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Abstract The synthesizing information, achieving understanding, and deriving insight from

increasingly massive, time-varying, noisy and possibly conflicting data sets are some of

most challenging tasks in the present information age. Traditional technologies, such as

Fourier transform and wavelet multi-resolution analysis, are inadequate to handle all of the

above-mentioned tasks. The empirical model decomposition (EMD) has emerged as a new

powerful tool for resolving many challenging problems in data processing and analysis. Re-

cently, an iterative filtering decomposition (IFD) has been introduced to address the stability

and efficiency problems of the EMD. Another data analysis technique is the local spectral

evolution kernel (LSEK), which provides a near prefect low pass filter with desirable time-

frequency localizations. The present work utilizes the LSEK to further stabilize the IFD,

and offers an efficient, flexible and robust scheme for information extraction, complexity re-

duction, and signal and image understanding. The performance of the present LSEK based

IFD is intensively validated over a wide range of data processing tasks, including mode de-

composition, analysis of time-varying data, information extraction from nonlinear dynamic

systems, etc. The utility, robustness and usefulness of the proposed LESK based IFD are

demonstrated via a large number of applications, such as the analysis of stock market data,

the decomposition of ocean wave magnitudes, the understanding of physiologic signals and

information recovery from noisy images. The performance of the proposed method is com-

pared with that of existing methods in the literature. Our results indicate that the LSEK

based IFD improves both the efficiency and the stability of conventional EMD algorithms.
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1 Introduction

Information extraction, complexity reduction, data analysis, signal and image understand-

ing have become increasingly important in the society today. With explosive advancement

of information technology, scientists and engineers have been dealing with huge quantity

of multi-disciplinary data with greater complexity, increasingly false information. In many

areas including bioinformatics, biological and biomedical sciences, information technology,

national geophysical researching, and financial stock market, traditional data analysis and

data mining techniques are not always sufficient for inspecting, filtering, understanding,

modeling and analytically predicting the large volume of complex data.

Traditionally, Fourier analysis has been widely used for signal processing and data anal-

ysis. The Fourier method provides a general approach to study the global energy/frequency

distribution. Although this method is valid and easy to implement under very general condi-

tions [50, 63], there are some well known limitations. The traditional Fourier spectral anal-

ysis is based on the assumption that data is piecewise stationary. Therefore, it is not suitable

for analyzing data of non-stationary nature. The Fourier method defines uniform harmonic

components globally, so it needs many additional harmonic components to simulate non-

stationary data that are non-uniform globally. This leads to the spreading of energy over a

wide frequency range, and thus the additional spurious harmonics can not faithfully repre-

sent the true energy exactly due to constraint of energy conservation. This is one example

where mathematical picture can not guarantee and lead to the correct physical picture. In

practical applications of the method, it may be difficult to choose a suitable window size to

satisfy the conflicting requirements of localizing an event in time, which favors narrow win-

dow width, and longer time series for better frequency resolution. In addition, the method

is not data adaptive. In many applications in signal processing, one usually desires informa-

tion of localized spatial and temporal dimensions, which is not well addressed in the Fourier

spectral analysis.

Another popular technique is the wavelet transform which is very useful in analyzing data

with gradual frequency changes, especially in edge detection and image compression, and

also, to certain degree, for time-frequency distribution in time series. The wavelet approach

is essentially an improved Fourier spectral analysis equipped with adjustable windows. The

general definition includes the convolution of the basic wavelet function with original sig-

nals [13]. Wavelet parameters are used in the formula to specify the dilation factor whose

inverse gives the frequency scale, and the translation of the origin which specifies localized

temporal location. In spite of the many appealing features of this versatile method [23, 60],

e.g., being able to capture discontinuities successfully, providing uniform resolution for all

the scales, etc., wavelet analysis is basically a linear analysis and suffers from many limita-

tions. The down sides include uniformly poor resolution due to the size of the basic wavelet

function, sometimes counter-intuitive interpretation from the wavelet analysis, and non-data

adaptive nature as the same basis wavelet function has to be used to analyze all the data [32].

Moreover, since some commonly used wavelets, e.g., Morlet wavelet, are based on Fourier

method, it therefore inherits many shortcomings of the Fourier analysis as well.

The empirical mode decomposition (EMD) was introduced by Norden Huang [33] to

define and extract series of instantaneous frequencies beyond the traditional Fourier spec-

trum analysis. The local information extraction employed in the EMD is especially useful

for analyzing signals which are nonlinear and non-stationary. The method can be used to

decompose a time series into a sum of intrinsic mode functions (IMF) based on the local

characteristic time scales of the data. By requiring these IMFs to have equal (or different by

one) number of extrema and zero crossings and to have zero mean value of the envelopes
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defined by the local extrema, the method admits better behaved Hilbert transforms and leads

to meaningful readings for the instantaneous frequency of the data. With the Hilbert trans-

form, the IMFs yield instantaneous frequencies as functions of time that accurately match

with and identify embedded structures. The EMD is thus aimed at decomposing a compli-

cated signals into various IMFs with separated frequency in the time domain. As illustrated

in many previous studies, noises can often be well filtered to arrive at clean and accurate

modes and residues of the original signal. In processing and analyzing signals and images,

EMD allows one to freely choose low pass filters for decomposition. The EMD has been

successfully applied in image and signal processing [37, 55, 61, 62] and in analyzing a very

diverse category of data sets and real time series [33] in areas and fields, including ma-

terial texture analysis [42, 54, 75], handwriting recognition [77], geology and seismology

[30, 64], optics and sound waves [22], weather and wind [34, 78], ocean wave and turbu-

lence [34, 44], and biological and biomedical sciences [10, 21, 51, 79]. Through various

numerical and real data, it has been shown that the EMD provides a clearer picture of the

underlying physical processes and well defined instantaneous frequencies complementary

to the global energy—frequency distributions as analyzed by Fourier analysis [63] and its

variations [13, 17, 40, 50, 60].

Many algorithms have been proposed to improve the performance and stability of the

EMD. Given the definition of the IMF above, one still has to design efficient working al-

gorithm of the EMD in decomposing data. A practical challenge is that most data are not

associated with clear instantaneous frequency such that, at any given time, the data may

involve more than one oscillatory mode and the simple Hilbert transform cannot provide

the full description of the frequency content for the general data [43]. To decompose the

data into various IMFs effectively, the sifting process was proposed [33]. As the name in-

dicates, the sifting process works by separating the finest local mode from the data based

only on the characteristic time scales. The local maxima and minima of the original signal

are respectively connected through cubic splines to form upper and lower envelopes. The

average of the two envelopes is then subtracted from the original data. The sifting process

is used to eliminate riding waves and to make the wave profiles more symmetric. Usually

the process is repeated recursively until various modes are extracted. Essentially, the sifting

process is an intuitive and direct implementation of low pass filtering, which leads to the

easy implementation and effective performance of the EMD method.

The sifting algorithm in the EMD is highly adaptive due to the intuitive design, but the

trade-off is the loss in stability, i.e. final modes are sensitive to the small variation of data as

well as a lack of mathematical understanding of the algorithm. The ensemble EMD (EEMD)

was introduced in an effort to mitigate the stability concern [74]. But it is only a partial fix

and it greatly increase the computational cost. The sifting process has the effect of smoothing

uneven amplitudes due to the nature of low pass filter. It is necessary in case the neighboring

wave amplitudes have large disparity, but it also introduces the risk of over-smoothing. The

common observation is that too many siftings may drain all the physical meaning, but too

few siftings do not yields enough IMF components to separate different time scales. This

reveals the importance of choosing a suitable low pass filter, as will be discussed in the

next subsection. As far as sifting process is used, to guarantee the IMF components retain

physical sense and to avoid over-smoothing, certain type of stopping criterion is necessary.

This is usually accomplished by limiting the size of the standard deviation which measures

the difference between two consecutive sifting results. Not surprisingly, putting constraint

on the standard deviation introduces additional limitations in terms of convergence and fi-

nite number of IMFs. Apart from the above concerns and limitations, the EMD also lacks

a rigorous mathematical foundation due to the ad hoc construction of envelopes using cu-

bic splines. Alternative EMD methods can be constructed by replacing cubic splines with
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B-splines [15], but the fundamental difficulty is not resolved. Though B-spline approach has

opened a new set of possible decompositions, one still has to determine which spline and

what order to use. Alternative algorithms using moving average for the EMD was proposed

to improve upon sifting algorithm in addressing some of the above concerns. Moving aver-

age and earlier sifting algorithms calculate the instantaneous frequencies of the data via a

simple way of constructing envelopes.

