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ABSTRACT

We propose a multi-scale image fusion scheme based on guided filtering. Guided

filtering can effectively reduce noise while preserving detail boundaries. When applied

in an iterative mode, guided filtering selectively eliminates small scale details while

restoring larger scale edges. The proposed multi-scale image fusion scheme achieves

spatial consistency by using guided filtering both at the decomposition and at the

recombination stage of the multi-scale fusion process. First, size-selective iterative

guided filtering is applied to decompose the source images into approximation and

residual layers at multiple spatial scales. Then, frequency-tuned filtering is used

to compute saliency maps at successive spatial scales. Next, at each spatial scale

binary weighting maps are obtained as the pixelwise maximum of corresponding

source saliency maps. Guided filtering of the binary weighting maps with their

corresponding source images as guidance images serves to reduce noise and to restore

spatial consistency. The final fused image is obtained as the weighted recombination

of the individual residual layers and the mean of the approximation layers at the

coarsest spatial scale. Application to multiband visual (intensified) and thermal

infrared imagery demonstrates that the proposed method obtains state-of-the-art

performance for the fusion of multispectral nightvision images. The method has a

simple implementation and is computationally efficient.

Subjects Computer Vision

Keywords Image fusion, Guided filter, Saliency, Infrared, Nightvision, Thermal imagery,

Intensified imagery

INTRODUCTION

The increasing deployment and availability of co-registered multimodal imagery from

different types of sensors has spurred the development of image fusion techniques. The

information provided by different sensors registering the same scene can either be (partially)

redundant or complementary and may be corrupted with noise. Effective combinations

of complementary and partially redundant multispectral imagery can therefore visualize

information that is not directly evident from the individual input images. For instance,

in nighttime (low-light) outdoor surveillance applications, intensified visual (II) or near-

infrared (NIR) imagery often provides a detailed but noisy representation of a scene. While

different types of noise may result from several processes associated with the underlying

sensor physics, additive noise is typically the predominant noise component encountered

in II and NIR imagery (Petrovic & Xydeas, 2003). Additive noise can be modelled as a

random signal that is simply added to the original signal. As a result, additive noise may

obscure or distort relevant image details. In addition, targets of interest like persons or cars
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are sometimes hard to distinguish in II or NIR imagery because of their low luminance

contrast. While thermal infrared (IR) imagery typically represents these targets with high

contrast, their background (context) is often washed out due to low thermal contrast.

In this case, a fused image that clearly represents both the targets and their background

enables a user to assess the location of targets relative to landmarks in their surroundings,

thus providing more information than either of the input images alone.

Some potential benefits of image fusion are: wider spatial and temporal coverage,

decreased uncertainty, improved reliability, and increased system robustness. Image fusion

has important applications in defense and security for situational awareness (Toet et al.,

1997), surveillance (Shah et al., 2013; Zhu & Huang, 2007), target tracking (Motamed,

Lherbier & Hamad, 2005; Zou & Bhanu, 2005), intelligence gathering (O’Brien & Irvine,

2004), concealed weapon detection (Bhatnagar & Wu, 2011; Liu et al., 2006; Toet, 2003;

Xue & Blum, 2003; Xue, Blum & Li, 2002; Yajie & Mowu, 2009), detection of abandoned

packages (Beyan, Yigit & Temizel, 2011) and buried explosives (Lepley & Averill, 2011),

and face recognition (Kong et al., 2007; Singh, Vatsa & Noore, 2008). Other important

image fusion applications are found in industry (Tian et al., 2009), art analysis (Zitová,

Beneš & Blažek, 2011), agriculture (Bulanona, Burks & Alchanatis, 2009), remote sensing

(Ghassemian, 2001; Jacobson & Gupta, 2005; Jacobson, Gupta & Cole, 2007; Jiang et al.,

2011) and medicine (Agarwal & Bedi, 2015; Biswas, Chakrabarti & Dey, 2015; Daneshvar

& Ghassemian, 2010; Singh & Khare, 2014; Wang, Li & Tian, 2014; Yang & Liu, 2013) (for

a survey of different applications of image fusion techniques see Blum & Liu (2006).

In general, image fusion aims to represent the visual information from any number of

input images in a single composite (fused) image that is more informative than each of

the input images alone, eliminating noise in the process while preventing both the loss

of essential information and the introduction of artefacts. This requires the availability of

filters that combine the extraction of relevant image details with noise reduction.

To date, a variety of image fusion algorithms have been proposed. A popular class

of algorithms are the multi-scale image fusion schemes, which decompose the source

images into spatial primitives at multiple spatial scales, then integrate these primitives to

form a new (‘fused’) multi-scale representation, and finally apply an inverse multi-scale

transform to reconstruct the fused image. Examples of this approach are for instance the

Laplacian pyramid (Burt & Adelson, 1983), the Ratio of Low-Pass pyramid (Toet, 1989b),

the contrast pyramid (Toet, Van Ruyven & Valeton, 1989), the filter-subtract-decimate

Laplacian pyramid (Burt, 1988; Burt & Kolczynski, 1993), the gradient pyramid (Burt, 1992;

Burt & Kolczynski, 1993), the morphological pyramid (Toet, 1989a), the discrete wavelet

transform (Lemeshewsky, 1999; Li, Manjunath & Mitra, 1995; Li, Kwok & Wang, 2002;

Scheunders & De Backer, 2001), the shift invariant discrete wavelet transform (Lemeshewsky,

1999; Rockinger, 1997; Rockinger, 1999; Rockinger & Fechner, 1998), the contourlet (Yang

et al., 2010), the shift-invariant shearlet transform (Wang, Li & Tian, 2014), the non-

subsampled shearlet transform (Kong, Wang & Lei, 2015; Liu et al., 2016; Zhang et al.,

2015), the ridgelet transform (Tao, Junping & Ye, 2005). The filters applied in several of the

earlier techniques typically produce halo artefacts near edges. More recent methods like
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shearlets, contourlets and ridgelets are better capable to preserve local image features but

are often complex or time-consuming.

