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Abstract— Frequency-domain equalization (FDE) offers an
attractive alternative to time-domain equalization in systems
that communicate over large-delay-spread channels. Tradition-
ally, FDE leverages the fact that time-domain convolution is
equivalent to frequency-domain multiplication and the fact that
time/frequency conversion is efficiently handled by the fast
Fourier transform (FFT). In doubly dispersive channels, i.e.,
quickly varying large-delay-spread channels, the traditional FDE
methods fail due to the time-varying property of the channel.
Here we present a new FDE that is based on Doppler channel
shortening, soft iterative interference cancellation, and block
decision feedback. Numerical simulations show that the proposed
technique outperforms the well-known FIR-MMSE-DFE in both
performance and complexity. 1

I. I NTRODUCTION

In systems that communicate over large-delay-spread chan-
nels, the use of time-domain equalization (TDE) leads to
expensive receivers. For example, North American terrestrial
digital television is plagued by delay spreads on the order of
hundreds of symbol intervals, requiring time-domain equal-
izers with hundreds of coefficients. Frequency-domain equal-
ization (FDE) offers an attractive alternative. FDE leverages
the fact that circular convolution in the time domain can be
accomplished by pointwise multiplication in the frequency
domain, and the fact that transformation to/from the frequency
domain can be efficiently accomplished using the FFT algo-
rithm. Roughly speaking, the processing complexity required
for TDE is linear in the channel delay spread while for FDE
it is logarithmic in the delay spread. Thus, FDE can lead to
significant savings over TDE for long channels.

FDE is the principle idea behind orthogonal frequency
division multiplexing (OFDM) [1] and single-carrier cyclic-
prefix (SCCP) modulation [2]. Both OFDM and SCCP systems
transmit data in blocks separated by guard intervals. The guard
prevents inter-block interference, thereby simplifying receiver
processing. The use of a cyclic-prefix (CP) guard makes
the channel’s dispersion act as a cyclic (rather than linear)
convolution, implying that deconvolution can be accomplished
through pointwise frequency-domain multiplication. When
guards arenot included, FDE can still be accomplished using
overlap-add/save FFT algorithms (see, e.g., [3]).

The previously mentioned FDE techniques assume a delay-
spread channel whose impulse response varies negligibly over
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the FFT block duration. Some applications, however, have
channels with more significant time variation, i.e., significant
Dopplerand delay spreads. For such doubly-dispersive chan-
nels, the standard approach to FDE (i.e., pointwise frequency-
domain multiplication) is inadequate due the presence of
Doppler-induced inter-carrier interference (ICI). In response,
several equalization schemes for doubly-dispersed CP-OFDM
(e.g., [4]–[7]) and SCCP (e.g., [8]) have been proposed.
These algorithms, however, assume block-based transmissions
with an adequate inter-block guard interval. For single-carrier
continuous-streammodulation over doubly-dispersive chan-
nels, less work has been done (see, e.g., [9]).

In this paper we present an iterative frequency-domain
equalizer (IFDE) for a continuous finite-alphabet stream cor-
rupted by a noisy and doubly-dispersive channel. In brief, the
algorithm parses the received time-domain signals into blocks,
which are then transformed into the frequency domain using
the FFT. By non-rectangularly windowing prior to the FFT,
the quickly-varying channel response is transformed into a
sparse Doppler response, making low-complexity frequency-
domain equalization possible. Time-domain symbol estimates
then result from a subsequent application of the FFT. While
one could stop here, our algorithm exploits the symbols’ finite-
alphabet property through further processing stages of iter-
ative soft-interference cancellation. Since the finite-alphabet
property resides in the time-domain and the sparse channel
property resides in the frequency domain, our algorithm alter-
nates between these two domains to achieve its final result.
Throughout, we assume the channel is perfectly known.