Recently, iterative filtering decomposition (IFD) was introduced by Lin, Wang and Zhou

to address the above mentioned difficulties [41]. On one hand, although the IFD is moti-

vated by the EMD, it is a much simpler approach that by-passes the Hilbert transform in the

original EMD. The starting point for IFD is a low pass filter from which an IMF can be ex-

tracted using a modified sifting algorithm (iterative filtering). The entire IFD can be built on

a series of low pass filters with decreasing localizations. It is shown that for given degrees of

localization, the extraction of an IMF is extremely stable. Indeed the IFD has proven itself

to be an extremely viable tool for data decomposition and analysis. In addition to having

much better numerical stability compared with the original EMD, it has a rather rigorous

mathematical foundation, where the convergence is well understood and broadly analyzed

[41, 66]. Another significant advantage of IFD over the traditional EMD is the possibility

of “horizontal” comparisons between the IMFs of data. The horizontal comparison refers to

the approach in which various signals of the same class (e.g. earthquake waves in different

places or time periods) are decomposed into same number of modes, and modes with same

index for different signals are compared in terms of certain feature characteristic. In the tra-

ditional EMD, due to its sensitivity to small perturbations and the ad hoc nature of spline

envelopes, horizontal comparisons between IMFs are meaningless. With IFD, if the low pass

filters are chosen identically at each stage the corresponding IMFs will encode comparable

informations and thus comparison makes sense. This advantage is already proven useful in

several applications such as stochastic modeling [82], visual stylometry [45] and physio-

logical data [46]. The IFD can help resolving some of the long standing challenges, such

as how to link the intra-wave frequency modulation with nonlinear nature of the data. It

also works for higher dimensional data, something the traditional EMD cannot do naturally.

Nevertheless a comprehensive comparison between ordinary EMD and IFD have not been

reported, and the performance of the IFD in broader applications has yet to be explored.

The local spectral (LS) method introduced by Wei [67, 72] is closely related to and im-

proved upon the Fourier spectral method. Although Fourier spectral methods provide spec-

tral convergence in approximating data and solving partial differential equations (PDEs),

they are generally restricted to certain boundary conditions and regular geometry or com-

putational domains. Alternatively, a family of local spectral methods has been proposed as

generalization of global spectral methods to overcome the limitations of classical spectral

methods including Fourier spectrum methods. The LS methods provide a framework for a

unified description of Galerkin, collocation, and finite difference methods [68, 72, 76]. In

some sense the local spectral methods provide a wavelet collocation approach to singular

convolutions using locally confined kernels. The algorithm succeeds in many applications

such as solving nonlinear equations [5, 69, 83], fluid flows [65, 70, 86, 87], electromagnetic

wave propagation [6, 7, 58], and image analysis [28, 71]. For numerical simulation includ-

ing arbitrarily complex geometry, LS methods usually achieve good performance compara-

ble to, though usually not as robust as, finite element, finite difference, and finite volume

methods. Besides achieving optimal balance between global spectral methods and finite el-

ement methods, LS methods also benefit the computer simulation by employing only the

simple uniform grid points while most other spectral methods, except for Fourier pseu-

dospectral methods, adopt non-uniform grid points, e.g. Laguerre-Gauss-Radau points and
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Chebyshev-Gauss-Lobatto points. It is clearly more advantageous to use uniform grid in

many cases including explicit integration of evolution PDEs.

Recently, local spectral evolution kernel (LSEK), a novel LS method, has been con-

structed to solve PDEs with high order accuracy [80]. Derived from Hermite function expan-

sion of a time evolution operator, the LSEK achieves spectral accuracy and local flexibility.

Compared to other methods, LSEK is an explicit method employing uniform mesh of grid

points. It is numerically stable and efficient with all the weights computed once only in the

whole computation. As a local spectral method, the LSEK offers controllable and spectral

accuracy in both spatial and temporal discretization. The complexity of the LSTS method is

(2M + 1)N (where 2M + 1 is the length of stencil and N is the number of truncation like

in any other spectral method) [80]. N is the and scales as O(N) at a fixed level of accuracy

such that it is numerically fast. The other merit LSEK offers as local spectral method is that

it has the same flexibility as finite difference methods in handling complex boundary con-

ditions. Therefore, The LSEK serves as a good alternative to the Fourier analysis method

due to its flexibility in choosing grid points and handling boundary conditions. The LSEK

is also a near-perfect low pass filter with desirable time-frequency localizations [80]. How-

ever, the utility of the LSEK for data analysis, and signal and image processing has not been

explored.

The objective of this paper is to explore the utility of the LSEK as a robust low pass filter

and implement it in the IFD for signal processing, information extraction and image anal-

ysis. Our goal is to combine the robustness of the LSEK as a low pass filter and the utility

of the IFD so as to construct an efficient, stable, and robust method for a wide variety of

applications. Through the various numerical tests and applications described in this paper,

we will illustrate that the IFD in combination with the LSEK exhibits great accuracy, sta-

bility and flexibility in extracting intrinsic frequencies of various signals, images, and real

time series. The proposed approach is expected to be applicable to a more general category

of applications to complement the traditional spectral methods, wavelet methods and EMD

approaches.

The rest of this paper is organized as follows. In Sect. 2, theories and algorithms of both

the LSEK and the IFD are presented in details. In particular, the LSEK is derived in the

framework of path-integral formulation. It is shown that a low pass filter for signal process-

ing is essentially equivalent to the wave propagation under the action of the Schrödinger

operator, with a position-independent potential operator. This fundamental link between the

quantum wave propagation and image/signal processing reveals how the uncertainty princi-

ple plays a role in the time-frequency analysis. Numerical tests and validation for the LSEK

based IFD are discussed in Sect. 3. Both benchmark synthetic functions and noise remov-

ing are used for the testing purpose. Applications are carried out in Sect. 4 to a wide range

of problems, including financial real time series, ocean wave records, physiologic signals,

and images used for edge detection and noise removal. We also propose a new way of edge

enhancement and image reconstruction based on IFD modes. This paper ends with a con-

clusion.

2 Theory and Algorithm

In this section, the IFD and LSEK are briefly reviewed, which are integrated into a new al-

gorithm for extracting IMFs from various types of signals and real time series. An improved

version of the IFD is used in this paper, which has the flexibility to be coupled with other
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techniques such as machine learning. A Hermite function representation of the time evolu-

tion operator of the LSEK is discussed in details which forms the basis of low pass filters

used for signal processing in Sects. 3 and 4.

2.1 Mode Decomposition Algorithms

In this subsection we discuss two non-standard mode decomposition algorithms. We first

provide a brief review to the empirical mode decomposition (EMD) and analyze its utilities

and advantages in data analysis. The iterative filtering decomposition (IFD) is presented to

establish notations and facilitate the further algorithm development in the paper.

2.1.1 Empirical Mode Decomposition (EMD)

The concept of instantaneous energy has been well accepted in signal processing, but the

instantaneous frequency has been controversial [11, 18]. In the traditional Fourier method,

the frequency (or spectrum in some sense) is defined in terms of sine (or cosine) basis

spanning the global data region with constant amplitude. As an extension, instantaneous

frequency needs to be related to sine or cosine basis to some extent, which requires at least

a reasonable number of full oscillations. Such requirement would pose difficulty in defining

instantaneous frequency for non-stationary data. One relevant but independent difficulty is

that, in most practice, instantaneous frequency is usually not uniquely defined. The diffi-

culty is partially taken care of by introducing means to make data analytical through Hilbert

transform [8]

XH (t) := 1

π
PV

∫

R

X(s)

t − s
ds, (1)

where PV is the Cauchy principal value. It is clear from (1) that XH (t) and X(t) form

complex conjugate pair such that Z(t) = X(t) + iXH (t = |Z(t)|eiθ(t)) defines the instan-

taneous frequency ω(t) := θ ′(t). In this way, instantaneous frequency of signals can be

proposed and calculated, which is the conceptual innovation of the EMD. When it was con-

structed, the EMD was proposed for analyzing nonlinear and non-stationary data [21]. The

key idea is to decompose the arbitrarily complicated data into small number of IMFs that

admit well-behaved Hilbert transform. By the way it was designed, the decomposition is

a highly adaptive scheme as complement to the Fourier and wavelet transform. The EMD

is based on the local characteristic time scales of the data, it is applicable to nonlinear and

non-stationary processes. The local energy and the instantaneous frequency derived from

the IMFs through the Hilbert transform can give us a full energy-frequency time distribution

of the data. However, it has been well known that instantaneous frequency defined above

is still not well-defined or meaningless for many types of data. Instead, one has to consider

narrow band limitations of instantaneous frequency. Yet again, since bandwidth are usually

defined in the global sense, the bandwidth limitation of instantaneous frequency has never

been firmly established. In order to obtain meaningful and well defined instantaneous fre-

quency, restriction condition is modified from a global one to a local one in the EMD. It

is from this local restriction that the EMD was proposed to decompose data into IMFs for

which the instantaneous frequency can be defined everywhere.

An IMF is a function that satisfies two conditions: (1) In the whole data set, the number

of extrema and the number of zero crossings must either equal or differ at most by one,

and (2) each function is symmetric with respect to the local zero mean. The first condition

is similar to the traditional narrow band requirements for a stationary Gaussian process.
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The second condition really implies that, with this definition, the IMF in each cycle involves

only one mode of oscillation with no overlapping with complex riding waves. This definition

modifies the classical global requirement to a local one such that instantaneous frequency

will not have the unwanted fluctuations induced by asymmetric wave forms and thus it

allows decomposition of even non-stationary signal into IMFs. With the physical approach

and the approximation adopted here, the original EMD algorithm does not always guarantee

a perfect instantaneous frequency under all conditions. Nevertheless, even under the worst

conditions, the instantaneous frequency so defined is still consistent with the physics of the

system studied and agrees with the definition of frequency for the classic wave theory [73].

