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Abstract

We study randomized sketching methods for approximately solving least-squares problem
with a general convex constraint. The quality of a least-squares approximation can be as-
sessed in different ways: either in terms of the value of the quadratic objective function (cost
approximation), or in terms of some distance measure between the approximate minimizer
and the true minimizer (solution approximation). Focusing on the latter criterion, our first
main result provides a general lower bound on any randomized method that sketches both
the data matrix and vector in a least-squares problem; as a surprising consequence, the most
widely used least-squares sketch is sub-optimal for solution approximation. We then present a
new method known as the iterative Hessian sketch, and show that it can be used to obtain ap-
proximations to the original least-squares problem using a projection dimension proportional
to the statistical complexity of the least-squares minimizer, and a logarithmic number of
iterations. We illustrate our general theory with simulations for both unconstrained and con-
strained versions of least-squares, including ℓ1-regularization and nuclear norm constraints.
We also numerically demonstrate the practicality of our approach in a real face expression
classification experiment.

Keywords: Convex optimization, Random Projection, Lasso, Low-rank Approximation,
Information Theory

1. Introduction

Over the past decade, the explosion of data volume and complexity has led to a surge of interest
in fast procedures for approximate forms of matrix multiplication, low-rank approximation,
and convex optimization. One interesting class of problems that arise frequently in data
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analysis and scientific computing are constrained least-squares problems. More specifically,
given a data vector y ∈ R

n, a data matrix A ∈ R
n×d and a convex constraint set C, a

constrained least-squares problem can be written as follows

xLS : = argmin
x∈C

f(x) where f(x) : = 1
2n‖Ax− y‖22. (1)

The simplest case is the unconstrained form (C = R
d), but this class also includes other

interesting constrained programs, including those based ℓ1-norm balls, nuclear norm balls,
interval constraints [−1, 1]d and other types of regularizers designed to enforce structure in
the solution.

Randomized sketches are a well-established way of obtaining an approximate solutions to a
variety of problems, and there is a long line of work on their uses (e.g., see the books and papers
by Vempala (2004); Boutsidis and Drineas (2009); Mahoney (2011); Drineas et al. (2011); Kane
and Nelson (2014), as well as references therein). In application to problem (1), sketching
methods involving using a random matrix S ∈ R

m×n to project the data matrix A and/or
data vector y to a lower dimensional space (m ≪ n), and then solving the approximated
least-squares problem. There are many choices of random sketching matrices; see Section 2.1
for discussion of a few possibilities. Given some choice of random sketching matrix S, the
most well-studied form of sketched least-squares is based on solving the problem

x̃ : = argmin
x∈C

{ 1

2n
‖SAx− Sy‖22

}
, (2)

in which the data matrix-vector pair (A, y) are approximated by their sketched versions
(SA, Sy). Note that the sketched program is an m-dimensional least-squares problem, in-
volving the new data matrix SA ∈ R

m×d. Thus, in the regime n≫ d, this approach can lead
to substantial computational savings as long as the projection dimension m can be chosen
substantially less than n. A number of authors (e.g., Sarlos (2006); Boutsidis and Drineas
(2009); Drineas et al. (2011); Mahoney (2011); Pilanci and Wainwright (2015a)) have inves-
tigated the properties of this sketched solution (2), and accordingly, we refer to to it as the
classical least-squares sketch.

There are various ways in which the quality of the approximate solution x̃ can be assessed.
One standard way is in terms of the minimizing value of the quadratic cost function f defining
the original problem (1), which we refer to as cost approximation. In terms of f -cost, the
approximate solution x̃ is said to be ε-optimal if

f(xLS) ≤ f(x̃) ≤ (1 + ε)2f(xLS). (3)

For example, in the case of unconstrained least-squares (C = R
d) with n > d, it is known

that with Gaussian random sketches, a sketch size m % 1
ε2
d suffices to guarantee that x̃ is

ε-optimal with high probability (for instance, see the papers by Sarlos (2006) and Mahoney
(2011), as well as references therein). Similar guarantees can be established for sketches based
on sampling according to the statistical leverage scores (Drineas and Mahoney, 2010; Drineas
et al., 2012). Sketching can also be applied to problems with constraints: Boutsidis and
Drineas (2009) prove analogous results for the case of non-negative least-squares considering
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the sketch in equation (2), whereas our own past work (Pilanci and Wainwright, 2015a)
provides sufficient conditions for ε-accurate cost approximation of least-squares problems over
arbitrary convex sets based also on the form in (2).

It should be noted, however, that other notions of “approximation goodness” are possible.
In many applications, it is the least-squares minimizer xLS itself—as opposed to the cost value
f(xLS)—that is of primary interest. In such settings, a more suitable measure of approximation
quality would be the ℓ2-norm ‖x̃− xLS‖2, or the prediction (semi)-norm

‖x̃− xLS‖A : =
1√
n
‖A(x̃− xLS)‖2. (4)

We refer to these measures as solution approximation.
Now of course, a cost approximation bound (3) can be used to derive guarantees on the

solution approximation error. However, it is natural to wonder whether or not, for a reasonable
sketch size, the resulting guarantees are “good”. For instance, using arguments from Drineas
et al. (2011), for the problem of unconstrained least-squares, it can be shown that the same
conditions ensuring a ε-accurate cost approximation also ensure that

‖x̃− xLS‖A ≤ ε
√
f(xLS). (5)

Given lower bounds on the singular values of the data matrix A, this bound also yields control
of the ℓ2-error.

In certain ways, the bound (5) is quite satisfactory: given our normalized definition (1) of
the least-squares cost f , the quantity f(xLS) remains an order one quantity as the sample size
n grows, and the multiplicative factor ε can be reduced by increasing the sketch dimension m.
But how small should ε be chosen? In many applications of least-squares, each element of the
response vector y ∈ R

n corresponds to an observation, and so as the sample size n increases,
we expect that xLS provides a more accurate approximation to some underlying population
quantity, say x∗ ∈ R

d. As an illustrative example, in the special case of unconstrained
least-squares, the accuracy of the least-squares solution xLS as an estimate of x∗ scales as
‖xLS − x∗‖A ≍ σ2d

n . Consequently, in order for our sketched solution to have an accuracy of

the same order as the least-square estimate, we must set ε2 ≍ σ2d
n . Combined with our earlier

bound on the projection dimension, this calculation suggests that a projection dimension of
the order

m %
d

ε2
≍ n

σ2

is required. This scaling is undesirable in the regime n≫ d, where the whole point of sketch-
ing is to have the sketch dimension m much lower than n.

Now the alert reader will have observed that the preceding argument was only rough and
heuristic. However, the first result of this paper (Theorem 1) provides a rigorous confirmation
of the conclusion: whenever m ≪ n, the classical least-squares sketch (2) is sub-optimal as
a method for solution approximation. Figure 1 provides an empirical demonstration of the
poor behavior of the classical least-squares sketch for an unconstrained problem.
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Figure 1. Plots of mean-squared error versus the row dimension n ∈ {100, 200, 400, . . . , 25600}
for unconstrained least-squares in dimension d = 10. The blue curves correspond to the error
xLS − x∗ of the unsketched least-squares estimate. Red curves correspond to the IHS method
applied for N = 1 + ⌈log(n)⌉ rounds using a sketch size m = 7d. Black curves correspond
to the naive sketch applied using M = Nm projections in total, corresponding to the same
number used in all iterations of the IHS algorithm. (a) Error ‖x̃ − x∗‖22. (b) Prediction error
‖x̃ − x∗‖2A = 1

n‖A(x̃ − x∗)‖22. Each point corresponds to the mean taken over 300 trials with
standard errors shown above and below in crosses.

This sub-optimality holds not only for unconstrained least-squares but also more gener-
ally for a broad class of constrained problems. Actually, Theorem 1 is a more general claim:
any estimator based only on the pair (SA, Sy)—an infinite family of methods including the
standard sketching algorithm as a particular case—is sub-optimal relative to the original
least-squares estimator in the regime m≪ n. We are thus led to a natural question: can this
sub-optimality be avoided by a different type of sketch that is nonetheless computationally
efficient? Motivated by this question, our second main result (Theorem 2) is to propose an
alternative method—known as the iterative Hessian sketch—and prove that it yields optimal
approximations to the least-squares solution using a projection size that scales with the in-
trinsic dimension of the underlying problem, along with a logarithmic number of iterations.
The main idea underlying iterative Hessian sketch is to obtain multiple sketches of the data
(S1A, ..., SNA) and iteratively refine the solution where N can be chosen logarithmic in n.

The remainder of this paper is organized as follows. In Section 2, we begin by introducing
some background on classes of random sketching matrices, before turning to the statement of
our lower bound (Theorem 1) on the classical least-squares sketch (2). We then introduce the
Hessian sketch, and show that an iterative version of it can be used to compute ε-accurate
solution approximations using log(1/ε)-steps (Theorem 2). In Section 3, we illustrate the
consequences of this general theorem for various specific classes of least-squares problems,
and we conclude with a discussion in Section 4. The majority of our proofs are deferred to
the appendices.
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For the convenience of the reader, we summarize some standard notation used in this
paper. For sequences {at}∞t=0 and {bt}∞t=0, we use the notation at � bt to mean that there is
a constant (independent of t) such that at ≤ C bt for all t. Equivalently, we write bt � at. We
write at ≍ bt if at � bt and bt � at.

2. Main results

In this section, we begin with background on different classes of randomized sketches, includ-
ing those based on random matrices with sub-Gaussian entries, as well as those based on
randomized orthonormal systems and random sampling. In Section 2.2, we prove a general
lower bound on the solution approximation accuracy of any method that attempts to approx-
imate the least-squares problem based on observing only the pair (SA, Sy). This negative
result motivates the investigation of alternative sketching methods, and we begin this investi-
gation by introducing the Hessian sketch in Section 2.3. It serves as the basic building block
of the iterative Hessian sketch (IHS), which can be used to construct an iterative method that
is optimal up to logarithmic factors.

2.1 Different types of randomized sketches

Various types of randomized sketches are possible, and we describe a few of them here. Given
a sketching matrix S, we use {si}mi=1 to denote the collection of its n-dimensional rows. We
restrict our attention to sketch matrices that are zero-mean, and that are normalized so that
E[STS/m] = In.

