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Abstract of the Dissertation

Iterative Information Processing on Unreliable

Hardware: An Information Theoretic Approach

by

Chu-Hsiang Huang

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2015

Professor Lara Dolecek, Chair

In traditional information processing systems, inference algorithms are de-

signed to collect and process information subject to noisy transmission. It is

saliently assumed that the inference algorithms themselves have error-free imple-

mentations. However, with the scaling of process technologies and the increase

in process variations, nano-devices will be inherently unreliable. Producing reli-

able decisions in systems with unreliable components thus becomes an important

and challenging problem. In this dissertation, we provide a novel information

theoretic approach to analyze and develop robust system design for iterative in-

formation processing algorithms running on noisy hardware. We characterize the

fundamental performance limits of the systems under the joint effect of commu-

nication/environment noise and hardware noise. Based on this analysis, we then

propose new theory-guided methods that guarantee reliable performance under

hardware errors of varied characteristics. The proposed methods successfully ex-

plore the inherent robustness of the information processing algorithms and lever-

age the error-tolerance of the considered applications to minimize the overhead

introduced in robust system design.

We investigate a wide range of iterative information processing systems im-

plemented on noisy hardware via the proposed information theoretic approach.
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Starting from iterative message passing decoders, we study different decoder im-

plementations including finite-precision and infinite precision decoders subject

to various types of hardware errors. We identify the performance-critical com-

ponents in the iterative decoders via a theoretical analysis and develop robust

system designs to assign computation units with different error characteristics

to different components in the decoder. Then, we apply the proposed analysis

and design methodology to general inference problems on probabilistic graphi-

cal models and develop robust implementations of the general belief propagation

algorithms by noise cancellation based on averaging. For certain applications

with error-tolerance, e.g. image processing and classification based on machine

learning, we propose theory-guided adaptive coding schemes inspired by approxi-

mate computing to correct errors without additional hardware redundancy. The

redundant free codes have the same performance as the traditional codes. Our

algorithm-guided approach offers up to 100x reduction in the error rates relative

to the nominal system designs.

iii



The dissertation of Chu-Hsiang Huang is approved.

Mario Gerla

Gregory J. Pottie

Danijela Cabric

Lara Dolecek, Committee Chair

University of California, Los Angeles

2015

iv



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Chapter 2 Contributions . . . . . . . . . . . . . . . . . . . 5

1.1.2 Chapter 3 Contributions . . . . . . . . . . . . . . . . . . . 6

1.1.3 Chapter 4 Contributions . . . . . . . . . . . . . . . . . . . 6

1.2 Hardware Error Models . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Noisy Iterative Message Passing Decoders . . . . . . . . . . . . . 9

2.1 Background and Previous Work . . . . . . . . . . . . . . . . . . . 9

2.1.1 LDPC Codes . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Noise-Free Gallager B and Gallager E Decoders . . . . . . 10

2.1.3 Previous Work: LDPC Codes and Decoders on Noisy Hard-

ware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Decoding Under Transient Errors . . . . . . . . . . . . . . . . . . 12

2.2.1 Faulty Decoder under Transient Errors . . . . . . . . . . . 12

2.2.2 Error Analysis of Noisy Finite Alphabet Iterative Decoders

Under Transient Errors . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Optimal Assignment of Processors . . . . . . . . . . . . . . 18

2.3 Decoding Under Transient and Permanent Errors . . . . . . . . . 21

2.3.1 Faulty Decoder under Transient and Permanent Errors . . 21

2.3.2 Analysis of a Noisy Gallager B Decoder with Memory Failures 22

2.3.3 Hardware Error Detection and Correction . . . . . . . . . 36

v



3 Noisy Belief Propagation . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1 Background and Previous Work . . . . . . . . . . . . . . . . . . . 55

3.1.1 BP on Factor Graphs . . . . . . . . . . . . . . . . . . . . . 55

3.1.2 BP Decoder for LDPC codes . . . . . . . . . . . . . . . . . 58

3.1.3 Previous Work: BP and Noisy Infinite Precision LDPC De-

coders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 BP on Noisy Hardware . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.1 System Model and Convergence Analysis . . . . . . . . . . 60

3.2.2 The Censoring BP Algorithm . . . . . . . . . . . . . . . . 62

3.2.3 The Averaging BP Algorithm . . . . . . . . . . . . . . . . 67

3.2.4 Experiments on Ising Model . . . . . . . . . . . . . . . . . 74

3.3 Application Example I:Image Denoising . . . . . . . . . . . . . . . 78

3.4 Application Example II: BP Decoder for LDPC Codes . . . . . . 80

3.4.1 Noisy BP Decoder . . . . . . . . . . . . . . . . . . . . . . 80

3.4.2 Density Evolution and Decoding Threshold Analysis of a

Noisy BP Decoder . . . . . . . . . . . . . . . . . . . . . . 81

3.4.3 Averaging BP Decoder . . . . . . . . . . . . . . . . . . . . 84

4 Adaptive Coding for Approximate Computing on Faulty Memo-

ries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.1 Background and Previous Work . . . . . . . . . . . . . . . . . . . 90

4.2 The Adaptive Coding for Approximate Computing Framework . . 91

4.2.1 Memory Error Model . . . . . . . . . . . . . . . . . . . . . 91

4.2.2 Adaptive Code Design Methodology . . . . . . . . . . . . . 91

4.3 Adaptive Codes for Product Operations . . . . . . . . . . . . . . 95

vi



4.3.1 Code Design . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3.2 Analysis of Cost Function Statistics and Numerical Examples101

4.3.3 Application Example I: Max-Production Algorithm for Im-

age Denoising . . . . . . . . . . . . . . . . . . . . . . . . . 105
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CHAPTER 1

Introduction

Modern CMOS circuits exhibit increasing variation in their performance, power

consumption, and reliability parameters. The design of digital systems relying on

these circuits must take such variation into consideration. A promising alternative

to overdesigning and guardbanding is to develop robust system designs tolerant of

hardware errors. Traditionally, the inference system design process considers only

the uncertainty in the environment and the source. The inference machines them-

selves are assumed to be error-free (Fig. 1.1). In this dissertation, we consider

a fundamentally new problem: how can we achieve reliable inference when the

system components are unreliable (Fig. 1.2)? To answer this question, we study

inference algorithms implemented on hardware subject to different kinds of errors

(noisy hardware in brief), and develop robust system designs via an information

theoretic approach. Information theory is one of the fundamental disciplines un-

derlying the quantitative characterization of the randomness and uncertainty in

inference systems. Many communication systems are developed based on infor-

mation theory. Our study of unreliable hardware focuses on the modeling and

analysis of the uncertainty of hardware operations. Therefore, information the-

ory is a suitable foundation on which we can build our results on performance

characterization and robust hardware-error-aware system design.

Since forthcoming nano-scale devices will be error-prone, characterizing the

reliability of systems built out of unreliable hardware components has recently

become an important concern in inference algorithm implementation. The study
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Figure 1.1: System model: traditional inference system.

Figure 1.2: System model: inference system on unreliable hardware.
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of circuits made out of faulty gates dates back to von Neumann’s model of transient

errors [1]. He also proposed a triple-modular-redundancy (TMR) scheme, in which

the same task is performed in three identical logic blocks and the output is decided

by a majority vote, to combat transient errors [1]. TMR remains a popular concept

in modern circuit design and many schemes based on TMR have been developed

[2, 3]. Transient error modeling also provides a theoretical basis for fault-tolerant

computing schemes [4, 5]. Besides the efforts in fault-tolerant system design, a

number of more refined models were proposed for different types of hardware

errors, such as, for instance, the soft adder model [6, 7] and the Markov chain

model [8].

Besides logic gates, memory elements in digital circuits are also vulnerable

to errors. Furthermore, memory failure rates are increasing due to the impact

of shrinking dimensions, high integration densities, lower operating voltages, etc.

[9–11]. Theoretical analysis for fault-tolerant memory system design was discussed

in [12] and [13]. Error correction coding was introduced to mitigate the effects of

memory cell errors by redundant bits stored in additional memory cells [14, 15].

Stochastic computation enables the application of communication-inspired meth-

ods to analyze and recover the processing errors by treating unreliable devices as

noisy communication channels/networks [16]. This approach became popular in

recent work on reliable computing [16, 17]. In [18], an optimization problem is

formulated to establish a trade-off between energy consumption and processing

error rate. Data fusion for error-correction in N-modular redundancy (NMR)

with different processor error rates was shown to improve the efficiency of NMR

schemes [19].

Approximate computing has attracted significant interest in recent years for its

capability to trade computational accuracy for data processing throughput or en-

ergy efficiency [20–22]. This technology was motivated by a large and growing class

of applications that are inherently error-tolerant. Such applications include mul-
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timedia signal processing, statistical learning and wireless communications [21].

A number of earlier efforts achieved promising results by exploring approximate

computing both in software and in hardware [23].

In this dissertation, we study the effect of hardware errors on inference systems

and develop robust inference system designs, capable of handling hardware errors,

via an information theoretic approach. First, we characterize the fundamental per-

formance limits of inference algorithms implemented on noisy hardware. Previous

work mostly focused on the performance of the individual components. In the

present work, we move to the system level in order to study the joint effect of

environment/communication noise and hardware noise on the error performance

of the entire inference system. Each component is described by an abstract model

capturing its error characteristics. The performance analysis is derived based on

these error models. Via such system level analysis, we quantify the effects that

different operations within the algorithm have on the overall quality of inference,

and then identify unconventional error characteristics of the inference algorithms

on noisy hardware.

Based on this theoretical analysis, we offer design approaches for algorithm

implementations that minimize the effect of hardware errors with performance

guarantees. Though previous works proposed many schemes to improve system

performance when using unreliable hardware, there is still a lack of theory-guided

robust system design with guaranteed error mitigation capability. By utilizing the

inherent robustness of inference algorithms, we develop algorithm implementations

with mathematically-guaranteed robustness against hardware errors. Moreover, a

new design dimension of inference algorithm implementation is explored based on

the analysis of the joint effect of environment/communication noise and hardware

noise, e.g., resource allocation across different units in inference systems when

hardware components with different degrees of reliability are available.

For applications that can tolerate small errors, e.g., image processing or data

4



classification, we further study approximate computing through our theoretical

approach. Although many approximate computing techniques have been proposed

recently, there is still a need for analytical evaluation of the effect of the distortion

introduced by relaxing the computation accuracy requirement. In addition, we

develop theory-guided approximate computing techniques. Based on our analysis,

we propose a systematic methodology to analytically evaluate the effect of the

introduced distortion on system error performance and we develop approximate

computing techniques with a minimum effect on system output.

1.1 Summary of Contributions

We briefly outline the contributions of each chapter below.

1.1.1 Chapter 2 Contributions

We first investigate the performance of popular iterative decoders for broadly

deployed low-density parity check (LDPC) codes implemented on noisy hardware.

Through a recursive analysis, we prove that different components of an iterative

decoder have different effects on the error performance. Specifically, we show

theoretically and confirm experimentally that the decoder output error rate is

dominated by the errors in the output messages at the variable nodes. These

findings enable us to explore a new dimension in system design. We propose

an optimal resource allocation scheme applicable when computational units with

varying degrees of reliability (and, naturally, cost) are available, a scenario that

is appropriate when the variable nodes and check nodes in an LDPC code have

non-uniform degrees. Lower decoder error rates under the same implementation

cost can therefore be achieved using informed resource allocation. Moreover, our

theoretical analysis also reveals the inherent robustness of the iterative decoders:

as long as the hardware error rate is small enough, iterative decoders are still

5



able to correct most of the errors from the communication channel such that the

residual errors are due to unreliable hardware only. Based on this finding and the

observation that the check-sum constraints in LDPC codes can detect both er-

rors from the communication channel and from unreliable hardware, we propose

a scheme to detect permanent errors in the memory cells that store intermedi-

ate computations between successive decoding iterations. The proposed detection

scheme utilizes the decoder structure (check-sum constraints) without adding any

redundant components, and offers mathematically-guaranteed detection perfor-

mance.

1.1.2 Chapter 3 Contributions

Given the initial success of the analysis of LDPC decoders implemented on

noisy hardware, we broaden the scope of our analysis to include general belief

propagation (BP) algorithms for inference over probabilistic graphical models. We

characterize the BP algorithm on noisy hardware and propose robust implementa-

tions of BP with mathematical guarantees. In particular, we introduce averaging

BP, in which the effects of computation noise are reduced by averaging messages

computed by BP over all up-to-date iterations. Theoretical analysis of averaging

BP shows that the accuracy of noise-free BP can be achieved by averaging BP

on noisy hardware. In the application examples of BP for image denoising and

BP LDPC decoding, we demonstrate the effectiveness of mitigating computation

noise by averaging BP.

1.1.3 Chapter 4 Contributions

Inspired by approximate computing techniques, we further relax the require-

ment of accurate inference (that is, guaranteeing performance approaching that

of the noise-free implementation) to design more efficient (in terms of overhead)

6



systems robust against hardware errors. We propose the Adaptive Coding for

Approximate Computing (ACOCO) framework. In ACOCO, we first compress

the data by introducing distortion in the source encoder, and then add redundant

bits to protect the data against memory errors in the channel encoder; thus we

can protect the data against memory errors without additional memory overhead.

Although we introduce a little distortion in the source encoder, the channel codes

can correct harmful memory errors and therefore the proposed code is still guar-

anteed (mathematically) to improve the system performance. Most importantly,

we design the source encoder by first specifying a cost function measuring the

effect of the data compression on the system output, and then design the source

code according to this cost function. We demonstrate the effectiveness of ACOCO

by developing adaptive codes which improve the performance of several commu-

nication and machine learning systems, including max-product image denoising,

näıve Bayesian classification, and min-sum LDPC decoders.

1.2 Hardware Error Models

In this dissertation, we use the modeling methodology proposed in the stochas-

tic computation framework [16]. Under the stochastic computation framework, a

unreliable hardware unit is interpreted as a noisy communication channel. To be

more specific, a noisy hardware unit is modeled by passing the output of a hypo-

thetical noise-free hardware unit through a hardware error channel that models

the effects of hardware errors. The output of the hardware error channel is the

real output of the noisy hardware unit.

The first hardware error channel model we consider is the transient error model.

Following the transient error model proposed by von Neumann [1], we assume

that the transient errors on different computation/memory units are independent,

i.e., the noises in the hardware error channels modeling the transient errors are

7



Figure 1.3: Example of hardware error channel models.

independent. Due to the transient errors, the actual output value can be different

from its prescribed value.

In addition to the transient error model, we also consider the permanent error

model. The permanent error model captures the effect of defects on a hardware

unit output. Transient errors and permanent errors are quite different in nature.

Under a transient error, the hardware unit provides an output that is erroneous

with some probability less than one, independent of all other computations. Under

a permanent error, the hardware unit repeatedly provides the same erroneous

output.

In the following chapters, we use different channel models, e.g., binary sym-

metric channel (BSC) and additive noise channel (Fig. 1.3), designed for different

kinds of transient and permanent errors in various types of inference systems.

Each hardware error channel model captures the effect of a particular type of

hardware error, and we analyze the fundamental performance limits of inference

systems and develop robust algorithms based on these hardware error channel

models.
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CHAPTER 2

Noisy Iterative Message Passing Decoders

We investigate iterative message passing decoders implemented on noisy hard-

ware in this chapter. First, we give a brief overview of iterative message passing

decoders and previous work on noisy hardware related to LDPC codes and de-

coders. Next, we separately consider two cases: (1) decoders implemented on

hardware experiencing only transient errors and (2) decoders implemented on

hardware experiencing both transient and permanent errors. We characterize the

performance of the decoders and develop schemes to reduce the error rates in both

cases.

2.1 Background and Previous Work

2.1.1 LDPC Codes

A low-density parity-check (LDPC) code is a linear block code with relatively

few parity-check constraints. LDPC codes can be conveniently represented by a

sparse bipartite graph composed of variable nodes, check nodes, and edges each

connecting a variable node with a check node. In a (dv, dc)-regular LDPC code,

each variable node is connected to dv check nodes, and each check node is con-

nected to dc variable nodes. The low edge density in the bipartite graph represen-

tation of an LDPC code allows for low-complexity local message-passing decoding

algorithms that are known to approach the performance of high-complexity MAP

(maximum a posteriori) decoding algorithms. Irregular LDPC codes are codes

9



which have different node degrees for each variable and check node. Detailed

definitions will be provided later in Section 2.2.1.

2.1.2 Noise-Free Gallager B and Gallager E Decoders

The Gallager B and Gallager E decoders are popular choices for message

passing decoders due to their good performance and low complexity [24]. We

describe both decoders in the following.

In the Gallager B decoder, the messages passed along edges of the bipartite

graph are binary. Denote the set of check nodes connected to the variable node

v on the bipartite graph as Nv and denote the set of variable nodes connected

to the check node c as Nc. Let yv be the decoder input at the variable node v,

yv ∈ F2. For completeness, let us briefly summarize the main steps of the noise-free

Gallager B decoder:

• (Initialization) At iteration ℓ = 0: each variable node v sends the message

m̃
(0)
v,c = yv to every check node c ∈ Nv.

• (Variable node majority voting) At each iteration ℓ, ℓ > 0, each variable

node v sends the message m̃
(ℓ)
v,c to the check node c ∈ Nv,

m̃(ℓ)
v,c =







s, if |{c′ ∈ Nv\{c} : m̃
(ℓ−1)
c′,v = s}| ≥ b̃(ℓ),

yv, otherwise,

where b̃(ℓ) is the voting threshold for the noise-free Gallager B decoder. We

assume that the threshold b̃(ℓ) is at least ⌈dv/2⌉ so that the variable-to-check

message is uniquely specified.

• (Check node xor-sum) At iteration ℓ, ℓ ≥ 0, each check node c sends a

message m̃
(ℓ)
c,v =

∑

v′∈Nc\{v}
m̃

(ℓ)
v′,c to the variable node v ∈ Nc. The summation

operation is in F2.
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The Gallager E decoder has message alphabet {−1, 0,+1}.We also summarize

the main steps of the noise-free Gallager E decoder as follows:

• (Initialization) At iteration ℓ = 0: each variable node v sends the message

m̃
(0)
v,c = yv to every check node c ∈ Nv.

• (Variable node) At each iteration ℓ, ℓ > 0, each variable node v sends the

message m̃
(ℓ)
v,c to the check node c ∈ Nv,

m̃(ℓ)
v,c = sgn

(

̺(ℓ)yv +
∑

c′∈Nv\c

m
(ℓ−1)
c′,v

)

,

where ̺(ℓ) is an appropriately chosen weight.

• (Check node) At iteration ℓ, ℓ ≥ 0, each check node c sends the message

m̃
(ℓ)
c,v =

∏

v′∈Nc\{v}
m̃

(ℓ)
v′,c to variable node v ∈ Nc.

2.1.3 Previous Work: LDPC Codes and Decoders on Noisy Hardware

The use of low-density parity-check (LDPC) codes and their decoders imple-

mented on noisy hardware has recently garnered substantial research attention.

Vasic and Chilappagari [13] were the first to propose an approach to recover from

errors in memory cells for the Taylor-Kuznetsov memory structure [25, 26] using

an LDPC code with a Gallager B decoder. Additionally, in [27] and [28], the

same authors analyzed the use of expander codes [29] to efficiently recover from

memory errors. A one-step majority logic LDPC decoder and its application to

recovery from errors in faulty hardware was studied by Vasic and coauthors in [30]

and [31]. In [32], Yeung and Chugg experimentally studied the performance of an

LDPC belief propagation decoder under permanent errors. Winstead and Howard

empirically demonstrated in [33] that a faulty LDPC decoder can successfully re-

cover the stored data from hardware with permanent and transient errors with

the aid of error-free elements. As recently shown by Tang et al. [34], even with-

out error-free elements, an LDPC decoding method can still significantly reduce
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the error probability. Leduc-Primeau and Gross explored a clever message repe-

tition scheme in [35] to mitigate computational errors arising in a noisy Gallager

B decoder.

The capacity and certain concentration results for a noisy LDPC message

passing decoder were first computed in [36] by Varshney. Tarighati et al. analyzed

the density evolution of a noisy sum-product message passing LDPC decoder

in [37]. Tabatabaei et al. reported in [38] the fundamental performance limits of

regular LDPC codes with binary and non-binary decoders implemented on noisy

hardware with transient errors.

2.2 Decoding Under Transient Errors

In this section, we study the performance of irregular LDPC codes on a

general M-alphabet iterative decoder. Processors with different processing error

rates are assigned to different computational units (i.e., variable nodes and check

nodes) of a noisy M-alphabet iterative decoder. We analyze the bit error rate

(BER) of a noisy M-alphabet iterative decoder and develop the optimal resource

assignment method to optimally distribute processors across different components

in the decoder.

2.2.1 Faulty Decoder under Transient Errors

We consider an irregular LDPC code C described by a bipartite graph G =

G(V,E). Here V denotes the set of nodes in the bipartite graph, and E is the set

of edges connecting variable nodes and check nodes. Let m denote the number

of check nodes, and n denote the number of variable nodes. We also let Nv (Nc)

denote the set of checks (variables) incident to variable node v (check node c).

Suppose dv is the largest variable node degree and dc is the largest check node

degree. For 1 ≤ i ≤ dv, following popular notation [39], we let λi denote the
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fraction of edges in G that are connected to variable nodes of degree i. Also, for

1 ≤ j ≤ dc, we denote by ρj the fraction of edges in G that are connected to check

nodes of degree j. It is useful to define λ(t) :=
∑dv

i=1 λit
i−1 and ρ(t) :=

∑dc
j=1 ρit

j−1,

respectively, as the variable and check degree polynomials. Finally, the collection

of graph codes whose bipartite graphs follow λ(t), ρ(t) distributions is referred to

as the (λ, ρ) ensemble.

Following the unreliable hardware inference system model in Fig. 1.2 and the

hardware error model described in Section 1.2, we assume that iterative messages

exchanged between variable and check nodes are subject to transient errors, and

that these errors are independent across different computational units and across

different iterations of the decoder. Following the set-up presented in [40], we

consider a general framework that allows processors of different error probabilities

at different check nodes and variable nodes. We remark that in practice, these

error probabilities depend on the choice of implementation.

Let us assume that we have L types of processors available for the imple-

mentation of variable nodes and check nodes, and that that these processors are

characterized by distinct error probabilities qi, 1 ≤ i ≤ L, ordered in ascending

order from best to worst. We collectively refer to the ascending ordering of qi’s as

Q.

For the noisy decoder, the message exchange is iteratively performed as follows:

the message from variable node v at iteration ℓ is denoted m
(ℓ)
v,c and the message

from check node c at iteration ℓ is denotedm
(ℓ)
c,v. It is useful to specify two auxiliary

messages, m̂
(ℓ)
v,c and m̂

(ℓ)
c,v, which respectively represent the outgoing messages of

noise-free processors. Let τ vi,qj represent the fraction of edges that are connected to

variable nodes of degree i, 1 ≤ i ≤ dv, and error qj. Likewise, we let τ
c
k,qr

represent

the fraction of edges that are connected to check nodes of degree k, 1 ≤ k ≤ dc,

and error qr. In this set-up, we are interested in estimating the performance of

the algorithm, which we seek to express in terms of the density evolution of the
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propagated messages.

2.2.2 Error Analysis of Noisy Finite Alphabet Iterative Decoders Un-

der Transient Errors

We remark that, as proved in [36], density evolution under transient errors

is independent of the transmitted codeword. We thus follow [36] and assume

the transmission of the all-zero codeword in our analysis. As in the conven-

tional (noise-free) density evolution [39] and as in [36], and to make the analysis

tractable, we assume, moreover, that the bipartite graph is sufficiently cycle-free.

It was shown in [36] that the well-known result on the concentration of message

propagation [39] for LDPC decoding algorithms still holds even in the presence of

processing noise for finite alphabet iterative decoders. We thus focus on the aver-

age performance of our noisy decoder. We denote by p(ℓ) the average error in the

messages from variable to check nodes in iteration ℓ; i.e., p(ℓ) = E

[

Pr{m(ℓ)
v,c 6= 0}

]

,

where the average is taken over the (λ, ρ) code ensemble with degree and processor

error rate distribution specified by the τ vi,qj ’s and the τ ck,qr ’s. In the first iteration,

this error is simply the parameter p(0) of the transmission channel.

We now derive a recursive expression for the error rate p(ℓ+1) for a general

finite-alphabet noisy decoder. The derivations generalize the previous result in [40]

obtained for a noisy Gallager B decoder (under a binary message alphabet).

Denote the message alphabet by Θ with |Θ| =M . (If Θ = {0, 1} the alphabet

is binary.) The error rate p(ℓ+1) of a general finite-alphabet noisy iterative de-

coder is derived from the probability mass function (PMF) of noise-free messages,

Pr{m̂(ℓ)
v,c} and Pr{m̂(ℓ)

c,v}. We assume that when a processor outputs an erroneous

value, it does so equiprobably over all choices,

Pr{m(ℓ)
x = θ1|processor made an error, m̂(ℓ)

x = θ0}

= Pr{m(ℓ)
x = θ2|processor made an error, m̂(ℓ)

x = θ0},
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for all θ0 6= θ1 6= θ2, θ0, θ1, θ2 ∈ Θ for x being either c or v.

Then, the PMF of the variable-to-check message m
(ℓ+1)
v,c in the noisy decoder

can be expressed as a function of the variable-to-check message m̂
(ℓ+1)
v,c of the

noise-free decoder,

Pr{m(ℓ+1)
v,c = θ}

= (1− qj) Pr{m̂
(ℓ+1)
v,c = θ}+

∑

θ′∈Φ\θ

qj

M − 1
Pr{m̂(ℓ+1)

v,c = θ′}

=

(

1−
Mqj

M − 1

)

Pr{m̂(ℓ+1)
v,c = θ}+

qj

M − 1
. (2.1)

Similarly, after some algebra, we have

Pr{m(ℓ)
c,v = θ} =

(

1−
Mqr
M − 1

)

Pr{m̂(ℓ)
c,v = θ}+

qr
M − 1

. (2.2)

With (2.1) and (2.2), one can then recursively compute the PMF of the mes-

sages in the noisy decoder as we now show. Let deg(·) denote the degree and

ε(·) denote the error rate assigned to a particular node. The average PMF of the

check-to-variable messages at iteration ℓ can be derived by taking the average of

(2.2) w.r.t. processor error rate distribution τ ck,qr ,

E[Pr{m(ℓ)
c,v = θ}] (2.3)

=

dc,v
∑

k=1

L
∑

r=1

τ ck,qrEdeg(c′)=k,ε(c′)=qr [Pr{m
(ℓ)
c,v = θ}]

=

dc,v
∑

k=1

L
∑

r=1

τ ck,qr((1−
Mqr
M − 1

) Pr{m̂(ℓ)
c,v = θ}+

qr
M − 1

).