2.1.2 Iterative Filtering Decomposition (IFD)

Recently, an alternative scheme called iterative filtering with moving average was introduced

by Lin, Wang and Zhou [41] to replace the mean of the spline-based envelopes in the sifting

algorithm. Due to its entirely parallel functions with the EMD, it is called iterative filtering

decomposition (IFD) in the present work. Apart from numerical benefits gained using this

iterative filtering, the IFD is placed in a more rigorous mathematical framework for analysis.

The use of low pass filtering to create moving averages avoids the lack of analytical char-

acterization of the cubic and other spline envelopes. This new IFD is a stable, efficient and

robust analytical tool for signal and image processing. This new algorithm is able to link the

intra-wave frequency modulation with nonlinear nature of the data. Additionally, the IFD

also provides a more effective way to use all the data to define the long-period component,

which is especially valuable in extracting low-frequency oscillations in transient data series

without zero or mean references [34].

Let L1 be a low pass filter, and repeated application of the high pass filter (1 − L1) on

the original discrete signal X yields the first IMF F1,

F1 = lim
n→∞

(I − L1)
n(X(t)). (2)

The convergence of the iterations is guaranteed if certain spectral properties are satisfied by

L1 [41]. The next IMF F2 is obtained by choosing a second low pass filter L2 and sifting

again

F2 = lim
n→∞

(I − L2)
n(X(t) − F1). (3)

By choosing a series of low pass filters L1,L2, . . . ,Lm and iterating (3) yields the IMF Fk

as

Fk = lim
n→∞

(I − Lk)
n

(

X(t) −
k−1
∑

i=1

Fi

)

. (4)

The final residue is obtained by

R = X(t) −
m

∑

i=1

Fi, (5)

where m is total number of IMFs. Each IMF Fk extracts mode with lower frequency than

the previous one, and the residue retains the information of the trend of X.
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A class of low pass filters suitable for IFD, which was proposed in [41], is the double

average filter, which generates the moving average by averaging over a centrally symmetric

interval twice. More precisely, the double average filter L with mask of window size N

generates the moving average of a signal X by convolution

L(X)(t) =
N

∑

j=−N

ajX(t + j), (6)

where aj = (N + 1 − |j |)/(N + 1)2. The fact that window size N can be chosen adaptively

is crucial for extraction of modes with different frequencies, which is more flexible than the

traditional EMD and often other methods like Fourier transform and wavelets. They have

proven effective in applications [45, 46]. However, the fact that double average filters and

other filters used in IFD employ uniform mask (with adaptive window size) to obtain moving

averages can be a significant limitation, especially for processing non-stationary data.

Based on the above discussion, we propose implementing a newly constructed low pass

filter in the IFD so as to address all the above mentioned problems and concerns while

retaining all the desired advantages associated with the IFD based EMD.

2.2 Local Spectral Methods

In general, spectral methods are global in nature, which contributes to the exponential con-

vergence with respect to the increase in the number of grid pints. However, the same global

characteristic leads to the lack of flexibility for different boundary conditions and complex

geometry, and the much desired exponential convergence also implies instability, especially

when non-uniform meshes have to be used for explicit time integration. Partially motivated

by the limitations of global spectral methods and inspired by the wavelet theories, local spec-

tral methods were proposed to combine the merits of both classes of methods while avoiding

the shortcomings. The early version of local spectral methods were called discrete singular

convolution which provides a framework to unify Galerkin, collocation and finite difference

methods [67, 68, 72, 76, 83]. To some extent, local spectral methods can be viewed as a

wavelet collocation approach to singular convolutions using locally confined delta kernels.

2.2.1 Path-Integral Formulation

There are many ways to derive the local spectral methods. In the present work, we start from

a path-integral formulation. In the following derivation, we follow the standard derivation

for time-evolution operator in the path integral in quantum mechanics. The dynamics in-

formation for quantum mechanics is contained in the matrix elements of the time-evolution

operator U(tf , ti) which is the solution of the evolution equation

i�
∂

∂tf
U(tf , ti) = Ĥ (tf )U(tf , ti), (7)

where the Hamiltonian takes the form

Ĥ = 1

2m
p̂2 + V (x(t)), p̂ ≡ −i�

∂

∂x̂
. (8)

For a time-independent Ĥ one has

U(tf , ti) = e−i(tf −ti )Ĥ /�, (9)
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and when the Hamiltonian is time-dependent

U(tf , ti) = T
(

e
−i

∫ tf
ti

dt ′Ĥ (t ′)/�
)

, (10)

where T is the time-ordering operator.

Now we assume V is not a function of x,

V (x(t)) → V (t) (11)

such that time-ordering operator can be removed since non-conjugate pair (x,p) no longer

exists. To evaluate the matrix element associated with Hamilton operator, one usually in-

serts identity operator
∫

|p〉〈p|, where the eigenstate |p〉 of momentum operator p̂ is also

eigenstate of H under our current approximation (11), i.e.,

Ĥ |p〉 = E|p〉, p̂|p〉 = p|p〉 (12)

with relation

〈x|p〉 = 1√
2π�

eixp/�. (13)

Thus (12) simplifies (10) to be

U(tf , ti) = e
−i

∫ tf
ti

dt ′Ĥ (t ′)/�
(14)

with initial condition U(tf = ti, ti) = I , time-evolution operator U(tf , ti) propagates the

wavefunction from ti to tf , i.e., �(tf ) = U(tf , ti)�(ti). By definition, one can derive one

important property of time-evolution operator,

U(tf , ti) = U(tf , t)U(t, ti), ti < t < tf (15)

which leads to the time-slicing in path integral formalism of quantum mechanics. For our

design of LSEK, we are interested in the matrix elements of U in position representation,

which is usually referred as kernel K , defined by

K(xf , xi; tf − ti) = 〈xf |U(tf , ti)|xi〉 (16)

which can be interpreted as transition amplitude

K(xf , xi; tf − ti) = 〈xf |e−i
∫ tf
ti

dt ′Ĥ (t ′)/�|xi〉. (17)

Equation (17) now can be written in the form

K(xf , xi; tf − ti) =
∫

dp〈xf |e−i
∫ tf
ti

dt ′Ĥ (t ′)/�|p〉〈p|xi〉

=
∫

dpe
−i

∫ tf
ti

dt ′H(t ′)/�〈xf |p〉〈p|xi〉

=
∫

dpe
−i

∫ tf
ti

dt ′H(t ′)/� 1√
2π�

ei(xf −xi )p/�

= e
−i

∫ tf
ti

dt ′H(t ′)/�
δ(xf − xi), (18)
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where (14) has been inserted and (12) and (13) have been used. Here H(t) is defined by

replacing p̂ with p:

H(t) = 1

2m
p2 + V (t). (19)

2.2.2 Local Spectral Evolution Kernel (LSEK)

The original motivation for deriving LSEK is to analytically integrate the partial differential

equations of the form

∂

∂t
f (x, t) =

[

A(t)
∂2

∂x2
+ B(t)

∂

∂x
+ C(t)

]

f (x, t) ≡ L(t)f (x, t). (20)

Now we re-write (18) by replacing Hamiltonian operator in (8) by L in (20),

K(xf , xi; tf − ti) = e
∫ tf
ti

dt ′ L(t ′)
δ(xf − xi)

= exp

(

A
tf
ti

∂2

∂xi
2

+ B
tf
ti

∂

∂xi

+ C
tf
ti

)

δ(xf − xi), (21)

where A
tf
ti

≡
∫ tf

ti
A(t)dt , etc.

The Dirac delta function in (18) can not be digitized directly in computer programming.

There are many different approximations for discretizing delta functions. In some other

versions of local spectral methods, regularized Shannon kernel has been used in the form

δh,σ (x) =
sin( π

h
(x − xk))

π
h
(x − xk)

exp

(

− (x − xk)
2

2σ 2

)

, (22)

or Dirichlet kernel of the form

δh,σ (x) =
sin( π

h
(x − xk))

(2M ′ + 1) sin( π
h

x−xk

2M ′+1
)

exp

(

− (x − xk)
2

2σ 2

)

(23)

can also be used. In the equation, M ′ denotes window size and h is grid spacing.

In deriving LSEK, we use Hermite function representation, which can be defined in sev-

eral slightly different ways, and with no loss of generality we choose the following definition

hn(x) = e−x2
Hn(x) = (−1)n dn

dxn
e−x2

. (24)

The delta distribution function can be expressed in terms of series as follows

δσ (x) =
∞

∑

n=0

cnhn

(

x√
2σ

)

, (25)

where coefficients cn can be solved and shown to be

c2m = 1

σ

(

−1

4

)m
1√

2πm!
, (26)
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where the terms with odd n are zero. Therefore, Hermite function representation of delta

distribution is

δσ (x) = 1

σ

∞
∑

n=0

(

−1

4

)n
1√

2πn!
h2n

(

x√
2σ

)

(27)

and derivatives are given by

δ(l)
σ (x) = (−1)l

2l/2σ l+1

∞
∑

n=0

(

−1

4

)n
1√

2πn!
h2n+l

(

x√
2σ

)

, l = 0,1,2, . . . , (28)

where the relation ∂
∂x

hn(x) = −hn+1(x) has been used. One usually needs to truncate sum-

mation after Mh terms, which yields a numerical implementation of Hermite local spectral

kernels.