2.1.1 Sub-Gaussian sketches:

The most classical sketch is based on a random matrix S ∈ R
m×n with i.i.d. standard Gaussian

entries. A straightforward generalization is a random sketch with i.i.d. sub-Gaussian rows.
In particular, a zero-mean random vector s ∈ R

n is 1-sub-Gaussian if for any u ∈ R
n, we have

P[〈s, u〉 ≥ ε‖u‖2
]
≤ e−ε

2/2 for all ε ≥ 0. (6)

For instance, a vector with i.i.d. N(0, 1) entries is 1-sub-Gaussian, as is a vector with
i.i.d. Rademacher entries (uniformly distributed over {−1,+1}). Suppose that we gener-
ate a random matrix S ∈ R

m×n with i.i.d. rows that are zero-mean, 1-sub-Gaussian, and
with cov(s) = In; we refer to any such matrix as a sub-Gaussian sketch. As will be clear,
such sketches are the most straightforward to control from the probabilistic point of view.
However, from a computational perspective, a disadvantage of sub-Gaussian sketches is that
they require matrix-vector multiplications with unstructured random matrices. In particular,
given an data matrix A ∈ R

n×d, computing its sketched version SA requires O(mnd) basic
operations in general (using classical matrix multiplication).

2.1.2 Sketches based on randomized orthonormal systems (ROS):

The second type of randomized sketch we consider is randomized orthonormal system (ROS),
for which matrix multiplication can be performed much more efficiently.
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In order to define a ROS sketch, we first let H ∈ R
n×n be an orthonormal matrix with

entries Hij ∈ [− 1√
n
, 1√

n
]. Standard classes of such matrices are the Hadamard or Fourier

bases, for which matrix-vector multiplication can be performed in O(n log n) time via the fast
Hadamard or Fourier transforms, respectively. Based on any such matrix, a sketching matrix
S ∈ R

m×n from a ROS ensemble is obtained by sampling i.i.d. rows of the form

sT =
√
neTj HD with probability 1/n for j = 1, . . . , n,

where the random vector ej ∈ R
n is chosen uniformly at random from the set of all n

canonical basis vectors, and D = diag(ν) is a diagonal matrix of i.i.d. Rademacher vari-
ables ν ∈ {−1,+1}n. A similar sketching matrix can also be obtained by sampling canonical
basis vectors without replacement. Given a fast routine for matrix-vector multiplication,
the sketched data (SA, Sy) can be formed in O(nd logm) time (for instance, see Ailon and
Chazelle (2006)).

2.1.3 Sketches based on random row sampling:

Given a probability distribution {pj}nj=1 over [n] = {1, . . . , n}, another choice of sketch is

to randomly sample the rows of the extended data matrix
[
A y

]
a total of m times with

replacement from the given probability distribution. Thus, the rows of S are independent and
take on the values

sT =
ej√
pj

with probability pj for j = 1, . . . , n

where ej ∈ R
n is the jth canonical basis vector. Different choices of the weights {pj}nj=1 are

possible, including those based on the leverage values of A—i.e., pj ∝ ‖uj‖2 for j = 1, . . . , n,
where U ∈ R

n×d is the matrix of left singular vectors of A (e.g., see Drineas and Mahoney
(2010)). In our analysis of lower bounds to follow, we assume that the weights are α-balanced,
meaning that

max
j=1,...,n

pj ≤
α

n
(7)

for some constant α independent of n.
In the following section, we present a lower bound that applies to all the three kinds of

sketching matrices described above.

2.2 Sub-optimality of classical least-squares sketch

We begin by proving a lower bound on any estimator that is a function of the pair (SA, Sy).
In order to do so, we consider an ensemble of least-squares problems, namely those generated
by a noisy observation model of the form

y = Ax∗ + w, where w ∼ N(0, σ2In), (8)

the data matrix A ∈ R
n×d is fixed, and the unknown vector x∗ belongs to some set C0 that

is star-shaped around zero.1 In this case, the constrained least-squares estimate xLS from

1. Explicitly, this star-shaped condition means that for any x ∈ C0 and scalar t ∈ [0, 1], the point tx also
belongs to C0.
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equation (1) corresponds to a constrained form of maximum-likelihood for estimating the
unknown regression vector x∗. In Appendix D, we provide a general upper bound on the
error E[‖xLS − x∗‖2A] in the least-squares solution as an estimate of x∗. This result provides
a baseline against which to measure the performance of a sketching method: in particular,
our goal is to characterize the minimal projection dimension m required in order to return an
estimate x̃ with an error guarantee ‖x̃− xLS‖A ≈ ‖xLS − x∗‖A. The result to follow shows that
unless m ≥ n, then any method based on observing only the pair (SA, Sy) necessarily has a
substantially larger error than the least-squares estimate. In particular, our result applies to
an arbitrary measurable function (SA, Sy) 7→ x†, which we refer to as an estimator.

More precisely, our lower bound applies to any random matrix S ∈ R
m×n for which

|||E
[
ST (SST )−1S

]
|||op ≤ η

m

n
, (9)

where η is a constant independent of n and m, and |||A|||op denotes the ℓ2-operator norm (max-
imum eigenvalue for a symmetric matrix). In Appendix A.1, we show that these conditions
hold for various standard choices, including most of those discussed in the previous section.
Letting BA(1) denote the unit ball defined by the semi-norm ‖ · ‖A, our lower bound also in-
volves the complexity of the set C0 ∩BA(1), which we measure in terms of its metric entropy.
In particular, for a given tolerance δ > 0, the δ-packing number Mδ of the set C0∩BA(1) with
respect to ‖·‖A is the largest number of vectors {xj}Mj=1 ⊂ C0∩BA(1) such that ‖xj−xk‖A > δ
for all distinct pairs j 6= k.

With this set-up, we have the following result:

Theorem 1 (Sub-optimality) For any random sketching matrix S ∈ R
m×n satisfying con-

dition (9), any estimator (SA, Sy) 7→ x† has MSE lower bounded as

sup
x∗∈C0

ES,w

[
‖x† − x∗‖2A

]
≥ σ2

128 η

log(12M1/2)

min{m,n} (10)

where M1/2 is the 1/2-packing number of C0 ∩ BA(1) in the semi-norm ‖ · ‖A.

The proof, given in Appendix A, is based on a reduction from statistical minimax theory com-
bined with information-theoretic bounds. The lower bound is best understood by considering
some concrete examples:

Example 1 (Sub-optimality for ordinary least-squares) We begin with the simplest case—
namely, in which C = R

d. With this choice and for any data matrix A with rank(A) = d, it
is straightforward to show that the least-squares solution xLS has its prediction mean-squared
error at most

E
[
‖xLS − x∗‖2A

]
-

σ2d

n
. (11a)
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On the other hand, with the choice C0 = B2(1), we can construct a 1/2-packing with M = 2d

elements, so that Theorem 1 implies that any estimator x† based on (SA, Sy) has its prediction
MSE lower bounded as

ES,w

[
‖x̂− x∗‖2A

]
%

σ2 d

min{m,n} . (11b)

Consequently, the sketch dimension m must grow proportionally to n in order for the sketched
solution to have a mean-squared error comparable to the original least-squares estimate. This
is highly undesirable for least-squares problems in which n ≫ d, since it should be possible
to sketch down to a dimension proportional to rank(A) = d. Thus, Theorem 1 this reveals a
surprising gap between the classical least-squares sketch (2) and the accuracy of the original
least-squares estimate.

In contrast, the sketching method of this paper, known as iterative Hessian sketching (IHS),
matches the optimal mean-squared error using a sketch of size d+ log(n) in each round, and
a total of log(n) rounds; see Corollary 2 for a precise statement. The red curves in Figure 1
show that the mean-squared errors (‖x̂−x∗‖22 in panel (a), and ‖x̂−x∗‖2A in panel (b)) of the
IHS method using this sketch dimension closely track the associated errors of the full least-
squares solution (blue curves). Consistent with our previous discussion, both curves drop off
at the n−1 rate.

Since the IHS method with log(n) rounds uses a total of T = log(n)
{
d+log(n)} sketches, a

fair comparison is to implement the classical method with T sketches in total. The black curves
show the MSE of the resulting sketch: as predicted by our theory, these curves are relatively
flat as a function of sample size n. Indeed, in this particular case, the lower bound (10)

ES,w

[
‖x̃− x∗‖2A

]
%
σ2d

m
%

σ2

log2(n)
,

showing we can expect (at best) an inverse logarithmic drop-off. ♦

This sub-optimality can be extended to other forms of constrained least-squares estimates as
well, such as those involving sparsity constraints.

Example 2 (Sub-optimality for sparse linear models) We now consider the sparse vari-
ant of the linear regression problem, which involves the ℓ0-“ball”

B0(s) : =
{
x ∈ R

d |
d∑

j=1

I[xj 6= 0] ≤ s},

corresponding to the set of all vectors with at most s non-zero entries. Fixing some radius
R ≥ √

s, consider a vector x∗ ∈ C0 : = B0(s) ∩ {‖x‖1 = R}, and suppose that we make noisy
observations of the form y = Ax∗ + w.