Non-linear edge-preserving smoothing filters such as anisotropic diffusion (Perona

& Malik, 1990), robust smoothing (Black et al., 1998) and the bilateral filter (Tomasi &

Manduchi, 1998) may appear effective tools to prevent artefacts that arise from spatial

inconsistencies in multi-scale image fusion schemes. However, anisotropic diffusion tends

to over-sharpen edges and is computationally expensive, which makes it less suitable for

application in multi-scale fusion schemes (Farbman et al., 2008). The non-linear bilateral

filter (BLF) assigns each pixel a weighted mean of its neighbors, with the weights decreasing

both with spatial distance and with difference in value (Tomasi & Manduchi, 1998). While

the BLF is quite effective at smoothing small intensity changes while preserving strong edges

and has efficient implementations, it also tends to blur across edges at larger spatial scales,

thereby limiting its value for application in multi-scale image decomposition schemes

(Farbman et al., 2008). In addition, the BLF has the undesirable property that it can reverse

the intensity gradient near sharp edges (the weighted average becomes unstable when a

pixel has only few similar pixels in its neighborhood: He, Sun & Tang, 2013). In the joint

(or cross) bilateral filter (JBLF) a second or guidance image serves to steer the edge stopping

range filter thus preventing over- or under- blur near edges (Petschnigg et al., 2004). Zhang

et al. (2014) showed that the application of the JBLF in an iterative framework results in

size selective filtering of small scale details combined with the recovery of larger scale edges.

The recently introduced Guided Filter (GF: He, Sun & Tang, 2013) is a computationally

efficient, edge-preserving translation-variant operator based on a local linear model which

avoids the drawbacks of bilateral filtering and other previous approaches. When the input

image also serves as the guidance image, the GF behaves like the edge preserving BLF.

Hence, the GF can gracefully eliminate small details while recovering larger scale edges

when applied in an iterative framework.

In this paper we propose a multi-scale image fusion scheme, where iterative guided

filtering is used to decompose the input images into approximate and residual layers at

successive spatial scales, and guided filtering is used to construct the weight maps used in

the recombination process.

The rest of this paper is organized as follows. ‘Edge Preserving Filtering’ briefly discusses

the principles of edge preserving filtering and introduces (iterative) guided filtering. In

‘Related Work’ we discuss related work. ‘Proposed Method’ presents the proposed guided

fusion based image fusion scheme. ‘Methods and Material’ presents the imagery and

computational methods that were used to assess the performance of the new image fusion

scheme. The results of the evaluation study are presented in ‘Results.’ Finally, in ‘Discussion

and Conclusions’ the results are discussed and some conclusions are presented.

EDGE PRESERVING FILTERING

In this section we briefly introduce the edge preserving bilateral and joint bilateral filters,

show how they are related to the guided filter, and how the application of a guided filter

in an iterative framework results in size selective filtering of small scale image details

combined with the recovery of larger scale edges.
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Bilateral filter

Spatial filtering is a common operation in image processing that is typically used to reduce

noise or eliminate small spurious details (e.g., texture). In spatial filtering the value of the

filtered image at a given location is a function (e.g., a weighted average) of the original

pixel values in a small neighborhood of the same location. Although low pass filtering

or blurring (e.g., averaging with Gaussian kernel) can effectively reduce image noise, it

also seriously degrades the articulation of (blurs) significant image edges. Therefore, edge

preserving filters have been developed that reduce small image variations (noise or texture)

while preserving large discontinuities (edges).

The bilateral filter is a non-linear filter that computes the output at each pixel as a

Gaussian weighted average of their spatial and spectral distances. It prevents blurring

across edges by assigning larger weights to pixels that are spatially close and have similar

intensity values (Tomasi & Manduchi, 1998). It uses a combination of (typically Gaussian)

spatial and a range (intensity) filter kernels that perform a blurring in the spatial domain

weighted by the local variation in the intensity domain. It combines a classic low-pass filter

with an edge-stopping function that attenuates the filter kernel weights at locations where

the intensity difference between pixels is large. Bilateral filtering was developed as a fast

alternative to the computationally expensive technique of anisotropic diffusion, which uses

gradients of the filtering images itself to guide a diffusion process, avoiding edge blurring

(Perona & Malik, 1990). More formally, at a given image location (pixel) i, the filtered

output Oi is given by:

Oi =
1

Ki

∑

j∈�

Ij f (‖i− j‖) g (‖Ii− Ij‖) (1)

where f is the spatial filter kernel (e.g., a Gaussian centered at i), g is the range or intensity

(edge-stopping) filter kernel (centered at the image value at i), � is the spatial support of

the kernel, and Ki is a normalizing factor (the sum of the f · g filter weights).

Intensity edges are preserved since the bilateral filter decreases not only with the spatial

distance but also with the intensity distance. Though the filter is efficient and effectively

reduces noise while preserving edges in many situations, it has the undesirable property

that it can reverse the intensity gradient near sharp edges (the weighted average becomes

unstable when a pixel has only few similar pixels in its neighborhood: He, Sun & Tang,

2013).