We use the following notation. Transpose is denoted by
(·)t, conjugate by(·)∗, and conjugate transpose by(·)H .
The identity matrix is denoted byI, and thekth column
of the the identity matrix byik. The element in themth

row and nth column of matrix B is denoted by[B]m,n,
where row/column indices begin with zero. The diagonal
matrix created from vectorb is denoted byD(b), and the
circulant matrix with first columnb by C(b). The N × 1
vector created from theith sub-diagonal ofN × N matrix
B is denoted bydiagi(B), i.e., [diagi(B)]k = [B]〈k+i〉

N
,k

for k ∈ {0, 1, . . . , N−1}. Expectation is denoted byE{·} and
covariance byCov{b, c} := E{bcH}−E{b}E{cH}. Finally,
the Kronecker delta is denoted byδm, the modulo-N operation
by 〈·〉N , and element-wise matrix multiplication by�.



II. SYSTEM MODEL

Consider a single-carrier modulation system where a stream
of finite-alphabet symbols{sn} is transmitted over a noisy
linear time-varying (LTV) multipath channel. The channel is
described by its time-variant discrete impulse responsehn,l,
defined as the time-n response to an impulse applied at time
n − l. We assume a causal impulse response of lengthNh.
The signal observed by the receiver is

rn = νn +

Nh−1
∑

l=0

hn,lsn−l (1)

whereνn denotes samples of zero-mean circular white Gaus-
sian noise (CWGN) with varianceσ2. We assume wide-
sense stationary uncorrelated scattering (WSSUS) [10] so that
E{hn,lh

∗
n−q,l−m} = γqσ

2
l δm. Here,γq denotes the normalized

autocorrelation (i.e.,γ0 = 1) and σ2
l the variance of the

channel at delaylth.
The remainder of this section establishes the block-based

frequency-domain equivalent of (1). At each frame index
i ∈ Z, the receiver windows aniN -shifted version of the
time-domain observation{rn} and applies a discrete Fourier
transform (DFT) with frequency spacing2π

PN
, yielding theith-

frame frequency domain observation{xd(i)}PN−1
d=0 :

xd(i) =
1√
PN

∑

n

riN+nbne−j 2π

PN
dn. (2)

Note that the window length is arbitrary. Say, for convenience,

sn(i) := siN+n, n ∈ {0, . . . , PN − 1} (3)

an :=

{

1 n ∈ {0, . . . , PN − 1},
0 else,

noting that{an} is aPN -length rectangular window and that

siN+n =
∞
∑

`=−∞
s〈n〉

PN
(i − P`) a`PN+n. (4)

Equation (4) says that, for a particulari, the transmitted
sequence{siN+n} can be constructed usingPN -sample shifts
of the disjoint subsequences{sn(i − P`)}PN−1

n=0 for ` ∈ Z.
Combining (1)-(4), we find

xd(i) = wd(i) +
1√
PN

∑

n

bn

Nh−1
∑

l=0

hiN+n,l

×
∞
∑

`=−∞
s〈n−l〉

PN
(i − P`) a`PN+n−le

−j 2π

P N
nd (5)

wd(i) :=
1√
PN

∑

n

bnνiN+ne−j 2π

P N
nd (6)

Frequency-domain equalization involves theith-framevirtual
subcarriers{tk(i)}PN−1

k=0 , where

tk(i) :=
1√
PN

PN−1
∑

n=0

sn(i)e−j 2π

P N
nk. (7)

Equation (7) implies thatsn(i) = 1√
PN

∑PN−1
k=0 tk(i)ej 2π

P N
nk

for n ∈ {0, . . . , PN − 1}. Using this in (5) gives

xd(i) = wd(i) +

∞
∑

`=−∞

PN−1
∑

k=0

tk(i − P`)Hd−k,k(i, `)
(8)

Hd,k(i, `) :=
1

PN

∑

n

Nh−1
∑

l=0

hiN+n,lbna`PN+n−l e
−j 2π

PN
(kl+nd)

(9)

Equation (8) indicates thatHd,k(i, `) can be interpreted as the
response, at DFT outputk + d in frame i, to a frequency-
domain impulse applied at virtual subcarrierk in framei− `.