We note that Pr{m̂(ℓ)
c,v = θ} is computed from Pr{m(ℓ)

v,c = θ′} as in the density

evolution derivation in the noise-free case.

Next, we derive the average PMF of the messages from the variable nodes to

the check nodes,
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E[Pr{m(ℓ+1)
v,c = θ}] (2.4)

=

dv,c
∑

i=1

L
∑

j=1

τ vi,qjEdeg(v)=k,ε(v)=qj [Pr{m
(ℓ+1)
v,c = θ}]

=

dv,c
∑

i=1

L
∑

j=1

τ vi,qj((1−
Mqj
M − 1

) Pr{m̂(ℓ+1)
v,c = θ}+

qj
M − 1

).

Similarly, Pr{m̂(ℓ+1)
v,c = θ} is computed from Pr{m(ℓ)

c,v = θ′} as in the density

evolution derivation in the noise-free case. Therefore, by computing Pr{m̂(ℓ)
c,v = θ1}

from Pr{m(ℓ)
v,c = θ0}, then Pr{m(ℓ)

c,v = θ1} from Pr{m̂(ℓ)
c,v = θ1}, then Pr{m̂(ℓ+1)

v,c =

θ2} from Pr{m(ℓ)
c,v = θ1}, and then Pr{m(ℓ+1)

v,c = θ2} from Pr{m̂(ℓ+1)
v,c = θ2} we

arrive at the recursive expression relating Pr{m(ℓ+1)
v,c = θ2} to Pr{m(ℓ)

v,c = θ0},

where θ0, θ1, θ2 ∈ Θ.

For an error-free iterative decoder, the overall error at iteration ℓ,

∑

θ∈Θ\0

Pr{m̂(ℓ)
v,c = θ},

converges to zero for small enough p(0). In contrast, for a noisy decoder this overall

error converges to some strictly positive quantity which we call the residual error

p (or final BER). We note that p is at least
∑dv

i=1

∑L

j=1 τ
v
i,j

qj
M−1

.

It can be shown that p improves with higher variable node degree (see also [38]).

As an illustrative example, we consider a noisy Gallager E decoder [39]. The

noisy Gallager E decoder has Θ = {−1, 0,+1} and M = 3. Denote the proba-

bilities Pr{m̂(ℓ)
c,v = θ} and Pr{m̂(ℓ)

v,c = θ} of the messages of the noise-free decoder

by p̂
(ℓ)
c,θ and p̂

(ℓ)
v,θ, respectively, for θ ∈ Θ. Also denote the noisy decoder message

PMFs by p
(ℓ)
c,θ and p

(ℓ)
v,θ.

We wish to derive a recursive expression for p
(ℓ+1)
v,θ2

in terms of p
(ℓ)
v,θ0

. From the
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analysis of the nominal error-free decoder [39], the noise-free check messages are

p̂
(ℓ)
c,1 =

1

2
[(p

(ℓ)
v,1 + p

(ℓ)
v,−1)

dc−1 + (p
(ℓ)
v,1 − p

(ℓ)
v,−1)

dc−1],

p̂
(ℓ)
c,−1 =

1

2
[(p

(ℓ)
v,1 + p

(ℓ)
v,−1)

dc−1 − (p
(ℓ)
v,1 − p

(ℓ)
v,−1)

dc−1],

p̂
(ℓ)
c,0 = 1− (1− p(ℓ)v,0)

dc−1. (2.5)

Thus, p
(ℓ)
c,θ1

is

p
(ℓ)
c,θ1

=
dc
∑

k=1

L
∑

r=1

τ ck,qr((1−
3ql
2
)p̂

(ℓ)
c,θ1

+
qr
2
), (2.6)

where p̂
(ℓ)
c,θ1

is derived from (2.5) and uses M = 3.

From the standard noise-free decoder analysis, we can derive the noise-free

variable message, p̂
(ℓ+1)
v,θ2

, from p
(ℓ)
c,θ1

, θ1, θ2 ∈ Θ as follows:

p̂
(ℓ+1)
v,0 = p

(0)
v,0

∑

(α,β):α−β=0

(

dv − 1

α, α, dv − 1− 2α

)

· (p
(ℓ)
c,1)

α(p
(ℓ)
c,−1)

α(p
(ℓ)
c,0)

dv−1−2α

+ p
(0)
v,1

∑

(α,β):α−β=−w(ℓ)

(

dv − 1

α, β, dv − 1− α− β

)

· (p
(ℓ)
c,1)

α(p
(ℓ)
c,−1)

β(p
(ℓ)
c,0)

dv−1−α−β

+ p
(0)
v,−1

∑

(α,β):α−β=w(ℓ)

(

dv − 1

α, α, dv − 1− α− β

)

· (p
(ℓ)
c,1)

α(p
(ℓ)
c,−1)

β(p
(ℓ)
c,0)

dv−1−α−β

p̂
(ℓ+1)
v,−1 = p

(0)
v,0

∑

(α,β):α−β>0

(

dv − 1

α, β, dv − 1− α− β

)

· (p
(ℓ)
c,1)

α(p
(ℓ)
c,−1)

β(p
(ℓ)
c,0)

dv−1−α−β

+ p
(0)
v,1

∑

(α,β):α−β<−w(ℓ)

(

dv − 1

α, β, dv − 1− α− β

)

· (p
(ℓ)
c,1)

α(p
(ℓ)
c,−1)

β(p
(ℓ)
c,0)

dv−1−α−β

+ p
(0)
v,−1

∑

(α,β):α−β<w(ℓ)

(

dv − 1

α, β, dv − 1− α− β

)

· (p
(ℓ)
c,1)

α(p
(ℓ)
c,−1)

β(p
(ℓ)
c,0)

dv−1−α−β ,

p̂
(ℓ+1)
v,1 = 1− p̂

(ℓ+1)
v,1 − p̂

(ℓ+1)
v,0 . (2.7)

Then, p
(ℓ+1)
v,θ2

is given by

p
(ℓ+1)
v,θ2

=
dv
∑

i=1

L
∑

j=1

τ vi,qj((1−
3qj
2
)p̂

(ℓ+1)
v,θ2

+
qj
2
), (2.8)

where p̂
(ℓ+1)
v,θ2

is derived from (2.7). Note that we put M = 3 in (2.4) to derive

(2.8). Then we have p̂
(ℓ+1)
v,θ2

as functions of p̂
(ℓ+1)
v,θ0

from (2.5) to (2.8).
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2.2.3 Optimal Assignment of Processors

The optimal assignment of processors to check and variable nodes with different

degrees can be derived by minimizing the residual error with respect to τ vi,qj and

τ ck,qr

This minimization problem may, in general, be difficult to solve. Fortunately,

when the channel error rate is small and the error rates of constituent processors

are also sufficiently small, one can show that for a code that has all variable nodes

of degree at least 3, by ignoring the second order terms involving p̂
(ℓ)
v,0, p̂

(ℓ)
v,−1, p̂

(ℓ)
c,0,

and p̂
(ℓ)
c,−1, the minimization problem reduces to minimizing

∑dv
i=1

∑L

j=1 τ
v
i,qj
· qj,

which then simply becomes a linear programming problem.

We now study the optimal assignment of processors that offers different relia-

bilities of different processing nodes of the decoder. An optimal assignment is an

assignment that minimizes the residual error p. Suppose that for every 1 ≤ j ≤ L,

the cost of implementing a variable node processor of degree i for 3 ≤ i ≤ dv (we

assume that there is no variable node of degree 1, 2) and error qj for 1 ≤ j ≤ L

is wv
i,j, and for every check node of degree k and error qr for 1 ≤ k ≤ dc and

1 ≤ r ≤ L, the cost is wc
k,r.

Suppose we fix the maximum allowable cost W . The total number of variable

nodes of degree i and processing error qj is Zτ
v
i,qj
/i and the total number of check

nodes of degree k and processing error qr is Zτ ck,qr/k, where Z denotes the total

number of edges in the LDPC graph.

As previously discussed, our aim is to solve the following optimization problem:

Minimize:
dv
∑

i=3

L
∑

j=1

τ vi,qj · qj

Subject to: Z
dv
∑

i=3

L
∑

j=1

τ vi,qjw
v
i,j

i
+ Z

dc
∑

k=1

L
∑

r=1

τ ck,qrw
c
k,r

k
≤ W,
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L
∑

j=1

τ vi,qj = λi,

L
∑

r=1

τ ck,qr = ρk. (2.9)

We observe that the objective function and all constraints in the preceding

optimization problem are linear in terms of the variables τ vi,qj ’s and τ
c
k,qr

’s so that

efficient algorithms can be used to solve this linear programming problem.

It is interesting to note that the objective function in (2.9) does not depend

on τ ck,qr ’s. As a result, for codes without variable node degrees of less than 3, all

the check nodes admit the least expensive processors (of error parameter qL) in

the optimal solution.

2.2.3.1 Simulation Results

In this section we report on experimental results. We tested the performance

of two irregular codes proposed by MacKay (codes are available at [41]). Code 1

has 9972 variable nodes of which 9141 nodes have degree i1 = 3 and 831 nodes

have degree i2 = 9. The code has m = 4986 check nodes all with degree 7. Code

2 has 1920 variable nodes of which 640 nodes have degree 14 and 1280 nodes have

degree 18. This code has 5760 check nodes in total, 1280 nodes with degree 4 and

4480 nodes with degree 6.

In our MATLAB simulations, we considered the case with two kinds of avail-

able processors with error rates q1 = 10−4 and q2 = 10−3. The channel error was

2 × 10−3. We assigned the cost of 10 (resp. cost of 1) to the variable nodes of

degree i1 and error q1 (resp. error q2), and we assigned the cost of 100 (resp. cost

of 10) to the variable nodes of degree i2 and error q1 (resp. error q2). For code 1,

we assigned cost of 10 (resp. cost of 1) to the check node with error q1(resp. error

q2). For code 2, the cost assignment is the same over all nodes.

Two kinds of noisy Gallager E decoders are simulated: one based on the

analysis-guided processor assignment and another one based on uninformed (ran-
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Figure 2.1: Performance comparison of optimal assignment and random assign-

ment for the noisy Gallager E decoders.
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dom) assignment of faulty processors. We plotted the resulting BERs for the two

codes in Fig. 2.1 for a range of total costs (a part of the plot is suppressed to

highlight the difference between the allocation choices). The simulation results are

presented for the finite-length case but nonetheless corroborate the analysis (valid

for the infinite-length case) and demonstrate the improvement in the performance

of the decoder when processors are assigned based on the solution of (2.9). The

improvement is more pronounced for code 2, which has a higher fraction of check

nodes. The results show that the same BER (at about 2× 10−4) can be obtained

by optimal assignment at about 1
2
of the cost of the random assignment.

2.3 Decoding Under Transient and Permanent Errors

This section focuses on a noisy Gallager B LDPC decoder where both transient

errors in faulty gates and stuck-at errors in memory cells may occur, i.e., the

unreliable hardware units in Fig. 1.2 are subject to both transient and permanent

errors. We develop an “asymmetric” density evolution of a noisy decoder, and

propose a “self-error-detecting” scheme that identifies defective memory cells.

2.3.1 Faulty Decoder under Transient and Permanent Errors

We use BSC to model the effect of transient errors in a noisy Gallager B

decoder. In addition to transient errors, we also consider permanent errors in

memory cells in a noisy Gallager B decoder. We assume that the stuck-at error

rates of memory cells storing the transmission channel output are γ0 and γ1 for

stuck-at-0 and stuck-at-1 errors, respectively. Likewise, the stuck-at error rates of

memory cells storing variable-to-check messages (check-to-variable messages) are

α0 and α1 (β0 and β1) for stuck-at-0 and stuck-at-1 errors, respectively. Note that

we allow all permanent error rates to be different.

In the next section, we characterize the performance of a noisy Gallager B
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decoder by establishing proper density evolution equations.

2.3.2 Analysis of a Noisy Gallager B Decoder with Memory Failures

Under the general set-up wherein the permanent error rates may depend on

the stuck value (i.e., stuck-at-1 and stuck-at-0 errors occur with different proba-

bilities), we first observe that in density evolution for asymmetric channels, the

all-zero codeword is in general not a good representative for all codewords. Let w

denote the relative Hamming weight (i.e., the fraction of 1’s in the codeword) of a

codeword as the codelength goes to infinity. We develop density evolution for two

types of messages. Density evolution for asymmetric channels was treated in [42]

by averaging the density over all codewords in the same codebook. In contrast, we

develop the exact density evolution for a codeword of a given relative weight w.

Additionally, we also allow asymmetry inside the decoder. Concentration results

can be derived by following the same procedures as in [36], with the exception

that the ensemble average is now parameterized by the relative codeword weight.

The first type of messages are those propagating in or out of variable nodes asso-

ciated with a transmitted codeword bit 1. The second type of messages are those

propagating in or out of variable nodes associated with a transmitted codeword

bit 0. We refer to these messages as type-1 and type-0 messages, respectively.

For x ∈ {0, 1}, we use p(ℓ)x to denote the error probability of a type-x variable-

to-check message, i.e., the probability the message does not equal x, at iteration

ℓ. Before presenting Theorem 1, which states the density evolution equations, we

introduce some shorthand notation. First, for convenience, we let α = α0 + α1,

β = β0 + β1, and γ = γ0 + γ1.

Next, we define the following auxiliary quantities. For w ∈ (0, 1), and x ∈
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{0, 1}, let

φ̂Cx(z0, z1) =
1

2
−

(

1− 2(wz1 + (1− w)z0)
)dc−1

2(1 + (−1)x(1− 2w)dc−1)

− (−1)x
(

1− 2w + 2(wz1 − (1− w)z0)
)dc−1

2(1 + (−1)x(1− 2w)dc−1)
, (2.10)

be a function of z0 and z1 for z0, z1 ∈ [0, 1]. (We will justify this expression later

in this section.) Additionally, we define

φ̂C(z) =
1−

(

1− 2z
)dc−1

2
, (2.11)

as a function of z for z ∈ [0, 1].

The function φ̂Cx(z0, z1) represents the probability of error of a type-x message

that is the output of a (hypothetical) noise-free check node. In particular, for this

and subsequent auxiliary functions, the φ̂(·) notation indicates that the output is

computed error-free. Here, we assume that the input to this check node consists

of dc−1 messages such that the probability of error for a type-0 incoming message

is z0 and the probability of error for a type-1 incoming message is z1.

For w = 0, with probability 1, every message is type-0. As a result, the expres-

sion in (2.10) no longer depends on x and simplifies to φ̂C(z). Likewise, for w = 1,

with probability 1, every message is type-1, and the same simplification applies.

Note that dc is even in this case. In addition, when the probability of error of a

type-1 message is equal to that of a type-0 message, the two types of messages are

considered indistinguishable, and again the same simplification to φ̂C(z) applies.

For x ∈ {0, 1}, we then define

φ̂V x(bx, z) =

(1− (1− γ)ǫ− γ1−x)
dv−1
∑

k=bx

(

dv − 1

k

)

zk(1− z)dv−1−k

+ ((1− γ)ǫ+ γ1−x)
bx−1
∑

k=0

(

dv − 1

k

)

(1− z)kzdv−1−k (2.12)
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as a function of z ∈ [0, 1] and an integer bx, bx ≥ ⌈
dv
2
⌉.

The function φ̂V x(bx, z) represents the error probability of a type-x message

that is the output of a (hypothetical) noise-free variable node. Here we assume

that the input to this variable node consists of: (i) the initial decoder input whose

probability of error is p
(0)
x = γ1−x + (1 − γ)ǫ, and (ii) dv − 1 type-x messages

whose probability of error is z each. The parameter bx is the variable node voting

threshold in the noisy Gallager B decoder, and is at least ⌈dv
2
⌉ to guarantee a

unique voting outcome. The optimal bx minimizes the expression of φ̂V x(bx, z) for

a given z. In the following, we compute the optimal value of bx, and in particular

we show that this optimal value is ⌈dv
2
⌉ when z < p

(0)
x for x ∈ {0, 1}.

This derivation is similar to threshold derivations in [38,40]. The optimal value

of bx is the smallest integer bx such that φ̂V x(bx, z) evaluated at b∗x is less than or

equal to φ̂V x(bx, z) evaluated at b∗x + 1. The equation (2.12) implies that b∗x is the

minimum solution of the following inequality

1− (1− γ)ǫ− γ1−x

(1− γ)ǫ+ γ1−x

≤

(

dv−1
bx

)

(1− z)bxzdv−1−bx

(

dv−1
bx

)

zbx(1− z)dv−1−bx

=

(

1− z

z

)2bx−dv+1

.

Solving the preceding inequality, we find b∗x as

b∗x =











dv − 1 +
log(1−p

(0)
x

p
(0)
x

)

log(1−z
z
)



 /2









. (2.13)

Here we use the fact that p
(0)
x = (1−γ)ǫ+γ1−x. From Equation (2.13) if

log(
1−p

(0)
x

p
(0)
x

)

log( 1−z
z

)
<

1 then b∗x = dv/2 for even dv and b∗x = (dv + 1)/2 for odd dv. The inequality

log(
1−p

(0)
x

p
(0)
x

)

log( 1−z
z

)
< 1 holds if and only if z < p

(0)
x holds.

Theorem 1. Consider a codeword of relative weight w belonging to a (dv, dc)-

regular LDPC code. Assume that the transmission and processing (both transient
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and permanent) errors are as specified in Section 2.3.1. Then, for x ∈ {0, 1}, the

initial (iteration ℓ = 0) bit error rate of a type-x message is

p(0)x = γ1−x + (1− γ)ǫ.

At iteration ℓ ≥ 0, let the type-x variable node voting threshold be b
(ℓ)
x . We

consider two cases: (a) For 0 < w < 1 and x ∈ {0, 1}, the bit error rates evolve

recursively as

p(ℓ+1)
x = α1−x + (1− α)(σv + (1− 2σv)

· φ̂V x(b
(ℓ)
x , β1−x + (1− β)(σc + (1− 2σc)φ̂Cx(p

(ℓ)
0 , p

(ℓ)
1 )))). (2.14)

The average bit error rate, averaged over all codeword bits, at iteration ℓ is

p(ℓ) = (1− w)p(ℓ)0 + wp
(ℓ)
1 . (2.15)

(b) For w = 1 and dc even or for w = 0, the average bit error rate equals the bit

error rate of the type-w messages, and the recursion simplifies to

p(ℓ+1) = p(ℓ+1)
w = α1−w + (1− α)(σv + (1− 2σv)

· φ̂V w(b
(ℓ)
w , β1−w + (1− β)(σc + (1− 2σc)φ̂C(p

(ℓ)
w )))).

Proof. In the following, we assume x ∈ {0, 1}. Initially, at iteration ℓ = 0, a type-x

decoder input message is erroneous, i.e., does not equal x, if and only if (i) the

message is stuck at 1− x; or (ii) there is no stuck-at error but the corresponding

channel output is erroneous. Therefore,

p(0)x = γ1−x + (1− γ)ǫ. (2.16)

At iteration ℓ ≥ 0, observe that a hypothetical noise-free check-to-variable message

is erroneous if and only if there is an odd number of erroneous messages among

the dc − 1 incoming variable-to-check messages. Meanwhile, due to the checksum

constraint, a type-1 (type-0) check-to-variable message has to be produced from
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an odd (even) number of type-1 incoming messages. As the codelength n → ∞,

the pdf of the number of type-1 messages among the dc−1 incoming messages can

be approximated by the Binomial(dc − 1, w) distribution where w is the relative

codeword weight. Thus, the probability that a check node has an odd number of

incoming type-1 messages is

∑

0≤i≤dc−1
i is odd

(

dc − 1

i

)

wi(1− w)dc−i−1 =
1

2
(1− (1− 2w)dc−1).

Meanwhile, the probability that an odd number of input messages are erroneous

given that i of them are of type-1 and that the remaining dc − 1− i of them are

of type-0 is 1
2

(

1 − (1 − 2p
(ℓ)
1 )i(1 − 2p

(ℓ)
0 )dc−i−1

)

. Then, for 0 < w < 1, by the law

of total probability, the error probability q̂
(ℓ)
1 of a hypothetical noise-free type-1

check-to-variable message at iteration ℓ, is then

q̂
(ℓ)
1 =

1
1
2(1− (1− 2w)dc−1)

∑

0≤i≤dc−1
i is odd

(

dc − 1

i

)

wi(1− w)dc−i−1

·
1

2

(

1− (1− 2p
(ℓ)
1 )i(1− 2p

(ℓ)
0 )dc−i−1

)

= φ̂C1(p
(ℓ)
0 , p

(ℓ)
1 ). (2.17)

The expression for φ̂C1(p
(ℓ)
0 , p

(ℓ)
1 ) is provided in (2.10). The last equality is reached

by applying the identity
∑

0≤i≤k
i is odd

(

k

i

)

ai1a
k−i
2 = 1

2
((a1 + a2)

k − (a2 − a1)
k), setting

a1 = w(1−2p(ℓ)1 ), a2 = (1−w)(1−2p(ℓ)0 ), and k = dc−1. Similarly, by applying the

identity
∑

0≤i≤k
i is even

(

k

i

)

ai1a
k−i
2 = 1

2
((a1 + a2)

k + (a2− a1)
k), setting a1 = w(1− 2p

(ℓ)
1 ),

a2 = (1− w)(1− 2p
(ℓ)
0 ), we have

q̂
(ℓ)
0 =

1
1
2(1 + (1− 2w)dc−1)

∑

0≤i≤dc−1
i is even

(

dc − 1

i

)

wi(1− w)dc−i−1

·
1

2

(

1− (1− 2p
(ℓ)
1 )i(1− 2p

(ℓ)
0 )dc−i−1

)

= φ̂C0(p
(ℓ)
0 , p

(ℓ)
1 ). (2.18)

Next, a type-x check-to-variable message is erroneous if and only if one of the

following disjoint events occurs: (i) the message is stuck at 1 − x; or (ii) there

is no stuck-at error, but (iia) the hypothetical noise-free message is correct but

26



it is flipped due to a transient error, or (iib) there is no transient error but the

noise-free message itself is erroneous.

The error probability q
(ℓ)
x of a noisy type-x check-to-variable message is then

q(ℓ)x = β1−x + (1− β)(σc(1− q̂
(ℓ)
x ) + (1− σc)q̂

(ℓ)
x ). (2.19)

Then, in the (ℓ+1)st iteration, variable-to-check messages are calculated from

the ℓth iteration check-to-variable messages. A hypothetical noise-free type-x

variable-to-check message is erroneous if and only if one of the following two

disjoint events occurs: (i) the decoder input is correct but at least b
(ℓ)
x of the

dv − 1 incoming messages (all of which are of type-x) are erroneous; or (ii) the

decoder input is erroneous but at most b
(ℓ)
x − 1 of the incoming messages are

erroneous. Thus, given q
(ℓ)
x , the error probability of a noise-free type-x variable-

to-check message at iteration ℓ+ 1, is

p̂(ℓ+1)
x = (1− p(0)x )

dv−1
∑

k=b
(ℓ)
x

(

dv − 1

k

)

(q(ℓ)x )k(1− q(ℓ)x )dv−1−k

+ p(0)x

b
(ℓ)
x −1
∑

k=0

(

dv − 1

k

)

(1− q(ℓ)x )k(q(ℓ)x )dv−1−k = φ̂V x(b
(ℓ)
x , q(ℓ)x ).

Finally, similar to the error rate derivation of check-to-variable messages as a

function of the error rates of their hypothetical noise-free counterparts, we have

p(ℓ+1)
x =α1−x + (1− α)(σv(1− p̂

(ℓ)
x ) + (1− σv)p̂

(ℓ)
x ). (2.20)

By sequentially substituting p̂
(ℓ+1)
x , q

(ℓ)
x , q̂

(ℓ)
x , and p

(0)
x into (2.20), we arrive at

(2.14). The average bit error rate p(ℓ) is then the weighted sum of p
(ℓ)
0 and p

(ℓ)
1 ,

with the former weighted by 1−w and the latter weighted by w. The expression

for p(ℓ) is given in (2.15).

For w = 1 and for w = 0, as noted previously, with probability 1, each message

is of type-1 and type-0, respectively. Hence, density evolution is respectively on

type-1 messages only and on type-0 messages only. Furthermore, for w = 1,
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Figure 2.2: Decoder model for approximate density evolution. Variable node and

check node in the diagram are hypothetically noise-free nodes.

if dc is odd, with probability 1, the checksum constraints cannot be fulfilled,

meaning that with probability 1 a codeword of relative weight w is not a valid

codeword. Therefore, for w = 1, only the case where dc is even is considered.

Since the derivations of the w = 1 with even dc case and the w = 0 case follow the

procedures described above for the w ∈ (0, 1) case, the details are omitted.

Theorem 1 evolves on the bit error rate pair (p
(ℓ)
0 , p

(ℓ)
1 ). In the following, we

present a simpler density evolution that evolves on p
(ℓ)
app, an approximation of the

average bit error rate p(ℓ). This simpler density evolution is derived via a suitable

decoder approximation, which we describe next.

First, let us use BASC(z0, z1) to denote a binary asymmetric channel (BASC)

with the 0-to-1 cross-over probability z0 and the 1-to-0 cross-over probability z1.