In the joint (or cross) bilateral filter (JBLF) the range filter is applied to a second or

guidance image G (Petschnigg et al., 2004):

Oi =
1

Ki

∑

j∈�

Ij · f (‖i− j‖) ·g (‖Gi−Gj‖). (2)

The JBLF can prevent over- or under- blur near edges by using a related image G to guide

the edge stopping behavior of the range filter. That is, the JBLF smooths the image I

while preserving edges that are also represented in the image G. The JBLF is particularly

favored when the edges in the image that is to be filtered are unreliable (e.g., due to noise
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or distortions) and when a companion image with well-defined edges is available (e.g., in

the case of flash /no-flash image pairs). Thus, in the case of filtering an II image for which

a companion (registered) IR image is available, the guidance image may either be the II

image itself or its IR counterpart.

Guided filtering

A guided image filter (He, Sun & Tang, 2013) is a translation-variant filter based on a local

linear model. Guided image filtering involves an input image I , a guidance image G) and

an output imageO. The two filtering conditions are (i) that the local filter output is a linear

transform of the guidance image G and (ii) as similar as possible to the input image I . The

first condition implies that

Oi = akGi+bk ∀i∈ ωk (3)

where ωk is a square window of size (2r +1)×(2r +1). The local linear model ensures

that the output image O has an edge only at locations where the guidance image G has

one, because ∇O= a∇G. The linear coefficients ak and bk are constant in ωk . They can

be estimated by minimizing the squared difference between the output image O and the

input image I (the second filtering condition) in the window ωk , i.e., by minimizing the

cost function E :

E(ak,bk)=
∑

i∈ωk

(

(akGi+bk − Ii)
2+εa2k

)

(4)

where ε is a regularization parameter penalizing large ak . The coefficients ak and bk can

directly be solved by linear regression (He, Sun & Tang, 2013):

ak =

1
|ω|

∑

i∈ωk
GiIi−GkI k

σ 2
k +ε

(5)

bk = I k −akGk (6)

where |ω| is the number of pixels in ωk , I k and Gk represent the means of respectively I

and G over ωk , and σ 2
k is the variance of I over ωk .

Since pixel i is contained in several different (overlapping) windows ωk , the value of Oi

in Eq. (3) depends on the window over which it is calculated. This can be accounted for by

averaging over all possible values of Oi:

Oi =
1

|ω|

∑

k|i∈ωk

(akGk +bk). (7)

Since
∑

k|i∈ωk
ak =

∑

k∈ωi
ak due to the symmetry of the box window Eq. (7) can be written

as

Oi = aiGi+bi (8)

where ai =
1

|ω|

∑

k∈ωi
ak and bi =

1
|ω|

∑

k∈ωi
bk are the average coefficients of all windows

overlapping i. Although the linear coefficients (ai,bi) vary spatially, their gradients will be
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smaller than those of G near strong edges (since they are the output of a mean filter). As a

result we have ∇O≈ a∇G, meaning that abrupt intensity changes in the guiding image G

are still largely preserved in the output image O.

Equations (5), (6) and (8) define the guided filter. When the input image also serves as

the guidance image, the guided filter behaves like the edge preserving bilateral filter, with

the parameters ε and the window size r having the same effects as respectively the range

and the spatial variances of the bilateral filter. Equations (8) can be rewritten as

Oi =
∑

j

Wij(G)Ij (9)

with the weighting kernelWij depending only on the guidance image G:

Wij =
1

|ω|2

∑

k:(i,j)∈ωk

(

1+
(Gi−Gk)(Gj −Gk)

σ 2
k +ε

)

. (10)

Since
∑

jWij(G)= 1 this kernel is already normalized.

The guided filter is a computationally efficient, edge-preserving operator which avoids

the gradient reversal artefacts of the bilateral filter. The local linear condition formulated

by Eq. (3) implies that its output is locally approximately a scaled version of the guidance

image plus an offset. This makes it possible to use the guided filter to transfer structure

from the guidance image G to the output image O, even in areas where the input image I

is smooth (or flat). This structure- transferring filtering is an useful property of the guided

filter, and can for instance be applied for feathering/matting and dehazing (He, Sun &

Tang, 2013).

Iterative guided filtering

Zhang et al. (2014) showed that the application of the joint bilateral filter (Eq. (2)) in an

iterative framework results in size selective filtering of small scale details combined with the

recovery of larger scale edges. In this scheme the result Gt+1 of the t th iteration is obtained

from the joint bilateral filtering of the input image I using the result Gt of the previous

iteration step as the guidance image:

Gt+1
i =

1

Ki

∑

j∈�

Ij · f (‖i− j‖) ·g (‖Gt
i −Gt

j ‖). (11)

In this scheme, details smaller than the Gaussian kernel of the bilateral filter are removed

while the edges of the remaining details are iteratively restored. Hence, this scheme allows

the selective elimination of small scale details while preserving the remaining image

structure. Note that the initial guidance image G1 can simply be a constant (e.g., zero)

valued image since it updates to the Gaussian filtered input image in the first iteration step.

Here we propose to replace the bilateral filter in this scheme by a guided filter to avoid any

gradient reversal artefacts.
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RELATED WORK

As mentioned before, most multi-scale transform-based image fusion methods introduce

some artefacts because the spatial consistency is not well-preserved (Li, Kang & Hu,

2013). This has led to the use of edge preserving filters to decompose source images

into approximate and residual layers while preserving the edge information in the fusion

process. Techniques that have been applied include weighted least squares filter (Yong &

Minghui, 2014), L1 fidelity using L0 gradient (Cui et al., 2015), L0 gradient minimization

(Zhao et al., 2013), cross bilateral filter (Kumar, 2013) and anisotropic diffusion (Bavirisetti

& Dhuli, 2016a).