Since evolution operator K in its position representation has a Toeplitz matrix, i.e.

K(x,x ′, t, t ′) = K(x − x ′, t, t), we can write out the Hermite function representation de-

veloped above:

Kh,σ (x, t, t ′) =
∫

dx ′K(x − x ′, t, t ′)δh,σ (x ′)

=
∫

dx ′K(x − x ′, t, t ′)
h

σ

Mh
∑

n=0

(

−1

4

)n
1√

2πn!
h2n

(

x ′
√

2σ

)

= h

σ

Mh
∑

n=0

(

−1

4

)n
1√

2πn!
exp

(

At
t ′

∂2

∂x2
+ B t

t ′
∂

∂x
+ C t

t ′

)

h2n

(

x√
2σ

)

. (29)

By using the generating function (24) and following standard Gaussian integral, one can

derive the explicit form of LSEK as follows,

Kh,σ (x, t, t ′) = h

σ

Mh
∑

n=0

(

−1

4

)n
1√

2πn!
d2n

dx2n
exp

(

At
t ′

∂2

∂x2
+ B t

t ′
∂

∂x
+ C t

t ′

)

exp

(

− x2

2σ 2

)

= h

σ
e

Ct
t ′

Mh
∑

n=0

(

−1

4

)n
1√

2πn!

(

σ

σ t
t ′

)2n+1

h2n

(

x + B t
t ′√

2σ t
t ′

)

, (30)

where σ t
t ′ =

√

σ 2 + 2At
t ′ .

Solution of PDE (20) can be analytically approximated by

f (x, t) =
M

∑

k=−M

Kh,σ (x − xk, t, t
′)f (xk, t

′). (31)

A more convenient form ready for numerical coding is given by

f (xj , t) =
M

∑

k=−M

Kh,σ (kh, t, t ′)f (xj − kh, t ′). (32)
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Multidimensional generalization is straight-forward,

f (xj , yj , t)

=
Mx
∑

kx=−Mx

My
∑

ky=−My

Khx ,σx (kxhx, t, t
′)Khy ,σy (kyhy, t, t

′)f (xj − kxhx, yj − kyhy, t
′). (33)

2.3 LSEK Based IFD

The LSEK has been tested and illustrated to achieve spectral accuracy comparable to global

spectral methods in solving various types of real and complex PDEs, while maintaining

flexibility for complex boundary conditions and geometry. When applied to signal and image

processing, the LSEK can be used as a robust low pass filter if the PDE solved describes the

Wiener process. The governing stochastic Fokker-Planck equation of the Wiener process is

given by

∂

∂t
f (x, t) = D

∂2

∂x2
f (x, t), (34)

where D is the diffusion coefficient. The Wiener process can be analytically resolved by

Fourier pseudospectral method, and numerical results are obtained in a single time step with

a given initial data. It has been illustrated in our earlier work [81] that the LSEK achieves

higher accuracy and stability compared to the Fourier pseudospectral method for many data

settings. In applying the LSEK to solve the Fokker-Planck equation (34), Dirichlet boundary

condition is usually adopted. Domain size is specified according to the signal under study.

As emphasized many times before, LSEK employs a uniform grid mesh. Consequently, one

has to choose an appropriate scaling parameter σ consistent with the maximum order Mh

of Hermite function used in the truncation of expansion (27). In the applications to the IFD,

a relatively small value of Mh is enough for numerical convergence. A value of 20 is chosen

for Mh in all the applications in this paper. The optimal value of σ is chosen according to

the central frequency π/h. A detailed list of summary of choices of σ is given in Table 1 by

Yu et al. [81]. The window size M is usually chosen according to the signal oscillation and

the frequency of the IFD mode of interest.

In combining low pass filter with IFD (4), one needs to choose a reasonable stopping

criterion to truncate the number of iterative filtering in limn→∞. The empirical nature of IFD

method leaves much flexibility in such a choice of stopping criterion without significantly

changing the quality and characteristics of various IFD modes. For numerical convenience,

a maximum number of 10 iterative filtering are used for the IFD in this work.

2.3.1 Implementing LSEK

A high-level LSEK pseudocode with interface to EMD driver is given below. The pseu-

docode can be easily generalized to multi-dimensional case.

Initialization Initialize parameters: NIFD (total number of desired IFD modes), MIFD(1 :
NIFD) (number of iterations for each IFD mode), xmax(:), xmin(:), 	x (:), MLSEK (the value

of M in (31)), Mh (the parameter in (30)), σLSEK (the value of σ in (27)), and other

specific problem-related parameters such as diffusion coefficients.

DO I1 = 1, Mh: calculate evolution kernel Kh,σ in (30)



J Sci Comput (2012) 50:629–664 641

FOR X = A(t), B(t), C(t), DO: Calculate X
tf
ti

≡
∫ tf

ti
X(t)dt according to (20).

FOR all grid points: Calculate Kh,σ (x) by summing over all the orders of Mh.

DO I1 = −M, M: Integrate PDE (31) explicitly in one time step

Output and finish LSEK subroutine: Calculate L2 and L∞ norms, and generate various

output files depending on the problem to be solved.

2.3.2 Implementing IFD

Based on the LSEK low pass filter algorithm, the procedures of applying IFD to signal (or

image) processing are briefly itemized as follows.

1. Prepare initial setup for both IFD and LSEK. Additional parameters (e.g. number of total

IFD modes) used in the IFD are also required to be initialized at the beginning of the

computation.

2. Implement mode computation.

(i) Code do-loops over all the IFD modes.

(ii) In each do-loop, code embedded do-loops over all the iterative filtering procedure

to generate one specific intrinsic mode.

(iii) In each iterative filtering step, call LSEK subroutine to perform low pass filter L as

in (2).

3. Finish the IFD computation and generate output files (or images) for all the IFD modes

and corresponding partial and final residues. These outputs can be used for various kinds

of analysis, e.g. edge detection, trend plotting, oscillation study, and noise removal.

2.3.3 Reconstructing Image from IFD Modes

One additional merit using the IFD is the availability of obtaining many mode character-

istics of different scales. When applied to image processing, for example, various modes

contain information of edge, noise, and trends. As will be illustrated in the next section of

validation. The IFD using the LSEK enables one to extract more and subtle intrinsic modes.

For instance, noise and edge usually shares the similar feature as high frequency modes of

image, and is thus difficult to separate. Using the currently proposed IFD, we can separate

the two types of information. Moreover, we can use these IFD modes to reconstruct better

image with denoising and edge sharpening performed together. A sample algorithm looks

as follows.

1. Perform IFD. LSEK is used to separate out fine details in various IFD modes. The whole

procedure is called “overall-IFD”.

2. The first IFD mode, mode 1, contains both edge information and highly oscillating white

noise with zero mean. Mode is selected as individual image and decomposed further

using another independent IFD procedure. This is called “individual-IFD” procedure.

The final residue of the individual-IFD procedure contains the trend of mode 1 (which

differs from the trend of the original image).

3. Reconstruct image by adding the residue of mode 1 to the denoised image (which is

usually the mode 2 obtained from the overall-IFD).

4. Further and future improvements.

(i) For simplicity, parameters for overall-IFD and individual-IFD are chosen to be same.

In future applications, one has the flexibility to further fine-tune various sets of IFD

and LSEK parameters.
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Fig. 1 Chart sketch
summarizing the LSEK based
IFD

(ii) One can perform individual-IFD for each modes generated from overall-IFD algo-

rithm. And one can arbitrarily combine all the modes and individual trends of each

mode.

All the above algorithms are used in the next sections of validation and applications to

various model signals, real time series and two-dimensional images. Figure 1 summarizes

the above procedure.

3 Numerical Test and Validation

In this section, we apply the LSEK based IFD to several benchmark testing cases to demon-

strate the flexibility, efficiency, and accuracy of the new IFD mode analysis using the new

low pass filter.