We also let BSC(σ) denote the standard binary symmetric channel with cross-over

probability σ. In our approximation, the two message types are replaced by an

aggregate message. We capture the processing-noise-induced transformation of

a message as having passed the message through a certain BASC channel. For

the variable-to-check message, this BASC channel is viewed as a concatenation

of two channels: (a) the BSC(σv) modeling the effects of transient errors at the

output of the variable node, and (b) the BASC(ᾱw, α− ᾱw) modeling the effects

of permanent errors. Here, the parameter ᾱw = wα0 + (1 − w)α1 “averages”

the permanent error rates associated with different stored values. To be specific,
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the channel described in (b) takes the relative weight w as a model parameter.

Passing the all-zero codeword through this channel yields an output in which the

probability of a bit having value 1 is the same as the probability of a bit having

value 1 when a codeword of relative weight w is passed through a channel that is

realized as a stuck-at-0 channel with probability α0 and stuck-at-1 channel with

probability α1. The concatenated channel is equivalent to a BASC(σv(1 − α) +

ᾱw, σv(1− α) + (α− ᾱw)). This model is illustrated in Fig. 2.2.

Introducing w directly into the parameters of the constituent channels permits

us to move the averaging operation away from the message types. As a result,

we consider the evolution of the bit error rate p
(ℓ)
app of this system assuming the

all-zero codeword is transmitted. While it is clear that this system provides only

an approximation of the original system, as we shall see later, the resultant bit

error rate p
(ℓ)
app is in fact close to the average bit error rate p(ℓ) derived from the

exact density evolution.

Before stating the density evolution equations under the decoder approxima-

tion model, we first define

φ̂V (b, z) = (1− (1− γ)ǫ− γ̄w)
dv−1
∑

k=b

(

dv − 1

k

)

zk(1− z)dv−1−k

+ ((1− γ)ǫ+ γ̄w)
b−1
∑

k=0

(

dv − 1

k

)

(1− z)kzdv−1−k,

as a function of z ∈ [0, 1].

The function φ̂V (b, z) represents the error probability of the output of a (hy-

pothetical) noise-free variable node. The error probability of the output of a

(hypothetical) noise-free check node is φ̂C(z), as defined in (2.11). With φ̂V (b, z)

and φ̂C(z), we are ready to define the density evolution equations for the de-

coder approximation model. Initially, based on the characterization of the BASC

associated with the decoder input, we have

p(0)app = (1− γ)ǫ+ γ̄w. (2.21)
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For ℓ ≥ 0, the recursive expression for p
(ℓ+1)
app readily becomes

p(ℓ+1)
app = ᾱw + (1− α)(σv + (1− 2σv)

· φ̂V (b
(ℓ), β̄w + (1− β)(σc + (1− 2σc)φ̂C(p

(ℓ)
app)))). (2.22)

Before stating Claim 1 on the simpler density evolution, we first define the ap-

proximation operator ≈ as used in the context of this chapter.

Definition 1. The approximation operator ≈ denotes the equivalence of two func-

tions f1(p
(ℓ)
0 , p

(ℓ)
1 , |β1−β0|, |γ1−γ0|, ς(w)) and f2(p

(ℓ)
0 , p

(ℓ)
1 , |β1−β0|, |γ1−γ0|, ς(w))

up to the linear order of p
(ℓ)
0 , p

(ℓ)
1 , |β1 − β0|, |γ1 − γ0|, and ς(w) terms, where ς(w)

is any one of the following three terms: (i) (1− 2w)dc−2 (ii) w (iii) (1− w).

We then have the following Claim 1.

Claim 1. For ℓ ≥ 0, p(ℓ) ≈ p
(ℓ)
app, provided that p

(ℓ)
x ,|β1−β0|, |γ1−γ0|, and at least

one of the following three quantities (i) (1 − 2w)dc−2, (ii) w, and (iii) (1 − w) is

small.

Proof. We prove Claim 1 by induction. The approximation operator ≈ is as

defined in Definition 1.

We first consider the ℓ = 0 case. By (2.15) and (2.16), we have

p(0) = w(γ1 + (1− γ)ǫ) + (1− w)(γ0 + (1− γ)ǫ) = γ̄w + (1− γ)ǫ. (2.23)

Thus, according to (2.21), we immediately have p(0) ≈ p
(0)
app.

Assume p(ℓ) ≈ p
(ℓ)
app is true for some ℓ, ℓ ≥ 0. We are going to show that

p(ℓ+1) ≈ p
(ℓ+1)
app . Given that p

(ℓ)
0 and p

(ℓ)
1 are small, we approximate φ̂C0(p

(ℓ)
0 , p

(ℓ)
1 )

(the expression in (2.10)) by its first order Taylor expansion around the point

(p
(ℓ)
0 , p

(ℓ)
1 ) = (0, 0):

q̂
(ℓ)
0 ≈

p
(ℓ)
1 w(dc − 1)(1− (1− 2w)dc−2)

(1 + (1− 2w)dc−1)

+
p
(ℓ)
0 (1− w)(dc − 1)(1 + (1− 2w)dc−2)

(1 + (1− 2w)dc−1)
. (2.24)
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First, suppose that (1− 2w)dc−2 is small. By using the fact that 1
1+τ
≈ 1− τ and

1− kτ ≈ (1− τ)k for small τ , we further have

q̂
(ℓ)
0 ≈

1

2
−
[1

2
− p

(ℓ)
1 w(dc − 1)(1− (1− 2w)dc−2)(1− (1− 2w)dc−1)

− p
(ℓ)
0 (1− w)(dc − 1)(1 + (1− 2w)dc−2)(1− (1− 2w)dc−1)

]

≈
1

2
−

1

2

[

1− 2(dc − 1)p(ℓ)
]

≈
1

2
−

1

2
(1− 2p(ℓ))dc−1 = φ̂C(p

(ℓ)). (2.25)

Next, consider the case where w is small. Starting from (2.24) and using the

fact that 1
1+τ
≈ 1− τ and 1− kτ ≈ (1− τ)k for small τ , we have

q̂
(ℓ)
0 ≈

p
(ℓ)
1 w(dc − 1)(1− (1− 2w)dc−2)

(1 + (1− 2w)dc−1)

+
p
(ℓ)
0 (1− w)(dc − 1)(1 + (1− 2w)dc−2)

(1 + (1− 2w)dc−1)

≈
p
(ℓ)
0 (1− w)(dc − 1)(1 + (1− 2w)dc−2)

(1 + (1− 2w)dc−1)

≈
p
(ℓ)
0 (1− w)(dc − 1)(2− 2(dc − 2)w))

(2− 2(dc − 1)w)

≈ p
(ℓ)
0 (1− w)(dc − 1)(1− (dc − 2)w)(1 + (dc − 1)w)

≈ p
(ℓ)
0 (dc − 1) ≈

1

2
−

1

2
(1− p(ℓ)0 )dc−1 = φ̂C(p

(ℓ)). (2.26)

Similarly, we have that when 1 − w is small, q̂
(ℓ)
0 ≈ φ̂C(p

(ℓ)). Following similar

procedures, we also have q̂
(ℓ)
1 ≈ φ̂C(p

(ℓ)). Hence we can derive an approximation

of (2.19) as

q(ℓ)x ≈ β1−x + (1− β)(σc + (1− 2σc)φ̂C(p
(ℓ))). (2.27)

Next, we consider the approximation at the variable node. For simplicity, we

only consider the case where b
(ℓ)
1 and b

(ℓ)
0 are equal and define b(ℓ) = b

(ℓ)
1 = b

(ℓ)
0 .

Let the average bit error rate of check-to-variable messages be q(ℓ). The quantity

q(ℓ) is then the sum of q
(ℓ)
0 and q

(ℓ)
1 weighted by 1− w and w,

q(ℓ) = wq
(ℓ)
1 + (1− w)q(ℓ)0 . (2.28)

31



Also let

ψ̂(ζ, z) = (1− (1− γ)ǫ− ζ)
dv−1
∑

k=b(ℓ)

(

dv − 1

k

)

zk(1− z)dv−1−k

+ ((1− γ)ǫ+ ζ)
b(ℓ)
∑

k=0

(

dv − 1

k

)

(1− z)kzdv−1−k (2.29)

be a function of ζ ∈ [0, 1] and z ∈ [0, 1]. Then, we have φ̂V 0(b
(ℓ), q

(ℓ)
0 ) = ψ̂(γ1, q

(ℓ)
0 )

and φ̂V 1(b
(ℓ), q

(ℓ)
1 ) = ψ̂(γ0, q

(ℓ)
1 ). Given that |γ1−γ0| and |β1−β0| are small, for x ∈

{0, 1}, |γx−γ̄w| and |q
(ℓ)
x −q(ℓ)| are small. Note that ψ̂(ζ, z) is a polynomial of degree

no higher than dv, and so its second order partial derivatives are bounded. Hence

we approximate ψ̂(γ0, q
(ℓ)
1 ) and ψ̂(γ1, q

(ℓ)
0 ) by their first order Taylor expansions

around the point (γ̄w, q
(ℓ)), which is also expressed as w(γ0, q

(ℓ)
1 )+(1−w)(γ1, q

(ℓ)
0 ).

Then, we have

wψ̂(γ0, q
(ℓ)
1 ) + (1− w)ψ̂(γ1, q

(ℓ)
0 ) ≈ ψ̂(γ̄w, q

(ℓ)) = φ̂V (b
(ℓ), q(ℓ)). (2.30)

Using (2.20) and (2.30), the expression for the average bit error rate p(ℓ+1)

becomes

p(ℓ+1) = wp
(ℓ+1)
1 + (1− w)p(ℓ+1)

0

≈ ᾱw + (1− α)
[

σv + (1− 2σv)φ̂V (b
(ℓ), q(ℓ))

]

.

≈ ᾱw + (1− α)(σv + (1− 2σv)

· φ̂V (b
(ℓ), β̄w + (1− β)(σc + (1− 2σc)φ̂C(p

(ℓ)))))

≈ ᾱw + (1− α)(σv + (1− 2σv)

· φ̂V (b
(ℓ), β̄w + (1− β)(σc + (1− 2σc)φ̂C(p

(ℓ)
app))))

= p(ℓ+1)
app . (2.31)

In the second approximation we use (2.27) and (2.28), and in the third approxima-

tion we use the inductive hypothesis. Hence we have shown that p(ℓ+1) ≈ p
(ℓ+1)
app ,

thus completing the proof.
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We assume that the noisy Gallager B decoder successfully reduces the bit

error rate of the messages in each iteration, so that there exists an iteration

index ℓ0, ℓ0 ≥ 1, such that for all ℓ, ℓ ≥ ℓ0, both q
(ℓ)
x and p

(ℓ)
x are smaller than

p
(0)
x . Then, the variable node voting threshold b

(ℓ)
x is equal to ⌈dv

2
⌉. Hence, in the

remainder of the discussion we will simply assume that φ̂V x(bx, z) = φ̂V x(⌈
dv
2
⌉, z)

and φ̂V (b, z) = φ̂V (⌈
dv
2
⌉, z).

Based on the density evolution equations (2.21) and (2.22), the following Theo-

rem 2 gives the residual error rate of the noisy Gallager B decoder for a transmitted

codeword of relative weight w.

Theorem 2. Assume that p
(0)
x , |β1 − β0|, |γ1 − γ0|, α, β, σv, σc, and at least one

of the following three quantities (i) (1−2w)dc−2, (ii) w, and (iii) (1−w) is small.

Suppose that the optimal variable node threshold is ⌈dv
2
⌉ for all iterations. Then,

the residual error rate pr of the Gallager B decoder subject to both transient and

permanent errors (as specified in Section 2.3.1) is

pr ≈







ᾱw+σv+2(γ̄w+(1−γ)ǫ)(β̄w+σc)
1−2(dc−1)(γ̄w+(1−γ)ǫ)

dv = 3,

ᾱw + σv dv > 3.

Proof. The residual error rate is derived by finding a fixed point pr of the recursive

equation (2.22) assuming that pr is small,

pr = ᾱw + (1− α)(σv + (1− 2σv)

· φ̂V (⌈dv/2⌉, β̄w + (1− β)(σc + (1− 2σc)φ̂C(pr)))). (2.32)

For ℓ large enough, p
(ℓ)
app is small enough since this error is monotonically decreasing

with ℓ. Then, for sufficiently large ℓ, φ̂C(pr) can be approximated by (dc − 1)pr.

By dropping the cross-terms, we have

pr ≈ ᾱw + (1− α)(σv + (1− 2σv)

· φ̂V (⌈dv/2⌉, β̄w + σc + (dc − 1)pr)). (2.33)
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We first consider the dv = 3 case. Under the given assumptions (and in

particular by dropping cross-terms), φ̂V (2, β̄w+σc+(dc−1)pr) can be approximated

as 2(γ̄w + (1 − γ)ǫ)(β̄w + σc + (dc − 1)pr). Then, by dropping the cross-terms of

σv, α, σc, β, and pr, (2.33) becomes

pr ≈ ᾱw + σv + 2(γ̄w + (1− γ)ǫ)(β̄w + σc + (dc − 1)pr)), (2.34)

and the expression for pr follows immediately.

For dv > 3, φ̂V (⌈dv/2⌉, β̄w + σc + (dc − 1)pe) does not have any linear terms.

Hence, we have

pr ≈ ᾱw + σv. (2.35)

We provide in the following a brief discussion of decoding threshold for noisy

Gallager B decoder. Since for noisy decoders, limℓ→∞ p(ℓ) > 0, we use the modified

definition of the decoding threshold as given in [36]. For a target error rate η, the

decoding threshold ǫ∗ is defined as

ǫ∗(η) = sup{ǫ : lim
ℓ→∞

p(ℓ) < η}. (2.36)

Following the derivation of Lemma 4 and Section II.D in [38] (taking the first-order

partial derivatives of the iterative expression with respect to p
(ℓ)
app and deriving the

conditions for the derivatives to be positive), one can establish the monotonicity

of the iterative expression (7) (as a function of p
(ℓ)
app) and thus the convergence of

the p
(ℓ)
app sequence. A set of sufficient conditions for this function to be monotonic

is that both the transient error rates and the message error rates in variable nodes

and check nodes are less than 1
2
, and that the voting threshold is ⌈dv

2
⌉.

Assuming the aforementioned conditions for convergence are satisfied, the

threshold ǫ∗(η), i.e., the maximum value of ǫ to achieve residual error rate η,

is derived as the value of ǫ satisfying p
(ℓ+1)
app = p

(ℓ)
app = η :

ǫ∗(η) =

η−ᾱw

(1−α)(1−2σv)
− σv

1−2σv
−Θ1(η)− γ̄w(Θ2(η)−Θ1(η))

(1− γ)(Θ2(η)−Θ1(η))
(2.37)
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Target residual error (×10−3) Decoding threshold

1.60 unachievable

1.61 1.5× 10−4

1.62 6.3× 10−4

1.63 1.1× 10−3

1.64 1.6× 10−3

1.65 2.0× 10−3

1.66 2.5× 10−3

1.67 2.9× 10−3

1.68 3.4× 10−3

1.69 3.8× 10−3

1.70 4.3× 10−3

Table 2.1: Decoding thresholds for different target residual error rates

where Θ1(η) =
∑dv−1

k=b

(

dv−1
k

)

(z(η))k(1 − z(η))dv−1−k, Θ2(η) =
∑b−1

k=0

(

dv−1
k

)

(1 −

z(η))k(z(η))dv−1−k, and z(η) = β̄w + (1− β)(σc + (1− 2σc)φ̂C(η)).

The decoding threshold of Gallager B decoder for a (3, 6)-regular LDPC code

is 0.04 for a binary symmetric channel [39]. In Table 2.1, we consider a range

of target residual error rates under permanent error rates α0 + α1 = β0 + β1 =

γ0 + γ1 = 2 × 10−3 (60:40 for the ratio of stuck-at-1 and stuck-at-0 errors) and

transient error rates σv = σc = 5 × 10−4, and show the corresponding decoding

thresholds.

Theorem 2 shows that when permanent errors are present, the effect of tran-

sient errors on the residual error rate is reminiscent of the transient error effects

derived in [38], which considered the Gallager B decoder with transient errors

only. We can also observe that in (2.35), both the transient error rate and the

permanent error rate contribute to linear terms in the residual error rate. In

35



the following section, to enhance the robustness of our noisy decoder, we propose

a hardware error detection-and-correction scheme that combats both permanent

and transient errors.

2.3.3 Hardware Error Detection and Correction

In this section, as an alternative to BIST and BISR hardware error test and

repair technologies [43], we propose and evaluate a scheme that not only detects

memory cells with permanent errors, but also corrects the decoder output to fur-

ther reduce the residual error rate. As observed from the expressions in Theorem 2,

the transient errors at variable nodes and the permanent errors in (the memory

cells storing) the variable-to-check messages are the two major contributors to the

residual errors associated with our decoder. With our proposed schemes, we are

able to locate the permanent errors, prevent the detected defective cells from fu-

ture use, and consequently reduce the residual error rate of the decoder output in

subsequent transmissions. Furthermore, we can also correct the detected residual

errors arising from both transient and permanent errors. For convenience, in this

section, the scope of the term “permanent error” is restricted to the permanent

errors in variable-to-check messages.

We first classify the permanent errors into two categories, perceptible errors and

imperceptible errors, depending on whether the stuck-at value is different from the

associated variable node bit value or not. We note that the imperceptible errors

cannot be identified because the stuck-at value coincides with the true value.

However, since the positions of 0s and 1s may change from one codeword trans-

mission to the next, an imperceptible error may become perceptible in subsequent

transmissions (likewise perceptible error may become imperceptible; our detection

scheme aims to identify perceptible errors before they become imperceptible).

We design a hardware error detection-and-correction scheme that is performed
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in rounds. Each round starts with the transmission of a new codeword, followed

by a decoding phase, a detection phase in which memory cells with perceptible

permanent errors are detected and replaced with backup cells, and finishes with

an additional residual error correction phase. The undetected perceptible errors

and the imperceptible errors constitute the undiscovered errors of the current

round. They remain as the major contributor of the residual errors of the next

decoding phase, and are left to be detected and eliminated in the next detection

and residual error correction phases.

2.3.3.1 Permanent Error Detection

Next, we describe the steps performed in the permanent error detection phase

of each round.

Let {m(ℓ)
v,c} and {m(ℓ−1)

c,v }, respectively, be the collection of variable-to-check

messages and the collection of check-to-variable messages at the final iteration,

say iteration ℓ, of the decoding phase. We assume that ℓ is large enough so that

the empirical residual decoding error is close enough to the residual error rate

specified in Theorem 2.

Let Γ denote the set of error candidates. At the beginning of each round,

we initialize the set Γ to be the empty set. To start the detection phase, each

variable node v selects one of its dv outgoing messages (given by the collection

{m(ℓ)
v,c}), referred to as θv, and sends θv to all of its neighboring check nodes.

Each check node then XORs all the dc messages coming from all of its dc variable

node neighbors. If, for a variable node v, none of its neighboring check nodes is

satisfied, the location of the memory cell storing θv is recorded in the set Γ of

error candidates. The procedure is repeated dv times. At each time, each of the

n variable nodes selects a new message among its dv outgoing messages, and the

set Γ is expanded accordingly.
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Note that Γ contains both transient and perceptible permanent errors. Observe

that the probability of two consecutive erroneous computations due to transient

errors is small provided that the transient error rate is small. Hence, repeating

selected computations can suppress the effects of transient errors. We then per-

form the following procedures to find the cells experiencing perceptible permanent

errors in Γ.

We take {m(ℓ−1)
c,v } as the input, and repeat the computations at the variable

nodes. Each newly computed variable-to-check message overwritesm
(ℓ)
v,c, and reads

as m̆
(ℓ)
v,c when accessed from the memory cell. Note that {m̆(ℓ)

v,c} and {m
(ℓ)
v,c} are the

same except for the messages that only experience transient errors in exactly one

of the two message collections. We then repeat the same procedures previously

performed on {m(ℓ)
v,c}: based on m̆

(ℓ)
v,c we identify variable nodes with all checks

unsatisfied, and derive the set Γ̆ from {m̆(ℓ)
v,c}. Finally, the memory cells in Γ∩Γ̆ are

labeled as having permanent errors, and are replaced. By taking the intersection of

Γ and Γ̆, the risk of mislabeling a transient error as a permanent error is reduced.

The detection process requires 2dv additional iterations after the regular Gal-

lager B decoding process. This overhead could be too large in some high-speed

communication systems. To reduce the overhead, instead of repeating the detec-

tion scheme dv times (since we perform the detection scheme for both m
(ℓ)
v,c and

m̆
(ℓ)
v,c, we have 2dv additional iterations in total) to examine every memory cells in

variable nodes in each codeword transmission, we may repeat the scheme only J

(1 ≤ J < dv) times to examine J memory cells in each variable node. The decoder

output is then derived only from J memory cells that have been examined. In the

next transmission, we may examine another J memory cells and so on.
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2.3.3.2 Residual Error Correction

The permanent error detection phase is followed by an error correction phase

to further reduce the residual error rate. Error correction is performed by flipping

the values of messages {m̆(ℓ)
v,c} stored in memory cells in Γ̆. Note that for messages

stored in memory cells in Γ ∩ Γ̆, which have been labeled as having permanent

errors, the flipping of stored message values is conveniently accomplished at mem-

ory cell replacement. Hence, in the error correction phase, we only need to flip

the message values stored in Γ̆\Γ. The final decoder output is then derived from

the set of messages in {m̆(ℓ)
v,c} after the flipping. Since most of the memory cells in

Γ̆ store erroneous messages (residual errors)1, the probability of generating new

errors by flipping the bits stored in the memory cells in Γ̆ is small.

The action performed in the permanent error detection and the residual error

correction phases is summarized below.

1. Derive the error candidate set Γ from the message collection {m(ℓ)
v,c}.

2. Compute {m̆(ℓ)
v,c} from the message collection {m(ℓ−1)

c,v }.

3. Derive Γ̆ from the message collection {m̆(ℓ)
v,c}.

4. Label the memory cells in Γ ∩ Γ̆ as having permanent errors, replace the

labeled cells, and write into each replacement cell the complement of the

value previously stored in the corresponding replaced cell.

5. Flip the values of messages {m̆(ℓ)
v,c} stored in Γ̆\Γ.

2.3.3.3 Performance Analysis

It remains to evaluate the permanent error detection and residual error correc-

tion capability of the proposed scheme. We first characterize the performance of

1The probability that a memory cell in Γ̆ stores a correct message is
(

(1−2σc)φ̂C(pr)+σc

)dv

,

which is small when pr and σc are small.
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residual error correction, and then the performance of permanent error detection.

We first analyze the residual error correction performance. Consider a message

in {m̆(ℓ)
v,c} which experiences either a perceptible permanent error or a transient

error. Suppose that the variable node this message is associated with is v∗. The

error will not be corrected if at least one check node neighbor of variable node

v∗ is satisfied. Thus, the probability that a residual error is not detected by our

correction scheme is

Pnc(pr) = 1−
[

1−
(

(1− 2σc)φ̂C(pr) + σc
)

]dv

, (2.38)

where pr is the residual error rate approximately derived in Theorem 3. It is

interesting to observe that (2.38) is reminiscent of the Gallager A decoder error

expressions with suitable reparameterization of the exponent and without the

terms containing the decoder input.

Next, we analyze the permanent error detection. We measure the permanent

error detection performance by the undiscovered error rate Pud,k at the end of the

detection phase in round k. We first derive Pud,k as a function of PM(ρk), where

PM(ρk) is the probability that a perceptible permanent error remains undetected

after the detection phase in round k, and ρk is the perceptible permanent error

rate during round k. Then, we derive the expression of PM(ρk).

The following lemma characterizes the undiscovered error rate Pud,k at the end

of round k.

Lemma 1. The undiscovered stuck-at-0 and stuck-at-1 error rates at the end of

round 0 are Pud,0,0 = α0 and Pud,0,1 = α1, respectively. The undiscovered stuck-at-0

error rate at the end of round k (k ≥ 1) is Pud,k,0 = Pud,k−1,0[wkPM(ρk)+(1−wk)],

and the undiscovered stuck-at-1 error rate at the end of round k (k ≥ 1) is Pud,k,1 =

Pud,k−1,1[(1 − wk)PM(ρk) + wk], where ρk = wkPud,k−1,0 + (1 − wk)Pud,k−1,1 is the

perceptible permanent error rate at round k, and where wk is the relative weight

of the kth transmitted codeword.
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Proof. Initially, Pud,0,0 = α0 and Pud,0,1 = α1 by definition. Given that the rel-

ative weight of the kth transmitted codeword is wk, the perceptible stuck-at-0

and stuck-at-1 permanent error rates are wkPud,k−1,0 and (1−wk)Pud,k−1,1, respec-

tively, and the total perceptible permanent error rate is ρk = wkPud,k−1,0 + (1 −

wk)Pud,k−1,1. Similarly, the imperceptible stuck-at-0 and stuck-at-1 error rates are

(1− wk)Pud,k−1,0 and wkPud,k−1,1, respectively.

Recall that the undiscovered errors consist of the imperceptible errors and

the undetected perceptible errors. Hence, at the end of round k, given that the

probability of undetected perceptible stuck-at-0 and perceptible stuck-at-1 errors

are both PM(ρk), we have

Pud,k,0 = (1− wk)Pud,k−1,0 + PM(ρk) · wkPud,k−1,0,

and

Pud,k,1 = wkPud,k−1,1 + PM(ρk) · (1− wk)Pud,k−1,1.

Lemma 1 enables us to analytically compute the undiscovered permanent error

rate Pud,k, simply viewed as Pud,k,0 + Pud,k,1. However, since the error rate is a

function of the relative weight of the transmitted codeword, we may have different

undiscovered permanent error rates for different codeword weights. This compli-

cates the error detection performance characterization. Fortunately, as shown

in the following Theorem 3, for sufficiently large block lengths, the undiscovered

permanent error rate is close to the case where all the transmitted codewords are

typical (i.e., with relative weight w = 1
2
) with high probability.

Theorem 3. For an arbitrarily small positive ǫ, when the codeword length is

sufficiently large, we have

Pr
{

|Pud,k − P̄ud,k| ≤
α

2k
[

(1 + ǫ)k(1 + PM(α))k − 1
]

}

≥ (1− ǫ)k, (2.39)
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where P̄ud,k is the undiscovered error rate when all the k transmitted codewords

have relative weight 1
2
(typical codeword).