Li, Kang & Hu (2013) proposed to restore spatial consistency by using guided filtering in

the weighted recombination stage of the fusion process. In their scheme, the input images

are first decomposed into approximate and residual layers using a simple averaging filter.

Next, each input image is then filtered with a Laplacian kernel followed by blurring with

a Gaussian kernel, and the absolute value of the result is adopted as a saliency map that

characterizes the local distinctness of the input image details. Then, binary weight maps are

obtained by comparing the saliency maps of all input images, and assigning a pixel in an

individual weight map the value 1 if it is the pixelwise maximum of all saliency maps, and 0

otherwise. The resulting binary weight maps are typically noisy and not aligned with object

boundaries andmay produce artefacts to the fused image. Li, Kang & Hu (2013) performed

guided filtering on each weight map with its corresponding source layer as the guidance

image, to reduce noise and to restore spatial consistency. The GF guarantees that pixels with

similar intensity values have similar weights and weighting is not performed across edges.

Typically a large filter size and a large blur degree are used to fuse the approximation layers,

while a small filter size and a small blur degree are used to combine the residual layers.

Finally, the fused image is obtained by weighted recombination of the individual source

residual layers. Despite the fact that this method is efficient and can achieve state-of-the-art

performance in most cases, it does not use edge preserving filtering in the decomposition

stage and applies a saliency map that does not relate well to human visual saliency

(Gan et al., 2015).

In their multi-scale image fusion framework Gan et al. (2015) apply edge preserving

filtering in the decomposition stage to extract well-defined image details (i.e., to preserve

their edges) and use guided filtering in the weighted recombination stage to reduce spatial

inconsistencies introduced by the weighting maps used in the reconstruction stage (i.e., to

prevent edge artefacts like halos). First, a nonlinear weighted least squares edge-preserving

filter (Farbman et al., 2008) is used to decompose the source images into approximate and

residual layers. Next, phase congruency is used to calculate saliency maps that characterize

the local distinctness of the source image details. The rest of their scheme is similar to that

of Li, Kang & Hu (2013): binary weight maps are obtained from pixelwise comparison of

the saliency maps corresponding to the individual source images; guided filtering is applied

to these binary weight maps to recue noise and restore spatial consistency, and the fused

image is obtained by weighted recombination of the individual source residual layers.
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Figure 1 Flow chart of the proposed image fusion scheme. The processing scheme is illustrated for two

source images X and Y and 4 resolution levels (0–3). X0 and Y0 are the original input images, while Xi and

Yi represent successively lower resolution versions obtained by iterative guided filtering. ‘Saliency’ repre-

sents the frequency-tuned saliency transformation, ‘Max’ and ‘Mean’ respectively denote the pointwise

maximum and mean operators, ‘(I)GF’ means (Iterative) Guided Filtering, ‘dX,’ ‘dY ’ and ‘dF ’ are respec-

tively the original and fused detail layers, ‘BW ’ the binary weight maps, and ‘W ’ the smooth weight maps.

PROPOSED METHOD

A flow chart of the proposed multi-scale decomposition fusion scheme is shown in Fig. 1.

The algorithm consists of the following steps:

1. Iterative guided filtering is applied to decompose the source images into approximate

layers (representing large scale variations) and residual layers (containing small scale

variations).

2. Frequency-tuned filtering (Achanta et al., 2009) is used to generate saliency maps for

the source images.
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3. Binary weighting maps are computed as the pixelwise maximum of the individual

source saliency maps.

4. Guided filtering is applied to each binary weighting map with its corresponding source

as the guidance image to reduce noise and to restore spatial consistency.

5. The fused image is computed as a weighted recombination of the individual source

residual layers.

In a hierarchical framework steps 1–4 are performed at multiple spatial scales. In this

paper we used a 4 level decomposition obtained by filtering at three different spatial scales

(see Fig. 1).

Figure 2 shows the intensified visual (II) and thermal infrared (IR) or near infrared

(NIR) images together with the results of the proposed image fusion scheme, for the 12

different scenes that were used in the present study. We will now discuss the proposed

fusion scheme in more detail.

Consider two co-registered source images X0(x,y) and Y0(x,y). The proposed scheme

then applies iterative guided filtering (IGF) to the input images Xi and Yi to obtain

progressively coarser image representations Xi+1 and Yi+1 (i> 0):

IGF(Xi,ri,εi)=Xi+1; i∈ {0,1,2} (12)

where the parameters εi and ri represent respectively the range and the spatial variances of

the guided filter at iteration step i. In this study the number of iteration steps is set to 4. By

letting each finer scale image serve as the approximate layer for the preceding coarser scale

image the successive size-selective residual layers dXi are simply obtained by subtraction as

follows:

dXi =Xi−Xi+1; i∈ {0,1,2}. (13)

Figure 3 shows the approximate and residual layers that are obtained this way for the

tank scene (nr 10 in Fig. 2). The edge-preserving properties of the iterative guided filter

guarantee a graceful decomposition of the source images into details at different spatial

scales. The filter size and regularization parameters used in this study are respectively set

to ri = {5,10,30} and εi = {0.0001,0.01,0.1} for i= {0,1,2}.