3.1 Test on Mode Decomposition

We first illustrate the efficiency and accuracy of the current IFD applied to the analytically

composed signal. As shown by Huang et al. [33], by stationary phase approximation [19],

the IMF designed this way agrees with the best fit sinusoidal function locally. Therefore,

we do not need a whole oscillatory period to define a frequency value. In this sense, even a

monotonic function can be treated as part of an oscillatory function and have instantaneous

frequency assigned. A frequency variation is designated as frequency modulation. In Fig. 2,

original signal is taken of the form f (x) = sin(x) + sin(4x) + sin(8x). For all the cases

shown in this section, unless otherwise specified, periodic boundary condition is used in
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Fig. 2 IFD analysis for signal sin(x)+ sin(4x)+ sin(8x). The panel on the top left shows the original signal.
The three panels on the right show the IFD modes 1, 2 and 3 respectively from top down. In each panel, exact
mode is plotted with black line and IFD results are shown by red circles. The IFD yields exactly the three
modes as predicted analytically. The bottom left one shows the residue after the above 3 modes are subtracted
from the original signal

the computation. For this simple linear and stationary signal, one expects the separation

of three clear modes corresponding to sin(x), sin(4x) and sin(8x) respectively. As shown

in the figure, the IFD indeed decomposes the signal into a sum of oscillatory IMFs that

have the same numbers (or different by one) of extrema and zero-crossings. Each mode is

symmetric with respect to local zero mean as designed. Residue can be obtained for each

signal when all the IFD modes are subtracted. For the signal studied in Fig. 2, clearly the

trend is zero when the three oscillatory modes are removed, as is indeed the case as shown

in the figure.

A similar but more challenging testing case is when all the IFD modes have close fre-

quencies. When band-width of various modes get close, they are more difficult to be sep-

arated using normal global low pass filters. Using the LSEK, the low pass filter is more

flexible and data adaptive. As shown in Fig. 3, which is very similar to Fig. 2 except that

signal is composed of f (x) = sin(x) + sin(2x) + sin(3x). The separation of modes be-

comes more challenging as there are multiple modes with close frequencies [41]. A very

clear distinction of all the three IMFs are obtained with zero residue after three modes are

subtracted.

When one mode is highly oscillatory, one essentially introduces noise. In Fig. 4, the

signal f (x) = sin(x) + sin(4x) + η(x) contains random (Gaussian-type) noise so that SNR

of the signal is −6 dB. This is a rather challenging case since the noise is comparable to the

signal strength [41]. Using the same IFD algorithm, now one obtains three modes as shown

on the right panels in Fig. 4. The first one clearly corresponds to the white noise with zero

mean and high frequency oscillation. The next two modes are the IMFs corresponding to

sin(4x) and sin(x). The accuracy of the 3rd mode is not as accurate as in previous cases of
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Fig. 3 IFD analysis for signal sin(x)+ sin(2x)+ sin(3x). The panel on the top left shows the original signal.
The three panels on the right show the IFD modes 1, 2 and 3 respectively. Black curve shows the exact values
while red circles show the IFD results. The bottom left one shows the residue after the above 3 modes are
subtracted from the original signal. All the notations are same as in Fig. 2

Fig. 4 IFD analysis for signal sin(x)+ sin(4x)+ noise. The signal-to-noise ratio (SNR) is −6 dB. The panel

on the top left shows the original signal. The three panels on the right show IFD modes 1 (which is high
frequency noise), 2 (i.e. sin(4x)) and 3 (sin(x)) respectively. Black solid curves show the exact values, and
red circles show the IFD results. The bottom left one shows the residue after the above 3 modes are subtracted
from the original signal
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Fig. 5 IFD analysis for signal cos(4πλ(x) ∗ x) + 2 sin(4πx). The panel on the top left shows the original
signal. The three panels on the right show IFD modes 1 (which is high frequency noise), 2, and 3, respectively.
The bottom left one shows the residue after the above 3 modes are subtracted from the original signal. In each

individual panel, there are 5 lines embedded and closely overlapping with each other, corresponding to the
various choices of parameters listed in Table 1

Figs. 2 and 3 because of the noise term. But there is still good matching between the black

line of IMF and red line of analytical values of sin(x).

3.2 Test on Non-stationary Data

Now we test our algorithm on the highly non-stationary signal f (x) = cos(4πλ(x)) +
2 sin(4πx) where λ(x) can be any non-stationary time series. In Fig. 5, we choose

λ(x) =
{

(4 + 32x)x, 0 ≤ x ≤ 0.5,

(4 + 32(1 − x))(1 − x), 0.5 ≤ x ≤ 1.
(35)

The results show that IFD can be used to effectively, adaptively analyze highly non-

stationary data [41]. The use of LSEK makes the algorithm very robust with respect to

the choice of parameters and window size.

In many of the previous work, nonuniform mask has to be used due to the highly non-

stationary nature of the signal. Using LSEK within IFD, we are expecting a more robust

yet accurate low pass filter to separate out various IMFs with much more desired stability

than methods proposed before. In Fig. 5, IFD and LSEK parameters are varied quite wildly

and randomly in a large range. Since results obtained using all these parameters behave

and converge similarly as shown in the figure, we randomly pick 5 sets of parameters for

illustration. The values of all the parameters are listed in Table 1 and results are plotted

in Fig. 5. Recalling the section on theory and algorithm, there are 2 important types of

parameters, i.e., number of modes and maximum number of iterations in each IFD step, in

the current IFD algorithm proposed by Wang, et al. [41], and there are 5 sets of parameters,
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Table 1 Comparison of various IFD and LSEK parameters for signal (35). Number of total IFD modes is 3

Parameter set IFD maximum iterations LSEK M values LSEK D values

1 5, 5, 5 25, 25, 25 0.0001, 0.001, 100

2 5, 5, 5 15, 15, 15 0.0001, 0.001, 100

3 5, 5, 5 55, 55, 10 0.0001, 0.001, 10

4 10, 10, 10 55, 55, 55 0.0001, 0.0005, 10

5 15, 10, 5 10, 40, 70 0.001, 0.001, 1

i.e., mesh size h, delta function width σ , truncation terms Mh, diffusion time td and diffusion

constant D, in the LSEK. In the actual programming and numerical calculations, number of

modes can be easily detected by looking at the output of various modes, and one just stops

when the residual is almost flat or zero. When the LSEK is used as low pass filter, only the

coefficient A(t) in (20) is nonzero and is identical to the role of diffusion constant D in the

conventional notations. In the same manner, the propagation time range in this case can be

denoted by td which is the step size of integration giving the length of diffusion process.

Since td plays the similar role as D, we fix the value of td to be 10 while varying only D.

As discussed before, optimal value of σ is known for each given value of M and should not

change. So, the total set of parameters we need to vary and check for convergence are all

listed in Table 1. For the signal 35 we consider here, there are only 3 most characteristic

IFD modes, including one high frequency noise and one low frequency trend. In principle,

one needs to assign value for M , D, and maximum number of iterations for each mode, i.e.

they are all vectors of the size of number of IFD modes. Therefore, in each entry of Table 1,

except for those on the first column, there are 3 values corresponding to IFD modes 1, 2,

and 3, respectively and in order. As illustrated in the plots, current version of IFD combined

with the LSEK shows very stable and accurate mode decomposition with very robust choice

of parameters.

3.3 Test on Chaotic Dynamics

The study of classic nonlinear systems provides a simple yet rigorous analysis of all the

essentials of the possible nonlinear effects. We choose the Duffing equation which exhibits

interesting dynamics and has been studied extensively by other methods including the EMD

algorithm before [34]. The Duffing equation can be written in the general form

d2

dt2
x(t) = c1

d

dt
x(t) + c2 cos(c3t) + c4x

3 + c5x. (36)

Traditionally, the Duffing equation has been solved by the perturbation method [20].

The solution is then expressed as a series of basic frequency and its super harmonics.

This is a general approach of using (series of) linear functions to approximate nonlinear

system. The oscillation of Duffing-equation-generated systems is far from being constant-

frequency within a period, and the spectrum analysis calls for the local change of instan-

taneous frequency modulations. To be more specific, one can define an average frequency

ω = ∂H(J )/∂J , where J = 1/2π
∫ ∫

dpdq is the averaged action density. The total Hamil-

tonian H is not represented by the action density variable instead of generalized momentum

p and coordinate q . In this action-angle canonical representation, the important parameter is

averaged period of frequency instead of the shape of the phase-space plane. Yet the different

shapes of the phase curves represent the different details of oscillations. Such details are
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Fig. 6 Top left panel shows the phase space dynamics of the trajectory generated by the Duffing equation.
Panel on the top right shows signal dX(t)/dt as function of time. The rest four panels show the original
signal, IFD modes 1, 2, and 3, respectively in the order from top to bottom and left to right

best analyzed in terms of instantaneous frequency. We study a specific example by choos-

ing initial conditions and parameters as follows: x(0) = 1, x ′(0) = 1, c1 = 0, c2 = 0.1, c3 =
0.279, c4 = −1.1, c5 = 1. Numerical integration of ODE (36) gives the solutions for x(t) as

in Fig. 6, together with the phase-space trajectory. From the phase-space presentation, there

is no fixed point in the dynamics with currently chosen initial conditions, and the shape of

the phase diagram is deformed from a simple circle. If one uses Fourier method to analyze

such a phase diagram, many harmonics need to be contained in the Fourier expansion of

the solution. We apply the current IFD algorithm to the signal generated above, and obtain

only three IMF components as shown in Fig. 6. Mode 1 corresponds to the high-frequency

and most energetic component representing the intrinsic frequency of the system. The shape

of mode 1 is far from being the simple sinusoidal form indicating the nonlinear nature of

the oscillator. IFD mode 2 corresponds to the frequency component representing the forcing

function. Mode 3 corresponds to the low-frequency component representing the very low-

intensity subharmonics. It actually represents the slow aperiodic wobbling of the phase [36].