Given this set-up, one way in which to estimate x∗ is by by computing the least-squares
estimate xLS constrained2 to the ℓ1-ball C = {x ∈ R

n | ‖x‖1 ≤ R}. This estimator is a

2. This set-up is slightly unrealistic, since the estimator is assumed to know the radius R = ‖x∗‖1. In
practice, one solves the least-squares problem with a Lagrangian constraint, but the underlying arguments
are basically the same.
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form of the Lasso (Tibshirani, 1996): as shown in Appendix D.2, when the design matrix A
satisfies the restricted isometry property (see Candes and Tao (2005) for a definition), then
it has MSE at most

E
[
‖xLS − x∗‖2A

]
-
σ2s log

(
ed
s

)

n
. (12a)

On the other hand, the 1
2 -packing number M of the set C0 can be lower bounded as

logM % s log
(
ed
s

)
; see Appendix D.2 for the details of this calculation. Consequently, in

application to this particular problem, Theorem 1 implies that any estimator x† based on the
pair (SA, Sy) has mean-squared error lower bounded as

Ew,S

[
‖x† − x∗‖2A

]
%
σ2s log

(
ed
s

)

min{m,n} . (12b)

Again, we see that the projection dimension m must be of the order of n in order to match the
mean-squared error of the constrained least-squares estimate xLS up to constant factors. By
contrast, in this special case, the sketching method developed in this paper matches the error
‖xLS − x∗‖2 using a sketch dimension that scales only as s log

(
ed
s

)
+ log(n); see Corollary 3

for the details of a more general result. ♦

Example 3 (Sub-optimality for low-rank matrix estimation) In the problem of mul-
tivariate regression, the goal is to estimate a matrix X∗ ∈ R

d1×d2 model based on observations
of the form

Y = AX∗ +W, (13)

where Y ∈ R
n×d1 is a matrix of observed responses, A ∈ R

n×d1 is a data matrix, and
W ∈ R

n×d2 is a matrix of noise variables. One interpretation of this model is as a collec-
tion of d2 regression problems, each involving a d1-dimensional regression vector, namely a
particular column of X∗. In many applications, among them reduced rank regression, multi-
task learning and recommender systems (e.g., Srebro et al. (2005); Yuan and Lin (2006);
Negahban and Wainwright (2011); Bunea et al. (2011)), it is reasonable to model the matrix
X∗ as having a low-rank. Note a rank constraint on matrix X be written as an ℓ0-“norm”
constraint on its singular values: in particular, we have

rank(X) ≤ r if and only if

min{d1,d2}∑

j=1

I[γj(X) > 0] ≤ r,

where γj(X) denotes the jth singular value of X. This observation motivates a standard

relaxation of the rank constraint using the nuclear norm |||X|||nuc : =
∑min{d1,d2}

j=1 γj(X).
Accordingly, let us consider the constrained least-squares problem

XLS = arg min
X∈Rd1×d2

{1

2
|||Y −AX|||2fro

}
such that |||X|||nuc ≤ R, (14)

9
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where ||| · |||fro denotes the Frobenius norm on matrices, or equivalently the Euclidean norm
on its vectorized version. Let C0 denote the set of matrices with rank r < 1

2 min{d1, d2},
and Frobenius norm at most one. In this case, we show in Appendix D that the constrained
least-squares solution XLS satisfies the bound

E

[
‖XLS −X∗‖2A

]
-
σ2r (d1 + d2)

n
. (15a)

On the other hand, the 1
2 -packing number of the set C0 is lower bounded as logM % r

(
d1 + d2

)
,

so that Theorem 1 implies that any estimator X† based on the pair (SA, SY ) has MSE lower
bounded as

Ew,S

[
‖X† −X∗‖2A

]
%
σ2r

(
d1 + d2

)

min{m,n} . (15b)

As with the previous examples, we see the sub-optimality of the sketched approach in the
regime m < n. In contrast, for this class of problems, our sketching method matches the error
‖XLS −X∗‖A using a sketch dimension that scales only as {r(d1 + d2) + log(n)} log(n). See
Corollary 4 for further details.

♦

2.3 Introducing the Hessian sketch

As will be revealed during the proof of Theorem 1, the sub-optimality is in part due to
sketching the response vector—i.e., observing Sy instead of y. It is thus natural to con-
sider instead methods that sketch only the data matrix A, as opposed to both the data
matrix and data vector y. In abstract terms, such methods are based on observing the pair(
SA,AT y

)
∈ R

m×d × R
d. One such approach is what we refer to as the Hessian sketch—

namely, the sketched least-squares problem

x̂ : = argmin
x∈C

{ 1

2
‖SAx‖22 − 〈AT y, x〉

︸ ︷︷ ︸
gS(x)

}
. (16)

As with the classical least-squares sketch (2), the quadratic form is defined by the matrix
SA ∈ R

m×d, which leads to computational savings. Although the Hessian sketch on its own
does not provide an optimal approximation to the least-squares solution, it serves as the
building block for an iterative method that can obtain an ε-accurate solution approximation
in log(1/ε) iterations.

In controlling the error with respect to the least-squares solution xLS the set of possible
descent directions {x − xLS | x ∈ C} plays an important role. In particular, we define the
transformed tangent cone

KLS =
{
v ∈ R

d | v = t A(x− xLS) for some t ≥ 0 and x ∈ C
}
. (17)

10
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Note that the error vector v̂ : = A(x̂−xLS) of interest belongs to this cone. Our approximation
bound is a function of the quantities

Z1(S) : = inf
v∈KLS∩Sn−1

1

m
‖Sv‖22 and (18a)

Z2(S) : = sup
v∈KLS∩Sn−1

∣∣∣〈u, (S
TS

m
− In) v〉

∣∣∣, (18b)

where u is a fixed unit-norm vector. These variables played an important role in our previous
analysis (Pilanci and Wainwright, 2015a) of the classical sketch (2). The following bound
applies in a deterministic fashion to any sketching matrix.

Proposition 1 (Bounds on Hessian sketch) For any convex set C and any sketching ma-
trix S ∈ R

m×n, the Hessian sketch solution x̂ satisfies the bound

‖x̂− xLS‖A ≤ Z2

Z1
‖xLS‖A. (19)

For random sketching matrices, Proposition 1 can be combined with probabilistic analysis
to obtain high probability error bounds. For a given tolerance parameter ρ ∈ (0, 12 ], consider
the “good event”

E(ρ) : =
{
Z1 ≥ 1− ρ, and Z2 ≤

ρ

2

}
. (20a)

Conditioned on this event, Proposition 1 implies that

‖x̂− xLS‖A ≤ ρ

2 (1− ρ)
‖xLS‖A ≤ ρ‖xLS‖A, (20b)

where the final inequality holds for all ρ ∈ (0, 1/2].

Thus, for a given family of random sketch matrices, we need to choose the projection
dimension m so as to ensure the event Eρ holds for some ρ. For future reference, let us
state some known results for the cases of sub-Gaussian and ROS sketching matrices. We use
(c0, c1, c2) to refer to numerical constants, and we let D = dim(C) denote the dimension of
the space C. In particular, we have D = d for vector-valued estimation, and D = d1d2 for
matrix problems.

Our bounds involve the “size” of the cone KLS previously defined (17), as measured in
terms of its Gaussian width

W(KLS) : = Eg

[
sup

v∈KLS∩B2(1)

|〈g, v〉|
]
, (21)

where g ∼ N(0, In) is a standard Gaussian vector. With this notation, we have the following:

11
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Lemma 1 (Sufficient conditions on sketch dimension (Pilanci and Wainwright, 2015a))

(a) For sub-Gaussian sketch matrices, given a sketch size m > c0
ρ2
W2(KLS), we have

P
[
E(ρ)] ≥ 1− c1e

−c2mδ2 . (22a)

(b) For randomized orthogonal system (ROS) sketches (sampled with replacement) over the

class of self-bounding cones, given a sketch size m > c0 log4(D)
ρ2

W2(KLS), we have

P
[
E(ρ)] ≥ 1− c1e

−c2 mρ2

log4(D) . (22b)

The class of self-bounding cones is described more precisely in Lemma 8 of our earlier pa-
per (Pilanci andWainwright, 2015a). It includes among other special cases the cones generated
by unconstrained least-squares (Example 1), ℓ1-constrained least squares (Example 2), and
least squares with nuclear norm constraints (Example 3). For these cones, given a sketch size

m > c0 log4(D)
ρ2

W2(KLS), the Hessian sketch applied with ROS matrices is guaranteed to return
an estimate x̂ such that

‖x̂− xLS‖A ≤ ρ‖xLS‖A (23)

with high probability. More recent work by Bourgain et al. (2015) has established sharp
bounds for various forms of sparse Johnson-Lindenstrauss transforms (Kane and Nelson,
2014). As a corollary of their results, a form of the guarantee (23) also holds for such random
projections.

Returning to the main thread, the bound (23) is an analogue of our earlier bound (5) for
the classical sketch with

√
f(xLS) replaced by ‖xLS‖A. For this reason, we see that the Hessian

sketch alone suffers from the same deficiency as the classical sketch: namely, it will require a
sketch size m ≍ n in order to mimic the O(n−1) accuracy of the least-squares solution.

2.4 Iterative Hessian sketch

Despite the deficiency of the Hessian sketch itself, it serves as the building block for an novel
scheme—known as the iterative Hessian sketch—that can be used to match the accuracy of
the least-squares solution using a reasonable sketch dimension. Let begin by describing the
underlying intuition. As summarized by the bound (20b), conditioned on the good event E(ρ),
the Hessian sketch returns an estimate with error within a ρ-factor of ‖xLS‖A, where xLS is the
solution to the original unsketched problem. As show by Lemma 1, as long as the projection
dimensionm is sufficiently large, we can ensure that E(ρ) holds for some ρ ∈ (0, 1/2) with high
probability. Accordingly, given the current iterate xt, suppose that we can construct a new
least-squares problem for which the optimal solution is xLS − xt. Applying the Hessian sketch
to this problem will then produce a new iterate xt+1 whose distance to xLS has been reduced
by a factor of ρ. Repeating this procedure N times will reduce the initial approximation error
by a factor ρN .

12
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With this intuition in place, we now turn a precise formulation of the iterative Hessian
sketch. Consider the optimization problem

û = arg min
u∈C−xt

{1

2
‖Au‖22 − 〈AT (y −Axt), u〉

}
, (24)

where xt is the iterate at step t. By construction, the optimum to this problem is given by
û = xLS − xt. We then apply to Hessian sketch to this optimization problem (24) in order
to obtain an approximation xt+1 = xt + û to the original least-squares solution xLS that is
more accurate than xt by a factor ρ ∈ (0, 1/2). Recursing this procedure yields a sequence of
iterates whose error decays geometrically in ρ.

Formally, the iterative Hessian sketch algorithm takes the following form:

Iterative Hessian sketch (IHS): Given an iteration number N ≥ 1:

(1) Initialize at x0 = 0.

(2) For iterations t = 0, 1, 2, . . . , N − 1, generate an independent sketch matrix
St+1 ∈ R

m×n, and perform the update

xt+1 = argmin
x∈C

{ 1

2m
‖St+1A(x− xt)‖22 − 〈AT (y −Axt), x〉

}
. (25)

(3) Return the estimate x̂ = xN .