Proof. For convenience, we use [k] to denote the set {1, 2, . . . , k}. By the LDPC

codeword typicality (Chapter 5.2 in [44]), for arbitrarily small ǫ, with large enough

codelength, we have

Pr

{

|wi −
1

2
| ≤

ǫ

2

}

≥ 1− ǫ (2.40)

for the relative weight wi of the ith transmitted codeword, ∀i ∈ [k]. Thus, to prove

(2.39), it suffices to show that when |wi −
1
2
| ≤ ǫ

2
, ∀i ∈ [k], it is guaranteed that

|Pud,k − P̄ud,k| ≤
α
2k

[

(1 + ǫ)k(1 + PM(α))k − 1
]

. We prove this next.

We recall from Lemma 1 that

Pud,k = α0

k
∏

i=1

[

wiPM(ρi) + (1− wi)
]

+ α1

k
∏

i=1

[

(1− wi)PM(ρi) + wi

]

. (2.41)

For wi =
1
2
, ∀i ∈ [k], we have

P̄ud,k =
α

2k

k
∏

i=1

(PM(ρ̄i) + 1), (2.42)

where ρ̄i denotes the perceptible permanent error rate at the beginning of the

detection phase of round i.

We decompose Pud,k into a sum of k+1 terms, and establish the desired upper

bound on the difference |Pud,k − P̄ud,k| by establishing the upper bounds on the

constituent terms. Let

Yk = α0

k
∏

i=1

(1− wi) + α1

k
∏

i=1

wi.
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For j ∈ [k], let

Xk,j = α0

∑

J∈Ωk
j





∏

h∈J

(whPM(ρh))
∏

m∈[k]\J

(1− wm)





+ α1

∑

J∈Ωk
j





∏

h∈J

(1− wh)PM(ρh)
∏

m∈[k]\J

wm



 ,

where the set Ωk
j is the set of all j-element subsets of [k]. Also, we let

Ȳk = α

(

1

2

)k

and X̄k,j = α

(

1

2

)k
∑

I∈Ωk
j

[

∏

h∈J

PM(ρ̄h)

]

.

By this construction, we have Pud,k = Yk +
∑k

j=1Xk,j and P̄ud,k = Ȳk +
∑k

j=1 X̄k,j.

We express Yk as

Yk = α0

k
∏

i=1

[(

1

2
− wi

)

+
1

2

]

+ α1

k
∏

i=1

[(

wi −
1

2

)

+
1

2

]

= α0

k
∑

j′=1

∑

J ′∈Ωk
j′

[

(

1

2

)k−j′
∏

h∈J ′

(

1

2
− wh

)

]

+ α1

k
∑

j′=1

∑

J ′∈Ωk
j′

[

(

1

2

)k−j′
∏

h∈J ′

(

wh −
1

2

)

]

+ (α0 + α1)

(

1

2

)k

.

Given that |wi −
1
2
| ≤ ǫ

2
, ∀i ∈ [k], we have

|Yk − Ȳk| = α0

k
∑

j′=1

(

1

2

)k−j′
∑

J ′∈Ωk
j′

∏

h∈J ′

(

1

2
− wh

)

+ α1

k
∑

j′=1

(

1

2

)k−j′
∑

J ′∈Ωk
j′

∏

h∈J ′

(

wh −
1

2

)

≤α
k
∑

j′=1

(

k

j′

)

[

( ǫ

2

)j′
(

1

2

)k−j′
]

=
α

2k
[(1 + ǫ)k − 1]. (2.43)
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Also, given that |wi −
1
2
| ≤ ǫ

2
, ∀i ∈ [k], Xk,j is upper bounded as

Xk,j = α0

∑

J∈Ωk
j





∏

h∈J

(whPM(ρh))
∏

m∈[k]\J

(1− wm)





+ α1

∑

J∈Ωk
j





∏

h∈J

(1− wh)PM(ρh)
∏

m∈[k]\J

wm





≤
α

2k
(1 + ǫ)k

(

k

j

)

(PM(α))j. (2.44)

Similarly, we have

X̄k,j ≤
α

2k

(

k

j

)

(PM(α))j. (2.45)

Since both Xk,j and X̄k,j are non-negative quantities, we have

|Xk,j − X̄k,j| ≤ max(Xk,j, X̄k,j) ≤
α

2k
(1 + ǫ)k

(

k

j

)

(PM(α))j. (2.46)

Hence with (2.43) and (2.46), we have

|Pud,k − P̄ud,k| ≤ |Yk − Ȳk|+
k
∑

j=1

|Xk,i − X̄k,j|

=
α

2k
[

(1 + ǫ)k(1 + PM(α))k − 1
]

. (2.47)

Therefore, we have (2.39).

The undiscovered permanent error rate approaches zero as more codewords are

transmitted, and so does PM(ρ) (since PM(ρ) is small when ρ is small, which we

will show later in the derivation of PM(ρ)). Thus,
P̄ud,k

P̄ud,k−1
= PM (ρ̄k)+1

2
approaches

1/2. In each round, we roughly detect half of the undiscovered permanent errors

left from the last round.

Next, we derive the expression for PM(ρk). Recall that {m
(ℓ)
v→c} denotes the

collection of variable-to-check messages at the end of iteration ℓ and that {m̆(ℓ)
v→c}

denotes the collection of variable-to-check messages that are re-computed based

on the messages from the preceding iteration. Consider a check node c. Let ξ̂(c)
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be the indicator that c is not satisfied based on the messages from the collection

{m(ℓ)
v→c}. Likewise, let

ˆ̆
ξ(c) be the indicator that c is not satisfied based on the

messages from the collection {m̆(ℓ)
v→c}. We declare a variable node as having a

permanent error if all its neighboring check nodes c ∈ Nv have ξ(c) = ξ̆(c) = 1.

Here, ξ(c) is the output of BSC(σc) with ξ̂(c) as its input and ξ̆(c) is the output

of BSC(σc) with
ˆ̆
ξ(c) as its input.

Let us suppose that a variable node v has a perceptible permanent error. This

error will not be detected if there exists c, c ∈ Nv, such that ξ(c) = 0 or ξ̆(c) = 0.

We express the event of interest as the complement of the event: ξ(c) = ξ̆(c) = 1,

∀c ∈ Nv.

Let us consider the event ξ(c) = ξ̆(c) = 1 for a given c, c ∈ Nv. This event

can be partitioned into the following events: (i) no transient error occurs: ξ̂(c) =

ˆ̆
ξ(c) = 1, (ii) transient errors occur in both ξ̂(c) and

ˆ̆
ξ(c): ξ̂(c) =

ˆ̆
ξ(c) = 0, and

(iii) a transient error occurs in ξ̂(c) or
ˆ̆
ξ(c) but not both: ξ̂(c) = 0 and

ˆ̆
ξ(c) = 1

or
ˆ̆
ξ(c) = 1, and ξ̂(c) = 0.

Let the perceptible permanent error rate at the end of round k be ρk, following

the notation in previous subsection. Let us suppose that in addition to v, there

are t variable nodes with perceptible permanent errors connected to the check

node c. We first assume that choice of these t variable nodes is fixed. Under

these assumptions, let g(t) be the probability of the event ξ̂(c) = 1, i.e., that

the check node is unsatisfied. If a check node is unsatisfied, the total number of

adjacent erroneous variable nodes must be odd. Since v has a permanent error

by assumption, there must be an even number of additional erroneous variable
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nodes, including both transient and permanent errors. Therefore,

g(t) =
∑

0≤j−t≤dc−1−t
j is even

(

dc − 1− t

j − t

)

(σv)
j−t(1− σv)

dc−j−1

=











1
2

[

1 + (1− 2σv)
dc−1−t

]

if t is even,

1
2

[

1− (1− 2σv)
dc−1−t

]

if t is odd.

(2.48)

Likewise, the probability of the event
ˆ̆
ξ(c) = 1 when t+ 1 variable nodes have

permanent errors is also given by (2.48). We now calculate the mis-detection (false

negative) probabilities for each case mi, 1 ≤ i ≤ 3.

m1: For case 1, considering all choices for t permanent errors, we get

p1(ρk) =
dc−1
∑

t=0

(

dc − 1

t

)

ρtk(1− ρk)
dc−1−tg2(t)

=
1

4
+

1

4
((1− ρk)(1− 2σv)

2 + ρk)
dc−1

+
1

2
((1− ρk)(1− 2σv)− ρk)

dc−1. (2.49)

m2: Let us now consider case 2. Continuing with the assumption that v has a

perceptible permanent error, the probability of the event ξ̂(c) =
ˆ̆
ξ(c) = 0

for a given c, c ∈ Nv is

p2(ρk) =
dc−1
∑

t=0

(

dc − 1

t

)

ρtk(1− ρk)
dc−1−t[1− g(t)]2

=
1

4
+

1

4
((1− ρk)(1− 2σv)

2 + ρk)
dc−1

−
1

2
((1− ρk)(1− 2σv)− ρk)

dc−1. (2.50)

m3: Similarly, case 3 has probability

p3(ρk) = 1− p1(ρk)− p2(ρk)

=
1

2
−

1

2
((1− ρk)(1− 2σv)

2 + ρk)
dc−1. (2.51)
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Then, the probability that a perceptible permanent error is not detected in its

round k is

PM(ρk) = 1−
[

p1(ρk)(1− σc)
2 + p2(ρk)σ

2
c + p3(ρk)σc(1− σc)

]dv

= 1− [
1

4
+

(1− 2σc)
2

4
((1− ρk)(1− 2σv)

2 + ρk)
dc−1

+
1− 2σc

2
((1− ρk)(1− 2σv)− ρk)

dc−1]dv . (2.52)

Note that when σv and σc are small, PM(ρk) is close to zero when ρk approaches

zero.

We proceed to analyze the probability of false alarm.

In a false alarm event, the variable node of interest, v, is mistakenly classified

as having a permanent error. This occurs when all c ∈ Nv have ξ(c) = ξ̆(c) = 1.

We can partition this event into three cases, f1, f2 and f3:

f1: v experiences transient errors in both {m(ℓ)
v,c} and {m̆

(ℓ)
v,c}, and ξ(c) = ξ̆(c) =

1, ∀c ∈ Nv:

For ξ(c) = ξ̆(c) = 1, ∀c ∈ Nv, the probability that v experiences a transient

error in both {m(ℓ)
v,c} and {m̆

(ℓ)
v,c} is the same as the (perceived) probability

of the event that v has a permanent error. Thus, similar to (2.52),

pf1(ρk) = σ2
v [p1(ρk)(1− σc)

2 + p2(ρk)σ
2
c + p3(ρk)σc(1− σc)]

dv .

f2: v does not experience a transient error in either {m(ℓ)
v,c} or {m̆

(ℓ)
v,c}, and ξ(c) =

ξ̆(c) = 1, ∀c ∈ Nv:

Similar to the previous case and by careful book-keeping we reach

pf2(ρk) = (1− σv)
2[p1(ρk)σ

2
c + p2(ρk)(1− σc)

2 + p3(ρk)σc(1− σc)]
dv .

f3: v experiences a transient error in exactly one of {m(ℓ)
v,c} and {m̆

(ℓ)
v,c}, and ξ(c) =

ξ̆(c) = 1, ∀c ∈ Nv:

pf3(ρk) = σv(1− σv)[2(p1(ρk) + p2(ρk))σc(1− σc) + p3(ρk)((1− σc)
2 + σ2

c )]
dv .
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The false alarm rate is PF (ρk) = pf1(ρk) + pf2(ρk) + pf3(ρk). The cost of a

false alarm is determined by the cost and availability of backup memory cells.

With limited but non-zero on-chip redundancy, it is reasonable to assume that

the cost of false alarm is higher than that of mis-detection, but is still bounded.

Therefore, it is beneficial to reduce PF (and the implied replacement cost) by

labeling only the candidates recorded in Γ ∩ Γ̌ instead of those in Γ. Further,

observe that the false alarm rate decreases as the variable node degree increases.

Also, as more permanent errors are detected and fixed by cell replacement, PF

approaches σ2
v . Hence with a higher variable node degree and a lower transient

error rate in the variable nodes, the additional cost of permanent error detection,

incurred by unnecessary memory cell replacements, is reduced. We then generally

prefer codes with a higher variable node degree and lower variable node transient

error rates.

In fact, we can apply the march test [45], which is commonly implemented in

a memory built-in-self-test (BIST) circuit, to decrease the false alarm rate in the

proposed permanent error detection scheme. We can run the march test on the

memory cells in Γ ∩ Γ̆ (memory cells labeled as defective) to check whether they

are defect memory cells. To reuse the memory cells with intermittent faults, we

can also periodically perform march tests on the memory cells already labeled as

defect cells.

We remark that the effectiveness of the hardware detection-and-correction

scheme hinges on the reliability of the additional circuit implementing the scheme,

e.g., the memory storing the addresses of the labeled cells (to be replaced). The

reliability can be ensured by deploying sufficient redundancy. Since the fraction

of labeled cells should not exceed α + PF , whose order does not exceed that of

α + σv, such redundancy can be deployed with tolerable cost.
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Figure 2.3: Residual error rate comparison: permanent error rate 2 × 10−3,

transient error rate 5× 10−4.

2.3.3.4 Simulation Results

In this section we discuss the simulation results for two representative LDPC

codes, taken from [41]. The codes are both of length 204. Code 1 is a (3, 6)-

regular code and code 2 is a (5, 10)-regular code. In the implementation of the

noisy decoder the permanent error rates were set as α1 = β1 = γ1 = 1.2 × 10−3

and α0 = β0 = γ0 = 8×10−4. The overall permanent error rate was thus 2×10−3,

and the transient error rates were σv = σc = 5 × 10−4. The channel error rate

was ǫ = 2× 10−3. We compared the noisy decoder that incorporates the proposed

hardware error detection-and-correction scheme with the nominal noisy decoder

(without error detection).

Fig. 2.3 shows the residual error rates versus the number of codeword trans-

missions for the proposed scheme. The theoretical results are the product of the
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Figure 2.4: Residual error rate comparison for J = 1 and J = dv (the original

scheme). Permanent error rate 2× 10−3, transient error rate 5× 10−4.
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residual error rates derived in Theorem 2 and Pnc, the probability of an undetected

residual error under our hardware error detection-and-correction scheme, derived

in (2.38). These results reveal the improvement in the performance of the noisy

decoder for both codes when we deploy the proposed detection-and-correction

scheme. As indicated by the reduced residual error rate in the first transmission,

the proposed scheme is able to correct most of the residual errors in the current

transmission, lowering the error rate to 10−5, even below the transient error rate

5 × 10−4. Both the theoretical and experimental residual error rates decrease as

more codewords are transmitted (as more permanent errors are detected).

The gap between the experimental and the theoretical curves is attributed to

(i) the linear approximation that we made when deriving Theorem 2, and (ii)

finite-length effects. In the derivation of Theorem 2, the linear approximation

of the function φ̂V (b, z) is better with higher node degrees and smaller hardware

error rates. Accordingly, we observe from Fig. 2.3 that the theory-experiment gap

is smaller for the code with a higher node degree (code 2). We also observe that

the gaps have a shrinking trend as more codewords are transmitted. Additionally,

we plot the residual error rates of code 3 [41], a length-2640 (3, 6)-regular code

that is longer than code 1 (length-204) but has the same node degrees. The

reduced theory-experiment gap compared with that of code 1 further suggests

that finite-length effects are less prominent for longer codes.

In Fig. 2.4, we compare the original scheme with the low-overhead modification

mentioned in Section 2.3.3.1. In this modified scheme, we examine J (J < dv)

instead of all dv memory cells associated with each variable node by repeating the

detection scheme J times only. We show simulation results for J = 1 and J = dv

(the original scheme). Expectedly, it is observed that a smaller J results in a slower

descent in the residual error rate as codeword transmissions proceed. The slowing

down is more evident with the code of higher variable node degree (code 2), since

a smaller fraction of memory cells are examined in each codeword transmission.
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With the low-overhead scheme, it takes roughly i ·dv/J transmissions to reach the

residual error rate achieved in i transmissions running the original scheme.

Meanwhile, permanent error detection and cell replacement reduce the resid-

ual error in future transmissions. The more codewords are transmitted, the more

permanent errors are detected, and the better the performance of the noisy de-

coder becomes. The residual error rate of the nominal noisy decoder, however,

remains the sum of the transient error rate and the perceptible permanent error

rate throughout the transmissions.

Fig. 2.5a and 2.5b plots the undiscovered error rate and the fraction of misla-

beled errors (with respect to the total number of memory cells) versus the num-

ber of codeword transmissions. In Fig. 2.5a, the theoretical curve is computed

as Pud,k = Pud,k,0 + Pud,k,1 from the expressions in Lemma 1, with PM(·) as in

(2.52). We observe from Fig. 2.5a that almost half of the undiscovered permanent

errors can be detected in each transmission round, as predicted in Section 2.3.3.3.

In Fig. 2.5b, the experimental results are plotted alongside
∑k

κ=1 PF (ρκ). Both

the theoretical curves and the experimental curves exhibit the same trend: the

growth rate of the number of the memory cells that are mislabeled as permanent

errors diminishes as more codewords are transmitted. This trend occurs because

the perceptible error rate ρk decreases after each codeword transmission, leading

to the decrease in PF (ρk).

The gap between the experimental and the theoretical curves again reflects

the finite-length effect. Also, our derivation of PM and PF ignores the effects

of errors in check nodes and check-to-variable messages on the residual errors.

However, as permanent errors in variable-to-check messages are being eliminated

over transmissions, the effects of check node errors become dominant. This also

partly accounts for the gap.

Finally, we also briefly comment on the effects of the variable node degree on

the fraction of mislabeled errors. As is shown in Fig. 2.5b, the fraction of misla-
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Figure 2.5: Performance comparison: (a) undiscovered error rate, (b) fraction of
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beled errors of the code with a higher variable node degree (code 2) is significantly

lower than that of the code with a lower variable node degree (code 1), although

the undiscovered error rates of code 1 and code 2 are shown to be comparable in

Fig. 2.5a.
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CHAPTER 3

Noisy Belief Propagation

In this chapter, we apply the analysis and design methodology developed in

the previous chapter for iterative decoders to study a more general inference algo-

rithm, belief propagation (BP) on probabilistic graphical models (factor graphs),

implemented on noisy hardware. Based on the unreliable hardware inference sys-

tem model in Fig. 1.2, we analyze the performance of BP on noisy hardware and

propose two robust implementations of the BP algorithm targeting different com-

putation noise distributions. Simulations and application examples are provided

to demonstrate the effectiveness of the proposed implementations.

3.1 Background and Previous Work

3.1.1 BP on Factor Graphs

In this section, we review the BP algorithm on factor graphs and introduce

necessary notation.

3.1.1.1 Graphical Models

Consider a random vector X = (X1, X2, . . . , XN), with Xi taking values in a

discrete space X = {1, 2, . . . d}. We are interested in a class of factorizable prob-

ability distributions defined on graphical models such as Markov random fields

and Bayesian networks. As in the standard literature, we write the probability
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distribution of X as a product of factors (also called potentials)

PX1,...,XN
(x1, . . . , xN) =

1

Z

∏

I∈C

ψI(xI), (3.1)

where C is the set of all maximal cliques in the graph, xI is the vector whose

elements are in the set {xi|i ∈ I}, I is an index set, and Z is the normalization

constant to ensure that
∑

x∈XN PX(x) = 1, where XN denote the N -fold cartesian

product of X .

The probability distribution (3.1) can be associated with a factor graph. A

factor graph is a bipartite graph with vertex set V∪F , where F is the set of factors

and V is the set of variable nodes. In the factor graph, we denote a factor by its

associated set I, which is the set of indices of the variable nodes connected to this

factor, and we denote a variable by its index i, i ∈ {1, 2, . . . , N}. The variable node

i is associated with the random variable Xi in X, and each variable node i ∈ V is

connected with the factors I ∈ F iff i ∈ I. We denote the neighbors of variable

node i by Ni, hence, Ni = {I : i ∈ I}. For each variable node i, we denote the

set of neighboring variable nodes (via connecting factors) as Ψi =
⋃

I∈Ni
I\{i}.

Each variable Xi interacts with its neighboring variables, Xj, j ∈ Ψi, through the

connecting factors in Ni.

3.1.1.2 Noise-Free BP

The BP algorithm computes the approximate or exact marginals {PXI
(xI)}, I ∈

F and {PXi
(xi)}, i ∈ V of the joint distribution (3.1). The computation is con-

ducted by iterative message passing on the factor graph: each node updates its

messages according to the messages received from its neighbors, and sends its

updated messages back to its neighbors. In BP, we have two types of messages:

messages from variable nodes to factors, denoted by m̃
(ℓ)
i→I(xi), and messages from

factors to variable nodes, denoted by m̃
(ℓ)
I→i(xi), where ℓ is the iteration number.

Each message is associated with a variable node i and a factor I on the factor
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graph.

The messages are interpreted as proxies of marginal probabilities and take

non-negative values. At iteration ℓ, every variable node i computes its messages

m̃
(ℓ)
i→I(xi) from the received messages in the last iteration and sends m̃

(ℓ)
i→I(xi) to

its neighboring factors I ∈ Ni, and then factor I computes its messages m̃
(ℓ)
I→i′(xi′)

by the received messages from neighboring variable nodes and sends the computed

messages to its neighboring variable nodes i′ ∈ I. The noise-free BP update rules

are summarized as follows. The variable-to-factor message update rule is

m̃
(ℓ)
i→I(xi) ∝

∏

J∈Ni\I

m̃
(ℓ−1)
J→i (xi). (3.2)

The factor-to-variable message update rule is

m̃
(ℓ)
I→i′(xi′) ∝

∑

xI\i′∈X
|I|−1

ψI(xI)
∏

i∈I\i′

m̃
(ℓ)
i→I(xi). (3.3)

We combine (3.2) and (3.3) into a recursive expression for updates of factor-to-

variable messages:

m̃
(ℓ)
I→i′(xi′) ∝

∑

xI\i′∈X
|I|−1

ψI(xI)
∏

i∈I\i′

∏

J∈Ni\I

m̃
(ℓ−1)
J→i (xi). (3.4)

To simplify the notation, we concatenate the local messages m̃
(ℓ)
I→i′(xi′), for all

I ∈ F , i′ ∈ V , and xi′ ∈ X , to form an aggregate message (vector) m̃(ℓ). Denote

the operations on the aggregate message in each iteration by a function f. We

then have

m̃(ℓ) = f(m̃(ℓ−1)). (3.5)

When all the messages have converged to a fixed point (i.e., m̃
(ℓ)
i→I(xi) =

m̃
(ℓ−1)
i→I (xi) and m̃

(ℓ)
I→i′(xi′) = m̃

(ℓ−1)
I→i′ (xi′) for all I ∈ F , i ∈ V , and xi ∈ X ), which

we describe by m̃∗
i→I(xi) and m̃

∗
I→i′(xi′), we compute the approximate marginals

or beliefs by

b̃I(xI) = CIψI(xI)
∏

i∈I

m̃∗
i→I(xi), b̃i′(xi′) = Ci′

∏

I∈Ni′

m̃∗
I→i′(xi′),
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where CI ’s and Ci′ ’s are normalizing constants chosen such that
∑

xI∈X |I| b̃I(xI) =

1 and
∑

xi′∈X
b̃i′(xi′) = 1. Then, the proxies of1 marginals PXi′

(xi′) and PXI
(xI)

are b̃i′(xi′) and b̃I(xI). Note that in the aggregate representation (3.5), the fixed

point is then described by the aggregate message satisfying m̃∗ = f(m̃∗).

It is well-known that on a tree-structured graph, BP converges to a unique fixed

point. On a general graph (with some mild conditions on the potentials [46]), it

is known that BP has at least one fixed point, but it is not necessarily unique.

Sufficient convergence conditions based on the contractivity of the message update

operations were proposed as guarantees for BP to converge to a unique fixed

point [47–49].

3.1.2 BP Decoder for LDPC codes

On an LDPC code bipartite graph, following the notation in Section 2.1.2, we

denote the neighbors of variable (check) node v (c) by the set Nv (Nc). Denote

the variable-to-check messages (at iteration ℓ) by m̃
(ℓ)
v→c, and the check-to-variable

messages by m̃
(ℓ)
c→v. Let yv be the decoder input at the variable node v, and xv ∈

{+1,−1} be the transmitted bit (using binary phase-shift keying modulation)

corresponding to v. Let us summarize the well-known steps of the noise-free BP

decoder in the following.

• (Initialization) At iteration ℓ = 0, each variable node v sends the message

m̃
(0)
v,c = ln P (yv |xv=1)

P (yv |xv=−1)
to each check node c, c ∈ Nv.

• (Check node) At each iteration ℓ, ℓ ≥ 0, each check node c sends a message

m̃
(ℓ)
c,v to each variable node v, v ∈ Nc :

m̃(ℓ)
c,v = 2 tanh−1





∏

v′∈Nc\{v}

tanh
m̃

(ℓ)
v′,c

2



 .

1In tree-structured graphs, b̃i′(xi′) and b̃I(xI) are exact marginals PX
i′
(xi′) and PXI

(xI),
respectively.
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• (Variable node) At each iteration ℓ, ℓ ≥ 1, each variable node v sends a

message m̃
(ℓ)
v,c to each check node c, c ∈ Nv :

m̃(ℓ)
v,c = m̃(0)

v,c +
∑

c′∈Nv\{c}

m̃
(ℓ−1)
c′,v .

Since the messages in the BP decoder are log-likelihood ratios, they take values

in R. When the decoding process terminates at iteration L, the decoded bit of

variable node v is decided by the sign of m̃
(L)
v , where m̃

(L)
v = m̃

(0)
v,c+

∑

c′∈Nv
m̃

(L−1)
c′,v .