As a short summary, compared to the conventional EMD and iterative filtering algorithm,

the new IFD advances the methodology in at least two aspects. First, the number of total

modes is greatly reduced. In typical applications of the EMD to various signals, a lot of

modes are generated since the node is required to increase in the step of one for consecutive

mode separation [41]. Using IFD, exactly and only those physically meaningful modes are

extracted, which would be very helpful for the mode analysis in various applications. For

example, signal sin(x) + sin(4x) + η(x) in Fig. 4 is accurately decomposed into exactly

3 modes (compared to 11 modes in previous study [41]) corresponding to the two sinusoidal

waves and the noise. Secondly, the values of the two modes of sin(x) and sin(4x) are very

accurate compared to the similar results in [41]. The additional advantage of the IFD is the

flexibility and numerical stability in choosing values of various parameters. For example, in

most conventional EMD methods, number of iteration needs to be chosen appropriately in
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order to avoid the blow-up in the numerical results. As illustrated in Table 1, a wide range

of values can be chosen for the iteration number, and the IFD results are not only stable, but

also remain very accurate over variations in various parameters.

4 Applications

The LSEK based IFD has been validated on various testing cases in the previous section.

The flexibility in extracting accurate and useful information from various types of signals

has been well illustrated. In this section, the new algorithm is applied to a few systems,

including real time series data containing real historical stock market data for S&P 500,

year-record of ocean wave height, physiologic signals, and noisy images.

4.1 Stock Market Behavior and S&P 500 Index

The S&P 500 has been widely regarded as the best single gauge of the large cap U.S. equities

market since the index was first published in 1957. The index has over US $3.5 trillion

benchmarked, with index assets comprising approximately US $915 billion of this total.

The name comes from the fact that the index includes 500 leading companies in leading

industries of the U.S. economy.

The S&P 500 is a free-float capitalization-weighted index of the prices of 500 large-

cap common stocks actively traded in the United States. By capitalization-weighted one

means the index whose components are weighted according to the total market value of

their outstanding shares. The stocks included in the S&P 500 are those of large publicly

held companies, usually the leading companies in leading industries of the U.S. economy,

that trade on the largest American stock market exchanges.

There have been numerous studies and research conducted on analyzing the stock market

price data and using that analysis to either predict or distinguish various market behaviors.

In the additive model of the time series of stock price data, it is assumed that the series is

composed of three time-dependent components, the trend T (t), the cyclic (seasonal) C(t),

and the irregular oscillations (random noise) η(t),

x(t) = T (t) + C(t) + η(t). (37)

The noise is usually assumed to be stationary and of zero mean, and various denoising

techniques have been developed to remove high oscillation part. In mathematical modeling,

trend is the most interesting component to many as it in general contains information of long

term characteristic behavior. The whole time series composed of all the components are in-

evitably non-stationary, so any in-depth study of the series needs to first separate/filter out

various modes for statistical modeling. Two complementary techniques are widely used to

decompose a time series not consisting of seasonal component: differencing and detrending,

which are essentially high-pass and low-pass filters. In many cases, the trend estimation is

more crucial and useful for both interpretation and forecasting. All the methods for trend

estimation are either parametric or non-parametric, depending on whether a priori smooth-

ing (e.g. polynomial) function, with parameters to be determined, is chosen. The parametric

approach suffers from the risk of using inappropriate parametric model. Therefore, alterna-

tive non-parametric methods like moving average filters and exponential smoothing filter

are widely adopted and provide much flexibility and thus better fitting. Most of the non-

parametric methods make use of linear filters or regression estimators for trend estimation.

The key to the success of various filters in the non-parametric trend estimator is to use and

to adjust smoothing parameters to balance the tradeoff between smoothness and fidelity.



J Sci Comput (2012) 50:629–664 649

The LSEK provides a global quantification with local flexibility to achieve optimal bal-

ance between smoothness and fidelity. When implemented in the IFD, as validated in the

previous section, the LSEK is equipped with an adaptive yet accurate tool to decompose the

signal into various intrinsic modes and residue containing the trend information. We apply

the current algorithm to study the S&P 500 index. In particular, we explore the correla-

tion between various IMFs of the index and the stock market behavior when it is close to

crash. By stock market crash one indicates a sudden dramatic decline of stock prices across

a significant cross-section of a stock market. The causes of crashes are complex and usually

result from synergetic impact from psychological panic and underlying economic factors.

Since the crashes often follow speculative stock market bubbles, one tends to believe they

are characterized by long term behavior strange from the normal trend. On the other hand,

there is no numerically specific definition of a stock market crash, but the term commonly

applies to steep double-digit percentage losses in a stock market index over a period of sev-

eral days. Crashes are often distinguished from bear markets by panic selling and abrupt,

dramatic price declines.

We will take the crash of 1987 for example which did not lead to a bear market. The mid-

1980s were a time of strong economic optimism. From August 1982 to its peak in August

1987, the Dow Jones Industrial Average grew from 776 to 2722. The crash on October 19,

1987, a date that is also known as Black Monday, was the climactic culmination of a market

decline that had begun five days before on October 14. The DJIA fell nearly 4% on Octo-

ber 14, followed by another 4.6% drop on Friday, October 16. On Black Monday, the S&P

500 dropped by nearly a quarter, and liquidity of the stock market quickly dried up. The

Black Monday Crash was the greatest single-day loss that Wall Street had ever suffered in

continuous trading up to that time. This Crash also led to the introduction of the trading curb

on the stock market, i.e. a cooling off period would be enforced through mandatory market

shutdowns in such situation to help dissipate investor panic.

In Fig. 7, the IFD analysis is performed on the half-year-long data for the S&P 500 index

between July 19, 1987 and January 19, 1988. The reason to focus on the half-year behavior

centered on the date of Black Monday crash is that IFD with LSEK has the capability of

decomposing the signal into both IFD mode and trend that contain complementary global

and local information of the whole range of data. In the figure, we show the original signal

embedded with trend (top left panel), IFD modes 1 and 2 (the two panels on the right), and

partial residue by subtracting IFD mode 1 (bottom left panel), i.e.

Rn = X(t) −
n

∑

i=1

Fi, (38)

where n ≤ the total number of IFD modes. IMF Fi is defined in (2), (4) and (5).

For comparison, similar half-year data are chosen from one-year before and after 1987.

The corresponding IFD mode analysis is performed and results are given in Figs. 8 and 9. By

studying and comparing S&P 500 index in Figs. 7 through 9, there are several observations

and conclusions. First, the trend yielded by the IFD with LSEK is clearly characteristic

and adaptive to very different market behavior in different years. In the year 1987 of big

crash, the big drop is present in the smoothed trend curve. For all the other years, a much

smoother curve with no big oscillation is not observed. Secondly and more importantly,

current algorithms extracts the mode information in addition to the low frequency trend. For

all modes, oscillation is much larger (50) in 1987 than other years (<10). The first mode

contains the highest frequency of zero-mean noise, and it has peak of 50 near the date of

crash on 1987. For all the other period, oscillation of 1st mode is usually smaller than 10.
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Fig. 7 IFD analysis for the half-year S&P 500 index centered on Black Monday at Oct 19, 1987. Y -axis is
S&P 500 index. Original index values are shown in (highly oscillatory) black curves in the two left panels,
and IFD modes 1 and 2 are plotted with blue curves in the top right and bottom right panels respectively. The

(less oscillatory) red curve in the top left panel gives the trend yielded by IFD, while the red one in the bottom

left panel corresponds to the “partial” trend by subtracting mode 1 from original signal. The partial residues
become smoother as more IFD modes are subtracted. The sudden crash is indicated by both the steep drops
in the trends and the large oscillations of IFD modes

Fig. 8 IFD analysis for the half-year S&P 500 index centered on Oct 19, 1986, one year before Black
Monday crash. The panels and notations are same as those in Fig. 7. The magnitude of the oscillations of
various modes are much smaller than those in the year of big crash
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Fig. 9 IFD analysis for the half-year S&P 500 index centered on Oct 19, 1988, one year after Black Monday
crash. The panels and notations are same as those in Fig. 7. The magnitude of the oscillations of various
modes are much smaller than those in the year of big crash

Similar phenomena are observed for other modes in various years, but the peak and large

oscillatory behavior become more globalized spanning the whole data region. Such a large

oscillation associated with various IMFs is expected to be correlated with the local sharp-

edge-like effect in the original signal, and the effect of localized crash (only a few days

around October 19, 1987) is seen to have a more global spanning in IMFs. The sudden

crash is not only indicated by the steep drops in the residue, but also characterized by the

large oscillation of various IFD modes. All these observations have certain implications for

the corresponding statistical analysis. Moreover, it is shown how the partial residues (38)

become smoother as more IFD modes are subtracted and how they approach the final true

residue. This would provide a sequential snapshot of the shape of trend compared to using

various independent window sizes in different low-pass filters.