The following theorem summarizes the key properties of this algorithm. It involves the se-
quence {Z1(S

t), Z2(S
t)}Nt=1, where the quantities Z1 and Z2 were previously defined in equa-

tions (18a) and (18b). In addition, as a generalization of the event (20a), we define the
sequence of “good” events

E t(ρ) : =
{
Z1(S

t) ≥ 1− ρ, and Z2(S
t) ≤ ρ

2

}
for t = 1, . . . , N . (26)

With this notation, we have the following guarantee:

Theorem 2 (Guarantees for iterative Hessian sketch) The final solution x̂ = xN sat-
isfies the bound

‖x̂− xLS‖A ≤
{ N∏

t=1

Z2(S
t)

Z1(St)

}
‖xLS‖A. (27a)

Consequently, conditioned on the event ∩Nt=1E t(ρ) for some ρ ∈ (0, 1/2), we have

‖x̂− xLS‖A ≤ ρN ‖xLS‖A. (27b)

13
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Note that for any ρ ∈ (0, 1/2), then event E t(ρ) implies that Z2(St)
Z1(St) ≤ ρ, so that the

bound (27b) is an immediate consequence of the product bound (27a).

Lemma 1 can be combined with the union bound in order to ensure that the compound
event ∩Nt=1E t(ρ) holds with high probability over a sequence of N iterates, as long as the
sketch size is lower bounded as m ≥ c0

ρ2
W2(KLS) log4(D) + logN . Based on the bound (27b),

we then expect to observe geometric convergence of the iterates.

In order to test this prediction, we implemented the IHS algorithm using Gaussian sketch
matrices, and applied it to an unconstrained least-squares problem based on a data matrix
with dimensions (d, n) = (200, 6000) and noise variance σ2 = 1. As shown in Appendix D.2,
the Gaussian width of KLS is proportional to d, so that Lemma 1 shows that it suffices to
choose a projection dimension m % γd for a sufficiently large constant γ. Panel (a) of Figure 2
illustrates the resulting convergence rate of the IHS algorithm, measured in terms of the error
‖xt − xLS‖A, for different values γ ∈ {4, 6, 8}. As predicted by Theorem 2, the convergence
rate is geometric (linear on the log scale shown), with the rate increasing as the parameter γ
is increased.

5 10 15 20 25 30 35 40
−12

−10

−8

−6

−4

−2

0
Error to least−squares solution versus iteration

Iteration number

L
o
g
 e

rr
o
r 

to
 l
e
a
s
t−

s
q
u
a
re

s
 s

o
ln

 

 

γ = 4

γ = 6

γ = 8

0 5 10 15 20 25 30 35 40
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0
Error to truth versus iteration

Iteration number

L
o

g
 e

rr
o

r 
to

 t
ru

th

 

 

γ = 4

γ = 6

γ = 8

(a) (b)

Figure 2. Simulations of the IHS algorithm for an unconstrained least-squares problem with
noise variance σ2 = 1, and of dimensions (d, n) = (200, 6000). Simulations based on sketch
sizes m = γd, for a parameter γ > 0 to be set. (a) Plots of the log error ‖xt − xLS‖A versus
the iteration number t. Three different curves for γ ∈ {4, 6, 8}. Consistent with the theory,
the convergence is geometric, with the rate increasing as the sampling factor γ is increased.
(b) Plots of the log error ‖xt − x∗‖A versus the iteration number t. Three different curves for
γ ∈ {4, 6, 8}. As expected, all three curves flatten out at the level of the least-squares error

‖xLS − x∗‖A = 0.20 ≈
√
σ2d/n.
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Assuming that the sketch dimension has been chosen to ensure geometric convergence,
Theorem 2 allows us to specify, for a given target accuracy ε ∈ (0, 1), the number of iterations
required.

Corollary 1 Fix some ρ ∈ (0, 1/2), and choose a sketch dimension m > c0 log
4(D)
ρ2

W2(KLS).

If we apply the IHS algorithm for N(ρ, ε) : = 1+ log(1/ε)
log(1/ρ) steps, then the output x̂ = xN satisfies

the bound

‖x̂− xLS‖A
‖xLS‖A

≤ ε (28)

with probability at least 1− c1N(ρ, ε)e
−c2 mρ2

log4(D) .

This corollary is an immediate consequence of Theorem 2 combined with Lemma 1, and it
holds for both ROS and sub-Gaussian sketches. (In the latter case, the additional log(D)
terms may be omitted.) Combined with bounds on the width function W(KLS), it leads to
a number of concrete consequences for different statistical models, as we illustrate in the
following section.

One way to understand the improvement of the IHS algorithm over the classical sketch is
as follows. Fix some error tolerance ε ∈ (0, 1). Disregarding logarithmic factors, our previous
results (Pilanci and Wainwright, 2015a) on the classical sketch then imply that a sketch size
m % ε−2 W2(KLS) is sufficient to produce a ε-accurate solution approximation. In contrast,
Corollary 1 guarantees that a sketch size m % log(1/ε) W2(KLS) is sufficient. Thus, the
benefit is the reduction from ε−2 to log(1/ε) scaling of the required sketch size.

It is worth noting that in the absence of constraints, the least-squares problem reduces to
solving a linear system, so that alternative approaches are available. For instance, one can use
a randomized sketch to obtain a preconditioner, which can then be used within the conjugate
gradient method. As shown in past work (Rokhlin and Tygert, 2008; Avron et al., 2010),
two-step methods of this type can lead to same reduction of ε−2 dependence to log(1/ε).
However, a method of this type is very specific to unconstrained least-squares, whereas the
procedure described in this paper is generally applicable to least-squares over any compact,
convex constraint set.

2.5 Computational and space complexity

Let us now make a few comments about the computational and space complexity of imple-
menting the IHS algorithm using the fast Johnson-Lindenstrauss (ROS) sketches, such as
those based on the fast Hadamard transform. For a given sketch size m, the IHS algorithm
requires O(nd log(m)) basic operations to compute the data sketch St+1A at iteration t; in
addition, it requires O(nd) operations to compute AT (y − Axt). Consequently, if we run the
algorithm for N iterations, then the overall complexity scales as

O
(
N

(
nd log(m) + C(m, d)

))
, (29)
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where C(m, d) is the complexity of solving the m×d dimensional problem in the update (25).
Also note that, in problems where the data matrix A is sparse, St+1A can be computed in
time proportional to the number of non-zero elements in A using Gaussian sketching matrices.
The space used by the sketches SA scales as O(md). To be clear, note that the IHS algorithm
also requires access to the data via matrix-vector multiplies for forming AT (y − Axt). In
limited memory environments, computing matrix-vector multiplies is considerably easier via
distributed or interactive computation. For example, they can be efficiently implemented for
multiple large datasets which can be loaded to memory only one at a time.

If we want to obtain estimates with accuracy ε, then we need to perform N ≍ log(1/ε)
iterations in total. Moreover, for ROS sketches, we need to choose m % W2(KLS) log4(d).
Consequently, it only remains to bound the Gaussian width W in order to specify complexities
that depend only on the pair (n, d), and properties of the solution xLS.

For an unconstrained problem with n > d, the Gaussian width can be bounded as
W2(KLS) - d, and the complexity of the solving the sub-problem (25) can be bounded as
d3. Thus, the overall complexity of computing an ε-accurate solution scales as O(nd log(d) +
d3) log(1/ε), and the space required is O(d2).

As will be shown in Section 3.2, in certain cases, the cone KLS can have substantially
lower complexity than the unconstrained case. For instance, if the solution is sparse, say
with s non-zero entries and the least-squares program involves an ℓ1-constraint, then we have
W2(KLS) - s log d. Using a standard interior point method to solve the sketched problem,
the total complexity for obtaining an ε-accurate solution is upper bounded by O((nd log(s)+
s2d log2(d)) log(1/ε)). Although the sparsity s is not known a priori, there are bounds on it
that can be computed in O(nd) time (for instance, see Ghaoui et al. (2011)).

3. Consequences for concrete models

In this section, we derive some consequences of Corollary 1 for particular classes of least-
squares problems. Our goal is to provide empirical confirmation of the sharpness of our
theoretical predictions, namely the minimal sketch dimension required in order to match the
accuracy of the original least-squares solution.

3.1 Unconstrained least squares

We begin with the simplest case, namely the unconstrained least-squares problem (C = R
d).

For a given pair (n, d) with n > d, we generated a random ensemble of least-square problems
according to the following procedure:

• first, generate a random data matrix A ∈ R
n×d with i.i.d. N(0, 1) entries

• second, choose a regression vector x∗ uniformly at random from the sphere Sd−1

• third, form the response vector y = Ax∗+w, where w ∼ N(0, σ2In) is observation noise
with σ = 1.

As discussed following Lemma 1, for this class of problems, taking a sketch dimension m % d
ρ2

guarantees ρ-contractivity of the IHS iterates with high probability. Consequently, we can
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obtain a ε-accurate approximation to the original least-squares solution by running roughly
log(1/ε)/ log(1/ρ) iterations.

Now how should the tolerance ε be chosen? Recall that the underlying reason for solving
the least-squares problem is to approximate x∗. Given this goal, it is natural to measure the
approximation quality in terms of ‖xt − x∗‖A. Panel (b) of Figure 2 shows the convergence
of the iterates to x∗. As would be expected, this measure of error levels off at the ordinary
least-squares error

‖xLS − x∗‖2A ≍ σ2d

n
≈ 0.10.

Consequently, it is reasonable to set the tolerance parameter proportional to σ2 dn , and then

perform roughly 1 + log(1/ε)
log(1/ρ) steps. The following corollary summarizes the properties of the

resulting procedure:

Corollary 2 For some given ρ ∈ (0, 1/2), suppose that we run the IHS algorithm for

N = 1 + ⌈ log
√
n ‖xLS‖A

σ

log(1/ρ)
⌉

iterations using m = c0
ρ2
d projections per round. Then the output x̂ satisfies the bounds

‖x̂− xLS‖A ≤
√
σ2d

n
, and ‖xN − x∗‖A ≤

√
σ2d

n
+ ‖xLS − x∗‖A (30)

with probability greater than 1− c1N e
−c2 mρ2

log4(d) .