3.1.3 Previous Work: BP and Noisy Infinite Precision LDPC De-

coders

The belief propagation (BP) algorithm on graphical models has found wide

spread applications, including image processing, digital communication systems,

error correction coding, and bioinformatics [50]. Performance characterization

of the BP algorithm, especially the loopy BP for graphs with cycles, was ex-

tensively studied in previous work. The optimality conditions of loopy BP were

shown in [46]. Various conditions on convergence were proposed [47–49] and dif-

ferent modified BP algorithms were developed [51, 52]. Message quantization for

hardware implementation has been investigated in [47,53] and clever quantization

schemes with performance analysis of quantization effects are derived

Study of LDPC decoders implemented on noisy hardware has recently at-

tracted a lot of attention. In Chapter 2, we introduced some previous works

on finite precision decoders on noisy hardware and study the density evolution

analysis and robust system design for noisy finite precision decoders. In this

Chapter, we study infinite precision decoders as an application example of the

BP algorithm. Density evolution analysis for the min-sum decoder decoder under

different hardware error models was investigated in [54, 55]. A density evolution

analysis for BP decoders was derived in [36] which considered the constant (worst

case) computation noise.
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3.2 BP on Noisy Hardware

3.2.1 System Model and Convergence Analysis

In this section, we consider the transient error model for the BP algorithm

implemented on noisy hardware. We further assume that the effect of transient

errors is modeled as zero-mean additive noise, and the message update at iteration

ℓ is

m
(ℓ)
I→i(xi) = m̂

(ℓ)
I→i(xi) + w

(ℓ)
I→i(xi), (3.6)

where w
(ℓ)
I→i(xi) is the additive computation noise due to transient errors and

m̂
(ℓ)
I→i(xi) is the hypothetical noise-free message. Such zero-mean additive com-

putation noise model was also considered in related works [36, 56]. Using the

aggregate representation in (3.5), we have

m(ℓ) = f(m(ℓ−1)) + w(ℓ). (3.7)

Since the transient errors on different messages are independent, the entries in

w(ℓ) are independent.

We assume that the factor graph we consider satisfies the following condition:

sup
u∈U
‖f ′(u)‖ < 1, (3.8)

where U is the domain of the function f(u) and ‖ · ‖ denotes the vector norm.

Under this condition, BP converges to a unique fixed point [48]. This condition

is called the contraction mapping condition. Let supu∈U ‖f
′(u)‖ = K. We first

derive an upper bound for the distances (in terms of the vector norm) between

the fixed point and the noisy BP messages m(ℓ). Note that “fixed point” refers

to the fixed point of noise-free BP in the rest of this chapter. We first introduce

the following lemma from [48] , which is the consequence of the well-known Mean

Value Theorem.

60



Lemma 2. Let g : U → U be a differentiable mapping on a normed space (U, ‖·‖).

We have

‖g(u2)− g(u1)‖ ≤ ‖u2 − u1‖ · sup
y∈[u2,u1]

‖g′(y)‖, (3.9)

where [u2, u1] is the segment between u2 and u1, {λu1+(1−λ)u2 : λ ∈ [0, 1]}, and

u1, u2 ∈ U.

The following lemma gives an upper bound on the distance between the fixed

point m∗ and the message m(ℓ) as a function of ℓ. Denote the maximum number

of iterations by L.

Lemma 3. Let ξ > 0. Suppose that for all ℓ ≤ L, ‖w(ℓ)‖ ≤ ξ. Let supu∈U ‖f
′(u)‖ =

K. We then have ‖m(ℓ) −m∗‖ ≤ ‖m(0) −m∗‖Kℓ + (1−Kℓ)
1−K

ξ, where m∗ denotes the

fixed point.

Proof. We prove this lemma by induction. For ℓ = 1, by applying Lemma 2, we

have

‖m(1) −m∗‖ = ‖f(m(0)) + w(1) −m∗‖

≤ ‖f(m(0))−m∗‖+ ξ ≤ ‖m(0) −m∗‖K + ξ.

Let
‖m(ℓ) −m∗‖ ≤ ‖m(0) −m∗‖Kℓ +

(1−Kℓ)

1−K
ξ.

For iteration ℓ+ 1, by using Lemma 2, we have

‖m(ℓ+1) −m∗‖ = ‖f(m(ℓ)) + w(ℓ+1) −m∗‖

≤ ‖f(m(ℓ))−m∗‖+ ξ ≤ ‖m(ℓ) −m∗‖K + ξ

≤ ‖m(0) −m∗‖Kℓ+1 +
(1−Kℓ+1)

1−K
ξ.

Corollary 1. Let ξ and K be as defined in Lemma 3. Then, when ℓ → ∞,

‖m(ℓ) −m∗‖ is upper bounded by ξ

1−K
.
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Proof. Since ‖K‖ < 1, limℓ→∞Kℓ = 0, the corollary follows immediately.

Corollary 1 shows that when we run noisy BP for a large enough number of

iterations, the distance bound depends only on ξ and K. Although the distance

bound is not tight, Corollary 1 has an important implication. Since the noisy

messages are confined within this bound in all iterations, we are able to develop

robust implementations to improve BP on noisy hardware, as shown in the fol-

lowing sections.

3.2.2 The Censoring BP Algorithm

We first consider the transient errors with the following distribution

P (w(ℓ)(j) = φ) =











pw if φ = 0,

h(φ) otherwise,

(3.10)

where w(ℓ)(j) denotes the jth entry in w(ℓ), h is an arbitrary function satisfying
∫∞

−∞
h(z)dz = 1− pw and

∫∞

−∞
zh(z)dz = 0, and pw is positive. In this case, with

probability pw, noisy BP computes a correct message. If we are able to discard

the erroneous computations and replace them by recomputed messages, noisy BP

will converge to the fixed point as noise-free BP.

We observe that under the contraction mapping condition, ‖m(ℓ) − m(ℓ−1)‖

is a strictly decreasing function of ℓ, and converges to zero as ℓ → ∞, when

we assume noise-free computation. Hence, by comparing ‖m(ℓ) − m(ℓ−1)‖ with

‖m(ℓ−1) − m(ℓ−2)‖, and recomputing m(ℓ) when ‖m(ℓ) − m(ℓ−1)‖ > K‖m(ℓ−1) −

m(ℓ−2)‖, we are able to discard most of the erroneous computations and keep

the messages on the right track to convergence. However, the problem of this

idea is that the iterative message update could be trapped in some points other

than the fixed point, when w(ℓ−1) happens to cause m(ℓ−1) to be very close to

m(ℓ−2). In this situation, even when w(ℓ) is zero, we still have ‖m(ℓ) −m(ℓ−1)‖ >
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K‖m(ℓ−1) − m(ℓ−2)‖, since the small value of ‖m(ℓ−1) − m(ℓ−2)‖ is the result of

detrimental computation noise w(ℓ−1).We therefore include a backoff mechanism in

our algorithm to solve this problem. That is, when the computation results ofm(ℓ)

are repeatedly rejected (up to τ times, where τ is the recomputation threshold),

we recompute m(ℓ−1), and based on the recomputed m(ℓ−1), we compute m(ℓ). We

summarize the censoring BP algorithm in Algorithm 1. The BP stopping rule is

‖m(ℓ)−m∗‖ ≤ KT‖m(0)−m∗‖, where T is a positive integer (T is determined by

the desired accuracy of estimated beliefs). Note that in practice, since we do not

know m∗ (and even K) a priori, we can compute ‖m(ℓ)−m(ℓ−1)‖ for every ℓ, and

stop when the differences are small for several consecutive ℓ’s.

Algorithm 1 Censoring BP

ℓ← 0

while ‖m(ℓ) −m∗‖ > KT‖m(0) −m∗‖ do ℓ← ℓ+ 1, m(ℓ) ← f(m(ℓ−1)), i← 0;

while ‖m(ℓ) − m(ℓ−1)‖ > K‖m(ℓ−1) − m(ℓ−2)‖ & i ≤ τ do i ← i + 1,

m(ℓ) ← f(m(ℓ−1))

if i = τ then ℓ← ℓ− 1

end if

end while

end while

We discuss the convergence of the censoring BP algorithm in the following.

With censoring BP, the distance between the current message and the fixed point

can be modeled as a 1-D random walk starting at 0 and ending at T . To be more

specific, we start from position 0, where we have ‖m(0) −m∗‖ ≤ K0‖m(0) −m∗‖,

and reach position T at the final iteration Λ, where we have ‖m(Λ) − m∗‖ ≤

KT‖m(0) − m∗‖. When the message at the iteration ℓ, m(ℓ), is at position t, we

have ‖m(ℓ) −m∗‖ ≤ Kt‖m(0) −m∗‖. A correct computation is equivalent to one

step forward towards T. An erroneous (but accepted) computation is equivalent

to a few steps backwards away from T. Without detecting the erroneous compu-
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tations (for example, by checking if ‖m(ℓ) −m(ℓ−1)‖ ≤ K‖m(ℓ−1) −m(ℓ−2)‖) and

replacing them with recomputed messages, the number of steps taken backward is

logK(
Kt+1‖m(0)−m∗‖+‖w(ℓ)‖

Kt‖m(0)−m∗‖
) when the current message is at iteration ℓ and position

t. This number grows as t increases, and the convergence to the fixed point is not

guaranteed. However, by ensuring that ‖m(ℓ) − m(ℓ−1)‖ ≤ K‖m(ℓ−1) − m(ℓ−2)‖

is satisfied, we are able to upper bound the number of steps backward for the

(accepted) erroneous computations as follows.

To simplify the analysis, we assume that the first computation is noise-free.

This can be achieved by repeated computations and a majority voting. We first

derive an upper bound on ‖w(ℓ)‖ in terms of ‖m(ℓ)−m(ℓ−1)‖ when m(ℓ) is accepted

by our algorithm in the following:

‖m(ℓ) −m(ℓ−1)‖ = ‖f(m(ℓ−1)) + w(ℓ) −m(ℓ−1)‖

≥ ‖w(ℓ)‖ − ‖f(m(ℓ−1))−m(ℓ−1)‖. (3.11)

Since ‖m(i)−m(i−1)‖ ≤ K‖m(i−1)−m(i−2)‖ for all i ≤ ℓ, we have ‖m(ℓ)−m(ℓ−1)‖ ≤

Kℓ−1‖m(1) −m(0)‖. Therefore, we have the following upper bound for w(ℓ):

‖w(ℓ)‖ ≤ Kℓ−1‖m(1) −m(0)‖+ ‖f(m(ℓ−1))−m(ℓ−1)‖. (3.12)

The first term, Kℓ−1‖m(1) −m(0)‖, is upper bounded by

Kℓ−1‖m(1) −m(0)‖ ≤ Kℓ−1(‖m(1) −m∗‖+ ‖m(0) −m∗‖)

≤ Kℓ−1(K + 1)‖m(0) −m∗‖. (3.13)

The second term in (3.12) is upper bounded by

‖f(m(ℓ−1))−m(ℓ−1)‖ ≤ ‖f(m(ℓ−1))−m∗‖+ ‖m(ℓ−1) −m∗‖

≤ (K + 1)‖m(ℓ−1) −m∗‖ ≤ Kt−1(K + 1)‖m(0) −m∗‖, (3.14)

where t − 1 is the position of the previous message m(ℓ−1) in the random walk

we described in the previous paragraph, and ‖m(ℓ−1) −m∗‖ ≤ Kt−1‖m(0) −m∗‖.
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Therefore, we have

‖w(ℓ)‖ ≤ 2(K + 1)Kt−1‖m(0) −m∗‖. (3.15)

We used the fact that ℓ ≥ t, since at the ℓth iteration, the message cannot go

beyond the distance bound Kℓ‖m(0) −m∗‖. We then have

‖m(ℓ) −m∗‖ ≤ K ·Kt−1‖m(0) −m∗‖+ ‖w(ℓ)‖

≤ Kt‖m(0) −m∗‖+ 2(K + 1)Kt−1‖m(0) −m∗‖

= (3K + 2)Kt−1‖m(0) −m∗‖. (3.16)

Hence, the number of steps backward when we have an (accepted) erroneous com-

putation is upper bounded by logK(3K + 2). We denote probability of satisfying

‖m(Λ) − m∗‖ ≤ KT‖m(0) − m∗‖ at the final iteration Λ ≤ L by pf , where L is

the maximum number of iterations. Then, pf is lower bounded by the probability

of the random walk hitting the destination, position T , within L steps. When

(1−pw) logK(3K+2) < pw, as L→∞, censoring BP converges to the fixed point

w.p.1.

For finite but sufficiently large L and pw, we ignore the small probability2 that

the algorithm does not stop before the iteration number reaches L, i.e., in L steps

the random walk described previously has not reached position T, and derive the

expected number of steps (iterations) when the random walk reaches position T

for the first time in the following. Let the position at the ℓth step (corresponding

to the ℓth iteration in BP) be Zℓ, the displacement of the ℓth step be Yℓ, and

Aℓ = T − Zℓ. Let η be the stopping time, hence Aη = 0 (the BP messages reach

T and stop at iteration η). Denote the expectation of Yℓ by α. According to the

previous discussion, in the random walk process, the message takes 1-step forward

with probability pw, and takes logK(3K + 2)-steps backwards with probability

1− pw (Here we consider the worst case in which all the erroneous computations

2This probability is small because the probability of hitting T within L steps increases with
L and pw.
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are accepted). Hence we have α = E[Yℓ] = pw − (1 − pw) logK(3K + 2). Let

Bℓ = Aℓ + αℓ. Bℓ is a martingale since

E[Bℓ|Bℓ−1]

= (Aℓ−1 − 1)pw + (Aℓ−1 + logK(3K + 2))(1− pw) + αℓ

= Bℓ−1. (3.17)

Then, according to the optional stopping theorem [57], we have T = E[B0] =

E[Bη] = αE[η]. The expected stopping time is then T
α
, which decreases as pw

increases. To sum up, we showed that censoring BP converges w.p.1 when L→∞

and (1− pw) logK(3K +2) ≤ pw, and for finite and sufficiently large L and pw, we

derived the expected stopping time.

The advantage of this algorithm is that it only requires a small overhead;

the only additional noise-free operation in this algorithm is testing if ‖m(ℓ) −

m(ℓ−1)‖ ≤ K‖m(ℓ−1) −m(ℓ−2)‖ holds. In practice, we could set K = 1 to simplify

the computation.

Censoring BP performs well when the hardware noise distribution (as specified

in (3.10)) has a large mass at zero and has non-negligible masses at some points

sufficiently away from zero. Such a distribution is found in, for example, the

soft adder model [7]. For this noise distribution, censoring BP rejects almost

all erroneous computations when the current message is close to the fixed point

(that is, ‖m(ℓ−1) − m(ℓ−2)‖ is small when the messages are both from correct

computations). However, for the general case, especially when pw is small or zero,

censoring BP may fail to converge. In the next section we therefore propose the

averaging BP algorithm, which applies to general zero-mean computation noise

distributions.
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3.2.3 The Averaging BP Algorithm

As we have seen in the preceding section, censoring BP is guaranteed to

converge when we assume that pw (cf. (3.10)) is sufficiently large. In this section,

we release this assumption, consider the general zero-mean computation noise, and

propose the averaging BP algorithm. From Corollary 1 and the simulation results

to be discussed (Fig. 3.2b), we observe that the messages oscillate around the

fixed point when zero-mean computation noise is considered. This phenomenon

inspires us to propose averaging BP: instead of using m(ℓ) in the final iteration

to compute the beliefs of the random variables Xi’s, we use the average over all

up-to-date messages

m̄(ℓ) =
1

ℓ

ℓ
∑

i=1

m(i), (3.18)

to compute the beliefs. Although such operation induces a slightly larger overhead

than censoring BP, it guarantees the convergence of m̄(ℓ) to the fixed point, as we

will show later.

We first intuitively explain the convergence of averaging BP as follows. As

observed in the simulation results in Fig. 3.2b, when the iteration number is large

enough, the noisy BP messages are approximately the fixed point message plus a

noise term due to the computation noise. When the noise has finite variance and is

zero-mean and independent across iterations, its effects gradually disappear over

subsequent iterations due to the averaging operation. The effects of the first few

iteration messages, whose distances to the fixed point could be large, also diminish

due to the averaging operation as the iteration number grows. Hence the average

message m̄(ℓ) in (3.18) converges to the fixed point when ℓ → ∞. In fact, the

operation in (3.18) is reminiscent of the averaging method in stochastic optimiza-

tion, in which the gradient being used in the iterative optimization procedure is

noisy. The convergence of the averaging method for stochastic optimization was

proved in [58]. The authors in [52] applied the Robbins-Monro algorithm, which
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is the original form of stochastic optimization, to develop the stochastic message

passing scheme, and proved its convergence. Due to the similarity of the underly-

ing mathematical models, we are able to adapt some of the proof techniques used

in [52] for our use. The convergence of the averaging BP algorithm is formally

stated in the following.

Proposition 1. Assume that the averaging operation is noise-free. Assume the

following four conditions are satisfied:

1. ‖w(ℓ)‖ is upper bounded by a finite constant,

2. ‖E[w(ℓ)]‖ = 0,

3. w(ℓ)’s are i.i.d, and

4. entries in w(ℓ) are with finite variances for all ℓ.

We then have

lim
ℓ→∞

∥

∥

∥

∥

∥

1

ℓ

ℓ
∑

i=1

m(i) −m∗

∥

∥

∥

∥

∥

= 0. (3.19)

That is, the average of the messages over all up-to-date iterations converges to the

fixed point.

Proof. Since m̄(ℓ) = 1
ℓ

∑ℓ

i=1m
(i), we have

m̄(ℓ) −m∗ =
1

ℓ

ℓ
∑

i=1

f(m(i−1)) +
1

ℓ

ℓ
∑

i=1

w(i) −m∗

=
1

ℓ

ℓ
∑

i=1

(

f(m(i−1))−m∗
)

+
1

ℓ

ℓ
∑

i=1

w(i). (3.20)

Since ‖f(m(i))−m∗‖ ≤ K‖m(i) −m∗‖, let

f(m(i))−m∗ = K(m(i) −m∗)Ui, (3.21)

where Ui is a rotation matrix multiplied by a positive number less than or equal

to 1. That is, we shrink and rotate the vector K(m(i) −m∗) to make it equal to

68



the vector f(m(i))−m∗. Then, for i ≥ 2, we expand the terms f(m(i−1))−m∗ in

(3.20) in the following:

f(m(i−1))−m∗ = K(m(i−1) −m∗)Ui−1

= K(f(m(i−2))−m∗ + w(i−1))Ui−1

= K2(f(m(i−2))−m∗)Ui−2Ui−1 +Kw(i−1)Ui−1

= Ki(m(0) −m∗)
i−1
∏

j=0

Uj +
i−1
∑

j=1

Kjw(i−j)

j
∏

r=1

Ui−r. (3.22)

We repeatedly applied (3.21) to derive the last equality in (3.22).

m̄(ℓ) −m∗

=
1

ℓ

ℓ
∑

i=1

(

Ki(m(0) −m∗)
i−1
∏

j=1

Uj +
i−1
∑

j=0

Kjw(i−j)

j
∏

r=1

Ui−r

)

+
1

ℓ

ℓ
∑

i=1

w(i)

=
1

ℓ

ℓ
∑

i=1

Ki(m(0) −m∗)
i−1
∏

j=0

Uj +
1

ℓ

ℓ
∑

i=1

w(i)

+
1

ℓ

ℓ
∑

i=2

i−1
∑

j=0

Kjw(i−j)

j
∏

r=1

Ui−r. (3.23)

We then have

‖m̄(ℓ) −m∗‖ ≤

∥

∥

∥

∥

∥

1

ℓ

ℓ
∑

i=1

Ki(m(0) −m∗)
i−1
∏

j=0

Uj

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

1

ℓ

ℓ
∑

i=1

w(i)

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

1

ℓ

ℓ
∑

i=2

i−1
∑

j=1

Kjw(i−j)

j
∏

r=1

Ui−r

∥

∥

∥

∥

∥

. (3.24)

The first term on the R.H.S. of (3.24) converges to zero as ℓ approaches infinity
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since

lim
ℓ→∞

∥

∥

∥

∥

∥

1

ℓ

ℓ
∑

i=1

Ki(m(0) −m∗)
i−1
∏

j=0

Uj

∥

∥

∥

∥

∥

≤ lim
ℓ→∞

1

ℓ

ℓ
∑

i=1

Ki‖m(0) −m∗‖

= lim
ℓ→∞

K(1−Kℓ)‖m(0) −m∗‖

ℓ(1−K)
= 0. (3.25)

Since we assume that w(i)’s are independent and their entries are with finite vari-

ances, the second term on the R.H.S. of (3.24) also converges to zero. For the

third term on the R.H.S. of (3.24):

1

ℓ

ℓ
∑

i=2

i−1
∑

j=1

Kjw(i−j)

j
∏

r=1

Ui−r

=
1

ℓ

ℓ−1
∑

i′=1

(

i′
∑

j′=1

Kj′
j′−1
∏

r′=0

Uℓ−r′

)

w(ℓ−i′)

=
1

ℓ

ℓ−1
∑

i=1

i
∑

j=1

Kj

j−1
∏

r=0

Uℓ−rw
(ℓ−i). (3.26)

The first equality in (3.26) is derived by collecting w(i−j) terms with the same

superscript. The second equality in (3.26) is derived by replacing i′,j′, and r′ by

i, j, and r, respectively. Note that
∥

∥

∥

∥

∥

i
∑

j=1

Kj

j−1
∏

r=0

Uℓ−rw
(ℓ−i)

∥

∥

∥

∥

∥

≤
i
∑

j=1

Kj‖w(ℓ−i)‖

=
K(1−Ki)

1−K
‖w(ℓ−i)‖. (3.27)

Recall that in (3.21), we express f(m(i))−m∗ as K(m(i)−m∗)Ui since ‖f(m
(i))−

m∗‖ ≤ K‖m(i) −m∗‖. Here, since we have the inequality (3.27), we can likewise

express
∑i

j=1K
j
∏j−1

r=0 Uℓ−rw
(ℓ−i) as K(1−Ki)

1−K
w(ℓ−i)U ′

i , where U
′
i is a rotation matrix

multiplied by a positive number less than or equal to 1. We then have

1

ℓ

ℓ−1
∑

i=1

(

i
∑

j=1

Kj

j−1
∏

r=0

Uℓ−rw
(ℓ−i)

)

=
1

ℓ

ℓ−1
∑

i=1

K(1−Ki)

1−K
w(ℓ−i)U ′

i . (3.28)
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Therefore,

1

ℓ

ℓ−1
∑

i=1

K(1−Ki)

1−K
w(ℓ−i)U ′

i =
K

ℓ(1−K)

ℓ−1
∑

i=1

w(ℓ−i)U ′
i

+
1

ℓ(1−K)

ℓ−1
∑

i=1

Ki+1w(ℓ−i)U ′
i . (3.29)

The norm of the second term on the R.H.S. of (3.29) converges to zero since

lim
ℓ→∞

∥

∥

∥

∥

∥

1

ℓ(1−K)

ℓ−1
∑

i=1

Ki+1w(ℓ−i)U ′
i

∥

∥

∥

∥

∥

≤ lim
ℓ→∞

K2(1−Kℓ−1)maxj ‖w
(j)‖

ℓ(1−K)2
= 0. (3.30)

We used the fact that ‖w(j)‖ is upper bounded. Finally, we discuss the conver-

gence of the norm of the first term on the R.H.S. of (3.29). Here we assume that

w(ℓ−i)U ′
i ’s are independent. We cannot rigorously reason the validity of the inde-

pendence assumption, but we draw support from an argument provided in [47]. In

Proposition 17 of [47] (Section 5.5), a similar assumption was made on “message

errors”, i.e., the differences between BP messages and the fixed point messages in

every iteration. As was mentioned in [47], similar assumptions yield useful analysis

of the effects of quantization (which can be considered as a type of computation

noise) in digital processing systems such as digital filters, and empirically such

systems often behave close to the predictions made under such assumptions [59].

In fact, simulation results for Ising model demonstrate that averaging BP indeed

converges to the fixed point, as predicted in this proposition. Since w(ℓ−i)U ′
i ’s are

independent, the first term on the R.H.S. of (3.29) converges to zero as ℓ → ∞.

Note that even if w(ℓ−i)U ′
i ’s are not independent, as long as they are not “too

much positively correlated” and the growth of
∑ℓ

i=1w
(ℓ−i)U ′

i is slower than linear

w.r.t. ℓ, the first term on the R.H.S. of (3.29) still converges to zero as ℓ → ∞.

Therefore, the three terms on the R.H.S. of (3.24) all converges to zero as ℓ→∞,

and this completes our proof.
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Next, we derive an upper bound on the expectation of the L1 norm of the

difference between m̄(ℓ) and the fixed point, ‖m̄(ℓ) −m∗‖1, w.r.t. ℓ.

Proposition 2. Assume that the computation noise ‖w(ℓ)‖∞ ≤ β, where β > 0. If

w(ℓ) satisfies the four conditions in Proposition 1, the expectation of the L1 norm

of the difference between m̄(ℓ) and the fixed point m∗ is upper bounded as

E[‖m̄(ℓ) −m∗‖1] ≤
K(1−Kℓ)‖m(0) −m∗‖1

ℓ(1−K)

+ βΓ
(K2(1−Kℓ−1)

ℓ(1−K)2
+

√

2π

ℓ

K

1−K

)

, (3.31)

where Γ is the dimension 3 of w(ℓ).

Proof. We first show that the sequence {w(ℓ)(j)}∞ℓ=0 has the martingale difference

property [57] for every j. Let the σ-field Fℓ be the σ-field on {w(1)(j), . . . , w(ℓ)(j)}.

