIESTA that differs by
maintaining a normalization constraint on the columns of W .2 The first stage of
the iteration is the same as in SIESTA, and the second stage is:

– Iteration k, stage 2: Given Ŵ(k−1), choose new projective depths λ(k) so
that W(λ(k)) optimally approximates Ŵ(k−1) subject to the Np columns
constraints |Wn| = 1, n ∈ {1 . . .Np}.

With the constraints, the SIESTA error Ê reduces in effect to ‖W − Ŵ‖2. It
is easy to show that the iteration descends this error [8]. The constrained error
possibly does have nontrivial minima, but we argue below that it does not have
usable minima corresponding to good structure/camera estimates.

[1][5] proposed a SIESTA variant roughly dual to [8] but did not give an error
for it. A similar iteration that descends an error is SIESTA with a new stage 2:

– Iteration k, stage 2: Given Ŵ(k−1), choose new projective depths λ(k)

so that W(λ(k)) optimally approximates Ŵ(k−1) subject to the NI image
constraints ‖W(3i−2):3i‖ = 1, where each matrix W(3i−2):3i ∈ �3×Np gives
the three rows of W for image i.

This iteration also descends the error ‖W − Ŵ‖2. We have not analyzed its
convergence, but we expect that it has the same problems as the previous one.
Convergence analysis for the iteration of [7][8].2

Our results are weaker than for SIESTA, so we just summarize them.
As for SIESTA, we start by considering a transformation that scales the λi

n

toward a trivial minimum (see Remark 2). We define the transform so that it
first scales all the projective depths for the kth image by s, and then scales the
column of projective depths for each 3D point to maintain the norm constraints
on the columns of W . As before, we apply the same transform to Ŵ as for W .
Assuming that λ gives a stationary point of the error, our transform must also
give a stationary point at λ, and this leads to constraints on W and Ŵ analogous
to (4). Exploiting these constraints, we try to modify the transform so that it
strictly decreases the error at λ.

This is much harder than for SIESTA. The initial transform τnk for SIESTA
gave an error that was constant at a stationary point, so we could make the error

2 Mahamud et al. [7] also proposed a different iteration that minimizes alternately with
respect to the camera and structure matrices. This approach loses the advantage of
minimizing in the λi

n—it cannot exploit prior knowledge that the λi
n are near one.

220 J. Oliensis and R. Hartley

decrease, establishing the stationary point as a saddle, by an arbitrarily small
change in τnk. For the algorithm of [8], the error at a stationary point usually has
a minimum under our initial transform. We need a large change in the transform
to make the error decrease, so this may not always be possible. However, we argue
that we can make the error decrease at “desirable” stationary points, where the
estimates of the structure/cameras are roughly correct and λi

n ≈ 1.
We now describe how to modify the inital transform described above. Let

Ŵ = M̂X̂T be the rank 4 factoring that comes from the SVD of W . We modify
the initial transform of Ŵ by transforming X̂ linearly before scaling it, where
we choose this linear transform to minimize the error’s second derivative with
respect to the transform at the stationary point. We have derived upper bounds
on the resulting second derivatives. We will argue that these are negative at a
“desirable” stationary point, so such stationary points are saddles.

Define wi
n ≡ [W](3i−2):3i

n and ŵi
n ≡

[
Ŵ

](3i−2):3i

n
and the residual ri

n ≡ wi
n −

ŵi
n; all are vectors in �3. Without loss of generality, take the columns of M̂

orthogonal and define m̂i ≡ M̂ (3i−2):3i ∈ �3×4. Let μ̂i
a be the ath singular value

of m̂i and let m̂i
a ∈ �3 be the ath column of m̂i. Choose image k so

〈
|m̂k|2

〉
≥

〈
|wk|2

〉
, (6)

where we use 〈·〉 to denote the average, taken over the omitted index. Such an
image always exists, since our normalizations give

1 =
NI∑

i=1

4∑

a=1

|m̂i
a|2/4 =

NI∑

i=1

〈
|m̂i|2

〉
=

NI∑

i=1

〈
|wi|2

〉
=

NI∑

i=1

Np∑

n=1

|wi
n|2/NP .