In order to confirm the predicted bound (30) on the error ‖x̂ − xLS‖A, we performed a
second experiment. Fixing n = 100d, we generated T = 20 random least squares problems
from the ensemble described above with dimension d ranging over {32, 64, 128, 256, 512}. By
our previous choices, the least-squares estimate should have error ‖xLS − x∗‖2 ≈

√
σ2d
n = 0.1

with high probability, independently of the dimension d. This predicted behavior is confirmed
by the blue bars in Figure 3; the bar height corresponds to the average over T = 20 trials,
with the standard errors also marked. On these same problem instances, we also ran the IHS
algorithm using m = 6d samples per iteration, and for a total of

N = 1 + ⌈ log
(√

n
d

)

log 2
⌉ = 4 iterations.

Since ‖xLS−x∗‖A ≍
√

σ2d
n ≈ 0.10, Corollary 2 implies that with high probability, the sketched

solution x̂ = xN satisfies the error bound

‖x̂− x∗‖2 ≤ c′0

√
σ2d

n

for some constant c′0 > 0. This prediction is confirmed by the green bars in Figure 3, showing
that ‖x̂−x∗‖A ≈ 0.11 across all dimensions. Finally, the red bars show the results of running
the classical sketch with a sketch dimension of (6× 4)d = 24d sketches, corresponding to the
total number of sketches used by the IHS algorithm. Note that the error is roughly twice as
large.

17



Pilanci and Wainwright

16 32 64 128 256
0

0.05

0.1

0.15

0.2

0.25

Dimension

E
rr

o
r

Least−squares vs. dimension

Figure 3. Simulations of the IHS algorithm for unconstrained least-squares. In these experi-
ments, we generated random least-squares problem of dimensions d ∈ {16, 32, 64, 128, 256}, on
all occasions with a fixed sample size n = 100d. The initial least-squares solution has error
‖xLS − x∗‖A ≈ 0.10, as shown by the blue bars. We then ran the IHS algorithm for N = 4
iterations with a sketch size m = 6d. As shown by the green bars, these sketched solutions
show an error ‖x̂ − x∗‖A ≈ 0.11 independently of dimension, consistent with the predictions
of Corollary 2. Finally, the red bars show the error in the classical sketch, based on a sketch
size M = Nm = 24d, corresponding to the total number of projections used in the iterative
algorithm. This error is roughly twice as large.

3.2 Sparse least-squares

We now turn to a study of an ℓ1-constrained form of least-squares, referred to as the Lasso or
relaxed basis pursuit program (Chen et al., 1998; Tibshirani, 1996). In particular, consider
the convex program

xLS = arg min
‖x‖1≤R

{1
2
‖y −Ax‖22

}
, (31)

where R > 0 is a user-defined radius. This estimator is well-suited to the problem of sparse
linear regression, based on the observation model y = Ax∗ + w, where x∗ has at most s non-
zero entries, and A ∈ R

n×d has i.i.d. N(0, 1) entries. For the purposes of this illustration, we
assume3 that the radius is chosen such that R = ‖x∗‖1.

Under these conditions, the proof of Corollary 3 shows that a sketch size m ≥ γ s log
(
ed
s

)

suffices to guarantee geometric convergence of the IHS updates. Panel (a) of Figure 4 illus-
trates the accuracy of this prediction, showing the resulting convergence rate of the the IHS

3. In practice, this unrealistic assumption of exactly knowing ‖x∗‖1 is avoided by instead considering the
ℓ1-penalized form of least-squares, but we focus on the constrained case to keep this illustration as simple
as possible.
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algorithm, measured in terms of the error ‖xt − xLS‖A, for different values γ ∈ {2, 5, 25}. As
predicted by Theorem 2, the convergence rate is geometric (linear on the log scale shown),
with the rate increasing as the parameter γ is increased.

As long as n % s log
(
ed
s

)
, it also follows as a corollary of Proposition 2 that

‖xLS − x∗‖2A -
σ2s log

(
ed
s

)

n
. (32)

with high probability. This bound suggests an appropriate choice for the tolerance parameter
ε in Theorem 2, and leads us to the following guarantee.

Corollary 3 For the stated random ensemble of sparse linear regression problems, suppose

that we run the IHS algorithm for N = 1 + ⌈ log
√
n

‖xLS‖A
σ

log(1/ρ) ⌉ iterations using m = c0
ρ2
s log

(
ed
s

)

projections per round. Then with probability greater than 1 − c1N e
−c2 mρ2

log4(d) , the output x̂
satisfies the bounds

‖x̂− xLS‖A ≤

√
σ2s log

(
ed
s

)

n
and ‖xN − x∗‖A ≤

√
σ2s log

(
ed
s

)

n
+ ‖xLS − x∗‖A. (33)

In order to verify the predicted bound (33) on the error ‖x̂−xLS‖A, we performed a second
experiment. Fixing n = 100s log

(
ed
s

)
. we generated T = 20 random least squares problems

(as described above) with the regression dimension ranging as d ∈ {32, 64, 128, 256}, and
sparsity s = ⌈2

√
d⌉. Based on these choices, the least-squares estimate should have error

‖xLS−x∗‖A ≈
√

σ2s log
(

ed
s

)
n = 0.1 with high probability, independently of the pair (s, d). This

predicted behavior is confirmed by the blue bars in Figure 5; the bar height corresponds to
the average over T = 20 trials, with the standard errors also marked.

On these same problem instances, we also ran the IHS algorithm using N = 4 iterations
with a sketch size m = 4s log

(
ed
s

)
. Together with our earlier calculation of ‖xLS − x∗‖A,

Corollary 2 implies that with high probability, the sketched solution x̂ = xN satisfies the
error bound

‖x̂− x∗‖A ≤ c0

√
σ2s log

(
ed
s

)

n
(34)

for some constant c0 ∈ (1, 2]. This prediction is confirmed by the green bars in Figure 5,
showing that ‖x̂−x∗‖A % 0.11 across all dimensions. Finally, the green bars in Figure 5 show
the error based on using the naive sketch estimate with a total ofM = Nm random projections
in total; as with the case of ordinary least-squares, the resulting error is roughly twice as large.
We also note that a similar bound also applies to problems where a parameter constrained
to unit simplex is estimated, such as in portfolio analysis and density estimation (Markowitz,
1959; Pilanci et al., 2012).
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Figure 4. Simulations of the IHS algorithm for a sparse least-squares problem with noise
variance σ2 = 1, and of dimensions (d, n, s) = (256, 8872, 32). Simulations based on sketch
sizes m = γs log d, for a parameter γ > 0 to be set. (a) Plots of the log error ‖xt−xLS‖2 versus
the iteration number t. Three different curves for γ ∈ {2, 5, 25}. Consistent with the theory,
the convergence is geometric, with the rate increasing as the sampling factor γ is increased.
(b) Plots of the log error ‖xt − x∗‖2 versus the iteration number t. Three different curves for
γ ∈ {2, 5, 25}. As expected, all three curves flatten out at the level of the least-squares error

‖xLS − x∗‖2 = 0.10 ≈
√

s log(ed/s)
n .

3.3 Some larger-scale experiments

In order to further explore the computational gains guaranteed by IHS, we performed some
larger scale experiments on sparse regression problems, with the sample size n ranging over
the set {212, 213, ..., 219} with a fixed input dimension d = 500. As before, we generate
observations from the linear model y = Ax∗ + w, where x∗ has at most s non-zero entries,
and each row of the data matrix A ∈ R

n×d is distributed i.i.d. according to a N(1d,Σ)
distribution. Here the d-dimensional covariance matrix Σ has entries Σjk = 2 × 0.9|j−k|, so
that the columns of the matrix A will be correlated. Setting a sparsity s = ⌈3 log(d)⌉, we
chose the unknown regression vector x∗ with its support uniformly random with entries ± 1√

s

with equal probability.

Baseline: In order to provide a baseline for comparison, we used the homotopy algorithm—
that is, the Lasso modification of the LARS updates (Osborne et al., 2000; Efron et al., 2004)—
to solve the original ℓ1 constrained problem with ℓ1-ball radius R =

√
s. The homotopy

algorithm is especially efficient when the Lasso solution xLS is sparse. Since the columns
of A are correlated in our ensemble, standard first-order algorithms—among them iterative
soft-thresholding, FISTA, spectral projected gradient methods, as well as (block) coordinate
descent methods, see, e.g., Beck and Teboulle (2009); Wu and Lange (2008)—performed poorly
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Figure 5. Simulations of the IHS algorithm for ℓ1-constrained least-squares. In
these experiments, we generated random sparse least-squares problem of dimensions
d ∈ {16, 32, 64, 128, 256} and sparsity s = ⌈2

√
d⌉, on all occasions with a fixed sample size

n = 100s log
(
ed
s

)
. The initial Lasso solution has error ‖xLS−x∗‖2 ≈ 0.10, as shown by the blue

bars. We then ran the IHS algorithm for N = 4 iterations with a sketch size m = 4s log
(
ed
s

)
.

These sketched solutions show an error ‖x̂− x∗‖A ≈ 0.11 independently of dimension, consis-
tent with the predictions of Corollary 3. Red bars show the error in the naive sketch estimate,
using a sketch of sizeM = Nm = 16s log

(
ed
s

)
, equal to the total number of random projections

used by the IHS algorithm. The resulting error is roughly twice as large.

relative to the homotopy algorithm in terms of computation time; see Bach et al. (2011) for
observations of this phenomenon in past work.

IHS implementation: For comparison, we implemented the IHS algorithm with a projection
dimension m = ⌊4s log(d)⌋. After projecting the data, we then used the homotopy method
to solve the projected sub-problem at each step. In each trial, we ran the IHS algorithm for
N = ⌈log n⌉ iterations.

Table 1 provides a summary comparison of the running times for the baseline method
(homotopy method on the original problem), versus the IHS method (running time for com-
puting the iterates using the homotopy method), and IHS method plus sketching time. Note
that with the exception of the smallest problem size (n = 4096), the IHS method including
sketching time is the fastest, and it is more than two times faster for large problems. The
gains are somewhat more significant if we remove the sketching time from the comparison.