Since we assume that the computation noise is zero-mean and independent across

different iterations, we have E[w(ℓ+1)(j)|Fℓ] = 0.We also assume that the entries in

w(ℓ)’s are bounded. Hence the sequence {w(ℓ)(j)}∞ℓ=0 forms a bounded martingale

difference sequence. Given the assumption that |w(i)(j)| ≤ β (as stated in the

proposition), we apply the Azuma-Hoeffding inequality [60] to yield the bound

P

(

1

ℓ

∣

∣

∣

∣

∣

ℓ
∑

i=1

w(i)(j)

∣

∣

∣

∣

∣

> γ

)

≤ 2 exp

(

−
ℓγ2

2β2

)

, (3.32)

for all γ > 0. We upper bound the mean of 1
ℓ
|
∑ℓ

i=1w
(i)(j)| by integrating both

sides of (3.32):

E

[

1

ℓ

∣

∣

∣

∣

∣

ℓ
∑

i=1

w(i)(j)

∣

∣

∣

∣

∣

]

=

∫ ∞

0

P

(

1

ℓ

∣

∣

∣

∣

∣

ℓ
∑

i=1

w(i)(j)

∣

∣

∣

∣

∣

> γ

)

dγ

≤ β

√

2π

ℓ
. (3.33)

For Γ, the dimension of w(i), we have

E

[

1

ℓ

∥

∥

∥

∥

∥

ℓ
∑

i=1

w(i)

∥

∥

∥

∥

∥

1

]

≤ βΓ

√

2π

ℓ
. (3.34)

3Γ = d‖E‖, d is the size of X and ‖E‖ is the number of edges in the factor graph.
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From (3.24), (3.25), (3.29), and (3.30) in the proof of Proposition 1, we have

‖m̄(ℓ) −m∗‖1

≤
K(1−Kℓ)‖m(0) −m∗‖1

ℓ(1−K)
+
K2(1−Kℓ−1)βΓ

ℓ(1−K)2

+

∥

∥

∥

∥

∥

1

ℓ

ℓ
∑

i=1

w(i)

∥

∥

∥

∥

∥

1

+

∥

∥

∥

∥

∥

K

ℓ(1−K)

ℓ−1
∑

i=1

w(ℓ−i)U ′
i

∥

∥

∥

∥

∥

1

. (3.35)

As in the proof of Proposition 1, here we also assume that the vectors w(ℓ−1)U ′
1,

w(ℓ−2)U ′
2, . . . , w

(1)U ′
ℓ−1 are independent. Their entries then also form a martingale

difference sequence. Therefore, by substituting (3.34) in (3.35), we have

E[‖m̄(ℓ) −m∗‖1]

≤
K(1−Kℓ)‖m(0) −m∗‖1

ℓ(1−K)
+
K2(1−Kℓ−1)βΓ

ℓ(1−K)2

+
( K

1−K
+ 1
)

βΓ

√

2π

ℓ

≤
K(1−Kℓ)‖m(0) −m∗‖1

ℓ(1−K)

+ βΓ
(K2(1−Kℓ−1)

ℓ(1−K)2
+

√

2π

ℓ

1

1−K

)

. (3.36)

This completes our proof.

The previous proposition shows that the decay of the upper bound for E[‖m̄(ℓ)−

m∗‖1] is roughly
√

1
ℓ
for sufficiently large ℓ. To accelerate the convergence, we can

start the averaging operation from i = i∗, i∗ > 1 in (3.19) instead of i = 1, since

the first few messages might be far away from the fixed point, slowing down the

convergence in our averaging operations.

Although the overhead of averaging BP is slightly larger than censoring BP,

the overhead of averaging BP is still very small compared to other fault-tolerant

computing approaches such as Triple Modular Redundancy [3]. The only required

noise-free operation in the averaging BP is the averaging operation. Even the

summation operation in (3.18) is allowed to be noisy, since the noise-free division
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will help diminish the effects of computation noise in the summation operation.

Moreover, the averaging operation is done off-line, that is, the message update

does not rely on the average message m̄(ℓ). Therefore, instead of performing the

averaging operation at every iteration, we can just perform the averaging operation

only when we want to compute the beliefs of the variable nodes. Note that m̄(ℓ)

(see (3.18)) is computed from the sum of m(i)’s. Therefore, instead of storing

the messages in past iterations separately, we only need to store the sum of the

messages up to the current iteration. As a consequence, the number of additional

memory cells required can be kept constant.

3.2.4 Experiments on Ising Model

In this section, we compare the convergence of the proposed algorithms and

the nominal BP algorithm under different computation noise models. We use a

fully connected, uniform coupling, and uniform local field Ising model. In the

Ising model, all the potentials consist of at most two variables, and all the N

random variables in the Ising model are binary. Denote the set of factors as

F = F1 ∪ F2, where F1 = V are the factors connected to one variable node, and

F2 ⊆ {(i, j) : i, j ∈ V , i 6= j} are the factors connected to two variable nodes. The

joint distribution of the variables is

PX(x) =
1

Z
exp

(

∑

(i,j)∈F2

Ji,jxixj +
∑

i∈F1

θixi

)

. (3.37)

For the uniform coupling and uniform local field Ising models, all Ji,j’s are the

same (denote their common value by J) and all θi’s are also the same (denote their

common value by θ). The J and θ ranges that satisfy the contraction mapping

condition for different N values were derived in [48], and we select N = 4, J = 0.3

and θ = −0.3 in our experiments accordingly.
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Figure 3.1: Censoring BP: (a) L1 norm distance comparison. (b) Belief trajectory

comparison.
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3.2.4.1 Censoring BP on Ising model

For censoring BP, we consider the computation noise model adapted from the

soft adder model proposed in [7]: the computation noise is either zero or has a

large magnitude. To be more specific, the noise distribution follows (3.10), with

pw = 0.95 and h(φ) being a mixed Gaussian distribution with variance γ

4
and

mean 0.5γ with probability 0.5 and mean −0.5γ with probability 0.5, where γ is

the magnitude of the message that the noise is added to. Since the messages in

BP are always positive, we set the noisy messages to be the absolute values of

the sum of the noise-free messages and the computation noise, namely, m(ℓ) =

|f(m(ℓ−1)) + w(ℓ)|.

We compare the L1 norm distance of the beliefs computed by censoring BP

to the beliefs computed by noise-free BP with the L1 norm distance of the beliefs

computed by nominal BP to the beliefs computed by noise-free BP. We show the

average L1 norm distances in each iteration over 200 simulations in Fig. 3.1a.

The average distance between censoring BP and noise-free BP decreases to zero

as the iteration number grows, while the average distance between nominal BP

and noise-free BP remains large even when the maximum iteration number (20

in this example) is reached. We also show the trajectory of the beliefs of variable

node 1 w.r.t. the iteration number in a single simulation in Fig. 3.1b. We observe

that although censoring BP could make mistakes in the first few iterations, as

the beliefs get closer to the fixed point, most of the erroneous computations are

rejected, and censoring BP successfully converges to the fixed point.

3.2.4.2 Averaging BP on Ising model

For averaging BP, we consider the zero-mean computation noise with pw = 0

(cf. (3.10)). To be more specific, we consider the case where the entries of w(ℓ) are

uniformly distributed in [−γ

a
, γ
a
], where γ is the magnitude of the message that
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Figure 3.2: Averaging BP: (a) L1 norm distance comparison. (b) Belief trajectory

comparison (a = 5).
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the noise is added to and a is greater than 1 to ensure the message is larger than

zero. The maximum message value is 1. Therefore, the noisy message is expressed

as m(ℓ) = (f(m(ℓ−1)) + w(ℓ) − 1)− + 1, where (ζ)− denotes the negative part of ζ,

i.e., the message is clipped at 1.

We compare the L1 norm distance of the beliefs computed by averaging BP to

the beliefs computed by noise-free BP with the distance of the beliefs computed

by nominal BP to the beliefs computed by noise-free BP. We use two different

computation noise distributions for comparison, namely, a = 5 and a = 10, and

show the average L1 distances in each iteration over 200 simulations (Fig. 3.2a).

We observe that the average distance between averaging BP and noise-free BP is

very close to zero after a sufficiently large number of iterations. The increase in

computation noise variance only slightly increases the distance to the noise-free

BP message for averaging BP. We also show that the trajectories of the beliefs

of variable node 1 in a sampled simulation in Fig. 3.2b (up to 20 iterations).

We observe that the beliefs computed by averaging BP quickly converges to the

fixed point, while nominal BP beliefs keep oscillating around the fixed point.

To test averaging BP under computation noise with different distributions, we

also run simulations for averaging BP under Gaussian distributed computation

noise, and the results are qualitatively the same as the uniform distributed noise,

thus showing that the shape of computation noise distribution has limited effect

on averaging BP performance. We thus conclude that the proposed algorithms

successfully converge to the fixed point, while the nominal BP algorithm fails to

do so.

3.3 Application Example I:Image Denoising

BP can be applied to image denoising where we seek to recover the original

image from the noise-contaminated observation of the image. We briefly explain
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Figure 3.3: Image denoising via BP: (a) original image (b) contaminated image (c)

recovered image by noise-free BP (d) recovered image by nominal BP (e) recovered

image by averaging BP.

a simple BP-based image denoising algorithm as follows. Consider a 2-D image.

For every color on the image, we assign a unique number to the color. The value

of each pixel on the image is then the number corresponding to the pixel’s color.

In a 2-D image, our observation of each pixel value is contaminated by additive

noise. Assume that the noises added to different pixels are independent. To

recover the image from the contaminated pixel value observations, we construct a

2-D grid with an appropriate choice of potential functions (e.g., Potts model) as

our factor graph. Each pixel in the image is then associated to a variable node on

the factor graph. Each message is a vector representing the probabilities of all the

possible colors of the associated pixel. To be more specific, suppose we are on a

256-level grayscale; a message associated with a variable node is a vector with 256

entries. Each entry is the probability that the pixel associated with the variable

node is at a darkness level corresponding to the entry. We run the BP algorithm

on the factor graph to obtain the most likely value of every pixel based on the

contaminated observations.

We use the ”penguin” image (with size 179 × 122 and 256 gray-scale levels)

from [61], and associate the 2-D grid constructed for the image to a Potts model

[61] with coefficient ρ = 0.001. In a Potts model, the potential function ψI of a

79



factor connecting two variable nodes is 1 for the two variables with the same value,

and ρ for the two variables with different values. We assign the integers 0 to 255

to the 256 gray-scale levels. Every pixel value in the image is contaminated with

an independent Gaussian random variable with zero-mean and standard deviation

50. The original image and the contaminated image are shown in Fig. 3.3(a) and

Fig. 3.3b. We use the computation noise model in Section 3.2.4.2, and run the

nominal BP and averaging BP algorithm for 20 iterations to recover the original

image from the contaminated one.

Images recovered by noise-free BP, nominal BP, and averaging BP are shown

in Fig. 3.3c, Fig. 3.3d, and Fig. 3.3e, respectively. Comparing Fig. 3.3d and

Fig. 3.3e, we observe that for the nominal BP, most of the pixels are determined

incorrectly and the recovered image is very different from the image recovered

using noise-free BP (Fig. 3.3c). On the other hand, the image recovered by

averaging BP is very close to the image recovered by noise-free BP (Fig. 3.3c).

We then conclude that averaging BP indeed improves the image denoising BP on

noisy hardware.

3.4 Application Example II: BP Decoder for LDPC Codes

3.4.1 Noisy BP Decoder

BP can be applied to decode the messages transmitted over a communica-

tion channel. In Chapter 2, we study finite precision decoders implemented on

noisy hardware. In this section, we consider the BP decoder, which is an infinite

precision decoder. Following the noisy decoder model in Chapter 2, in addition

to receiving a noisy input from a communication channel, the noisy BP decoder

is also subject to errors arising from noisy hardware. According to the BP com-

putation noise model (3.6), the messages exchanged in our noisy BP decoder at
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iteration ℓ are represented as:

m(ℓ)
v,c = m̂(ℓ)

v,c + w̆(ℓ)
v,c, m

(ℓ)
c,v = m̂(ℓ)

c,v + w̆(ℓ)
c,v, (3.38)

where m̂
(ℓ)
v,c and m̂

(ℓ)
c,v are the noise-free messages, and w̆

(ℓ)
v,c and w̆

(ℓ)
c,v are the compu-

tation noises. Note that since the computation noise is additive and the variable

node operation is simply the summation of all incoming messages, we can com-

bine the computation noise in check nodes and a variable node into a single term.

Then, in our noisy BP decoder, a check node is the same as a check node in the

noise-free decoder, and the variable node operation becomes

m(ℓ)
v,c = m(0)

v,c +
∑

c′∈Nv\{c}

m̂
(ℓ−1)
c′,v + w(ℓ)

v,c, (3.39)

where w
(ℓ)
v,c = w̆

(ℓ)
v,c+

∑

c′∈Nv\{c}
w̆

(ℓ)
c′,v is the aggregate computation noise. We assume

that all w
(ℓ)
v,c’s are identically distributed and independent across ℓ. Note that m

(0)
v,c

is the same as m̃
(0)
v,c since we have the same communication channel for the noise-

free and noisy decoders.

3.4.2 Density Evolution and Decoding Threshold Analysis of a Noisy

BP Decoder

Following the transient error model in Chapter 2, we assume that w
(ℓ)
v,c’s are

symmetric. We also assume that the underlying bipartite graph for our decoder

is cycle-free. Since w
(ℓ)
v,c’s are symmetric, according to [36], the error behavior of a

noisy decoder is independent of the chosen codeword. We therefore assume that

the all-zero codeword is transmitted.

We use Gaussian approximate density evolution techniques [62] to analyze the

noisy BP decoder. Gaussian approximate density evolution for the noise-free BP

decoders utilizes the facts that (a) when dv is sufficiently large, the distribution of

the summation of check-to-variable messages is close enough to a Gaussian distri-

bution (by the central limit theorem), and (b) when the communication channel
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noise is Gaussian, the log-likelihood ratios of the decoder input are Gaussian with

mean 2
σ2
ch

and variance 4
σ2
ch

, where σ2
ch is the variance of the communication chan-

nel noise. Experimental results confirm the validity of such approximation [62].

Applying the Gaussian approximate density evolution to the noisy BP decoder,

we have the following lemma:

Lemma 4. If dv is sufficiently large, and if one of the two following conditions

holds: (c) w̆
(ℓ)
c,v and w̆

(ℓ)
v,c in (3.38) are identically distributed with zero mean, (d)

w̆
(ℓ)
v,c in (3.38) is Gaussian with zero mean, then the distribution of m

(ℓ)
v,c can be

approximated by the Gaussian distribution with mean 2
σ2
ch

+ µℓ−1 and variance

4
σ2
ch

+ σ2
ℓ−1 + σ2

cmp, where σ
2
cmp is the variance of w

(ℓ)
v,c, and µℓ−1 and σ2

ℓ−1 are mean

and variance of
∑

c′∈Nv\{c}
m̂

(ℓ−1)
c′,v , respectively.

Proof. When dv is sufficiently large and when condition (c) or (d) holds, by the

central limit theorem, the aggregate computation noise, w̆
(ℓ)
v,c +

∑

c′∈Nv\{c}
w̆

(ℓ−1)
c′,v ,

can be approximated by a Gaussian random variable with zero mean and variance

σ2
cmp. Then, given facts (a) and (b) mentioned in the preceding paragraph, the

initial message m
(0)
v,c is Gaussian distributed with mean 2

σ2
ch

and variance 4
σ2
ch

, and
∑

c′∈Nv\{c}
m̂

(ℓ−1)
c′,v can be approximated by a Gaussian random variable with its

mean and variance denoted by µℓ−1 and σ2
ℓ−1 respectively. Relying on the fact

that the sum of independent Gaussian random variables is still a Gaussian random

variable, with mean and variance being the sums of the means and variances of the

summand variables, the distribution of m
(ℓ)
v,c is then approximated by a Gaussian

distribution with mean 2
σ2
ch

+ µℓ−1 and variance 4
σ2
ch

+ σ2
ℓ−1 + σ2

cmp.

We adapt the semi-Gaussian method, a variant of the Gaussian approximation

method, proposed in [63] to analyze the density evolution of our noisy BP decoder

according to Lemma 4. The quantities µℓ−1 and σ
2
ℓ−1 in the semi-Gaussian method

are derived by Monte-Carlo simulations, and the residual error rates are derived

from the approximated Gaussian distributions. Details of the semi-Gaussian
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Figure 3.4: Decoding threshold pairs for different regular LDPC codes.

method can be found in [63]. For the noisy BP decoder under Gaussian com-

putation noise and the infinite-precision hardware (i.e., messages of arbitrarily

large dynamic range are represented with arbitrarily high precision), we observe

from the density evolution analysis that the decoder approaches zero error prob-

ability if the communication channel noise and the computation noise are small.

This observation was also made in [36], and is explained as follows. The iterative

decoding process is able to raise the message values (log-likelihood ratios) to infin-

ity when the communication channel noise is small enough. Since the magnitude

of Gaussian computation noise is finite w.p.1, when the messages are large enough

(i.e., close to infinity), the effects of the computation noise diminish.

Extending the definition of the decoding threshold for the noise-free case

(see [39]), we define the decoding threshold for a noisy BP decoder as a curve

σch = σ∗
ch(σcmp) on the σch − σcmp plane such that perfect decoding is achiev-

able whenever σch < σ∗
ch(σcmp) and unachievable whenever σch > σ∗

ch(σcmp).
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Reversely, the curve can also be expressed as σcmp = σ∗
cmp(σch), and perfect

decoding is achievable whenever σcmp < σ∗
cmp(σch) and unachievable whenever

σcmp > σ∗
cmp(σch).

In Fig. 3.4, we plot the decoding threshold curve derived from the Gaussian

approximate density evolution for different (dv, dc)-regular LDPC codes. It is clear

that σ∗
ch decreases as σcmp increases. Therefore, we conclude from the decoding

threshold analysis that the communication channel noise level must be lowered if

the computation noise is large, so that the joint effect of the two types of noises

does not prohibit perfect decoding.

3.4.3 Averaging BP Decoder

Under noise of moderate variance values, the residual error rate is bounded

away from zero (i.e., when the (σcmp, σch) pair is above and to the right of the

curve in Fig. 3.4). In this section, we focus on the BP decoder operating under

noise of moderate variance values and propose a robust decoder implementation

based on averaging BP proposed in Section 3.2.3. To be more specific, when we

terminate the decoding process at the L’th iteration, we compute the average

message, m̄
(L)
v , as

m̄(L)
v =

1

ℓ

L
∑

i=1

m(i)
v . (3.40)

The decoder output is then computed by m̄
(L)
v .We call this decoder the averaging

BP decoder. In fact, since we consider binary LDPC codes in this section, the

decoded bits are determined only by the signs of m̄
(L)
v ’s. We therefore can eliminate

1
ℓ
from (3.40); the decoded bits are specified only by

∑ℓ

i=1m
(i)
v .

We compare the residual error rates of the averaging BP decoder with the nom-

inal BP decoder under the noisy decoder model (3.39) by simulations to demon-

strate the advantages of the averaging BP decoder. We use a (3, 6)-regular LDPC

code with code length 2640 [41]. The Gaussian communication channel noise has
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Figure 3.5: Residual error rate comparison (a) σch = 0.7. (b) σch = 0.6.
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zero-mean and variance σ2
ch. As an example, we consider σch = 0.6 and σch = 0.7.

The range of σcmp is chosen to be an interval starting near σ∗
cmp(σch) to show the

effects of increasing computation noise on the residual error rates. The number

of iterations in our simulations is 30. Note that for finite length LDPC codes,

the bipartite graphs may have cycles. The contraction mapping condition is not

satisfied.4

Simulation results are shown in Fig. 3.5a and Fig. 3.5b. We observe that

the averaging BP decoder achieves lower residual error rates than the nominal

BP decoder for the whole σcmp interval we simulated and for both communication

channel noise cases. The residual error rate reduction reaches 20X in the low

computation noise region with σch = 0.6. We then conclude that averaging BP

significantly reduces the residual error rate of the noisy BP decoder.

When σcmp drops below σ∗
cmp (with a given σch), with enough iterations, we

observe that the residual error rates of both the nominal and the averaging BP

decoders quickly approach zero. Interestingly, with small σcmp, the residual error

rate of the nominal BP decoder converges faster to zero than the residual error

rate of the averaging BP decoder. For example, when σcmp = 1.4 and σch = 0.7,

the nominal BP decoder residual error rate drops below 10−8 at iteration 19, while

the averaging BP decoder residual error rate goes under 10−8 after iteration 25.

In fact, when σcmp is small enough (below σ∗
cmp with a given σch), the noisy BP

decoder behavior is similar to that of the noise-free BP decoder (all noisy messages

approach infinity as L → ∞). In this case, the averaging operation slows down

the increase in message magnitudes, and in turn decoder convergence.

We additionally performed simulations under fixed computation noise (σcmp =

4Since the derivative of tanh−1 x (part of the check node message update) is 1
1−x2 , which

approaches infinity when x is close to 1, the contraction mapping condition (supu∈U ‖f
′(u)‖ <

1) is not satisfied for BP decoders. Therefore, in the finite length case, the averaging BP
decoder does not necessarily converge to the noise-free BP decoder. However, in the following
simulations, we demonstrate that even when the contraction mapping condition is not satisfied,
applying averaging BP can still improve the noisy decoder performance by canceling the effects
of computation noise via the averaging operation.
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Figure 3.6: Residual error rate comparison with σcmp = 3.

3) as the variance of communication channel noise varies. The results are shown

in Fig. 3.6. We observe that larger communication channel noise results in larger

residual error rates, and that the averaging BP decoder outperforms the nominal

BP decoder in the entire range of σch we considered (similar to what we observed

in the cases with fixed σch and varying σcmp).

Note that although we consider the BP decoder in this section, we also ob-

serve from simulations that applying averaging BP can also reduce the residual

error rates of the lower-complexity LDPC decoders, such as the min-sum decoder.

Simulations results of min-sum decoders are shown in Fig. 3.7a and 3.7b.
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Figure 3.7: Residual error rate comparison for min-sum decoders (a) σch = 0.7.

(b) σch = 0.6. 88



CHAPTER 4

Adaptive Coding for Approximate Computing

on Faulty Memories

In this chapter, we propose the Adaptive Coding for approximate Computing

(ACOCO) framework, which provides us with a theory-guided design methodology

to develop adaptive codes for different computations on the data read from faulty

memories. The robust algorithms developed in Chapter 2 and 3 aim at achiev-

ing the performance of inference algorithms on noise-free hardware. Following

the approximate computing design methodology, in this chapter, we consider the

applications that can tolerate small errors and develop robust algorithms (code de-

sign methods) with better implementation efficiency by relaxing the computation

accuracy constraint.

In ACOCO, we first compress the data by introducing distortion in the source

encoder, and then add redundant bits to protect the data against memory errors

in the channel encoder; thus we are able to protect the data against memory errors

without additional memory overhead. We develop adaptive codes for two types

of systems under ACOCO. The first type of systems we consider, which includes

many machine learning and graph-based inference systems, are the systems domi-

nated by product operations. Next, we consider another type of systems: iterative

decoders with min operation and sign-bit decision, which are widely applied in

wireless communication systems.
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4.1 Background and Previous Work

Approximate computing is a class of techniques that relax the requirement of

exact numerical or Boolean equivalence between the specification and implemen-

tation of a computing platform, in order to achieve improvements in performance

or energy efficiency [20, 64]. Approximate computing techniques can be applied

to the systems that are able to produce acceptable outputs despite some of its

underlying computations being executed incorrectly in the underlying hardware.

Those systems usually have the following properties: (i) the input data set is col-

lected in real-world and has significant redundancy, e.g., camera collected data for

image and video processing applications, (ii) the systems produce outputs which

are eventually consumed by humans and we, humans, have our own perceptual

limitations and small deviations in the output cannot be perceived by users [22].

Approximate computing has been studied in the context of traditional CPUs and

proposed new programming models, compiler systems, and run-time systems to

manage approximation [65, 66]. Approximate computing for GPUs was recently

studied in [21]. Besides developing approximate computing techniques, an analysis

methodology for approximate computing was proposed in [20].

As mentioned in Chapter 1, error correcting codes for faulty memory were

widely studied in many previous works [9, 14, 15]. In a recent work [67], a novel

memory protection scheme discarding several least significant bits (LSBs) before

applying error-correcting codes was proposed, and this scheme is able to protect

memory errors without the requirement of additional memory cells.
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4.2 The Adaptive Coding for Approximate Computing Frame-

work

4.2.1 Memory Error Model

In this section, we assume that the computation units in the unreliable hard-

ware inference system model (Fig. 1.2) are error-free and focus on the errors in

unreliable memory units. We use the bit-flipping model for faulty memories. The

bit-flipping model is also considered in [55, 67, 68]. Unlike Section 2.3.1, in this

Chapter we assume that the memory cells are subject to transient errors. We

model the effect of transient errors in each memory cell as passing a binary input

through a BSC with cross-over probability σme. To be more specific, suppose a

bit is stored in a memory cell. The value retrieved at read time differs from the

original value with probability σme, as illustrated in Fig. 4.1. Such memory errors

may be caused by voltage over-scaling, semiconductor-process variation, electro-

magnetic interference, etc., [67,69,70]1. We assume that the BSCs associated with

different memory cells are independent but have the same cross-over (bit-flipping)

probability σme. The logic gates performing the computations (computation units)

are assumed to be noise-free. The noise-free computation units fetch their input

(input data or the previously computed data) from the memory which is subject

to hardware errors.

4.2.2 Adaptive Code Design Methodology

Approximate computing in hardware is based on designs of components whose

output does not exactly match the prescribed values, due to the impact of either

timing-induced errors or functional approximation. We can apply approximate

computing techniques in certain applications (e.g., image processing) in which

1For example, the SRAM bit error rate is 10−3 when the supply voltage is 0.6V [67], and
5.2× 10−3 under the radiation intensity of 2.8× 10−4rad [70].
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Figure 4.1: The bit-flipping memory error model.

variations in hardware implementation and output quality degradation are toler-

able to a certain degree with a careful system design [20,21]. Inspired by approx-

imate computing techniques and [67], we propose the ACOCO framework. We

first reduce the number of bits used to represent each input (to a computation

unit) being stored in the memory cells, allowing some distortion in the quan-

tity. Then, a (systematic) channel code is applied to protect the slightly distorted

representation against possibly harmful errors (e.g., the errors in the sign bit or

MSB) by storing redundant bits in memory cells that would otherwise be used to

store less important bits of the uncoded quantity. More specifically, consider each

computation unit input (from the memory) as a source message. We first encode

the source message using a (lossy) source encoder so as to represent the message

with fewer bits. We then append redundant bits using a channel encoder. The

system block diagram for ACOCO is shown in Fig. 4.2. The source message, i.e.,

the original data or the previously computed data to be written into the memory

cells, is denoted by xs. The source encoder generates source codeword xse, the

compressed version of xs, which is fed into the channel encoder. The output xce

of the channel encoder represents the binary representation stored in the memory

cells. The output xch of the hardware error channel represents the binary repre-
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Figure 4.2: A system diagram of the adaptive coding for approximate computing

framework.

sentation read from memory cells. A channel decoder followed by a source decoder

decodes xch, and the output xo is the input to the computation units performing

operations on the data. Note that we choose the number of bits reduced during

the source coding stage to be equal to the number of redundant bits introduced

during the channel coding stage. Hence, jointly, our adaptive code is of rate 1.