Visual saliency refers to the physical, bottom-up distinctness of image details (Fecteau

& Munoz, 2006). It is a relative property that depends on the degree to which a detail

is visually distinct from its background (Wertheim, 2010). Since saliency quantifies the

relative visual importance of image details saliency maps are frequently used in the

weighted recombination phase of multi-scale image fusion schemes (Bavirisetti & Dhuli,

2016b; Cui et al., 2015; Gan et al., 2015). Frequency tuned filtering computes bottom-up

saliency as local multi-scale luminance contrast (Achanta et al., 2009). The saliency map S

for an image I is computed as

S(x,y)=
∥

∥Iµ − If (x,y)
∥

∥ (14)

where Iµ is the arithmetic mean image feature vector, If represents a Gaussian blurred

version of the original image, using a 5 × 5 separable binomial kernel, ‖‖ is the L2 norm

(Euclidian distance), and x,y are the pixel coordinates.
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Figure 2 Original input and fused images for all 12 scenes. The intensified visual (II), thermal infrared (IR) or near infrared (NIR: scene 12)

source images together with the result of the proposed fusion scheme (F) for each of the 12 scenes used in this study.

A recent and extensive evaluation study comparing 13 state-of-the-art saliency models

found that the output of this simple saliency model correlates more strongly with

human visual perception than the output produced by any of the other available models

(Toet, 2011).
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Figure 3 Base and detail layers for the tank scene.Original intensified visual (A) and thermal infrared

(H) images for scene nr. 10, with their respective base B–D and I–K and detail E–G and L–N layers at suc-

cessively lower levels of resolution.

In the proposed fusion scheme we first compute saliency maps SXi and SYi for the

individual source layers Xi and Yi, i∈ {0,1,2}. Binary weight maps BWXi and BWYi are then

computed by taking the pixelwise maximum of corresponding saliency maps SXi and SYi :

BWXi(x,y)=

{

1 if SXi(x,y)> SYi(x,y)

0 otherwise

BWYi(x,y)=

{

1 if SYi(x,y)> SXi(x,y)

0 otherwise.

(15)

The resulting binary weight maps are noisy and typically not well aligned with object

boundaries, which may give rise to artefacts in the final fused image. Spatial consistency

is therefore restored through guided filtering (GF) of these binary weight maps with the

corresponding source layers as guidance images:

WXi =GF(BWXi,Xi)

WYi =GF(BWYi,Yi).
(16)

As noted before guided filtering combines noise reduction with edge preservation, while

the output is locally approximately a scaled version of the guidance image. In the present

scheme these properties are used to transform the binary weight maps into smooth

Toet (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.80 11/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.80


Figure 4 Computing smoothed weight maps by guided filtering of binary weight maps. Saliency maps at levels 0, 1 and 2 for respectively the in-

tensified visual (A–C) and thermal infrared (D–F) images from Fig. 3. Complementary binary weight maps for both image modalities (G–I and J–

L) are obtained with a pointwise maximum operator at corresponding levels. Smooth continuous weight maps (M–O and P–R) are produced by

guided filtering of the binary weight maps with their corresponding base layers as guidance images.

continuous weight maps through guided filtering with the corresponding source images as

guidance images. Figure 4 illustrates the process of computing smoothed weight maps by

guided filtering of the binary weight maps resulting from the pointwise maximum of the

corresponding source layer saliency maps for the tank scene.

Fused residual layers are then computed as the normalized weighted mean of the

corresponding source residual layers:

dFi =
WXi ·dXi+WYi ·dYi

WXi +WYi

. (17)

The fused image F is finally obtained by adding the fused residual layers to the average

value of the coarsest source layers:

F =
X3+Y3

2
+

2
∑

i=0

dFi. (18)

By using guided filtering both in the decomposition stage and in the recombination stage,

this proposed fusion scheme optimally benefits from both the multi-scale edge-preserving

characteristics (in the iterative framework) and the structure restoring capabilities (through

guidance by the original source images) of the guided filter. Themethod is easy to implement

and computationally efficient.

METHODS AND MATERIAL

This section presents the test imagery and computational metrics used to assess the

performance of the proposed images fusion scheme in comparison to existing multi-scale

fusion schemes.
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Figure 5 Comparison with existing multiresolution fusion schemes.Original intensified visual (A) and thermal infrared (B) images for scene nr

10, and the fused results obtained with respectively a Contrast Pyramid (C), Gradient Pyramid (D), Laplace Pyramid (E), Morphological Pyramid

(F), Ratio Pyramid (G), DWT (H), SIDWT (I), and the proposed method (J), for scene nr. 10.

Test imagery

Figure 2 shows the intensified visual (II), thermal infrared (IR) or near infrared (NIR:

scene 12) source images together with the result of the proposed fusion scheme (F) for

each of the 12 scenes used in this study. The 12 scenes are part of the TNO Image Fusion

Dataset (Toet, 2014) with the following identifiers: airplane_in_trees, Barbed_wire_2,

Jeep, Kaptein_1123, Marne_07, Marne_11, Marne_15, Reek, tank, Nato_camp_sequence,

soldier_behind_smoke, Vlasakkers.

Multi-scale fusion schemes used for comparison

In this study we compare the performance of our image fusion scheme with seven other

popular image fusionmethods based onmulti-scale decomposition including the Laplacian

pyramid (Burt & Adelson, 1983), the Ratio of Low-Pass pyramid (Toet, 1989b), the contrast

pyramid (Toet, Van Ruyven & Valeton, 1989), the filter-subtract-decimate Laplacian

pyramid (Burt, 1988; Burt & Kolczynski, 1993), the gradient pyramid (Burt, 1992; Burt &

Kolczynski, 1993), the morphological pyramid (Toet, 1989a), the discrete wavelet transform

(Lemeshewsky, 1999; Li, Manjunath & Mitra, 1995; Li, Kwok & Wang, 2002; Scheunders

& De Backer, 2001), and a shift invariant extension of the discrete wavelet transform

(Lemeshewsky, 1999; Rockinger, 1997; Rockinger, 1999; Rockinger & Fechner, 1998). We used

Rockinger’s freely available Matlab image fusion toolbox (www.metapix.de/toolbox.htm)

to compute these fusion schemes. To allow a straightforward comparison, the number

of scale levels is set to 4 in all methods, and simple averaging is used to compute the

approximation of the fused image representation at the coarsest spatial scale. Figures 5–9

show the results of the proposed method together with the results of other seven fusion

schemes for some of the scenes used in this study (scenes 2–5 and 10).