One way in which to measure the quality of the least-squares solution xLS as an estimate

of x∗ is via its mean-squared (in-sample) prediction error ‖xLS − x∗‖2A =
‖A(xLS−x∗)‖22

n . For
the random ensemble of problems that we have generated, the bound (34) guarantees that
the squared error should decay at the rate 1/n as the sample size n is increased with the
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Samples n 4096 8192 16384 32768 65536 131072 262144 524288

Baseline 0.0840 0.1701 0.3387 0.6779 1.4083 2.9052 6.0163 12.0969

IHS 0.0783 0.0993 0.1468 0.2174 0.3601 0.6846 1.4748 3.1593

IHS+Sketch 0.0877 0.1184 0.1887 0.3222 0.5814 1.1685 2.5967 5.5792

Table 1. Running time comparison in seconds of the Baseline (homotopy method applied
to original problem), IHS (homotopy method applied to sketched subproblems), and IHS plus
sketching time. Each running time estimate corresponds to an average over 300 independent
trials of the random sparse regression model described in the main text.
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Figure 6. Plots of the mean-squared prediction errors
‖A(x̃−x∗)‖2

2

n versus the sample size

n ∈ 2{9,10,...,19} for the original least-squares solution (x̃ = xLS in blue) versus the sketched
solution (x̂ = xLS in red). Each point on each curve corresponds to the average over 300
independent trials of the same type used to generate the data in Table 1; the error bars
correspond to one standard errors. In generating the plots, all errors have been renormalized
so that the error for sample size n = 29 is equal to one. As can be seen, the sketched method
generates solutions with prediction MSE that are essentially indistinguishable from the original
solution.

dimension d and sparsity s fixed. Figure 6 compares the prediction MSE of xLS versus the
analogous quantity ‖x̂−x∗‖2A for the sketched solution. Note that the two curves are essentially
indistinguishable, showing that the sketched solution provides an estimate of x∗ that is as good
as the original least-squares estimate.
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3.4 Matrix estimation with nuclear norm constraints

We now turn to the study of nuclear-norm constrained form of least-squares matrix regression.
This class of problems has proven useful in many different application areas, among them
matrix completion, collaborative filtering, multi-task learning and control theory (e.g., (Fazel,
2002; Yuan et al., 2007; Bach, 2008; Recht et al., 2010; Negahban and Wainwright, 2012)). In
particular, let us consider the convex program

XLS = arg min
X∈Rd1×d2

{1

2
|||Y −AX|||2fro

}
such that |||X|||nuc ≤ R, (35)

where R > 0 is a user-defined radius as a regularization parameter.

3.4.1 Simulated data

Recall the linear observation model previously introduced in Example 3: we observe the pair
(Y,A) linked according to the linear Y = AX∗+W , where the unknown matrix X∗ ∈ R

d1×d2

is an unknown matrix of rank r. The matrix W is observation noise, formed with i.i.d.
N(0, σ2) entries. This model is a special case of the more general class of matrix regression
problems (Negahban and Wainwright, 2012). As shown in Appendix D.2, if we solve the
nuclear-norm constrained problem with R = |||X∗|||nuc, then it produces a solution such that

E
[
|||XLS − X∗|||2fro] - σ2 r (d1+d2)n . The following corollary characterizes the sketch dimension

and iteration number required for the IHS algorithm to match this scaling up to a constant
factor.

Corollary 4 (IHS for nuclear-norm constrained least squares) Suppose that we run

the IHS algorithm for N = 1+⌈ log
√
n

‖XLS‖A
σ

log(1/ρ) ⌉ iterations using m = c0ρ
2r
(
d1+d2

)
projections

per round. Then with probability greater than 1 − c1N e
−c2 mρ2

log4(d1d2) , the output XN satisfies
the bound

‖XN −X∗‖A ≤

√
σ2r

(
d1 + d2

)

n
+ ‖XLS −X∗‖A. (36)

We have also performed simulations for low-rank matrix estimation, and observed that the
IHS algorithm exhibits convergence behavior qualitatively similar to that shown in Figures 3
and 5. Similarly, panel (a) of Figure 8 compares the performance of the IHS and classical
methods for sketching the optimal solution over a range of row sizes n. As with the uncon-
strained least-squares results from Figure 1, the classical sketch is very poor compared to the
original solution whereas the IHS algorithm exhibits near optimal performance.

3.4.2 Application to multi-task learning

To conclude, let us illustrate the use of the IHS algorithm in speeding up the training of a
classifier for facial expressions. In particular, suppose that our goal is to separate a collection
of facial images into different groups, corresponding either to distinct individuals or to different
facial expressions. One approach would be to learn a different linear classifier (a 7→ 〈a, x〉)
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for each separate task, but since the classification problems are so closely related, the optimal
classifiers are likely to share structure. One way of capturing this shared structure is by
concatenating all the different linear classifiers into a matrix, and then estimating this matrix
in conjunction with a nuclear norm penalty (Amit et al., 2007; Argyriou et al., 2008).

Figure 7. Japanese Female Facial Expression (JAFFE) Database: The JAFFE database
consists of 213 images of 7 different emotional facial expressions (6 basic facial expressions +
1 neutral) posed by 10 Japanese female models.

In more detail, we performed a simulation study using the The Japanese Female Facial
Expression (JAFFE) database (Lyons et al., 1998). It consists of N = 213 images of 7 facial
expressions (6 basic facial expressions + 1 neutral) posed by 10 different Japanese female
models; see Figure 7 for a few example images. We performed an approximately 80 : 20 split
of the data set into ntrain = 170 training and ntest = 43 test images respectively. Then we
consider classifying each facial expression and each female model as a separate task which
gives a total of dtask = 17 tasks. For each task j = 1, . . . , dtask, we construct a linear classifier
of the form a 7→ sign(〈a, xj〉), where a ∈ R

d denotes the vectorized image features given by
Local Phase Quantization (Ojansivu and Heikkil, 2008). In our implementation, we fixed the
number of features d = 32. Given this set-up, we train the classifiers in a joint manner, by
optimizing simultaneously over the matrix X ∈ R

d×dtask with the classifier vector xj ∈ R
d as

its jth column. The image data is loaded into the matrix A ∈ R
ntrain×d, with image feature

vector ai ∈ R
d in column i for i = 1, . . . , ntrain. Finally, the matrix Y ∈ {−1,+1}ntrain×dtask

encodes class labels for the different classification problems. These instantiations of the pair
(Y,X) give us an optimization problem of the form (35), and we solve it over a range of
regularization radii R.

More specifically, in order to verify the classification accuracy of the classifier obtained
by IHT algorithm, we solved the original convex program, the classical sketch based on ROS
sketches of dimension m = 100, and also the corresponding IHS algorithm using ROS sketches
of size 20 in each of 5 iterations. In this way, both the classical and IHS procedures use the
same total number of sketches, making for a fair comparison. We repeated each of these
three procedures for all choices of the radius R ∈ {1, 2, 3, . . . , 12}, and then applied the
resulting classifiers to classify images in the test dataset. For each of the three procedures,
we calculated the classification error rate, defined as the total number of mis-classified images
divided by ntest × dtask. Panel (b) of Figure 8 plots the resulting classification errors versus
the regularization parameter. The error bars correspond to one standard deviation calculated
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over the randomness in generating sketching matrices. The plots show that the IHS algorithm
yields classifiers with performance close to that given by the original solution over a range of
regularizer parameters, and is superior to the classification sketch. The error bars also show
that the IHS algorithm has less variability in its outputs than the classical sketch.
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Figure 8. Simulations of the IHS algorithm for nuclear-norm constrained problems. The blue
curves correspond to the solution of the original (unsketched problem), whereas red curves
correspond to the IHS method applied for N = 1 + ⌈log(n)⌉ rounds using a sketch size of
m. Black curves correspond to the naive sketch applied using M = Nm projections in total,
corresponding to the same number used in all iterations of the IHS algorithm. (a) Mean-squared
error versus the row dimension n ∈ [10, 100] for recovering a 20× 20 matrix of rank r2, using a
sketch dimension m = 60. Note how the accuracy of the IHS algorithm tracks the error of the
unsketched solution over a wide range of n, whereas the classical sketch has essentially constant
error. (b) Classification error rate versus regularization parameter R ∈ {1, . . . , 12}, with error
bars corresponding to one standard deviation over the test set. Sketching algorithms were
applied to the JAFFE face expression using a sketch dimension of M = 100 for the classical
sketch, and N = 5 iterations with m = 20 sketches per iteration for the IHS algorithm.

4. Discussion

In this paper, we focused on the problem of solution approximation (as opposed to cost ap-
proximation) for a broad class of constrained least-squares problem. We began by showing
that the classical sketching methods are sub-optimal, from an information-theoretic point of
view, for the purposes of solution approximation. We then proposed a novel iterative scheme,
known as the iterative Hessian sketch, for deriving ε-accurate solution approximations. We
proved a general theorem on the properties of this algorithm, showing that the sketch dimen-
sion per iteration need grow only proportionally to the statistical dimension of the optimal
solution, as measured by the Gaussian width of the tangent cone at the optimum. By taking
log(1/ε) iterations, the IHS algorithm is guaranteed to return an ε-accurate solution approx-
imation with exponentially high probability.
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In addition to these theoretical results, we also provided empirical evaluations that reveal
the sub-optimality of the classical sketch, and show that the IHS algorithm produces near-
optimal estimators. Finally, we applied our methods to a problem of facial expression using a
multi-task learning model applied to the JAFFE face database. We showed that IHS algorithm
applied to a nuclear-norm constrained program produces classifiers with considerably better
classification accuracy compared to the naive sketch.

There are many directions for further research, but we only list here some of them. The
idea behind iterative sketching can also be applied to problems beyond minimizing a least-
squares objective function subject to convex constraints. Examples include penalized forms
of regression, e.g., see the recent work (Yang et al., 2015), and various other cost functions.
An important class of such problems are ℓp-norm forms of regression, based on the convex
program

min
x∈Rd

‖Ax− y‖pp for some p ∈ [1,∞].