Our upper bound on the second derivative for the modified transform is

2

⎛

⎝
Np∑

n=1

|rk
n|2

⎞

⎠

⎛

⎝2 max
n=1...Np

∣
∣ |wk

n|2 −
〈
|wk|2

〉 ∣
∣ − 4

3
|μ̂k

3 |2
〈
|μ̂k|2

〉
〈
|wk|2

〉
⎞

⎠ (7)

for the chosen image k. In practice, [4][9] recommend normalizing the homoge-
nous image points to a unit box before applying ST. Then, assuming a “de-
sirable” stationary point with all λi

n near 1, the |wk
n|2 will be approximately

constant in k and n. If the singular values μ̂k
a all have roughly the same size,

then |μ̂k
3 |2/

〈
|μ̂k|2

〉
≈ 1, and our bound is likely to be negative.

In our experiments on real sequences, the apparent convergence points of

the Mahamud et al. iteration [7][8] always have
(
μ̂k

3

)2
/

〈
|μ̂k|2

〉
≈ 1, and they

almost always give a negative value of the bound (7), which rules out these
“convergence points” as local minima. Note that the bound is conservative; in
practice, we expect cancellations to reduce the second derivative below (7).

Why is the ratio
(
μ̂k

3

)2
/

〈
|μ̂k|2

〉
typically near 1? One contributing factor

is that, after the standard scaling to a unit box, the image submatrix wi ≡

Iterative Extensions of the ST Algorithm Convergence and Nonconvergence 221

[
wi

1,w
i
2, . . . ,w

i
NP

]
∈ �3×Np typically has three singular values of the same order.

Another cause is the following. Write the SVD of the scaled data matrix as
W = UDV T . Writing the singular values μ̂k

a in terms of the image data gives

(
μ̂k

a

)2
= N−1

I

Np∑

n=1

∣
∣skT

a wkVn

∣
∣2/

〈
|wVn|2

〉
,

where sk
a ∈ �3 represent the ath left singular vector of m̂k and Vn denotes the nth

column of V . The average in the denominator is over all images i. Thus,
(
μ̂k

a

)2
is

proportional to a sum of projections of the (homogeneous) image data normalized
by their average values. If the camera positions are spaced roughly uniformly,
as they are in many sequences, the kth image is often close to “average,” so the
singular values μ̂k

a all have similar sizes. One can get μ̂k
3 � μ̂k

1 if, for example,
most of the camera positions cluster together but one is very far from the others.

We have also derived a second bound whose size is easier to estimate. Choose
image k such that

∥
∥wk − ŵk

∥
∥2 ≤ Ê

∥
∥wk

∥
∥2, which is always possible since one

can show that
∑

i

∥∥wi − ŵi
∥∥2 = Ê

∑
i

∥∥wi
∥∥2. Denote the ath singular value of

wk by dk
a and the ath singular value of W by Da. Our new bound is

2

⎛

⎝
Np∑

n=1

|rk
n|2

⎞

⎠
(

2 max
n=1...Np

∣
∣
∣ |wk

n|2 −
〈
|wk|2

〉 ∣
∣
∣ −

(
dk
3/

∥
∥
∥wk

∥
∥
∥ − Ê1/2

)2 Np

D2
1

〈
|wk|2

〉)
.

(8)

After the standard scaling of the image data to a unit box, we expect dk
3/

∥
∥wk

∥
∥ ≈

3−1/2 ≈ 0.58. Even if the scene is planar, the first three singular values of W are
usually substantial, causing Np/D2

1 > 1. Experimentally, we find dk
3/

∥∥wk
∥∥ ≈ 0.3

and Np/D2
1 ≈ 1.3. Substituting the experimental values, and assuming W is close

to a rank ≤ 4 matrix so Ê � 1/3, we can approximate the bound as

2

⎛

⎝
Np∑

n=1

|rk
n|2

⎞

⎠
(

2 max
n=1...Np

∣
∣ |wk

n|2 −
〈
|wk|2

〉 ∣
∣ − 0.13

〈
|wk|2

〉
)

. (9)

Table 1 shows results for the Mahamud et al. algorithm on real image sequences,
see Figure 1. We obtained these by running the algorithm for 1000 iterations,
after which the error was changing so slowly that the algorithm seemed to have
converged. In all but one case, we found negative values for the bounds (8) and
(9), proving the algorithm had not converged to a minimum. In the exceptional
case, the trivial minima had produced small λi

n for a few points. Repeating the
experiment without these points gave a negative bound. We have verified our
upper bounds experimentally on several thousand synthetic sequences. We also
used a standard nonlinear minimization routine (LSQNONLIN from MATLAB)
to minimize the error for the Mahamud et al. algorithm. The routine converged
to a trivial minimum in all cases. These results indicate that the convergence of
the Mahamud et al. algorithm is problematic at best. 2