In practice we implement a causal length-Nb window {bn}
implying that, for anyi, only a finite number of terms in
the set{Hd,k(i, `), ` ∈ Z} will be non-zero. Specifically, (9)
implies that non-zero terms result from indices` which satisfy
0 ≤ `NP + n − l ≤ PN − 1 for somen ∈ {0, . . . , Nb − 1}
and somel ∈ {0, . . . , Nh − 1}. It is straightforward to show
that Hd,k(i, `) is non-zero for` ∈ {−Lpre, . . . , Lpst} where
Lpre = −bNb−1

PN
c andLpst = bPN+Nh−2

PN
c.

Defining [H(i, `)]d,k := Hd−k,k(i, `) and x(i) :=
[x0(i), . . . , xPN−1(i)]

t and then definingw(i), t(i), s(i), and
ν(i) similarly, (8) implies the LTV vector model

x(i) = w(i) +

Lpst
∑

`=−Lpre

H(i, `)t(i − `P ). (10)

For anyi, nonzero{H(i, `)}` 6=0 cause inter-frame interference
(IFI) and nonzero off-diagonal elements of{H(i, 0)} cause
inter-carrier interference (ICI) among the virtual subcarriers.
In the sequel, we refer to{H(i, `)}`<0 as pre-cursor IFI and
{H(i, `)}`>0 as post-cursor IFI.

The windowed frequency-domain noise vector can be writ-
ten w(i) = Cν(i) for C := FJ D(b), where F denotes
the PN -point unitary DFT matrix andJ a matrix whosejth

column equalsi〈j〉N
. We use this formulation in the sequel.

III. M AX -SINR WINDOW DESIGN

The choice of window{bn} affects the IFI/ICI patterns of
the system (10). Motivated by the low-pass nature of typical
Doppler spectra, we aim to find{bn} such that the “cursor”
coefficientH(i, 0) has the banded structure illustrated in Fig. 1
and the IFI coefficients{H(i, `)}` 6=0 vanish. This approach
can be viewed as the frequency-domain dual of inter-symbol
interference (ISI) response shortening used to reduce the com-
plexity of maximum likelihood sequence detection (MLSD)
[11]. For our purposes, the goal of time-domain windowing
is to give the channel a sparse structure that leads to low-
complexity estimation oft(i), and hence, low-complexity
detection ofs(i). We choose time-domain windowing, rather
than a general matrix operation on the received signal, due
to its low complexity. Since complete cancellation of out-of-
target ICI/IFI is, in general, not possible with time-domain
windowing, we choose to maximize signal to interference-
plus-noise ratio (SINR) as a means of suppressing residual
IFI/ICI.
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Fig. 1. Desired “banded” structure of matrixH(i, 0).

We define SINR byEs/Eni, whereEs :=
∑

d Es,d andEni :=
∑

d Eni,d. For eachxd(i), Es,d is defined as the signal energy
contributed by neighboring carriers{tk(i)}d+D

k=d−D, and Eni,d
is defined as the interference-plus-noise energy contributed
by non-neighboring carriers{tk(i)}d−D−1

k=0 ∪{tk(i)}PN−1
k=d+D+1,

non-cursor carriers{tk(j)}j 6=i, and additive noisew(i). Note
that indices here are taken modulo-PN . D is typically chosen
as D = dfdTsPNe, where fdTs is the maximum Doppler
frequency normalized to the symbol rate. Using the approach
outlined in [12], we find that the SINR-maximizing window
b? is given by

b? = arg max
b:‖b‖2=1

bH
`

Rb � Db � As
´

b

bH
`

σ2I + Rb � Cb � At − Rb � Db � As
´

b
(11)

= v?

`

Rb � Db � As, σ2I + Rb � Cb � At − Rb � Db � As
´

where Rb, As, Cb, Db and At are Nb × Nb matrices
defined element-wise as[Rb]m,n := γn−m, [As]m,n :=
∑Nh−1

l=0 σ2
l an−la

∗
m−l, [Cb]m,n := δ〈n−m〉

P N
, [Db]m,n :=

1
PN

sin( π
PN

(2D + 1)(n − m))/ sin( π
PN

(n − m)) and
[At]m,n :=

∑Lpst

`=−Lpre

∑Nh−1
l=0 σ2

l a`PN+n−la
∗
`PN+m−l. In

(11), v?(B, C) denotes the principle generalized eigenvector
[13] of the matrix pair(B, C). With window (11) and proper
selection of design parameters, the IFI and non-neighboring
ICI can be made small enough to base the symbol detection
procedure on the following approximate system model.

x(i) = H(i, 0)t(i) + Cν(i),
(12)

t(i) = Fs(i).