4.2 Ocean Wave Magnitude

EMD has been extensively applied to the time series analysis with data collected from lab-

oratory and field experiments. As was noted and pointed out before [33]. Fourier expansion

of the wave field is so natural that it has been closely associated with and taken as default

conceptual base in the general wave studies in almost all fields. But the harmonics used

in studies are not always physical, subject to the nonlinear and non-stationary nature and

boundary conditions of the field wave. It is not always physical to assume a collection of

such components should exist for all the time everywhere for Fourier analysis synthesis.

It is exactly in this sense that IFD provides an alternative framework. Some of the pre-

vious reports include analysis on the data from various channels, e.g., the laboratory data

from mechanically generated waves [32], whose frequency will down shift as they propa-

gate and thus exhibit non-stationary feature [9, 38, 53]; field data of waves collected by the

National Oceanic and Atmospheric Administration (NOAA) [31]; satellite altimetry data
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for large scale ocean circulation studies [48, 56, 84, 85]; the non-stationary earthquake data

[1, 26, 49], and laboratory wind data [33]. In all the previous studies, the EMD has been

compared with Fourier and other methods to illustrate the associated Hilbert spectral analy-

sis. Limitations together with improvements have been discussed in much details in various

applications on both mathematical and physical grounds. Here we illustrate the utility of our

IFD on the field data of ocean wave magnitude.

Decision-makers at Tsunami Warning Centers must assess the hazard to coastal commu-

nities by rapidly collecting and interpreting earthquake and sea-level data. Tsunami fore-

casting technology is based on the integration of real-time measurement and modeling

technologies. Real-time monitoring and measurement of sea-level data in the deep ocean

is presently made by a seven-station network of DART (Deep-ocean Assessment and Re-

porting of Tsunamis) systems. Tsunami data from the DART system can be combined with

seismic data ingested into a forecast model to generate accurate tsunami forecasts for coastal

areas.

The EMD has been developed to analyze the nonlinear data and signals beyond the ca-

pability of traditional Fourier analysis. Data from real systems like earthquake and seismic

record are highly nonlinear and non-stationary which fits into the expertise of the EMD.

Based on the direct extraction of the energy associated with various intrinsic time scales,

the EMD is capable of effective decomposition of complex signals. The IFD improves the

efficiency and flexibility of EMD algorithms. A recently developed LSEK method can be

employed as a robust low pass filter and helps increase the stability and accuracy of infor-

mation extraction using the IFD. The new LSEK based IFD is applied to analyze the real

time series of ocean water wave height downloaded from the website of Coastal Data In-

formation Program (CDIP). The ocean water wave height is recorded by the station number

134 located at Fort Pierce, FL.

In Figs. 10 and 11, the field data of water wave height recorded in the whole month of

January and May, 2009, are studied using the IFD. Original raw data of the signal is plotted

on the top left of each figure, with the corresponding trend plotted on the top left. IFD

modes 1 and 2 are plotted on the middle and bottom left, with partial residue given in the

neighboring right panel. As shown in the figures, trend becomes smoother with more IFD

modes subtracted, similar to the analysis of S&P 500 data in the previous case. The high

frequency wave oscillation (due to random transient factors like wind and wave collisions)

is clearly separated from the low frequency wave trend (containing the direct information

of and close correlation to the fundamental driving forces like tsunami wave or earthquake

wave) [33, 47].

The study here shows the possibility that, in the future real time monitoring, the ocean

water wave can by analyzed together with the correlated seismic data to yield a complete

picture of various modes and their evolution in case of predicting potential natural disasters

like tsunami [2].

4.3 Physiologic Signal Analysis

The EMD has found greater interests and uses in medical image and signal processing and

analysis in the recent years. Among numerous medical data, we choose the data from Phys-

ioBank which is a large archive of well-characterized digital recordings of physiologic sig-

nals and related data for use by the biomedical research community. PhysioBank currently

includes databases of multi-parameter cardiopulmonary, neural, and other biomedical sig-

nals from healthy subjects and patients with a variety of conditions with major public health

implications, including sudden cardiac death, congestive heart failure, epilepsy, gait disor-

ders, sleep apnea, and aging.



J Sci Comput (2012) 50:629–664 653

Fig. 10 IFD study of the historical record of real time series of ocean wave height in the month of January
2009, recorded at station 134 Fort Pierce, FL: Y -axis is the wave height in meters, and x-axis is date of the
month. Original signal is plotted with (highly oscillatory) black line in the top left panel. The trend is plotted
with (smoothed) red line in the same panel. The three IFD modes are plotted in top right, bottom left and

bottom right panels respectively

Fig. 11 IFD study of the historical record of real time series of ocean wave height in the month of May,
2009, recorded at station 134 Fort Pierce, FL. Labels for the curves and order of panel arrangement are same
as in Fig. 10
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Fig. 12 In the left panel, signal with linear trend is shown. Original fast oscillating signal is plotted with
(rising) black curve. Mode 1 is shown by (horizontally laid) blue curve, and residue is shown by (rising) red

straight line. The trend is perfectly linear as known for the signal. Shown in the right panel is the signal with
sharp spikes. The original signal is plotted by black circles, and the first IFD mode is labeled with red star

In Fig. 12, we choose and apply the IFD to two sets of standard testing signals provided

as benchmark models in PhysioBank [14, 29]. The signal shown in the right panel is con-

taminated with sharp local spikes. The IFD with quite flexible choice of parameters can

easily separate out the IFD mode (plotted in blue star) containing all the spikes in the origi-

nal signal. The signal shown in the left panel is known to have linear trend. Again, the IFD

easily separates out the mode from the signal. The resulting residue is clearly a linear trend.

The parameters used in this and the following signals cover a wide range, which illustrates

the relative stability of the IFD with LSEK.

In Fig. 13, we then test the current algorithm on another two benchmark data sets with

known sinusoidal trends of period T = 128 and amplitude 2. The two data sets differ in

the degree of autocorrelation and noise. In addition, we also test the numerical stability and

convergence of the IFD by choosing different values of iterations corresponding to different

stopping criteria. Signals in the top left and top right panels are all known to have sinusoidal

trend, but with different levels of autocorrelation and noise. In the top left panel, black

curve shows the original signal with relatively large correlation and noise (and thus is more

challenging to denoise and to find trend), and the red curve is the first IFD mode. In the

bottom left panel, the corresponding sinusoidal trend is labeled with black circles connected

by dashed line. In the same time, we also choose different stopping criteria used for the IFD

to study and compare the convergence and stability. The values of N = 10,20,40 indicate

the number of iterations used before stopping. In the panel, all three curves were very close

to each other, which indicates good numerical stability and convergence of the IFD. In the

top right panel, signal with sinusoidal trend but smaller correlation is plotted with black

curve. Red line is the first IFD mode. In the bottom right panel, only one IFD with N = 10

is plotted, since the convergence between IFD trend and exact sinusoidal trend is almost

perfect.
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Fig. 13 Signals in the top left and top right panels are all known to have sinusoidal trend, but with different
levels of autocorrelation and noise. In the top left panel, black curve (with larger oscillatory amplitude) shows
the original signal with relatively large correlation and noise, which is more challenging for denoising and
trending, and the red curve (with smaller oscillatory amplitude) is the first IFD mode. In the bottom left panel,
the corresponding sinusoidal trend is labeled with black circles connected by dashed line. In the same time,
we also choose different stopping criteria used for the IFD to study and compare the convergence and stability.
The values of N = 10,20 and 40 indicate the number of iterations used before stopping. In the panel, all three

curves were very close to each other, which indicates good numerical stability and convergence of the IFD.
In the top right panel, signal with sinusoidal trend but smaller correlation is plotted with black curve. Red line

is the first IFD mode. In the bottom right panel, only one IFD with N = 10 is plotted, since the convergence
between IFD trend and exact sinusoidal trend is almost perfect

4.4 Image Edge Detection and Noise Reduction

Image processing has become important tool in many areas of research in physical,

mathematical and biological sciences [16, 24, 25, 39, 52]. A key issue in pattern recog-

nition, computer vision, target tracking and image processing is the edge detection

[3, 4, 12, 27, 35, 57, 59]. Closely related to edge detection is noise reduction. Both oper-

ations are related to the use of low pass filters (or high pass filters in the complementary

way). In the LSEK, the time evolution of local spectral kernel is identified as a low-pass

filtering process. As illustrated in the many references published before as well as in the val-

idation and applications in this paper, the LSEK is expected to be a very robust and reliable

low pass filter. Together with the IFD, it is natural to expect alternative or better algorithms

for image processing. In this section, we chose the 256 by 256 grey-scale Lena.tiff file for

image processing. The same image has been extensively used in the literature. The current

LSEK based IFD is applied to the original Lena image, the image added with relatively

small and large Gaussian white noise respectively. The purpose of studies is to illustrate the

ability and performance of current algorithm when used as edge detector, noise remover,

and mode reconstructor combining both of the former functions.