222 J. Oliensis and R. Hartley

Table 1. The bounds (7), (8) for five real sequences (Fig. 1). ‘Ox0–10’ is for 11 images;
other ‘Ox’ rows are for image pairs. ‘Ox0&8*’ is for images 0 and 8, with 3 points
subtracted. The ‘μ ratio’ column gives the least |μ̂k

3 |2/
〈
|μ̂k|2

〉
over k satisfying (6).

Est. Range First Least μ Ê1/2 Range for maxn maxk Second

λ Bound ratio (×10−3)
∣
∣
∣
∣

|wn|2

〈|w|2〉 − 1
∣
∣
∣
∣

Np

D2
1

d2
3

‖w‖2 Bound

Ox0-10 0.79–1.15 −0.06 0.40 1.6 0.01–0.37 1.3 0.08 −0.09
Ox0&10 0.83–1.14 −0.24 0.78 1.8 0.29–0.31 1.3 0.10 0.44
Ox0&8 0.14–1.40 0.52 0.73 8.2 0.98–1.08 1.3 0.09 1.9
Ox0&8∗ 0.85–1.13 −0.28 0.78 1.6 0.24–0.25 1.3 0.09 0.37
Ox0&1 0.97–1.03 −0.46 0.75 0.5 0.04–0.04 1.3 0.12 −0.07
Rock 0.90–1.09 −0.07 0.46 6.0 0.03–0.20 1.4 0.08 0.01
Puma 0.99–1.01 −0.05 0.50 1.7 0.01–0.06 1.5 0.14 −0.21
MSTea 0.97–1.03 −0.43 0.75 0.7 0.05–0.05 1.5 0.16 −0.14

MSPlane 0.91–1.10 −0.13 0.44 0.6 0.05–0.13 1.5 0.18 −0.17

Fig. 1. Images from the five real sequences. (a) Oxford corridor; (b) Rocket–Field [3];
(c) PUMA [6]; (d) Microsoft tea [12]; (e) Microsoft Plane calibration [12].

3.3 Balancing

[4] modifies SIESTA by adding a third “balancing” stage [11] following stage 2
that rescales the λi

n to make them close to 1. This lessens the algorithm’s bias
and helps to steer it away from trivial minima. The balancing can be done in two
passes, by first scaling λi

n −→ αiλi
n for each image i so that

∑Np

n=1 |λi
n|2 = NI ,

and then scaling λi
n −→ βnλi

n for each point so
∑NI

i=1 |λi
n|2 = Np. Optionally,

this can be repeated several times or iterated to convergence. Unfortunately, it
seems likely that the rescaling conflicts with the error minimization in stages 1
and 2, and that the balanced iteration need not converge. To exaggerate this
potential conflict and make it more observable, we implemented SIESTA with a
balancing stage that iterates to near convergence, with up to 10 rounds of first
balancing the rows and then the columns of λi

n. In one of our experiments, this
algorithm apparently converged to a limit cycle which repeatedly passed through

Iterative Extensions of the ST Algorithm Convergence and Nonconvergence 223

three different values for λ with three different values of the error Ê (λ). For this
strong version of balancing, it seems that an iteration of SIESTA–plus–balancing
does not guarantee improvement in the projective–depth estimates.

Nevertheless, occasional balancing may serve as a useful “mid–course correc-
tion” that compensates for SIESTA’s drift toward trivial minima.

4 CIESTA

An alternative to balancing is regularization. We define a new iteration CIESTA
that descends the error Êreg(λ), where

Êreg(λ) ≡ min
rank(Y)≤4

Ereg, Ereg(λ, Y) ≡ E(W(λ), Y)+μ

NI∑

i=1

Np∑

n=1

|xi
n|2(1−λi

n)2,

(10)
and μ > 0 is the regularization constant. The algorithm is the same as SIESTA
except for a new third stage in the iteration.