As an alternative, the design parameters (e.g., frame length
PN ) could be chosen in such a way that post-cursor IFI is non-
negligible. In this case, block decision-feedback equalization
(BDFE) would be employed to cancel the effect of post-cursor
IFI using the hard decisions{ˆ̂s(i− `P )}Lpst

`=1. With BDFE, the
system model changes to

x(i) = H(i, 0)t(i) +

Lpst
X

`=1

H(i, `)
“

t(i − `P ) − F ˆ̂s(i − `P )
”

+ Cν(i),

(13)
t(i) = Fs(i). (14)

When we rely on BDFE to cancel the effect of post-cursor
IFI, the window should be designed to suppressonly ICI
and pre-cursor IFI. In this case, post-cursor IFI would not
be included in the definition ofEni, implying [At]m,n :=
∑0

`=−Lpre

∑Nh−1
l=0 σ2

l a`PN+n−la
∗
`PN+m−l. Figure 2 shows

windows for the BDFE and non-BDFE cases atfdTs ∈
{0.001, 0.03}, Figure 2 assumedNh = 64, PN = 256,
Nb = PN +Nh − 1, SNR= 10dB, andσ2

l = N−1
h , which are

typical values for the numerical results in Sec. V.
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Fig. 2. Example window shapes forPN = 256, Nh = 64, SNR=10dB
and (a)fdTs = 0.001, (b) fdTs = 0.03.

While windowing gives a sparse channel response that
enables a reduced complexity symbol detection procedure, it
can lead to a non-uniform collection of symbol energy across
the observed frame. Specifically, it can be shown [14] that the
energy inx(i) contributed bysn(i) is

Ess,n =

Nh−1
∑

l=0

σ2
l |bl+n|2 (15)

which is clearly dependent onn, the symbol position within
the frame. This implies that, for typical max-SINR window
shapes, symbols near the frame edges will contribute less
energy than those in the center. This phenomenon motivates
the symbol detection procedure proposed in Sec. IV.

IV. SYMBOL DETECTION

In Sec. IV-A we suggest an iterative method for the de-
tection of the finite-alphabet symbol vectors(i) from ob-
servationx(i) specified by (12) or (13), in the non-BDFE
and BDFE cases, respectively. Essentially, we borrow the
detection algorithm from [8], which was developed for single-
carrier systemswith cyclic prefix (CP). With non-CP systems,
however, the uneven collection of symbol energy is much more
severe than with CP systems. Hence, Sec. IV-B proposes a
scheme whereby frame overlap (i.e.,P > 1) is exploited, in
conjunction with the algorithm of Sec. IV-A, to circumvent
these problems.

A. Intraframe Processing

We now give a brief summary of the intraframe detection
algorithm that was developed in [8]. (Symbol and lag indices
will be omitted since we focus exclusively on theith symbol
and the cursor IFI coefficient.) Given current guesses of the
log-likelihood ratios (LLRs) of the symbols{sk} (which, on
the first iteration, are set to zero), the means and variances
of the elements ins are calculated as̄s and v, respectively.
These are then transformed into the mean and covariance
of t. Using linear MMSE estimation and incorporating these
mean/variance priors, the elements{tk} are estimated one-at-
a-time, leveraging the banded structure ofH for complexity
reduction. The resulting estimatest̂ are then transformed back
into the s-domain, from which the LLRs are updated. To



L
(0)
l

= 0 ∀l

for n = 0, 1, 2, . . .

for l = 0 . . . PN − 1,

s̄
(n)
l

= tanh(L
(n)
l

/2)

v
(n)
l

= 1 − (s̄
(n)
l

)2

end

t̄
(n) = Fs̄(n)

for k = 0 . . . PN − 1,

g
(n)
k

=
`

HkF D(v(n))FH
H

H
k + σ2CkCH

k

´−1
HkF D(v(n))FHik

t̂
(n)
k

= t̄
(n)
k

+ g
(n)H
k

(xk − Hk t̄
(n))

end

ŝ(n) = FH t̂
(n)