In Fig. 14, the current methodology is compared with previous approach by Lin and

Wang [41] who employed a multiscale total variation algorithm. Figures 14(a) and 14(b) are

the original images used in this paper and in [41], respectively. Various levels of comparable
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Fig. 14 Comparison of IFD with previous EMD algorithms using images with artificial noise. Both algo-
rithms work well. Denoised image in (e) conserves better the sharpness of the image, while the one in (f)
removes background noise more efficiently

noises are added to the images as shown in Figs. 14(c) and 14(d), respectively in the work

and in [41]. Denoised images are shown in Figs. 14(e) and 14(f). In spite of the slight differ-

ence in the resolution of original images and noise added, quantitatively it can be observed

that the current method works as well as various popular algorithms in use now. The de-

tails of the cameraman in the image seem to be slightly better captured, but the background

denoising was better achieved in the previous work [41].

In Fig. 15, IFD with just 1 mode is applied to the original image in Fig. 15(a). Essentially,

it is the direct application of LSEK low pass filter L itself. A small window size of M = 3

is used for edge detection. The image corresponding to mode 1, i.e. I − L, is shown in

Fig. 15(b).
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Fig. 14 (Continued)

Fig. 15 Edge detection using LSEK based IFD

Now we investigate the smoothing effect when large Gaussian white noise is added in

to Fig. 15(a). The contaminated image is shown in Fig. 16(a). The SNR is measured to be

8 dB. The IFD with total 2 modes is applied to the image. In mode 1, a small window size

M = 3 is used to remove high-frequency noise, and the residue is shown in Fig. 16(b). Then

a second mode decomposition follows with larger window size. Due to the flexibility of the

LSEK, value of M can be chosen with large flexibility in the range of M ∈ [10,30]. Mode 2

is thus obtained and subtracted to yield residue of the original image. The whole process

is called smoothing. The final image is shown in Fig. 16(c). In a similar way as before, we

draw a horizontal line in the middle of the image, and plot the values of grey scale along
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Fig. 16 Processing image heavily contaminated by Gaussian random noise

the line. Results are gathered for comparison in Fig. 17, in which lines with different color

correspond to various modes and residues. The black line corresponds to the original image.

The blue and red lines correspond to Figs. 16(b) and 16(c). The green line shows the highly

oscillatory noise as captured in mode 1. It is clear from the Fig. 16 that high and medium

levels of oscillatory noises are sequentially captured in modes 1 and 2 using current LSEK

based IFD. The resulting images become smooth, but at the cost of edge blurring. All the

above results not only show that the IFD with LSEK can be used to effectively smooth

noise or detect edge (as in Fig. 15), but the IFD modes thus obtained can be effectively and

artistically used to reconstruct and enhance the noise-contaminated images.
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Fig. 17 (Color online) Values of

grey scale along the horizontal

line across the middle of the
corresponding 2D image. Black

line shows the values of original
image (a). Blue lines shows the
values for Fig. 16(a). Red line

shows the values for Fig. 16(b).
Green line shows the noise
captured in the IFD mode

One unique advantage of the IFD for image and signal processing is the mode reconstruc-

tion. Various IMF yielded by the IFD not only reveals the physically important frequencies

at various time and length scales, it also provides a way to enhance the image via mode

reconstruction, which is for the first time explored in details in this paper. In Fig. 18(a),

Gaussian white noise is added to the original image in Fig. 15(a). Same parameters are used

for edge detection as in Fig. 15, and this time the first mode shown in Fig. 18(b) is contami-

nated with random noise. Algorithm 2.3.3 is applied for image reconstruction. The trend, or

partial residue, of mode 1 is shown in Fig. 18(c). Note that noise and edge share the similar

feature of high frequency oscillation on the same length scale in this case. Since the ampli-

tude of noise is smaller than the one (as shown in Fig. 16(d)) added to Fig. 16(a), it is more

difficult to separate noise from edge. Indeed, as shown in Fig. 18(b), one can recognize the

edge embedded in the first IFD mode. To enhance the image reconstruction, we continue to

apply the IFD (which is termed individual-IFD in Sect. 2.3.3) to extract the trend of mode 1

alone. In Fig. 19, we randomly choose one horizontal line (without loss of generality, we

choose the horizontal line which cuts the 2D image into halves in the middle) and plot the

values of grey scales of this horizontal line. In the figure, z-axis labels the value of grey scale

from 0 to 255 in the 8-bit tiff image. The green curve on the bottom of Fig. 19 corresponds

to the signal contained in mode 1, i.e. noise plus partial edge. The pink curve is obtained as

the residue of mode 1, i.e. when individual-IFD is applied to the mode 1. When compared to

the black line which shows the values of grey scale for the original non-contaminated image

in Fig. 15(a), one can clearly tell the similarity between the pink line and black line. It is

no doubt that some degree of edge information has been filtered into mode 1 and embedded

into the random noise. One then has the choice of adding the residue of mode 1 back into the

final results obtained using IFD described above. We call this procedure edge-compensation.

Comparison is made between Figs. 18(d) and 18(e), where the former is obtained using the

standard EMD as before, and the latter is edge-compensated. It is not difficult to visually

tell the difference. And signal-to-noise ratio is improved from 20 to 21.7 dB. In Fig. 19,

blue and red lines correspond to the values of grey scale along the chosen horizontal line for

the second IFD mode (i.e. Fig. 18(d)) and edge-compensated (i.e. Fig. 18(e)) results respec-

tively. When the trend of mode 1 is added back for edge compensation, one can then recover

the partial edge mixed with high frequency noise which is filtered after mode 1 extraction.

As shown in Fig. 18(e), such a compensation leads to visual edge sharpening together with

denoising procedure. One can further improve the method by over-compensating edge, i.e.

multiply the trend of mode 1 and then add back to the IFD results. This process is essentially

edge improvement. In short, with the capability of various IFD modes and strength of the
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Fig. 18 Edge restoration/compensation and edge enhancement using edge-noise-decoupling technique based
on IFD mode reconstruction
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Fig. 19 (Color online) Values of

grey scale along the horizontal

line across the middle of the
corresponding 2D image. Black

line shows the values of original
image 18(a). Blue lines shows the
values for Fig. 18(d). Red line

shows the values for Fig. 18(e).
Green line shows the noise
captured in IFD mode 1 in
Fig. 18(b). Pink line shows the
values for Fig. 18(c)

LSEK low pass filter, one can improve the quality and/or analyze the features of images with

more flexibility and efficiency.

5 Conclusion

A common challenge faced by researchers and decision makers in a wide variety of disci-

plines as diverse as science, engineering, finance, medicine, and security is the synthesizing

information and deriving insight from increasingly massive, dynamic, ambiguous and possi-

bly conflicting data sets. Our objective of collecting and analyzing these data sets is to derive

in-depth understanding from them and to facilitate correct decision-making. Conventional

analysis tools, such as Fourier analysis, wavelet decomposition, Hilbert transform etc., are

insufficient for our current tasks. Recently, iterative filtering decomposition (IFD) has been

introduced to address the stability and efficiency issues of the empirical model decompo-

sition (EMD), an emerging powerful method for resolving many challenging problems in

data analysis and processing. Another efficient data processing technique is the local spec-

tral evolution kernel (LSEK) [81] which behaves like a perfect low-pass filer with balanced

time-frequency localizations. The present work capitalizes the merits of both IFD and LSEK

to develop an efficient, flexible, and robust scheme for information extraction, complexity

reduction, and signal and image understanding.

The LSEK is combined with the IFD to facilitate an empowered EMD. The theory and

algorithm of the proposed LSEK based IFD are presented in detail. The performance of

the proposed method is widely validated over a number of common tasks, including mode

decomposition, analysis of non-stationary data, information extraction from chaotic data

sets, etc. Specific applications are considered to stock market index analysis, ocean wave

decomposition, physiologic signal processing and information recovery from noisy images.

Some of the best results are obtained in the above mentioned studies. Comparison with

earlier methods has also been carried out.

The LSEK based IFD improves the efficiency as well as the stability of the conventional

EMD algorithm in applications to a wide category of synthetic, analytic and real time series

and images. Specifically, the new algorithm excels in several aspects. First, the LSEK-IFD

is capable of extracting more and useful physical features of signals. This is due to the use

of the IFD which not only improves the mathematical clarity of the instantaneous frequency

characterizing each IFD mode, but also stabilize each mode generation. Secondly, numer-

ical stability and accuracy is enhanced, in part due to the LSEK, a local spectral method,

which combines the spectral accuracy of Fourier method and flexibility of local colloca-

tion methods. Thirdly, mode reconstruction is proposed for better signal and image analysis

and processing. As illustration, it is shown that how one can better reconstruct the image via
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proper treatment and use of various IFD modes. In particular, it is illustrated that edge can be

mixed with equally high frequency noise such that quality of image is reduced in smoothing

process. By applying a second individual-IFD to the overall-IFD process, one can extract

the edge information embedded in the IFD mode overwhelmed by random noise, and this

partial edge information can be used for edge-restoration or edge-enhancement. Therefore,

the IFD combined with LSEK can be used to dramatically improve the applicability and

performance of the EMD in signal and image processing.
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