The case of ℓ1-regression (p = 1) is an important special case, known as robust regression; it
is especially effective for data sets containing outliers (Huber, 2001). Recent work (Clarkson
et al., 2013) has proposed to find faster solutions of the ℓ1-regression problem using the classical
sketch (i.e., based on (SA, Sy)) but with sketching matrices based on Cauchy random vectors.
Based on the results of the current paper, our iterative technique might be useful in obtaining
sharper bounds for solution approximation in this setting as well. Finally, we refer the reader
to the more recent work (Pilanci and Wainwright, 2015b) on sketching for general convex
objective functions.
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Appendix A. Proof of lower bounds

This appendix is devoted to the verification of condition (9) for different model classes, followed
by the proof of Theorem 1.

A.1 Verification of condition (9)

We verify the condition for three different types of sketches.

A.1.1 Gaussian sketches:

First, let S ∈ R
m×n be a random matrix with i.i.d. Gaussian entries. We use the singular

value decomposition to write S = UΛV T where both U and V are orthonormal matrices of
left and right singular vectors. By rotation invariance, the columns {vi}mi=1 are uniformly
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distributed over the sphere Sn−1. Consequently, we have

ES

[
ST

(
SST )−1S

]
= E

m∑

i=1

viv
T
i =

m

n
In, (37)

showing that condition (9) holds with η = 1.

A.1.2 ROS sketches (sampled without replacement):

In this case, we have S =
√
nPHD, where P ∈ R

m×n is a random picking matrix with each
row being a standard basis vector sampled without replacement. We then have SST = nIm
and also EP [P

TP ] = m
n In, so that

ES [S
T (SST )−1S] = ED,P [DH

TP TPHD] = ED[DH
T (
m

n
In)HD] =

m

n
In,

showing that the condition holds with η = 1.

A.1.3 Weighted row sampling:

Finally, suppose that we sample m rows independently using a distribution {pj}nj=1 on the
rows of the data matrix that is α-balanced (7). Letting R ⊆ {1, 2, . . . , n} be the subset of
rows that are sampled, and let Nj be the number of times each row is sampled. We then have

E

[
ST

(
SST )−1S

]
=

∑

j∈R
E[eje

T
j ] = D,

where D ∈ R
n×n is a diagonal matrix with entries Djj = P[j ∈ R]. Since the trials are

independent, the jth row is sampled at least once inm trials with probability qj = 1−(1−pj)m,
and hence

ES

[
ST

(
SST )−1S

]
= diag

(
{1− (1− pi)

m}mi=1

)
�

(
1− (1− p∞)m

)
In � mp∞,

where p∞ = maxj∈[n] pj . Consequently, as long as the row weights are α-balanced (7) so that
p∞ ≤ α

n , we have

|||ES
[
ST

(
SST )−1S

]
|||op ≤ α

m

n

showing that condition (9) holds with η = α, as claimed.

A.2 Proof of Theorem 1

Let {zj}Mj=1 be a 1/2-packing of C0∩BA(1) in the semi-norm ‖·‖A, and for a fixed δ ∈ (0, 1/4),

define xj = 4δzj . Sine 4δ ∈ (0, 1), the star-shaped assumption guarantees that each xj belongs
to C0. We thus obtain a collection of M vectors in C0 such that

2δ ≤ 1√
n
‖A(xj − xk)‖2

︸ ︷︷ ︸
‖xj−xk‖A

≤ 8δ for all j 6= k.
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Letting J be a random index uniformly distributed over {1, . . . ,M}, suppose that condition-
ally on J = j, we observe the sketched observation vector Sy = SAxj + Sw, as well as the
sketched matrix SA. Conditioned on J = j, the random vector Sy follows a N (SAxj , σ2SST )
distribution, denoted by Pxj . We let Y denote the resulting mixture variable, with distribution
1
M

∑M
j=1 Pxj .

Consider the multiway testing problem of determining the index J based on observing Y .
With this set-up, a standard reduction in statistical minimax (e.g., (Birgé, 1987; Yu, 1997))
implies that, for any estimator x†, the worst-case mean-squared error is lower bounded as

sup
x∗∈C

ES,w‖x† − x∗‖2A ≥ δ2 inf
ψ

P[ψ(Y ) 6= J ], (38)

where the infimum ranges over all testing functions ψ. Consequently, it suffices to show that
the testing error is lower bounded by 1/2.

In order to do so, we first apply Fano’s inequality (Cover and Thomas, 1991) conditionally
on the sketching matrix S to see that

P[ψ(Y ) 6= J ] = ES

{
P[ψ(Y ) 6= J | S]

}
≥ 1− ES

[
IS(Y ; J)

]
+ log 2

logM
, (39)

where IS(Y ; J) denotes the mutual information between Y and J with S fixed. Our next step
is to upper bound the expectation ES [I(Y ; J)].

Letting D(Pxj ‖ Pxk) denote the Kullback-Leibler divergence between the distributions
Pxj and Pxk , the convexity of Kullback-Leibler divergence implies that

IS(Y ; J) =
1

M

M∑

j=1

D(Pxj ‖
1

M

M∑

k=1

Pxk) ≤ 1

M2

M∑

j,k=1

D(Pxj ‖ Pxk).

Computing the KL divergence for Gaussian vectors yields

IS(Y ; J) ≤ 1

M2

M∑

j,k=1

1

2σ2
(xj − xk)TAT

[
ST (SST )−1S

]
A(xj − xk).

Thus, using condition (9), we have

ES [I(Y ; J)] ≤ 1

M2

M∑

j,k=1

m η

2nσ2
‖A(xj − xk)‖22 ≤ 32mη

σ2
δ2,

where the final inequality uses the fact that ‖xj − xk‖A ≤ 8δ for all pairs.
Combined with our previous bounds (38) and (39), we find that

sup
x∗∈C

E‖x̂− x∗‖22 ≥ δ2
{
1− 32mη δ2

σ2 + log 2

logM

}
.

Setting δ = σ2 log(M/2)
64 ηm yields the lower bound (10).
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Appendix B. Proof of Proposition 1

Since x̂ and xLS are optimal and feasible, respectively, for the Hessian sketch program (16),
we have

〈ATST
(
SAx̂− y

)
, xLS − x̂〉 ≥ 0 (40a)

Similarly, since xLS and x̂ are optimal and feasible, respectively, for the original least squares
program

〈AT (AxLS − y), x̂− xLS〉 ≥ 0. (40b)

Adding these two inequalities and performing some algebra yields the basic inequality

1

m
‖SA∆‖22 ≤

∣∣∣(AxLS)T
(
In −

STS

m

)
A∆

∣∣∣. (41)

Since AxLS is independent of the sketching matrix and A∆ ∈ KLS, we have

1

m
‖SA∆‖22 ≥ Z1 ‖A∆‖22, and

∣∣∣(AxLS)T
(
In − STS

)
A∆

∣∣∣ ≤ Z2‖AxLS‖2 ‖A∆‖2,

using the definitions (18a) and (18b) of the random variables Z1 and Z2 respectively. Com-
bining the pieces yields the claim.

Appendix C. Proof of Theorem 2

It suffices to show that, for each iteration t = 0, 1, 2, . . ., we have

‖xt+1 − xLS‖A ≤ Z2(S
t+1)

Z1(St+1)
‖xt − xLS‖A. (42)

The claimed bounds (27a) and (27b) then follow by applying the bound (42) successively to
iterates 1 through N .

For simplicity in notation, we abbreviate St+1 to S and xt+1 to x̂. Define the error vector
∆ = x̂ − xLS. With some simple algebra, the optimization problem (25) that underlies the
update t+ 1 can be re-written as

x̂ = argmin
x∈C

{ 1

2m
‖SAx‖22 − 〈AT ỹ, x〉

}
,

where ỹ : = y−
[
I− STS

m

]
Axt. Since x̂ and xLS are optimal and feasible respectively, the usual

first-order optimality conditions imply that

〈AT S
TS

m
Ax−AT ỹ, xLS − x̂〉 ≥ 0.

As before, since xLS is optimal for the original program, we have

〈AT (AxLS − ỹ +
[
I − STS

m

]
Axt), x̂− xLS〉 ≥ 0.
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Adding together these two inequalities and introducing the shorthand ∆ = x̂− xLS yields

1

m
‖SA∆‖22 ≤

∣∣∣(A(xLS − xt)T
[
I − STS

m

]
A∆

∣∣∣ (43)

Note that the vector A(xLS −xt) is independent of the randomness in the sketch matrix St+1.
Moreover, the vector A∆ belongs to the cone K, so that by the definition of Z2(S

t+1), we
have

∣∣∣(A(xLS − xt)T
[
I − STS

m

]
A∆

∣∣∣ ≤ ‖A(xLS − xt)‖2 ‖A∆‖2 Z2(S
t+1). (44a)

Similarly, note the lower bound

1

m
‖SA∆‖22 ≥ ‖A∆‖22 Z1(S

t+1). (44b)

Combining the two bounds (44a) and (44b) with the earlier bound (43) yields the claim (42).

Appendix D. Maximum likelihood estimator and examples

In this section, we a general upper bound on the error of the constrained least-squares estimate.
We then use it (and other results) to work through the calculations underlying Examples 1
through 3 from Section 2.2.

D.1 Upper bound on MLE

The accuracy of xLS as an estimate of x∗ depends on the “size” of the star-shaped set

K(x∗) =
{
v ∈ R

d | v =
t√
n
A(x− x∗) for some t ∈ [0, 1] and x ∈ C

}
. (45)

When the vector x∗ is clear from context, we use the shorthand notation K∗ for this set. By
taking a union over all possible x∗ ∈ C0, we obtain the set K : =

⋃
x∗∈C0

K(x∗), which plays

an important role in our bounds. The complexity of these sets can be measured of their
localized Gaussian widths. For any radius ε > 0 and set Θ ⊆ R

n, the Gaussian width of the
set Θ ∩ B2(ε) is given by

Wε(Θ) := Eg

[
sup
θ∈Θ

‖θ‖2≤ε

|〈w, θ〉|
]
, (46a)

where g ∼ N(0, In×n) is a standard Gaussian vector. Whenever the set Θ is star-shaped, then
it can be shown that, for any σ > 0 and positive integer ℓ, the inequality

Wε(Θ)

ε
√
ℓ

≤ ε

σ
(46b)

has a smallest positive solution, which we denote by εℓ(Θ;σ). We refer the reader to Bartlett
et al. (2005) for further discussion of such localized complexity measures and their properties.
The following result bounds the mean-squared error associated with the constrained least-
squares estimate:
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Proposition 2 For any set C containing x∗, the constrained least-squares estimate (1) has
mean-squared error upper bounded as

Ew

[
‖xLS − x∗‖2A

]
≤ c1

{
ε2n
(
K∗)+ σ2

n

}
≤ c1

{
ε2n
(
K
)
+
σ2

n

}
. (47)

We provide the proof of this claim in Section D.3.