Q(n) = FH
“

PPN−1
k=0 H

H
k g

(n)
k

iH
k

”

F

P (n) =
“

PPN−1
k=0 CH

k g
(n)
k

iH
k

”

F

for l = 0 . . . PN − 1,

L
(n+1)
l

= L
(n)
l

+
4

“

Re{Q
(n)
l,l

(ŝ
(n)
l

− s̄
(n)
l

)} + |Q
(n)
l,l

|2s̄
(n)
l

”

q
(n)H
l

D(v(n))q
(n)
l

− |Q
(n)
l,l

|2v
(n)
l

+ σ2‖pl‖
2

end

end

TABLE I

SUMMARY OF ITERATIVE SYMBOL ESTIMATION ALGORITHM.

accomplish this last step we assume a conditionally-Gaussian
model for the estimates{ŝk}. The procedure then repeats,
starting with the most recent LLRs.

Table I summarizes the algorithm detailed in [8], [14]
for the BPSK case. In the table,n is used as the iteration
index and l as the symbol index. Also,L(n)

l denotes the
LLR, t̄

(n) the mean oft(n), xk := [x]k−D:k+D , Hk :=

[H]k−D:k+D,k−2D:k+2D , Ck := [C]k−D:k+D,:, Q
(n)
l,l :=

[Q(n)]l,l, q
(n)
l := [Q(n)]:,l, andp

(n)
l := [P (n)]:,l, with indices

taken modulo-PN . See [8], [14] for fast implementations of
the algorithm (that avoid explicit computation ofQ(n), P (n)).

B. Interframe Processing

As seen in (15), the symbols in the center ofs(i) contribute
more energy to the observationx(i) than those near the edges.
As a result, the iterative detection algorithm described in
Sec. IV-A may generaterelativelyhigh error rates for the edge
symbols ins(i). However, when overlapping frames are used
(i.e., P > 1), this problem can be circumvented by exploiting
the fact that every symbol will be near the center of some
frame. Specifically, (3) implies thatsm appears inP distinct
frames. The frame indexim for which sm appears closest
to frame center is readily found to beim =

⌊

m
N

⌋

− jm

for jm := argminj=0,...,P−1

∣

∣〈m〉N + jN − PN
2

∣

∣. Thus, to
exploit frame overlap, we stipulate that

1) the hard estimate ofsm is generated at frame indexim,
2) the final LLR calculated for symbolsm during frameim

is used to initialize the LLR of that symbol in subsequent
frames within which it appears.

In the case that BDFE is employed, these hard estimates
are then also used for post-cursor IFI cancellation. Figure3
illustrates this process forP = 2.

Since every symbolsm is estimatedP times, the overall
equalizer complexity increases linearly withP . Numerical
simulations suggest that the performance withP > 2 is not
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ˆ̂s(i) ˆ̂s(i + 2)ˆ̂s(i − 2)ˆ̂s(i − 4)

Fig. 3. Interframe detection process forP = 2. Solid arrows pass final hard
estimates; dashed arrows pass soft initializations.

significantly better thanP = 2, while the performance with
P = 1 is relatively poor. Hence, we focus onP = 2.

V. NUMERICAL RESULTS

In this section we compare the performance and complexity
of the fast iterative frequency domain equalization (IFDE)
algorithm summarized in Table I with the well known FIR-
MMSE-DFE. While the FIR-MMSE-DFE was originally de-
rived for LTI channels [15], it is straightforward to generalize
the algorithm to LTV channels, and possible to design a
recursive algorithm to update the filter coefficients at the
symbol rate assuming a fixed delay∆ [14]. In all simulations,
BPSK symbols are transmitted over a noisy WSSUS Rayleigh
fading channel with uniform power profile (i.e.,σ2

l = N−1
h )

that is generated using Jakes method [16]. Throughout, we
assume IFDE uses an ICI radius ofD = dfdTsPNe and frame
overlap factor ofP = 2. Both IFDE and FIR-MMSE-DFE
designs are based on perfectly known time-domain channel.