Objective evaluation metrics

Image fusion results can be evaluated using either subjective or objective measures.

Subjective methods are based on psycho-visual testing and are typically expensive in terms
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Figure 6 As Fig. 5, for scene nr. 2.

Figure 7 As Fig. 5, for scene nr. 3.

Figure 8 As Fig. 5, for scene nr. 4.
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Figure 9 As Fig. 5, for scene nr. 5.

of time, effort, and equipment required. Also, in most cases, there is only little difference

among fusion results. This makes it difficult to subjectively perform the evaluation of

fusion results. Therefore, many objective evaluation methods have been developed (for

an overview see e.g., Li, Li & Gong, 2010; Liu et al., 2012). However, so far, there is no

universally accepted metric to objectively evaluate the image fusion results. In this paper,

we use four frequently applied computational metrics to objectively evaluate and compare

the performance of different image fusion methods. The metrics we use are Entropy, the

Mean Structural Similarity Index (MSSIM), Normalized Mutual Information (NMI), and

Normalized Feature Mutual Information (NFMI). These metrics will be briefly discussed

in the following sections.

Entropy

Entropy (E) is a measure of the information content in a fused image F. Entropy is defined

as

EF = −

L−1
∑

i=0

PF (i)logPF (i) (19)

where PF (i) indicates the probability that a pixel in the fused image F has a gray value i,

and the gray values range from 0 to L. The larger the entropy is, the more informative the

fused image is. A fused image is more informative than either of its source images when its

entropy is higher than the entropy of its source images.

Mean Structural Similarity Index

The Structural Similarity (SSIM: Wang et al., 2004) index is a stabilized version of the

Universal Image Quality Index (UIQ: Wang & Bovik, 2002) which can be used to quantify

the structural similarity between a source image A and a fused image F :

SSIMx,y =
2µxµy +C1

µ2
x +µ2

y +C1
·
2σxσy +C2

σ 2
x +σ 2

y +C2
·

σxy +C3

σxσy +C3
(20)
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where x and y represent local windows of sizeM×N in respectively A and F , and

µx =
1

M×N

M
∑

i=1

N
∑

j=1

x(i,j), µy =
1

M×N

M
∑

i=1

N
∑

j=1

y(i,j) (21)

σ 2
x =

1

M×N

M
∑

i=1

N
∑

j=1

(x(i,j)−µx)
2, σ 2

y =
1

M×N

M
∑

i=1

N
∑

j=1

(y(i,j)−µy)
2 (22)

σ 2
xy =

1

M×N

M
∑

i=1

N
∑

j=1

(x(i,j)−µx)(y(i,j)−µy). (23)

By default, the stabilizing constants are set toC1 = (0.01·L)2,C2 = (0.03·L)2 andC3 =C2/2,

where L is the maximal gray value. The value of SSIM is bounded and ranges between −1

and 1 (it is 1 only when both images are identical). The SSIM is typically computed over

a sliding window to compare local patterns of pixel intensities that have been normalized

for luminance and contrast. The Mean Structural Similarity (MSSIM) index quantifies the

overall similarity between a source image A and a fused image F :

MSSIMA,F =
1

Nw

Nw
∑

i=1

SSIMxi,yi (24)

where Nw represents the number of local windows of the image. An overall image fusion

quality index can then be defined as the mean MSSIM values between each of the source

images and the fused result:

MSSIMA,B
F =

MSSIMA,F +MSSIMB,F

2
(25)

MSSIMA,B
F ranges between −1 and 1 (it is 1 only when both images are identical).

Normalized Mutual Information

Mutual Information (MI) measures the amount of information that two images have in

common. It can be used to quantify the amount of information from a source image that

is transferred to a fused image (Qu, Zhang & Yan, 2002). The mutual information MIAF

between a source image A and a fused image F is defined as:

MIA,F =
∑

i,j

PA,F (i,j)log
PA,F (i,j)

PA(i)PF (j)
(26)

where PA(i) and PF (j) are the probability density functions in the individual images, and

PAF (i,j) is the joint probability density function.

The traditional mutual informationmetric is unstable andmay bias themeasure towards

the source image with the highest entropy. This problem can be resolved by computing the

normalized mutual information (NMI) as follows (Hossny, Nahavandi & Creighton, 2008):

NMIA,B
F =

MIA,F

HA+HF
+

MIB,F

HB+HF
(27)
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where HA,HB and HF are the marginal entropy of A, B and F, and MIA,F and MIB,F

represent the mutual information between respectively the source image A and the fused

image F and between the source image B and the fused image F. A higher value of NMI

indicates that more information from the source images is transferred to the fused image.

The NMI metric varies between 0 and 1.

Normalized Feature Mutual Information

The Feature Mutual Information (FMI) metric calculates the amount of image features

that two images have in common (Haghighat & Razian, 2014; Haghighat, Aghagolzadeh &

Seyedarabi, 2011). This method outperforms other metrics (e.g., E, NMI) in consistency

with the subjective quality measures. Previously proposed MI-based image fusion quality

metrics use the image histograms to compute the amount of information a source and

fused image have in common (Cvejic, Canagarajah & Bull, 2006; Qu, Zhang & Yan, 2002).