Let λ(k) ∈ �NiNp and W(k) ≡ W(λ(k) now denote the output of the kth
CIESTA iteration, and let λ(0) and W(0) give the initialization. As before, let
Ŵ(k) be the best approximation of rank ≤ 4 to W(k). Define the constants

C0 = μ

NI∑

i=1

Np∑

n=1

|xi
n|2, C

(k)
1 ≡ μ

NI∑

i=1

Np∑

n=1

xi
n · ŵi(k)

n , (11)

C
(k)
2 ≡ μ

NI∑

i=1

Np∑

n=1

(
xi

n · ŵi(k)
n

)2

|xi
n|2 , C

(k)
3 = μ

NI∑

i=1

Np∑

n=1

|ŵi(k)
n |2,

and z(k) ≡ C
(k)
3 C0/C

(k)
2 . Define the function

b
(k)
+ (a) ≡ a1/2/

(
a2C0 + 2aC

(k)
1 + C

(k)
2

)1/2
, (12)

which is obtained as an intermediate result while minimizing Ereg(λ, Ŵ(k)) in λ.

Remark 3. One can show that CIESTA gives the following constraints:

1. C0 > 0, C
(k)
3 ≥ C

(k)
2 , C

(k)
2 > 0.

2. Q(k) ≡ a2C0 + 2aC
(k)
1 + C

(k)
2 > 0, z(k) > 0

From the second line we see that b+ is finite. CIESTA’s new third stage is:

– CIESTA (iteration k, stage 3): With κ ≡ k−1, compute the roots of P (κ)(a)

≡ C0a
6 −

(
C2

0 − 2C
(κ)
1

)
a5 −

(
2C0C

(κ)
3 − C

(κ)
2

)
a4 −

(
4C

(κ)
1 C

(κ)
3 − 2C

(κ)
2 C0

)
a3

+
(
C0C

(κ)2
3 − 2C

(κ)
2 C

(κ)
3

)
a2 +

(
2C

(κ)
1 C

(κ)2
3 − C

(κ)2
2

)
a + C

(κ)
2 C

(κ)2
3 . (13)

224 J. Oliensis and R. Hartley

Choose a root a > 0 such that: For z(κ) �= 1, the quantity ā ≡ a(C0/C
(κ)
2)1/2

and z(κ) lie on the same side of 1; For z(κ) = 1, when there is a choice, take
either of the choices with ā �= 1. Redefine λ(k) −→ λ(k) =

(
a + λ(k)

)
b
(κ)
+ (a) .

The four propositions below address the convergence of CIESTA (proofs omit-
ted). Let Ê∞ be the greatest lower bound of the errors Êreg(λ(k)), and let A be
the set of accumulation points of the sequence λ(k).

Assumption 1 (μ condition). CIESTA starts with all λi
n = 1, and

μ‖W(0)‖2 > ‖W(0) − Ŵ(0)‖2/‖W(0)‖2, (14)

which is equivalent to C2
0 >

(
C0 + C

(0)
3 − 2C

(0)
1

)
.

Remark 4. Our results below don’t require that CIESTA start at λi
n = 1; we

assume this just to simplify the theorems and proofs. The Assumption specifies
how much regularization is needed to guarantee CIESTA’s performance. Taking
μ large enough rules out the trivial minima.

Proposition 3. Suppose Assumption 1 holds. The errors Êreg
(
λ(k)

)
are non-

increasing with k and converge monotonically in the limit k → ∞.

Proposition 4. Suppose Assumption 1 holds. Then: 1) Every λA ∈ A has
Êreg (λA) = Ê∞; 2) For any ε > 0, there exists a K such that k > K implies∣
∣λ(k) − λA

∣
∣ ≤ ε for some λA ∈ A.

Proposition 5. Suppose Assumption 1 holds. Let λA ∈ A. Let the fourth sin-
gular value of W (λA) be strictly greater than the fifth, and zA �= 1, where zA

is the constant from (11) evaluated at λA. Then λA is a fixed point of CIESTA
and a stationary point of the error Êreg (not necessarily a minimum).

Proposition 6. Suppose the assumptions of Proposition 5 hold for some λA ∈
A. Proposition 5 states that Êreg has a stationary point at λA. If in fact Êreg
has a strict local minimum at λA, then CIESTA converges uniquely to λA.