First, we establish IFDE-BDFE design rules for frame
length PN and number of iterationsM . While we will see
that smaller values ofPN (for fixed Nh) are advantageous
from a complexity standpoint, experiments suggest setting
PN ≥ 4Nh to avoid performance degradation. With radix-2
FFTs in mind, we choosePN = 2dlog2

4Nhe in the sequel.
We found that performance increases with the number of
iterationsM (as would be expected) up to aboutM = 10,
after which there is little improvement. Interestingly, wefind
that, after 2 iterations, IFDE-BDFE gives approximately the
same performance as FIR-MMSE-DFE (see Fig. 4). Hence, we
focus on IFDE-BDFE-2 and IFDE-BDFE-10 in the sequel.

For the FIR-MMSE-DFE, we use a feedback filter just long
enough to cancel all post-cursor ISI, a forward filter length
equal to the channel delay spread, and a delay equal to the
forward filter length minus one. These design rules were the
result of a detailed study in [14].

Having established IFDE-BDFE and FIR-MMSE-DFE de-
sign rules, we are ready to compare the two approaches in
performance and complexity. In Fig. 4, we compare SER
performances whenNh = 64 andfdTs ∈ {0.001, 0.01, 0.03}
over a wide range of SNR. Note that, at allfdTs, IFDE-
BDFE-2 performs equivalently to FIR-MMSE-DFE whereas
IFDE-BDFE-10 outperforms FIR-MMSE-DFE, significantly
so when SNR> 5. We also plot the matched-filter bound



(MFB) [10]—the ultimate receiver performance—which is not
far from IFDE-BDFE-10.
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Fig. 4. Symbol error rate versus SNR forNh = 64 and variousfdTs.

Figure 5 examines the multiplies-per-symbol ratio of FIR-
MMSE-DFE to IFDE-BDFE-2 using the results of a com-
plexity analysis in [14]. Note that values> 1 in Fig. 5
imply a complexity advantagefor IFDE-BDFE, and that
this complexity advantage increases withNh and decreases
with fdTs. Since FIR-MMSE-DFE and IFDE-BDFE-2 have
similar performance, Fig. 5 constitutes a directcomplexity
comparison. We show in [14] that IFDE-BDFE-10 requires
roughly three times the computation of IFDE-BDFE-2, and
thus (recalling Fig. 4) beats FIR-MMSE-DFE in performance
and computation over a wide range of(Nh, fdTs).
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Fig. 5. Complexity of FIR-MMSE-DFE relative to IFDE-BDFE-2.

A final comment regarding the complexity comparison
Fig. 5 is in order. One could argue that the FIR-MMSE-
DFE, which—for our LTV channels—calculates a filter update
everysymbol period, is “overkill” for slowly varying channels.
For these channels, decent performance should result from
approximating the LTV channel response asfixed over, say,
Nf symbol intervals and designing a single fixed MMSE-DFE

to operate over thisNf -symbol interval based on Toeplitz
channel matrices. The question is, then, for what range of
(fdTs, Nh) will the channel be “slow enough” for this block-
LTI approximation to hold? Numerical experiments at SNR=
10dB have shown that this block-LTI approximation results in
an equivalent SNRlossof at least3dB whenfdTsNh > 0.11
and a loss of at least1dB whenfdTsNh > 0.06 [14]. Note
the curvesfdTsNh = 0.11 andfdTsNh = 0.06 on Fig. 5.

VI. CONCLUSION

In this paper, we presented an iterative frequency domain
equalization (IFDE) scheme for single-carrier transmissions
over noisy doubly-dispersive channels. Time-domain window-
ing is used make the effective ICI/IFI response sparse, after
which iterative symbol estimation is performed in the fre-
quency domain. The estimation algorithm leverages the finite-
alphabet property of symbols, the sparse ICI/IFI structure,
and the low computational cost of the FFT. Simulations
demonstrated that IFDE performs significantly better than the
FIR-MMSE-DFE, while simultaneously offering significant
complexity savings, for long delay-spread channels.
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