Since we adopt BSC as our memory error model, binary linear block codes,

which are commonly used in communication systems, are promising candidates

for the channel code part of our adaptive codes. For the source coding stage, given

the absence of a generally applicable assumption on the probability distribution

of computation unit inputs, and given the short lengths of the binary represen-

tations of the inputs, lossless source coding schemes such as Hoffman coding or

Lempel-Ziv coding, whose efficiency hinges on knowledge of the input distribution

and long block-lengths, are not suitable for compressing the inputs. Therefore, we

adopt the truncation-based scalar quantization as the source coding scheme. Here

we propose a general methodology for minimizing the impact of the distortion in-

troduced in the source encoder on the system output. An ideal source encoder is

able to minimize the difference between the suitably quantified difference in the

output of the system with noise-free memory and the system subject to memory

errors but protected by the proposed adaptive codes. However, for most systems,

especially those with iterative data processing, the input-output relationships are

too complicated to allow for a tractable analysis to evaluate the effects of the
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distortion. Therefore, we design a cost function f(xs, xo) to (approximately) mea-

sure the effects of the distortion introduced in the source encoder on the system

output, and then construct the source code based on the cost function. Different

cost functions are used for systems with different operations on the data read

from faulty memory to capture the severity of the distortion. For example, the

quadratic loss function, f(xs, xo) = (xo − xs)
2, is a cost function suitable for a

system with addition operations.

We first consider a simple code design under the ACOCO framework. Assume

that we use a (n, k) channel code, with k information bits and n coded bits. When

we consider the cost function f(xs, xo) = (xo − xs)
2, one candidate source coding

scheme is to discard the n−k LSBs in the binary representation of xs. This source

coding scheme is equivalent to quantizing xs by setting the n − k LSBs to zero

and discarding them in its binary representation, thereby reducing the resolution

from u (the original resolution) to u× 2n−k. Next, we encode the k MSBs by the

(n, k) channel code. The additional n− k bits generated by the channel code are

stored in the memory cells originally storing the n−k LSBs. We choose to protect

the MSBs because errors occurring in those bits results in a larger distortion than

errors in other bits, as evaluated by the cost function f(xs, xo) = (xo− xs)
2. This

simple coding scheme is the same as the one proposed in [67]. We refer to this

simple coding scheme as the quantization code.

In the following sections, we consider two important types of information pro-

cessing systems that require more sophisticated adaptive coding schemes: (a)

systems dominated by product operations and (b) iterative decoders with min

operation and sign-bit decision. We design appropriate cost functions and de-

velop adaptive codes for these systems. Then, we compare the performance of

the systems implementing proposed adaptive codes with the systems implement-

ing simple quantization code and the nominal systems (without any codes), and

demonstrate the advantage of the theory-guided code design that takes the cost
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Figure 4.3: Block diagram for the system in Table 4.1 and 4.2.

function into consideration and the error correction capability of our codes.

4.3 Adaptive Codes for Product Operations

We first demonstrate by an exemplary system that for systems dominated by

product operations, the normalized quadratic loss function, f(xs, xo) =
(xo−xs)2

x2
s

,

is better suited to measure the effects of the introduced distortion induced on

the system output than the quadratic loss function, f(xs, xo) = (xo − xs)
2. Then,

we design an adaptive coding scheme based on the normalized quadratic loss

function. The comparison of the proposed adaptive codes and the quantization

code (mentioned in the last section) shows the performance improvement by the

adaptive codes designed according to the suitable cost function for the system.

In the exemplary system (Fig. 4.3), we compare the outputs of two multipliers,

and the system output is the larger one. Two input sets (and the corresponding

system outputs) are shown in Table 4.1 and Table 4.2. As illustrated in Fig. 4.2,

xo is the deteriorated version of xs. We compare the cost functions and system

outputs corresponding to xs (as input) and xo (as input) for the two input sets.
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A B C D y1 y2 Output

xs 10 1 14 2 10 28 y2

xo 10 2 14 1 20 14 y1

(xo − xs)
2 0 1 0 1

(xo−xs)2

x2
s

0 1 0 0.25

Table 4.1: Input set (i) and its corresponding output.

A B C D y1 y2 Output

xs 10 7 14 8 70 112 y2

xo 10 8 14 7 80 98 y2

(xo − xs)
2 0 1 0 1

(xo−xs)2

x2
s

0 1
49

0 1
64

Table 4.2: Input set (ii) and its corresponding output.

A good cost function f(xs, xo) should be able to capture the effect of replacing

the input xs with xo on the system output.

We observe that the effects of distortions applied to the input sets (i) and (ii)

are the same when evaluated by the quadratic loss function, but the effects of

the distortion on the comparator output is clearly different: the distortion in the

input set (i) results in an error in the comparator output (the output is y1 instead

of y2), while the distortion in the input set (ii) still leaves the comparator output

correct. On the other hand, the normalized quadratic loss function evaluates the

distortion in the input set (ii) as significantly smaller than the distortion in the

input set (i), thus correctly capturing the different severity levels of the distortions

in the two cases.

In this section, we design an adaptive coding scheme with much smaller cost

function statistics than the quantization code mentioned in the last section, when
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we use normalized quadratic loss function as the cost function. We consider

unsigned numbers to simplify the presentation; the adaptive code design and the

analysis can be easily extended to the general case by considering the sign bit as

the MSB. The data, when stored in the memory cells, is in the form of (unsigned)

binary representation. The binary representation of a number is determined by the

quantization resolution and the number of bits B used to represent the number.

For example, when B = 4 and when the quantization resolution is 1 (i.e., the LSB

stands for 1), the binary representation of 12 is 1100. We will use a1a2 . . . aB to

denote the binary representation of a number x in the following sections.

4.3.1 Code Design

Since we have xs in the denominator of the normalized quadratic loss function,

the quantization code (which non-adaptively discards the LSBs) results in a small

value of normalized quadratic loss when the magnitude of xs is large, but it has a

large value of normalized quadratic loss when the magnitude of xs is small. This

observation inspires us to propose the following adaptive coding scheme. When

the magnitude of xs is large, just as with the quantization code, we discard the

LSBs and protect the MSBs by the channel code. The additional bits introduced

by the channel code are stored in the memory cells originally storing the LSBs.

When the magnitude of xs is small, however, we keep the LSBs and use a single bit

to indicate that the magnitude of xs is small, identified by the fact that a given

number of MSBs are all zero. This bit is stored in the memory cell originally

storing the first MSB (which is 0), and the remaining cells storing the zero MSBs

are used to store the additional bits generated by the channel code. Assume

that we use a (n, k) systematic linear code as the channel code. Following the

above design guideline, we propose two adaptive codes with different channel

code parameters n and k in the following.

Adaptive code I: When 2k − n− 2 ≥ 0, we use the following source code. De-
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note the binary representation of xs, the input to the source encoder, as b1b2 . . . bB

(recall that B is the length of the binary representation), and the binary repre-

sentation of xse, the output of source code encoder, as c1c2 . . . cB−n+k. When at

least one of the k − 1 MSBs is 1, we say that the xs is “large”, otherwise xs is

“small”. We then use the MSB in xse, c1, to indicate whether this xs is large (set

c1 to 1 when xs is large), and the remaining B− n+ k− 1 bits in xse are equal to

the B−n+ k− 1 MSBs in the binary representation of xs. The n− k+1 LSBs in

the binary representation of xs are discarded. When all the k − 1 MSBs are zero

(i.e., xs is small), we set the MSB in xse, c1, to zero, set the B − k + 1 bits in the

left of the MSB in xse to be the B − k + 1 LSBs in binary representation of xs,

and the remaining bits in xse are set to be 0. Note that we do not discard any of

the n − k + 1 LSBs when xs is small. We summarize this source code as follows

(depicted in Fig. 4.4).

Case 1: If
∑k−1

i=1 bi > 0, then c1 = 1 and ci+1 = bi for 1 ≤ i ≤ B − n+ k − 1.

Case 2: If
∑k−1

i=1 bi = 0, then c1 = 0, ci+1 = bk−1+i for 1 ≤ i ≤ B − k + 1, and

ci = 0 for i ≥ B − k + 2.

The (n, k) channel code protects the first k bits (denoted by the dashed box in

Fig. 4.4) in xse.

Adaptive code II: When 2k−n−2 < 0, the number of available bits in xse may

not be enough to represent all the non-zero bits in the binary representation of xs

(see Fig. 4.4 case 2). Hence we design the following new source code for this case.

Here we follow the notation in the previous paragraph describing Adaptive code I.

When at least one of the k− 1 MSBs is 1, we use the same code as Adaptive code

I. When all the k−1 MSBs are zeros, we have the following two cases. When all bi,

1 ≤ i ≤ B− k+2, are zero, we set c1 = 0 and c2 = 0. The third to the kth bits in

xse are equal to the k− 2 LSBs in the binary representation of xs. The remaining

B − n bits in xse are set to be 0. When at least one of bi, k ≤ i ≤ B − k + 2, is
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Figure 4.4: Adaptive code I. Channel code protects the part of xse in the dashed

box.

non-zero, we set c1 = 0, c2 = 1, and ci+2 = bk−1+i for 1 ≤ i ≤ B − n+ k − 2. The

n − 2k + 3 LSBs in xs are discarded. We summarize this source code as follows

(depicted in Fig. 4.5).

Case 1: If
∑k−1

i=1 bi > 0, then c1 = 1 and ci+1 = bi for 1 ≤ i ≤ B − n+ k − 1.

Case 2: If
∑B−k+2

i=1 bi = 0, then c1 = 0, c2 = 0, and ci+1 = bB−k+1+i for

2 ≤ i ≤ k − 1, ci = bi for k ≤ i ≤ B − n+ k − 1.

Case 3: If
∑k−1

i=1 bi = 0 and
∑B−k+2

i=k bi > 0, then c1 = 0, c2 = 1, and ci+2 =

bk−1+i for 1 ≤ i ≤ B − n+ k − 2.

The (n, k) channel code protects the first k bits (denoted by the dashed box in

Fig. 4.5) in xse.

The source decoder recovers the binary representation of xs by reversing the

above encoding rules. The source decoder further replaces the bits discarded
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Figure 4.5: Adaptive code II. Channel code protects the part of xse in the dashed

box.
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during encoding with values randomly selected from 0 and 1.

4.3.2 Analysis of Cost Function Statistics and Numerical Examples

In this section, we analyze (the linear approximation of) the statistics of the

cost functions and compare the cost function statistics of the quantization code

with the proposed adaptive codes via numerical examples.

There are two random mappings in the ACOCO system (Fig. 4.2): the hard-

ware error channel and the (random) source decoder. The remaining of the map-

pings are deterministic. Let xs, xo ∈ X, and |X| = 2B since we use B bits to

represent xs (and xo). We use | · | to denote the set size. We then have the

expression for the (general) statistics of the cost function S[f(xs, xo)], as follows,

S[f(xs, xo)]

=
∑

xs∈X

∑

u

∑

xo∈X

g
(

f(xs, xo)
)

P (xo|xcd)P (xcho|xce)P (xs), (4.1)

where u = xce ⊕ xcho, ⊕ denotes the XOR operation and g is determined by the

statistics we want to derive. We have (4.1) because xcd is a deterministic function

of xcho, and xce is also a deterministic function of xs. To simplify the analysis, we

assume that xs is uniformly distributed on X, i.e., we randomly draw an element

in X as our source xs.We then have P (xs) =
1

|X|
for all xs ∈ X.We further assume

that we choose the channel code capable of correcting one bit-flipping error (e.g.,

(7, 4) Hamming code).

Since we have different encoding rules for different elements in X, we divide

X into M subsets, Φi’s, 1 ≤ i ≤ M, for grouping xs’s corresponding to different

cases in the previous section. Note that M = 2 for Adaptive code I and M = 3

for Adaptive code II. Let xcd ∈ Xcd, and let Ψj’s, 1 ≤ j ≤ |Xcd|, be subsets of

X. We map every xcd to an index, denoted by I(xcd). We define ΨI(xcd) to be

the set of elements (in X) that xcd maps to (by the source decoder). Since the

source decoder is a one-to-many random mapping and every xo ∈ X corresponds
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to exactly one xcd, we have ∪
|Xcd|
j=1 Ψj = X and Ψj1 ∩Ψj2 = ∅ for 1 ≤ j1, j2 ≤ |Xcd|.

Since the source decoder randomly decides 0 or 1 for the discarded bits, we have

P (xo|xcd) =
1

|ΨI(xcd)
|
when xo ∈ ΨI(xcd). We say that the binary string u of length

B belongs to the set U1 if among the first k entries in u, there is exactly one entry

with the value 1, and the remaining entries in u are 0. Likewise, we say that the

binary string u of length B belongs to the set U2 if among the last B − k entries

in u, there is exactly one entry with the value 1, and the remaining entries in u

are 0. Denote the all-zero string of length B by u0.

Based on the sets defined above, we derive the probability mass functions in

(4.1) for Adaptive code I and II as follows. To simplify the analysis, we assume

that the bit-flipping probability σme in the hardware error channel is small enough

to ignore the quadratic and higher order terms of σme in our analysis. Since the

sets for xs’s and xo’s are different for Adaptive codes I and II, we use Φ1,i (i = 1, 2)

and Ψ1,I(xcd) for Adaptive code I, and Φ2,i (i = 1, 2, 3) and Ψ2,I(xcd) for Adaptive

code II.

For Adaptive code I, we have two sets for xs, Φ1,1 and Φ1,2, for Case 1 and

Case 2 given in the previous section, respectively. Since the elements in Φ1,1

have at least one 1 on the first k − 1 bits in their binary representations, Φ1,1

has 2B − 2B−k+1 elements, and Φ1,2 has 2B−k+1 elements. For xs ∈ Φ1,1, the

corresponding xcd has |Ψ1,I(xcd)| = 2n−k+1, and, for xs ∈ Φ1,1,

P (xo|xcd) =











1
2n−k+1 if xo ∈ Ψ1,I(xcd),

0 otherwise.

(4.2)

On the other hand, when xs ∈ Φ1,2, the corresponding xcd has |Ψ1,I(xcd)| = 1, and

P (xo|xcd) =











1 if xo ∈ Ψ1,I(xcd),

0 otherwise.

(4.3)
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Recall that the BSCs are independent across different bits in xce. We then have

P (xcho|xce) ≈1



























1− Bσme if xcho ⊕ xce = u0,

σme if xcho ⊕ xce ∈ U1 ∪ U2,

0 otherwise.

(4.4)

We use ≈1 to denote the linear approximation2 (discarding the second and higher

order terms) in (4.4). Note that our channel code is capable of correcting one bit

error, hence xse = xcd when xcho ⊕ xce ∈ U1. By plugging (4.2), (4.3), and (4.4)

into (4.1), we then have the statistics of any given cost function f(xs, xo) under

Adaptive code I. Following similar procedures, we can derive the statistics of any

given cost function f(xs, xo) under Adaptive code II.

We compute and compare the statistics of cost functions with the proposed

adaptive codes (AD), the quantization code mentioned in Section 4.2.2 (QC),

and without any error-correcting code (the nominal case, refer to as NC). We

consider two cost functions: f1(xs, xo) = (xo−xs)
2, which is designed for addition

operations, and f2(xs, xo) = (xo−xs)2

x2
s

, which is designed for product operations.

Recall that depending on whether 2k − n − 2 ≥ 0 or 2k − n − 2 < 0 holds(see

Section 4.3.1), we choose either Adaptive code I or Adaptive code II. Therefore,

for (n, k) = (15, 11), we choose Adaptive code I scheme, and we use (15, 11)

Hamming code; for (n, k) = (7, 4), we choose Adaptive code II scheme, and we

use (7, 4) Hamming code. For both cases, the quantization resolution is 1 (i.e.,

the LSB stands for 1), and the bit-flipping probability is σme = 10−3.We compare

the mean, variance and maximum of the cost functions in Table 4.3 and 4.4.

In applications where approximate computing is used, a small output deviation

is usually acceptable while a large one is not. Therefore, the variance and the

maximum of the cost function are more interesting statistics than the mean.

2For xcho ⊕ xce = u0 case, P (xcho|xce) = 1 −
∑B

i=1

(

B

i

)

σi
me(1 − σme)

B−i. We get (4.4) by
discarding quadratic and higher order terms of σme.
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NC QC AD

f1 f2 f1 f2 f1 f2

Var 7.58×1013 17.72 4320 0.0028 6101 1.38×10−7

Max 2.68×108 1.64×105 225 14 961 0.0037

Table 4.3: Adaptive code I, (n, k) = (15, 11). The smallest variance and max

among NC, QC, and AD are marked in red.

NC QC AD

f1 f2 f1 f2 f1 f2

Var 1.76×104 0.0694 257.9 0.1302 3787 0.0238

Max 4096 64 49 6 225 0.9375

Table 4.4: Adaptive code II, (n, k) = (7, 4). The smallest variance and max among

NC, QC, and AD are marked in red.

For f1, NC has large variances and maximums. On the other hand, QC has

much smaller variances and much smaller maximums. AD is worse than QC

when f1 is considered. For f2, NC still has large variances and large maximums.

However, AD is better than QC, especially when we compare the variances and the

maximums of the cost function. From the numerical examples, we conclude that

the proposed adaptive coding scheme (AD) works better when the targeted cost

function (f2) is considered. As discussed previously (c.f. Fig. 4.3 and Table 4.1

and 4.2), for the type of the systems we consider in this section, f2 is a better

choice of the cost function (for these systems) than f1. Therefore, we expect

that the proposed adaptive codes perform better than the quantization code.

In the following sections, we demonstrate the improvement brought about by

the proposed adaptive coding scheme in the two application examples: image

denoising by max-product algorithm and näıve Bayes classification.
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(a) (b) (c) (d) (e) (f)

Figure 4.6: Image denoising via MP: (a) original image, (b) contaminated image,

(c) recovered image by noise-free MP, (d) recovered image by noisy MP without

ECC, (e) recovered image by noisy MP with QC, (f) recovered image by noisy

MP with AD.

4.3.3 Application Example I: Max-Production Algorithm for Image

Denoising

In this section, we apply the proposed adaptive coding scheme to image denois-

ing by the max-production (MP) algorithm implemented on noisy hardware (with

faulty memories), and compare to the cases with quantized coding and with no

error-correcting code. An averaging method was proposed to mitigate the effects

of hardware noise on the belief propagation algorithm [71]. Instead of modifying

the algorithm, we use adaptive codes developed from the ACOCO framework to

combat the memory errors. We quickly summarize the MP algorithm as follows.

The MP algorithm can be used to compute the approximate or exact maximum

a posteriori (MAP) solution to inference problems on factor graphs associated

with the random variables of interest, Z1, Z2, . . . , ZN . The random variables take

values in a discrete space Z = {1, 2, . . . , d}. A factor graph is a bipartite graph

with vertex set V ∪ F , where F is the set of factors and V is the set of variable

nodes. We denote a factor by its associated set I, where I is the set of indices of

the variable nodes connected to this factor, and we denote a variable node by its

index i, i ∈ {1, 2, . . . , N}. Each variable node i ∈ V is connected with the factors
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I ∈ F iff i ∈ I, and the variable node i is associated with the random variable Zi.

We denote the neighbors of variable node i by Ni, thus we have Ni = {I : i ∈ I}.

The computation of the MAP solution is conducted by iterative message pass-

ing on the factor graph: each node updates its messages according to the messages

received from its neighbors, and sends its updated messages back to its neighbors.

MP message update rule is

m
(ℓ)
I→i′(zi′) ∝ max

zI\i′∈Z
|I|−1

ψI(zI)
∏

i∈I\i′

∏

J∈Ni\I

m
(ℓ−1)
J→i (zi), (4.5)

where ψI(zI) is the potential function associated with the factor I, and ℓ de-

notes the current iteration. When we terminate the iterative message passing

process at iteration L, the beliefs of the random variable Zi is computed as

b
(L)
i (zi) = Ci

∏

I∈Ni
m

(L)
I→i(zi), where Ci is a normalizing constant chosen such

that
∑

xi∈Z
bi(zi) = 1. The random variable with maximum belief is selected as

the MAP solution to the inference problem.

MP can be applied to image denoising, where we seek to recover the original

image from the noise-contaminated image. We briefly explain a simple MP-based

image denoising algorithm as follows. Consider a 2-D image. We assign a unique

number to every color on the image. The value of each pixel on the image is then

the number corresponding to the pixel’s color. In the 2-D image, the observation

of each color (pixel value) is contaminated by additive noise. Assume that the

noises added to different pixels are independent. To recover the image from the

pixel value observations contaminated by noise, we construct a 2-D grid factor

graph with an appropriate choice of potential functions (e.g., Potts model). We

associate each pixel in the image to a variable node on the factor graph. The

probabilities of all the possible colors of the associated pixel are presented by the

message vector. To be more specific, consider the image with a 256-level grayscale;

a message associated with a variable node is a vector with 256 entries. Each entry

is the probability that the pixel associated with the variable node is at a darkness
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level corresponding to the entry. We run the MP algorithm on the factor graph to

obtain the most likely value of every pixel based on the contaminated observations.

In this example, we associate the 2-D grid factor graph for the ”penguin” image

(with size 179×122 and 256 gray-scale levels) to a Potts model [61] with coefficient

ξ = 0.05. In a Potts model, the potential function ψI of a factor connecting two

variable nodes is 1 for the two variables with the same value, and ξ for the two

variables with different values. We assign the integers 0 to 255 to the 256 grayscale

levels. Every observation of the pixel value in the image is contaminated with an

independent Gaussian random variable with zero-mean and standard deviation

30. The original image and the contaminated image are shown in Fig. 4.6a and

Fig. 4.6b. The MP messages are stored in the faulty memories with bit-flipping

rate 2.5 × 10−3, as described in Section 4.2. We consider the following cases:

memory without error-correcting code (NC), with quantization code (QC), and

with the proposed adaptive code (AD). We use B = 9 bits for each message, and

therefore we choose (7, 4) Hamming code as our channel code. We run MP for

10 iterations to recover the original image from the contaminated one. Images

recovered by noise-free MP, NC, QC and AD are shown in Fig.s 4.6c, 4.6d, 4.6e,

and 4.6f, respectively.

Comparing Fig.s 4.6e, 4.6d, and 4.6f, we observe that for QC and NC, a large

portion of the pixels are determined incorrectly and the recovered image is very

different from the image recovered using noise-free MP (Fig. 4.6c). On the other

hand, for AD, the recovered image closely resembles the image recovered by noise-

free MP. This observation agrees with the theoretical analysis: without applying

an error-correcting code, the memory errors degrade the algorithm performance.

Although the error-correcting code can correct memory errors, the effect of dis-

tortion introduced in QC is large in product operations and the quality of the

recovered image is still significantly deteriorated. However, by using our adaptive

code, we correct the harmful memory errors as well as keep the effect of the dis-
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tortion introduced by the source encoder small. The recovered image is therefore

almost indistinguishable relative to the one recovered by noise-free MP (Fig. 4.6c

and 4.6f).

4.3.4 Application Example II: Näıve Bayes Classification

In this section, we consider the näıve Bayes classification system, which is

widely used in statistical learning systems, apply the proposed adaptive code to

this system, and evaluate its performance.

A classifier is a function C that maps input feature vectors θ ∈ × to output

class labels φ ∈ {1, 2, . . . ,M}, where × is the feature space. Bayesian classifiers

assign the most likely class label φ to a given sample described by its feature vector

θ based on P (θ|φ). Learning such classifiers can be greatly simplified by assuming

that the features are independent given the class label, i.e., P (θ|φ) =
∏n

i=1 P (θi|φ),

where θi is the ith entry of φ. The resulting classifier known as näıve Bayes has

been proven effective in many practical applications, including text classification,

medical diagnosis, and systems performance management [72].

Here we consider the Gaussian näıve Bayes classifier (GBC). In GBC, we

assume that the distribution P (θ|φ) is Gaussian. Learning of GBC is done by

computing the mean and variance of each feature for each class from the training

data. The likelihood of a sample with the feature vector θ belonging to class label

φ is

P (θ|φ) =
n
∏

i=1

P (θi|φ) =
n
∏

i=1

1
√

2πσ2
i,φ

exp

(

−
(θi − µi,φ)

2

2σ2
i,φ

)

, (4.6)

where µi,φ and σi,φ are the mean and the variance of the Gaussian distribution for

the feature θi conditioned on the class label φ, respectively.

In this application example, we apply the GBC implemented on noisy hardware

with faulty memories to classify the data (sample) generated from (4.6). For

every experiment, we generate 150 samples, each sample has four features, and
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there are three classes in the the 150 samples. We randomly select half of the

samples as training samples, and the other half as testing samples. We compare

the average classification error rates (over 1000 experiments) of the GBC without

error-correcting code (NC), the GBC with the quantization code (QC), the GBC

with the proposed adaptive code (AD), and the noise-free GBC. We use B = 7

bits for each message, and therefore we choose (7, 4) Hamming code as our channel

code. The GBC reads the likelihoods of each feature for each class from the faulty

memory cells, decodes and multiplies them to derive the aggregate likelihood. We

decide which class the sample belongs to by comparing the aggregate likelihood

of each class.

In Fig. 4.7, we observe that the increase in bit-flipping rate σme has very little

effect on the classification error rates under QC and AD, while the classification

error rate under NC increases a lot as σme increases. This is due to the ability of

the Hamming code to correct most of the harmful memory errors. We also find

that the classification error rate under QC is much larger than under AD due to

(non-adaptively) discarding the LSBs. AD is very close to the noise-free case (less

than 0.5% difference) in the entire σme region we considered, due to the better

choice of cost function and code design.

Both application examples demonstrate that by applying the proposed adap-

tive code developed under ACOCO, we successfully correct most of the harmful

memory errors as well as keep the effects of the distortion introduced in the source

encoder small.