Propositions 3 and 4 show that CIESTA “converges” in a certain sense (discussed
below). Proposition 5 states that its end results are sensible, that is, they are
stationary points of the error. Proposition 6 shows that under weak assumptions
CIESTA converges in a strict sense to a unique result.

The proof of Prop. 4 is easy and the proof of Prop. 3 is a calculation. The proof
of Proposition 5 is more technical: We need to show that Ereg has a unique global
minimum and that the output of stage 3 depends continuously on its input.

Discussion. Like balancing, CIESTA favors λi
n ≈ 1, but it guarantees improved

estimates with lower error. The error Êreg shows explicitly how CIESTA weights
its preference for λi

n ≈ 1 versus the data error Ê. The extra computation of
stage 3 is small: it just requires finding the eigenvalues of a 6 × 6 matrix.

We have not shown that CIESTA converges to a single λ (except under the
assumptions of Prop. 6), and it is not clear whether this always happens. But
our results have the same practical implications as a convergence proof.

Iterative Extensions of the ST Algorithm Convergence and Nonconvergence 225

A convergence proof would amount to the following guarantee: by iterating
enough times, one can bring the algorithm as close as desired to a “best achiev-
able result,” i.e., to a λ with the lowest error reachable from its starting point.
This does not forbid other equally good estimates with the same error as the
“best result,” though the algorithm happens not to converge to them.

Proposition 4 provides essentially the same guarantee: by iterating enough
times, we can bring CIESTA arbitrarily close to a “best achievable result.” The
difference is that the nearest “best result” may change from iteration to iteration.
This doesn’t matter since all are good and we may choose any one as CIESTA’s
final output. Under the conditions of Prop. 6, we do have strict convergence.

One can minimize Êreg using a traditional quadratically convergent technique
such as Gauss–Newton instead of CIESTA.

4.1 CIESTA Experiments

Table 2 shows results obtained using a standard quadratically convergent nonlin-
ear minimization routine (from MATLAB) to minimize Êreg for the real image
sequences of Figure 1. The algorithm always converged to a nontrivial minimum
with λi

n ≈ 1, though we used a value for μ that permitted some of the λi
n to go

to zero. The value of μ was twice that needed to avoid λ = 0.
The iterative extensions of ST, including SIESTA, CIESTA, and the balanced

iterations, all give similar results in practice, and iterating them to convergence
(or apparent convergence) gives better results than a single iteration does. To
illustrate this, we compared their results against ground truth on one synthetic
and two real sequences, see Table 3. (We generated the synthetic OxCorr se-
quence in Table 3 using the Oxford Corridor ground truth structure and random
translations and rotations. For OxDino, we extracted 50 points tracked over 6
images from the Oxford Dinosaur sequence and computed the ground truth by
bundle adjustment.)

In all three cases: SIESTA gave the best agreement with the ground truth;
the result at “convergence” improved on that obtained after a single iteration;
the results of the “balanced” iteration did not depend on the number of rounds

Table 2. Results of using MATLAB’s LSQNONLIN to minimize the CIESTA error
Êreg. Results show the values at convergence. The f values do not equal 1 exactly.

Sequence μ/Bound λ range f C0 C2 C3

Rock 2 0.90–1.08 1 1.9786 1.9785 1.9785
PUMA 2 0.98–1.01 1 1.9954 1.9954 1.9954
Ox0&1 2 0.98–1.02 1 1.9993 1.9993 1.9993
Ox0&8 2 0.71–1.09 1 1.9358 1.9355 1.9357
Ox0&10 2 0.82–1.13 1 1.9770 1.9770 1.9770
Ox0-10 2 0.79– 1.13 1 1.9844 1.9844 1.9844
MSTea 2 0.98–1.02 1 1.9993 1.9993 1.9993
MSPlane 2 0.90–1.09 1 1.9958 1.9958 1.9958

226 J. Oliensis and R. Hartley

Table 3. Fractional errors
∑

n |P calc
n −PGT

n |2/
∑

n |PGT
n |2 (×104) for the structure after

“convergence.” We compute P calc
n ∈ �3 from the calculated homogeneous structure by

applying a projective transform to minimize the error. SIESTA1 gives results after one
iteration; other results are after 1000 iterations or convergence (CIESTA). Bal1 and
10 results are obtained using a single round or 10 rounds of column/row balancing in
each iteration.