D.2 Detailed calculations for illustrative examples

In this appendix, we collect together the details of calculations used in our illustrative examples
from Section 2.2. In all cases, we make use tof the convenient shorthand Ã = A/

√
n.

D.2.1 Unconstrained least squares: Example 1

By definition of the Gaussian width, we have

Wδ(K∗) = Eg

[
sup

‖Ã (x−x∗)‖2≤δ
|〈g, Ã(x− x∗)〉|

]
≤ δ

√
d

since the vector Ã(x − x∗) belongs to a subspace of dimension rank(A) = d. The claimed
upper bound (11a) thus follows as a consequence of Proposition 2.

D.2.2 Sparse vectors: Example 2

The RIP property of order 8s implies that

‖∆‖22
2

(i)

≤ ‖Ã∆‖22
(ii)

≤ 2‖∆‖22 for all vectors with ‖∆‖0 ≤ 8s,

a fact which we use throughout the proof. By definition of the Gaussian width, we have

Wδ(K∗) = Eg

[
sup

‖x‖1≤‖x∗‖1
‖Ã(x−x∗)‖2≤δ

|〈g, Ã(x− x∗)〉|
]
.

Since x∗ ∈ B0(s), it can be shown (e.g., see the proof of Corollary 3 in Pilanci and Wainwright
(2015a)) that for any vector ‖x‖1 ≤ ‖x∗‖1, we have ‖x−x∗‖1 ≤ 2

√
s‖x−x∗‖2. Thus, it suffices

to bound the quantity

F (δ; s) : = Eg

[
sup

‖∆‖1≤2
√
s‖∆‖2

‖Ã∆‖2≤δ

|〈g, Ã∆〉|
]
.

By Lemma 11 in Loh and Wainwright (2012), we have

B1(
√
s) ∩ B2(1) ⊆ 3 clconv

{
B0(s) ∩ B2(1)

}
,

where clconv denotes the closed convex hull. Applying this lemma with s = 4s, we have

F (δ; s) ≤ 3
[

sup
‖∆‖0≤4s

‖Ã∆‖2≤δ

|〈g, Ã∆〉|
]
≤ 3E

[
sup

‖∆‖0≤4s
‖∆‖2≤2δ

|〈g, Ã∆〉|
]
,
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using the lower RIP property (i). By the upper RIP property, for any pair of vectors ∆,∆′

with ℓ0-norms at most 4s, we have

var
(
〈g, Ã∆〉 − 〈g, Ã∆′〉

)
≤ 2‖∆−∆′‖22 = 2var

(
〈g, ∆−∆′〉

)

Consequently, by the Sudakov-Fernique comparison (Ledoux and Talagrand, 1991), we have

E
[

sup
‖∆‖0≤4s
‖∆‖2≤2δ

|〈g, Ã∆〉|
]
≤ 2E

[
sup

‖∆‖0≤4s
‖∆‖2≤2δ

|〈g, ∆〉|
]
≤ c δ

√
s log

(ed
s

)
,

where the final inequality standard results on Gaussian widths (Gordon et al., 2007). All
together, we conclude that

ε2n(K∗;σ) ≤ c1σ
2 s log

(
ed
s

)

n
.

Combined with Proposition 2, the claimed upper bound (12a) follows.
In the other direction, a straightforward argument (e.g., Raskutti et al. (2011)) shows that

there is a universal constant c > 0 such that logM1/2 ≥ c s log
(
ed
s

)
, so that the stated lower

bound follows from Theorem 1.

D.2.3 Low rank matrices: Example 3:

By definition of the Gaussian width, we have width, we have

Wδ(K∗) = Eg

[
sup

|||Ã (X−X∗)|||fro≤δ
|||X|||nuc≤|||X∗|||nuc

|〈〈ÃTG, (X −X∗)〉〉|
]
,

where G ∈ R
n×d2 is a Gaussian random matrix, and 〈〈C, D〉〉 denotes the trace inner product

between matrices C and D. Since X∗ has rank at most r, it can be shown that |||X−X∗|||nuc ≤
2
√
r|||X −X∗|||fro; for instance, see Lemma 1 in Negahban and Wainwright (2011). Recalling

that γmin(Ã) denotes the minimum singular value, we have

|||X −X∗|||fro ≤
1

γmin(Ã)
|||Ã(X −X∗)|||fro ≤

δ

γmin(Ã)
.

Thus, by duality between the nuclear and operator norms, we have

Eg

[
sup

|||Ã (X−X∗)|||fro≤δ
|||X|||nuc≤|||X∗|||nuc

|〈〈G, Ã(X −X∗)〉〉|
]
≤ 2

√
r δ

γmin(A)
E
[
|||ÃTG|||op].

Now consider the matrix ATG ∈ R
d1×d2 . For any fixed pair of vectors (u, v) ∈ Sd1−1 × Sd2−1,

the random variable Z = uT ÃTGv is zero-mean Gaussian with variance at most γ2max(Ã).
Consequently, by a standard covering argument in random matrix theory Vershynin (2012),
we have E

[
|||ÃTG|||op] - γmax(Ã)

(√
d1 + d2

)
. Putting together the pieces, we conclude that

ε2n � σ2
γ2max(A)

γ2min(A)
r (d1 + d2),

so that the upper bound (15a) follows from Proposition 2.
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D.3 Proof of Proposition 2

Throughout this proof, we adopt the shorthand εn = εn(K∗). Our strategy is to prove the
following more general claim: for any t ≥ εn, we have

PS,w

[
‖xLS − x∗‖2A ≥ 16tεn

]
≤ c1e

−c2 ntεn
σ2 . (48)

A simple integration argument applied to this tail bound implies the claimed bound (47) on
the expected mean-squared error.

Since x∗ and xLS are feasible and optimal, respectively, for the optimization problem (1),
we have the basic inequality

1

2n
‖y −AxLS‖22 ≤

1

2n
‖y −Ax∗‖2 =

1

2n
‖w‖22.

Introducing the shorthand ∆ = xLS − x∗ and re-arranging terms yields

1

2
‖∆‖2A =

1

2n
‖A∆‖22 ≤

σ

n

∣∣
n∑

i=1

〈g, A∆〉
∣∣, (49)

where g ∼ N(0, In) is a standard normal vector.
For a given u ≥ εn, define the “bad” event

B(u) : =
{
∃ z ∈ C − x∗ with ‖z‖A ≥ u, and |σn

∑n
i=1 gi(Az)i| ≥ 2u ‖z‖A

}

The following lemma controls the probability of this event:

Lemma 2 For all u ≥ εn, we have P[B(u)] ≤ e−
nu2

2σ2 .

Returning to prove this lemma momentarily, let us prove the bound (48). For any t ≥ εn,
we can apply Lemma 2 with u =

√
tεn to find that

P[Bc(
√
tεn)] ≥ 1− e−

ntεn
2σ2 .

If ‖∆‖A <
√
t εn, then the claim is immediate. Otherwise, we have ‖∆‖A ≥ √

t εn. Since
∆ ∈ C − x∗, we may condition on Bc(√tεn) so as to obtain the bound

∣∣σ
n

n∑

i=1

gi(A∆)i
∣∣ ≤ 2 ‖∆‖A

√
tεn.

Combined with the basic inequality (49), we see that

1

2
‖∆‖2A ≤ 2 ‖∆‖A

√
tεn, or equivalently ‖∆‖2A ≤ 16tεn,

a bound that holds with probability greater than 1− e−
ntεn
2σ2 as claimed.
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It remains to prove Lemma 2. Our proof involves the auxiliary random variable

Vn(u) : = sup
z∈star(C−x∗)

‖z‖A≤u

|σ
n

n∑

i=1

gi (Az)i|,

Inclusion of events: We first claim that B(u) ⊆ {Vn(u) ≥ 2u2}. Indeed, if B(u) occurs,
then there exists some z ∈ C − x∗ with ‖z‖A ≥ u and

|σ
n

n∑

i=1

gi (Az)i| ≥ 2u ‖z‖A. (50)

Define the rescaled vector z̃ = u
‖z‖A z. Since z ∈ C−x∗ and u

‖z‖A ≤ 1, the vector z̃ ∈ star(C−x∗).
Moreover, by construction, we have ‖z̃‖A = u. When the inequality (50) holds, the vector z̃
thus satisfies |σn

∑n
i=1 gi (Az̃)i| ≥ 2u2, which certifies that Vn(u) ≥ 2u2, as claimed.

Controlling the tail probability: The final step is to control the probability of the event
{Vn(u) ≥ 2u2}. Viewed as a function of the standard Gaussian vector (g1, . . . , gn), it is easy to
see that Vn(u) is Lipschitz with constant L = σu√

n
. Consequently, by concentration of measure

for Lipschitz Gaussian functions, we have

P
[
Vn(u) ≥ E[Vn(u)] + u2

]
≤ e−

nu2

2σ2 . (51)

In order to complete the proof, it suffices to show that E[Vn(u)] ≤ u2. By definition, we
have E[Vn(u)] =

σ√
n
Wu(K∗). Since K∗ is a star-shaped set, the function v 7→ Wv(K∗)/v is

non-increasing (Bartlett et al., 2005). Since u ≥ εn, we have

σ
Wu(K∗)

u
≤ σ

Wεn(K∗)
εn

≤ εn.

where the final step follows from the definition of εn. Putting together the pieces, we conclude
that E[Vn(u)] ≤ εnu ≤ u2 as claimed.
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