However, image histograms contain no information about local image structure (spatial

features or local image quality) and only provide statistical measures of the number of

pixels in a specific gray-level. However, since meaningful image information is contained

in visual features, image fusion quality measures should measure the extent to which these

visual features are transferred into the fused image from each of the source images. The

Feature Mutual Information (FMI) metric calculates the mutual information between

image feature maps (Haghighat & Razian, 2014; Haghighat, Aghagolzadeh & Seyedarabi,

2011). A typical image feature map is for instance the gradient map, which contains

information about the pixel neighborhoods, edge strength and directions, texture and

contrast. Given two source images as A and B and their fused image as F, the FMI metric

first extracts feature maps of the source and fused images using a feature extraction method

(e.g., gradient). After feature extraction, the feature images A′, B′ and F ′ are normalized to

create their marginal probability density functions PA′ , PB′ and PF ′ . The joint probability

density functions PA′,F ′ and PB′,F ′ are then estimated from the marginal distributions

using Nelsen’s method (Nelsen, 1987). The algorithm is described in more detail elsewhere

(Haghighat, Aghagolzadeh & Seyedarabi, 2011). The FMI metric between a source image A

and a fused image F is then given by

FMIA,F =MIA′,F ′ =
∑

i,j

PA′,F ′(i,j)log
PA′,F ′(i,j)

PA′(i)PF ′(j)
(28)

and the normalized feature mutual information (FMI) can be computed as follows

FMIA,B
F =

MIA′,F ′

HA′ +HF ′

+
MIB′,F ′

HB′ +HF ′

. (29)

In practice the FMI is computed locally over small corresponding windows between

the source and the fused images and averaged over all windows covering the image plane

(Haghighat & Razian, 2014).
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Table 1 Entropy values for each of the methods tested and for all 12 scenes.

Scene nr. Contrast DWT Gradient Laplace Morph Ratio SIDWT IGF

1 6.4818 6.4617 6.1931 6.5935 6.6943 6.5233 6.4406 6.5126

2 6.7744 6.6731 6.5873 6.7268 6.9835 6.7268 6.7075 7.4233

3 6.4340 6.5704 6.4965 6.6401 6.7032 6.6946 6.5878 6.8589

4 6.8367 6.8284 6.6756 7.0041 7.0906 6.7313 6.8547 7.2491

5 6.7549 6.6642 6.5582 6.7624 6.8618 6.5129 6.6813 7.1177

6 6.3753 6.3705 6.2430 6.5049 6.7608 6.2281 6.4116 6.9044

7 6.7470 6.3709 6.1890 6.5106 6.7445 6.3458 6.3817 6.7869

8 6.3229 7.3503 7.2935 7.3794 7.3501 7.4873 7.3406 7.4891

9 6.4903 6.4677 6.3513 6.5816 6.7295 6.3306 6.4753 6.7796

10 6.9627 7.0131 6.8390 7.1073 7.0530 7.0118 7.0224 7.2782

11 6.5442 6.4554 6.2110 6.5555 6.8051 6.4053 6.4572 6.2907

12 7.3335 7.3744 7.3379 7.3907 7.4251 7.3486 7.3746 7.3568

RESULTS

Fusion evaluation

Here we assess the performance of the proposed image fusion scheme on the intensified

visual and thermal infrared images for each of the 12 selected scenes, using Entropy, the

Mean Structural Similarity Index (MSSIM), Normalized Mutual Information (NMI), and

Normalized Feature Mutual Information (NFMI) as the objective performance measures.

We also compare the results of the proposed method with those of seven other popular

multi-scale fusion schemes.

Table 1 lists the entropy of the fused result for the proposed method (IGF) and all seven

multi-scale comparison methods (Contrast Pyramid, DWT, Gradient Pyramid, Laplace

Pyramid, Morphological Pyramid, Ratio Pyramid, SIDWT). It appears that IGF produces a

fused image with the highest entropy for 9 of the 12 test scenes. Note that a larger entropy

implies more edge information, but it does not mean that the additional edges are indeed

meaningful (they may result from over enhancement or noise). Therefore, we also need to

consider structural information metrics.

Table 2 shows that IGF outperforms all other multi-scale methods tested here in terms

of MSSIM. This means that the mean overall structural similarity between both source

images the fused image F is largest for the proposed method.

Table 3 shows that IGF also outperforms all other multi-scale methods tested here

in terms of NMI. This indicates that the proposed IGF fusion scheme transfers more

information from the source images to the fused image than any of the other methods.

Table 4 shows that IGF also outperforms 10 of the 12 other multi-scale methods tested

here in terms of NFMI. IGF is only outperformed by SIDWT for scene 1 and by the Contrast

Pyramid for scene 7. This implies that fused images produced by the proposed IGF scheme

typically have a larger amount of image features in common with their source images than

the results of most other fusion schemes.
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Table 2 MSSIM values for each of the methods tested and for all 12 scenes.