Sequence SIESTA1 SIESTA Bal1 Bal10 CIESTA
OxCorr 4.8 2.8 3.0 3.0 2.9
PUMA 0.97 0.47 0.47 0.47 0.48
OxDino 1.48 0.39 0.49 0.49 0.54

of balancing; and CIESTA (using μ computed as in Table 2) performed as well
as the balanced iterations.

5 Conclusion

We showed that SIESTA, the simplest iterative extension of ST, descends an
error function: Each iteration “improves” the estimates. However, we proved
that the SIESTA doesn’t converges to useful results. We showed that another
proposed extension of ST [7] shares this problem.2 [4] advocate “balancing” to
improve convergence. Our experiments show that balancing need not yield a
convergent algorithm.

We proposed CIESTA, a new iterative extension of ST, which avoids these
problems. CIESTA replaces balancing by regularization. The algorithm is iden-
tical to SIESTA except for one additional and still simple stage of computation.
We proved that CIESTA descends an error function and approaches nontrivial
fixed points, and that it converges under weak assumptions.

CIESTA, like other iterative extensions of ST, has the advantage of mini-
mizing in the λi

n, whose values are often known to be near one a priori. Thus,
it often shows fast initial convergence toward estimates that are approximately
correct. Like other iterative extensions, CIESTA has the disadvantage that it
converges linearly. A quadratically convergent method such as Gauss–Newton
will be faster near a fixed point or in narrow valleys of the error function. Using
such a method instead of CIESTA can combine quadratic convergence with the
advantage of minimizing in the λi

n. A hybrid strategy that uses CIESTA ini-
tially and then switches to a second–order method, or full bundle adjustment,
can combine the speed advantages of both [2].

Unlike bundle adjustment, CIESTA needs regularization. This allows the user
to incorporate a realistic preference for projective depth values near 1 but can
bias the final estimate. However, our experiments indicate that just a small
amount of regularization suffices to stabilize the error minima. CIESTA’s reg-
ularization and SIESTA’s trivial convergence generally do not have a big effect
on the estimates obtained once the algorithms slow their progress.

Iterative Extensions of the ST Algorithm Convergence and Nonconvergence 227

References

1. R. Berthilsson, A. Heyden, G. Sparr, “Recursive Structure and Motion from Image
Sequences Using Shape and Depth Spaces,” CVPR 444–449, 1997.

2. A. Buchanan and A. Fitzgibbon, “Damped Newton Algorithms for Matrix Factor-
ization with Missing Data,” CVPR 2005.

3. R. Dutta, R. Manmatha, L.R. Williams, and E.M. Riseman, “A data set for quan-
titative motion analysis,” CVPR, 159-164, 1989.

4. R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cam-
bridge, 2000.

5. A. Heyden, R. Berthilsson, G. Sparr, “An iterative factorization method for pro-
jective structure and motion from image sequences,” IVC 17 981–991,1999.

6. R. Kumar and A.R. Hanson, “Sensitivity of the Pose Refinement Problem to Ac-
curate Estimation of Camera Parameters,” ICCV, 365-369, 1990.

7. S. Mahamud, M. Hebert, Y. Omori, J. Ponce, “Provably-Convergent Iterative
Methods for Projective Structure from Motion,” CVPR I:1018-1025, 2001.

8. S. Mahamud, M. Hebert, “Iterative Projective Reconstruction from Multiple
Views,” CVPR II 430-437, 2000.

9. P. Sturm and B. Triggs, “A factorization based algorithm for multi–image projec-
tive structure and motion,” ECCV II 709–720, 1996.

10. C. Tomasi and T. Kanade, “Shape and motion from image streams under orthog-
raphy: A factorization method,” IJCV 9, 137-154, 1992.

11. B. Triggs, “Factorization methods for projective structure and motion,” CVPR
845–851, 1996.

12. Zhengyou Zhang, “A Flexible New Technique for Camera Calibration,” PAMI
22:11, 1330-1334, 2000 and Microsoft Technical Report MSR-TR-98-71, 1998.

	Introduction
	$\underline S}implest {\underline I}terative {\underline E}xtension of the {\bf \underline{ ST}} {\underline A}lgorithm$
	Convergence Problems for Iterative Factorization
	SIESTA Fails to Converge
	Other Iterative Extensions of ST
	Balancing

	CIESTA
	CIESTA Experiments

	Conclusion