4.4 Adaptive Codes for Min-Sum LDPC Decoder

In this section, we consider another type of systems: iterative decoders with

min operations and sign-bit decision. We consider the min-sum decoder, which

is widely applied in communication/storage systems, and develop an adaptive
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Figure 4.7: Gaussian näıve Bayes classifiers comparison.

coding scheme for the min-sum decoder subject to memory errors.3

Recently, noisy decoders subject to memory errors attracted much attention.

Important topics including density evolution, equivalent noise modeling, and un-

equal error protection were studied in [12, 55, 74]. In this section, under the

ACOCO framework, we develop adaptive error-correcting codes tailored for the

noisy min-sum decoder for LDPC codes subject to memory errors. Unlike the

previously proposed error protection methods, the proposed adaptive codes based

on ACOCO do not require any additional memory cells while offering the same

error protection capability. We start with a brief review of LDPC codes and the

noise-free min-sum decoder, and then develop the adaptive codes for the noisy

min-sum decoder.

3Since some of min-sum decoder’s variants have similar message distribution characteristics
[73], our adaptive coding scheme can also be applied to these decoders.
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4.4.1 Min-Sum Decoder

On the bipartite graph associated with an LDPC code, letNv andNc denote the

nodes connected to the variable node v and to the check node c, respectively. Let yv

be the decoder input at the variable node v, and xv ∈ {+1,−1} be the transmitted

bit corresponding to the variable node v. Denote the noise-free messages sent in

the ℓth iteration by m̃(ℓ). More specifically, m̃
(ℓ)
v,c denotes the message sent from

variable node v to its incident check node c, while m̃
(ℓ)
c,v denotes the message passed

from check node c to its incident variable node v. For completeness, let us quickly

summarize the main steps of the noise-free min-sum decoder.

• (Initialization) At iteration ℓ = 0, each variable node v sends the message

m̃
(0)
v,c = ln P (yv |xv=1)

P (yv |xv=−1)
to each check node c, c ∈ Nv.

• (Check node) At each iteration ℓ, ℓ ≥ 0, each check node c sends a message

m̃
(ℓ)
c,v to each variable node v, v ∈ Nc :

m̃(ℓ)
c,v =

(

∏

v′∈Nc\{v}

sign(m̃
(ℓ)
v′,c) min

v′∈Nc\{v}

|m̃(ℓ)
v′,c|
)

.

• (Variable node) At each iteration ℓ, ℓ ≥ 1, each variable node v sends a

message m̃
(ℓ)
v,c to each check node c, c ∈ Nv :

m̃(ℓ)
v,c = m̃(0)

v,c +
∑

c′∈Nv\{c}

m̃
(ℓ−1)
c′,v .

Note that for min-sum decoders, a message is the proxy of the log-likelihood ratio

(or say belief) of the transmitted bit corresponding to a variable node v.

Here we consider finite precision decoders, broadly deployed in practice. In

such decoders, the messages are quantized and stored in the memory cells using

a (binary) sign-magnitude representation. We use sign-magnitude representation

in this section because the messages in the min-sum decoder are the proxies of
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likelihoods, which can be either positive or negative. The sign-magnitude repre-

sentation of each message is determined by the quantization resolution and the

number of bits B used to represent the message. For example, when B = 5 and

the quantization resolution is 1 (the LSB stands for 1), the sign-magnitude rep-

resentation of 12 is 01100, where the first bit, 0, stands for the positive sign, and

the remaining bits represent the magnitude. The value of B is typically between

4 and 7 in practical LDPC decoders [75].

4.4.2 Noisy Min-Sum Decoder and Density Evolution

4.4.2.1 Noisy Decoder Model

We use the bit-flipping model introduced in Section 4.2.1 for the faulty memories

storing the messages. This faulty memory model was also considered for the

noisy decoders studied in [55] and [76]. As shown in [38] and [76], errors in

check nodes do not have much impact on the residual error rates of the LDPC

decoders. We therefore assume noise-free check node memory cells to simplify the

analysis. For the variable nodes in the noisy decoder at iteration ℓ, the noise-

free variable messages are quantized and stored in the faulty memory cells using

a sign-magnitude representation. Denote the quantized variable messages before

the memory errors are applied by m̂
(ℓ)
v,c. With the faulty memory cells described

above, the variable messages retrieved from the memory cells, denoted by m
(ℓ)
v,c,

might be different from m̂
(ℓ)
v,c.

4.4.2.2 Density Evolution Analysis

Density evolution of the noisy finite precision min-sum decoder with the above

hardware error model was derived in [55] under Gaussian communication channel

with noise variance σ. The major difference between the noise-free and the noisy

min-sum decoder density evolution analysis is the “distribution perturbation” due
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to the BSCs modeling memory cell errors. Based on the analysis in [55], we express

the “distribution perturbation” as a linear transformation

p(ℓ) = A(σme)p̂
(ℓ), (4.7)

where p(ℓ) is a length-2B − 1 vector representing the probability mass function

(PMF) of m
(ℓ)
v,c, p̂(ℓ) is a length-2B − 1 vector representing the PMF of m̂

(ℓ)
v,c, and

A(σme) is a 2B − 1× 2B − 1 matrix. Recall that as defined in Sec. 4.4.1, B is the

number of bits in the sign-magnitude representation of each message. Detailed

derivation of p̂(ℓ) can be found in [55]. The matrix A(σme) is derived as follows.

Let {αi}
2B−1
i=1 be the set of possible values of messages m̂

(ℓ)
v,c and m

(ℓ)
v,c. Let the

ith entry in p(ℓ) denote the probability of the event m
(ℓ)
v,c = αi, 1 ≤ i ≤ 2B − 1.

Likewise, let the ith entry in p̂(ℓ) denote the probability of the event m̂
(ℓ)
v,c = αi.

The (i, j) entry in A(σme), Ai,j(σme), denotes the conditional probability of the

event m
(ℓ)
v,c = αi given m̂

(ℓ)
v,c = αj, is calculated as

Ai,j(σme) = P (m(ℓ)
v,c = αi|m̂

(ℓ)
v,c = αj) = (1− σme)

B−di,jσdi,j
me , (4.8)

where di,j is the Hamming distance between the sign-magnitude representation of

αi and αj.

The residual error rate p
(ℓ)
r at iteration ℓ is then derived as

p(ℓ)r =
∑

αi<0

p
(ℓ)
i +

p
(ℓ)
ζ

2
, (4.9)

where p
(ℓ)
i is the ith entry in p(ℓ), and ζ is the index of the entry in p(ℓ) representing

the probability of the message being zero, i.e. αζ = 0. When the message is equal

to zero, we pick uniformly at random either +1 or −1 as the transmitted signal.

4.4.3 Adaptive Codes for the Noisy Min-Sum Decoder

We begin with some key observations from the message update rules and

the density evolution analysis for the noisy min-sum decoder. Then, we design
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an adaptive coding scheme for the variable node memory and develop density

evolution analysis for the noisy min-sum decoder using the proposed codes.

4.4.3.1 Code Design

From the density evolution analysis in [55], we observe that, when the commu-

nication channel noise and hardware error rate are sufficiently small and when ℓ is

sufficiently large, p̂
(ℓ)
i with i = argmaxk αk (recall that αi is the value ofm

(ℓ)
v,c corre-

sponding to the ith entry in p(ℓ)) is very close to one, and p
(ℓ)
i with i = argmink αk

is very close to σme. That is, when the communication channel noise and hard-

ware error rate are sufficiently small and when ℓ is sufficiently large, the PMF of

m̂
(ℓ)
v,c concentrates at the largest positive number (as with the noise-free min-sum

decoder), and most of the residual errors come from the bit flips in the memory

cells storing sign bits (converting the largest representable positive value, i.e. the

correct value, to the largest representable negative value, i.e. the incorrect value).

Bit flips in the other direction, namely, converting the largest representable neg-

ative value to the largest representable positive value, are fortuitously possible,

and will be taken into consideration when we perform density evolution analysis

in Section 4.4.3.2.

Due to the min operation in check nodes, the decoding process is sensitive to

the precision level of small-magnitude messages. However, for the large-magnitude

messages, the precision level is less important.

Based on the above observations, we specify a cost function and design an

adaptive coding scheme to protect memory cells in the noisy min-sum decoder

according to the cost function. The cost function for the noisy min-sum decoder

is

f(xs, xo) = 1(|xs| ≥ τ)(xo − xs)
2 + 1(|xs| < τ)1(xs 6= xo), (4.10)

where 1(·) is the indicator function that is set to 1 if the condition in the paren-

114



thesis holds, and 0 otherwise, and τ is the threshold for “large magnitude.” We

choose τ to be a number whose sign-magnitude representation is in the form of

010 . . . 0.

Since when the message magnitude is smaller than τ, the cost function is 1

for every possible xo except for when xo = xs, we choose to keep the message as

it is when stored in the memory cells (because the cost of every possible error is

evaluated to be the same). When the message magnitude is larger than or equal

to τ , since the cost function is a quadratic loss function, we quantize the message

and apply the (3, 1) repetition code (since we have B = 5) to protect the sign

bit. More specifically, when the MSB is 1, the source encoder discards the two

LSBs, and the channel encoder uses the (3, 1) repetition code to protect the sign

bit. When the MSB is 0, both source and channel encoder become an identity

function. When we retrieve the bits from the memory cells, if the MSB reads as

1, the channel decoder decodes the (3, 1) repetition code to determine the sign

bit. The source decoder randomly selects 0 or 1 for the two discarded LSBs; if the

MSB reads as 0, the message is the same as what we retrieve from the memory

cells.

4.4.3.2 Density Evolution Analysis of the Noisy Min-Sum Decoder

With the Proposed Adaptive Code

The major difference between the density evolution analysis of the nominal min-

sum decoder and that of the noisy min-sum decoder with the proposed adaptive

code is in the linear transformation (4.7). Given the coding scheme introduced in

Sec. 4.4.3.1, the linear transformation becomes

p(ℓ) = HA(σme)Gp̂
(ℓ), (4.11)

where both G and H are 2B − 1 × 2B − 1 matrices. The matrix G corresponds

to the encoding process (including the source and channel encoder, we combine
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the two encoders in the following discussion to simplify the presentation), and the

matrix H corresponds to the decoding process (including the source and channel

decoder, we combine the two decoders in the following discussion to simplify the

presentation).

We construct G as follows. Like the analysis in Section 4.3.2, we group mes-

sages into several classes to analyze the mappings in ACOCO (Fig. 4.2). The

set of 2B−1 B-bit representations whose MSB is 1 is divided into 2B−3 equiva-

lence classes Φ0, Φ1, . . . Φ2B−3−1. Each equivalence class Φj has four elements,

βj,q, q ∈ {0, 1, 2, 3}. The element βj,q has the sign-magnitude representation

sj1aj,1aj,2 . . . aj,B−4z1z2, where the sj and aj,k’s (k = 1, 2, . . . , B − 4) are either

0 or 1, and 0z1z2 is the sign-magnitude representation of length 3 of the index

q. Let φ(j) map the index j of the equivalence class Φj to the index of the mes-

sage value αφ(j) which belongs to Φj and has the sign-magnitude representation

sj1aj,1aj,2 . . . aj,B−4sjsj. The equivalence class Φj is represented by αφ(j).

In the encoding process, we copy the sign bit to the two LSBs when the MSB

is equal to 1. Hence, all elements in Φj are mapped to αφ(j). Note that the

probability of αφ(j) is represented as the φ(j)th entry in p̂(ℓ). Let the probabilities

of the other three elements in Φj be represented as the v1(j)th, v2(j)th, and

v3(j)th entries, respectively, in p̂(ℓ) (v1(j), v2(j), v3(j) ∈ {1, 2, 3, . . . , 2
B − 1}). In

G, for j = 0, 1, . . . , 2B−3 − 1, the row φ(j) has 1’s in columns φ(j), v1(j), v2(j),

and v3(j), 0’s elsewhere, and the rows v1(j), v2(j), and v3(j) have all-zero entries.

In the remainder of the rows of G, all entries are 0 except for the ones on the

diagonal. For example, when B = 5, the following entries in G are 1: (1, 1), (1, 2),

(1, 3), (1, 4), (5, 5), (5, 6), (5, 7), (5, 8), (γ, γ), (24, 24), (24, 25), (24, 26), (24, 27),

(28, 28), (28, 29), (28, 30), (28, 31), γ = 9, 10, . . . , 23. Other entries are 0. Note

that α1 = −15, α2 = −14, . . . , α31 = 15 in this example.

In the decoding process, when the MSB reads as 1, we set the sign bit to

the value that occurs at least twice among the two LSBs and the sign bit. The
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two LSBs are randomly decided. The set of 2B−1 B-bit representations whose

MSB is 1 is divided into 2B−3 equivalence classes Ψ0, Ψ1, . . . Ψ2B−3−1. Denote the

majority function (of three binary inputs), which takes the majority of its inputs

z1, z2, z3 as its output, by gma(z1, z2, z3). Each equivalence class Ψj has four ele-

ments, θj,q, q ∈ {0, 1, 2, 3}. The element θj,q has the sign-magnitude representation

uj,q,11aj,1aj,2 . . . aj,B−4uj,q,2uj,q,3, where the cj,k’s (k = 1, 2, . . . , B − 4) are either 0

or 1, and uj,q,1, uj,q,2, uj,q,3 satisfy gma(uj,q,1, uj,q,2, uj,q,3) = sj, sj ∈ {0, 1}.

Following the construction of G, here we derive H. When the MSB is 1, the

decoding process, in which we randomly decide the two LBSs, is equivalent to

the following operation: when we have xcho = z1, z1 in Ψj, we randomly pick an

element z2 from Φj (including z1 if z1 ∈ Φj), and xo = z2. Let the probabilities

of the four elements in Ψj be represented as the w1(j)th, w2(j)th, w3(j)th, and

w4(j)th entries, respectively, in p̂(ℓ) (w1(j), w2(j), w3(j), w4(j) ∈ {1, 2, 3, . . . , 2
B −

1}). In H, for j = 0, 1, . . . , 2B−3 − 1, the row vi(j) (i = 1, 2, 3) has 1
4
in columns

wk(j) (k = 1, 2, 3, 4), and 0’s elsewhere. The row αφ(j) also has 1
4
’s in columns

wk(j) (k = 1, 2, 3, 4), and 0’s elsewhere. In the remaining of the rows in H, all

entries are 0 except for the ones on the diagonal. Following the example we have for

G, the following entries in H are 1
4
: (η1, 1), (η1, 2), (η1, 3), (η1, 31), (η2, 5), (η2, 6),

(η2, 7), (η2, 27), (η3, 24), (η3, 25), (η3, 26), (η3, 8), (η4, 28), (η4, 29), (η4, 30), (η4, 4),

for η1 ∈ {1, 2, 3, 4}, η2 ∈ {5, 6, 7, 8}, η3 ∈ {24, 25, 26, 27}, η4 ∈ {28, 29, 30, 31}.

The entries (γ, γ), γ = 9, 10, . . . , 23, are 1, and the remaining of the entries are 0.

Note that α1 = −15, α2 = −14, . . . , α31 = 15 in this example.

We compute the residual error rate at the 200th iteration, p
(200)
r , of the noisy

min-sum decoders without error-correcting code (the nominal case, we call it NC),

the noisy min-sum with the quantization code (QC), the noisy min-sum decoder

with the proposed adaptive code (AD) and the noise-free min-sum decoder via

density evolution. We consider the LDPC code with (dv, dc) = (3, 6), B = 5, bit-

flipping probability σme = 5 × 10−4, and Gaussian communication channel noise
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with zero mean and different standard deviation σ.

The numerical results are shown in Fig. 4.8. Note that the residual error

rate of the noise-free min-sum decoder under small σ and large enough number

of iterations is 0. In Fig. 4.8, we observe that as in the noise-free min-sum

decoder, NC, QC, and AD all exhibit a sharp drop in the residual error rates as σ

decreases below certain values. A similar phenomenon was also observed in [77].

As in [77], we refer to the σ value corresponding to the sharp drop on the curve

as the phase transition point. Before all the phase transition points, we observe

that the residual error rates under QC and AD are roughly on the order of the

square of the residual error rate under NC. The phase transition points are 0.781,

0.798, and 0.803 for QC, NC, and AD, respectively. The decoding threshold of

the noise-free min-sum decoder is 0.811. It is also worth noting that the proposed

adaptive coding scheme not only lowers the residual error rate, but also moves the

phase transition point closer to the decoding threshold of the noise-free min-sum

decoder (comparing to both QC and NC cases). The low phase transition point

under QC (even lower than NC) is due to the distortion introduced in the source

encoder by dropping the two LSBs regardless of the message magnitude.

The improvement in the residual error rate in the low σ region is attributed

to our adaptive coding scheme: in NC, a single memory cell error in the sign

bit results in a decoded bit error, while in QC and AD, at least 2 memory cell

errors are required to result in a decoded bit error. In fact, this observation holds

more generally. Let i∗ = argmaxi αi, and the i∗th entry in p̂(ℓ) for AD (or QC) be

1−ǫ(ℓ)ad , and NC be 1−ǫ(ℓ)nc . That is, the probabilities of the noise-free variable node

messages having the largest representable positive value at iteration ℓ are 1− ǫ(ℓ)ad

and 1 − ǫ(ℓ)nc for AD (or QC) and NC, respectively. Denote the approximation of

the residual error rate of AD up to the second order terms of σme by p̆
(ℓ)
r,ad, and

denote the approximation of the residual error rate of NC up to the second order

terms of σme by p̆
(ℓ)
r,nc. Then, we have the following lemma:
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Figure 4.8: Comparison of residual error rates under NC, QC, AD and noise-free

decoder for different σ via density evolution.
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Lemma 5. If the communication noise σ and bit-flipping rate σme are sufficiently

small and ℓ is sufficiently large so that ǫ
(ℓ)
ad , ǫ

(ℓ)
nc < σ3

me, then p̆
(ℓ)
r,ad = (p̆

(ℓ)
r,nc)2.

Proof. Since the sign bits are flipped with probability σme, ǫ
(ℓ)
nc < σ3

me, and ǫ
(ℓ)
ncσme <

σ4
me, we have

p(ℓ)r,nc ≈2 (1− ǫ
(ℓ)
nc )σme ≈2 σme = p̆(ℓ)r,nc, (4.12)

where ≈2 denotes the approximation up to the second order terms of σme. Since

with the proposed adaptive coding scheme, at least two bit flips are required to

cause an error in the decoded sign bit, ǫ
(ℓ)
ad < σ3

me, and ǫ
(ℓ)
adσ

2
me < σ5

me, we have

p
(ℓ)
r,ad ≈2 (1− ǫ

(ℓ)
ad )σ

2
me ≈2 σ

2
me = p̆

(ℓ)
r,ad. (4.13)

Therefore, p̆
(ℓ)
r,ad = (p̆

(ℓ)
r,nc)2.

We thus conclude that AD achieves significant error rate reduction by adap-

tively duplicating the sign bit in 2 memory cells storing LSBs without adding

any redundant memory cells. In fact, by using a length n code capable of cor-

recting m errors, we are able to reduce p
(ℓ)
r,ad to the order of (p

(ℓ)
r,nc)m+1 when the

communication noise and σme are sufficiently small.

Next, in Fig.4.9, we compare the trajectory of the residual error rate p
(ℓ)
r

w.r.t. iteration number ℓ under AD and QC when communication noise standard

deviation σ is small. Note that in this σ region, the residual error rate under NC

is much higher than under AD and QC. In this figure, we plot p
(ℓ)
r as a function

of ℓ (up to 30) for the bit-flipping probability σme = 5× 10−4 and communication

noise standard deviation σ = 0.7. We observe that the residual error rate under

AD is lower than that under QC in every iteration before they reach the lowest

achievable value (this lowest value is the same for AD and QC, see also Lemma 5).

Moreover, the rate of convergence for this lowest value is higher for AD than QC.
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of each iteration via density evolution.
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The effect of the precision level in the min-sum decoder on the residual error rate

is independent of the choice of code parameters, hence the above observations are

expected to hold more generally.

4.4.4 Simulation Results

We now compare via simulations the residual error rates under NC, QC, and

AD for finite length LDPC codes under the faulty memory model. We use a (3, 6)-

regular LDPC code with code length 2640 [41]. The communication channel noise

is modeled as a zero-mean Gaussian random variable with variance σ2. The bit-

flipping probability of noisy memory is σme. The maximum number of iteration is

30.

We first fix σme = 5 × 10−4 and compare the residual error rate under NC,

QC, and AD under different σ’s (Fig. 4.10). It is clear that when σ is large

(corresponding to the region to the right of the phase transition points shown

in Section 4.4.3.2), the residual error rates of all the decoders are approximately

the same, while for small σ (corresponding to the region to the left of the phase

transition points shown in Section 4.4.3.2), the residual error rates under AD (and

QC) are roughly the square of the residual error rate under NC, as predicted in

Lemma 5. In the transition region between small and large σ, AD still achieves a

lower residual error rate than QC and NC. Interestingly, although QC has a lower

residual error rate than NC in the small σ region, it has larger residual error rate

than NC in part of the transition region. The larger residual error rates in the

transition region reflect the observation from density evolution analysis: QC has

a lower phase transition point than NC due to the distortion introduced in the

source encoder.

Next, we fix σ = 0.7, σme = 5×10−4 and compare the residual error rates under

QC and AD in each iteration (up to 30). The residual error curves shown in Fig.
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Figure 4.10: Comparison of residual error rates under NC, QC, and AD for dif-

ferent σ in finite length code simulations.

4.11 exhibit the same trend as predicted by the density evolution analysis (Fig.

4.9): the residual error rate under AD converges faster to its lowest achievable

error rate than QC.

To sum up, NC has the highest residual error rate in the small σ region;

QC achieves a lower residual error rate in the small σ region at the expense of

slower convergence and a higher residual error rate in the transition region; on

the other hand, AD achieves a lower residual error rate in the small σ region and

maintains fast convergence and a low residual error rate in the transition region.

The superior performance of AD is attributed to the code design under ACOCO

with an appropriately chosen cost function.
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Figure 4.11: Comparison of residual error rates under QC and AD at the end of

each iteration in finite length code simulations.
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CHAPTER 5

Conclusion

5.1 Summary of the Results

In this dissertation, we investigated the iterative inference systems implemented

on unreliable hardware. We started from studying a noisy finite-alphabet iterative

decoder implemented on hardware built out of processors with different error

rates. We derived an iterative expression for the error rates as a function of

both transmission noise and processing noise. As an example, we formulated

the optimal processor assignment for a noisy Gallager E decoder, and showed

improvement in the residual error rate when processors were optimally assigned.

We then extend to study a noisy Gallager B decoder under processor transient

errors and memory permanent errors. We derived both the exact and approximate

density evolution expressions for the decoder output bit error rate as a function

of channel noise (and transient and permanent decoder errors). Additionally, we

proposed a scheme for detecting permanent errors and we illustrated the method

with an accompanying example.

Next, we studied a more general algorithm, the BP algorithm implemented

on noisy hardware. We proposed two low-overhead robust implementations of

the BP algorithm targeting computation noise with different characteristics. Un-

der the contraction mapping condition, we mathematically derived the sufficient

conditions for computation noise to guarantee the convergence of the two pro-

posed algorithms, namely, censoring BP and averaging BP. We investigated two
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important applications of BP: image denoising and a BP decoder for LDPC codes

for communication systems. In the image denoising application, the image re-

covered by averaging BP has a much better quality than the image recovered by

nominal BP. For the BP decoder, we proposed an averaging BP decoder by apply-

ing averaging BP. We demonstrated that the averaging BP decoder achieves lower

residual error rates than the nominal BP decoder under various computation noise

conditions.

Inspired by approximate computing, we proposed the ACOCO framework to

develop adaptive codes for a variety of computations performed on data read from

faulty memories. By introducing distortion with negligible effects in the source

encoder, the proposed codes protect the data against memory errors without re-

quiring additional memory cells, i.e., the codes have coding rate 1. Under the

ACOCO framework, we first developed adaptive codes for systems dominated by

product operations. By applying the proposed code to max-sum image denois-

ing and näıve Bayes classification, we demonstrated that our codes successfully

correct harmful memory errors, and that the distortion introduced by the source

encoder has negligible effects on the system performance. Then, we further de-

veloped adaptive codes for min-sum decoders with faulty memories. Via density

evolution analysis, we showed that application of the proposed codes indeed low-

ers the residual error rate. Higher phase transition points are observed when the

proposed codes are applied to a noisy min-sum decoder compared with when the

proposed codes are not applied and when only quantization codes are applied.

5.2 Future Directions

In this dissertation, we provided a novel information-theoretic approach for con-

crete fundamental performance limit characterizations and theory-guided system

designs with mathematical guarantees. The same methodology can be applied to
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the study of a wide range of systems and designs that can achieve reliable perfor-

mance when the system components are unreliable. By establishing mathematical

foundations for the analysis of the tradeoff between design overhead/energy con-

sumption and quality of inference, we can successfully explore the new design

dimension introduced by considering unreliable hardware to develop systems with

better efficiency and performance. We briefly mention some potential directions

for research specifically related to this dissertation in the following.

We have provided a detailed density evolution analysis for infinite precision and

finite precision LDPC decoders subject to different kinds of hardware errors. A

promising research direction is a robust code design against hardware errors based

on our density evolution analysis. An ideal robust code against noisy hardware

will have better threshold and lower error floor than the code design for a noise-free

decoder.

The BP algorithm has been applied in various problems with different mes-

sage updating rules. For example, approximate message passing for compressive

sensing [78] and max-product algorithm for weighted matching [79]. Applying the

proposed robust implementation or developing better suited algorithm design for

those applications of BP is an important future research direction.

In ACOCO, the most important characteristic of the proposed adaptive codes

is its computation-awareness. In other words, we design the adaptive codes ac-

cording to the computation we are going to perform on the data to be protected

by the adaptive code. Therefore, for inference system implemented on unreliable

hardware, the error-correcting code design (or more general, algorithm and system

design) has to be aware of both hardware error characteristics and the compu-

tations/operations performing on the data. A closer look and detailed study of

how the two factors interact with each other will lead to better and more efficient

design for inference algorithms on unreliable hardware.
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