Scene nr. Contrast DWT Gradient Laplace Morph Ratio SIDWT IGF

1 0.7851 0.7975 0.8326 0.8050 0.7321 0.8054 0.8114 0.8381

2 0.6018 0.6798 0.7130 0.6406 0.6203 0.6406 0.6935 0.7213

3 0.7206 0.7493 0.7849 0.7555 0.6882 0.7468 0.7629 0.7932

4 0.6401 0.6790 0.7162 0.6875 0.6155 0.6668 0.6949 0.7184

5 0.5856 0.6649 0.6938 0.6695 0.6250 0.6270 0.6769 0.7038

6 0.5689 0.6448 0.6755 0.6516 0.5961 0.6099 0.6598 0.6921

7 0.3939 0.5742 0.5994 0.5809 0.5320 0.4490 0.5889 0.6344

8 0.6474 0.6272 0.6630 0.6392 0.5791 0.6291 0.6463 0.6940

9 0.6224 0.6883 0.7224 0.6955 0.6445 0.6718 0.7089 0.7405

10 0.3913 0.5410 0.5715 0.5430 0.4899 0.4331 0.5513 0.5961

11 0.7174 0.7307 0.7754 0.7439 0.6559 0.7419 0.7539 0.7908

12 0.7945 0.8116 0.8466 0.8227 0.7815 0.8106 0.8365 0.8646

Table 3 NMI values for each of the methods tested and for all 12 scenes.

Scene nr. Contrast DWT Gradient Laplace Morph Ratio SIDWT IGF

1 0.1534 0.1692 0.2052 0.1647 0.1699 0.1791 0.1796 0.2818

2 0.0989 0.0948 0.1158 0.0897 0.1028 0.0897 0.1028 0.2994

3 0.0898 0.1222 0.1493 0.1252 0.1171 0.1320 0.1280 0.2231

4 0.1102 0.1097 0.1322 0.1189 0.1169 0.1046 0.1177 0.2294

5 0.1236 0.1170 0.1379 0.1252 0.1318 0.1186 0.1251 0.2166

6 0.0857 0.0943 0.1162 0.0969 0.1068 0.0902 0.0980 0.2229

7 0.0697 0.0711 0.0839 0.0809 0.0888 0.0616 0.0781 0.2147

8 0.2192 0.1825 0.2198 0.1832 0.1884 0.2130 0.2021 0.3090

9 0.0692 0.0679 0.0781 0.0747 0.0790 0.0690 0.0731 0.2013

10 0.1375 0.1643 0.2043 0.1780 0.1761 0.1662 0.1760 0.2962

11 0.1055 0.1043 0.1177 0.1100 0.1047 0.1179 0.1115 0.1646

12 0.2572 0.2511 0.2746 0.2602 0.2438 0.2660 0.2649 0.2987

Summarizing, the proposed IGF fusion scheme appears to outperform the other

multi-scale fusion methods investigated here in most of the conditions tested.

Runtime

In this study we used a Matlab implementation of the GF and IGF written by Zhang et

al. (2014) that is freely available from the authors (at http://www.cs.cuhk.edu.hk/~leojia/

projects/rollguidance). We made no effort to optimize the code of the algorithms. We

conducted a runtime test on a Dell Latitude laptop with an Intel i5 2 GHz CPU and 8 GB

memory. The algorithms were implemented inMatlab 2016a. Only a single thread was used

without involving any SIMD instructions. For this test we used the set of 12 test images

described in ‘Test imagery.’ As noted before, the filter size and regularization parameters

used in this study are respectively set to ri = {5,10,30} and εi = {0.0001,0.01,0.1} for
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Table 4 NFMI values for each of the methods tested and for all 12 scenes.

Scene nr. Contrast DWT Gradient Laplace Morph Ratio SIDWT IGF

1 0.4064 0.3812 0.3933 0.3888 0.3252 0.3498 0.4084 0.4008

2 0.4354 0.3876 0.4001 0.3493 0.3432 0.3493 0.4075 0.4383

3 0.4076 0.4081 0.4175 0.4138 0.3758 0.3552 0.4330 0.4454

4 0.4017 0.3913 0.4066 0.4051 0.3655 0.3497 0.4205 0.4490

5 0.4304 0.3971 0.4101 0.4081 0.3758 0.3497 0.4229 0.4580

6 0.4299 0.4074 0.4203 0.4164 0.3832 0.3570 0.4295 0.4609

7 0.5050 0.4383 0.4439 0.4357 0.3942 0.3779 0.4469 0.4286

8 0.4305 0.4074 0.4097 0.4113 0.3806 0.3553 0.4273 0.4325

9 0.4351 0.3959 0.4105 0.3995 0.3658 0.3539 0.4130 0.4370

10 0.4439 0.4251 0.4263 0.4268 0.3863 0.3465 0.4513 0.5045

11 0.3882 0.3798 0.3987 0.3804 0.3131 0.3453 0.4068 0.4206

12 0.4051 0.3725 0.3973 0.3820 0.3449 0.3635 0.4111 0.4257

spatial scale levels i= {0,1,2}. The mean runtime of the proposed fusion method was

0.61 ± 0.05 s.

DISCUSSION AND CONCLUSIONS

We propose a multi-scale image fusion scheme based on guided filtering. Iterative guided

filtering is used to decompose the source images into approximation and residual layers.

Initial binary weighting maps are computed as the pixelwise maximum of the individual

source saliency maps, obtained from frequency tuned filtering. Spatially consistent

and smooth weighting maps are then obtained through guided filtering of the binary

weighting maps with their corresponding source layers as guidance images. Saliency

weighted recombination of the individual source residual layers and the mean of the

coarsest scale source layers finally yields the fused image. The proposed multi-scale

image fusion scheme achieves spatial consistency by using guided filtering both at the

decomposition and at the recombination stage of themulti-scale fusion process. Application

to multiband visual (intensified) and thermal infrared imagery demonstrates that the

proposed method obtains state-of-the-art performance for the fusion of multispectral

nightvision images. The method has a simple implementation and is computationally

efficient.
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