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ABSTRACT This work explores the problem of observing nonrepetitive disturbances under an almost data-

driven framework. First, a linear data model among the inputs, states, and outputs is built for a repetitive

system (linear or nonlinear) between two consecutive iterations where the nonrepetitive disturbances are

accumulated along time axis as a total one. The accumulative disturbance contains all the influences on the

system states or outputs caused by the disturbances from the initial time instant to the current time instant

between two consecutive iterations. Furthermore, an iterative updating algorithm is designed to estimate

the gradient matrix in the derived linear data model. Subsequently, iterative learning-based accumulative

disturbance observer (ILADOB) is proposed employing the state information in the iteration domain when

the system states are measurable; otherwise, when the states are immeasurable, an output-based ILADOB is

presented as an alternative. The proposed two ILADOB methods are executed along the iteration direction

all over the finite time interval pointwisely using the system data from preceding trials. The convergence

and stability are proved mathematically. The simulation study confirms the validity of the state-based and

output-based ILADOB methods.

INDEX TERMS Accumulate disturbance observer, iterative learning, linear data dynamic relationship,

repetitive systems, almost data-driven design and analysis.

I. INTRODUCTION

In industrial applications, the existence of disturbances is

inevitable. System disturbances include not only nonlin-

ear disturbances, time delays, sensor measurement noises,

but also external disturbances and unknown disturbance

inputs [1]–[3]. The disturbances in the system may affect

the control performance seriously. To solve this problem

with unmatched uncertain systems, one can design a dis-

turbance observer (DOB) for the estimation of uncertainties

which are then incorporated into the controller to compen-

sate their influences on the control performance [4]. In [5],

The associate editor coordinating the review of this manuscript and
approving it for publication was Dong Shen.

a DOB-based control method for phase compensation is

proposed to reduce the influence of inertial variation on

motion control. In [6], a communication disturbance observer

is used for compensation of influences caused by time-

varying delays in network-based control systems. In [7],

a sliding mode DOB is added to enhance control perfor-

mance of the aircraft attitude control and to decrease the

influence from disturbances such as wind and collision on the

aircraft.

Currently, linear disturbance observers have been well

developed with many theoretical results and practical appli-

cations. In [8], a frequency domain disturbance observer

is designed by using an inverse model. In [9], a reduced

order DOB is proposed where the control system is not
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required to be fully observable. Aiming at the time-delay

problem, an uncertainty and disturbance estimator [10] is

proposed to estimate the disturbances and uncertainties.

In [11], an unknown input observer is used in the disturbance

accommodation control to deal with external disturbance.

Generalized proportional integral observer is proposed to

estimate time-varying disturbance and uncertainties [12]

where more disturbance information is used to increase esti-

mation accuracy. On the other hand, nonlinear systems are

more popular than the linear ones in practical applications.

Therefore, some DOB methods have also been explored in

recent years [13]–[16]. In [15], a high order DOB is proposed

to deal with high order disturbances. In [16], an extended

high-gain state observer is developed to estimate disturbances

in nonlinear systems.

It is worth pointing out that most of the DOB meth-

ods [8]–[16], no matter linear or nonlinear, require the known

model information as a priori. On the other words, these

methods [8]–[16] are model-based and depend on an explicit

model of the practical systems. However, it is actually too dif-

ficult to model a control plant using physical-chemical princi-

ple or identification methods because the practical processes

are becoming more and more complex with increasing large

scales. Therefore, the above model-based observers [8]–[16]

may encounter challenges and difficulties when applied

into practical problems, and thus data-driven approaches

in modeling, control, optimization has become much more

popular [17]–[19].

On the other hand, many practical systems are repeti-

tive operating with a fixed time length. For example, many

industrial robots repetitively execute an identical operation

task [20], and high-speed trains travel repeatedly along a

fixed pathway within a finite time interval [21]. Other exam-

ples include traffic systems [22], batch processes [23], [24],

multi-agent systems [25], and so on. For such a repetitive

system, iterative learning control [20]–[25] is most effective

in perfect tracking using the control information in the pre-

ceding trials. ILC method is proposed for nonlinear systems

originally where only the bound of the direct transmission

term is needed for the controller design and implementation.

And thus, ILC requires very little model information and is

also called a ‘‘model-free’’ or ‘‘data-driven’’ method some-

times [26].

So, can we introduce the idea of ILC into the repeti-

tive systems to solve the design problem of DOB bypass-

ing the modeling steps? Recently, several works about state

observer/estimation have been done for repetitive systems.

In [27], a finite time observer is designed using the known

nonlinear model. In [28], a Luenberger observer is designed

for both state and output of the linear repetitive systems.

In [29], an iterative learning observer is proposed along

the iteration direction for linear time-invariant systems.

In [30]–[32] it is assumed that the bounds of the disturbances

exist and then a robust analysis of the ILC problem is pro-

vided. To the best of the authors knowledge, there is no

existing work in designing a disturbance observer based on

iterative learning for repetitive systems.

In this work, an iterative learning based accumulative

disturbance observer (ILADOB) is proposed for repetitive

systems. The design and analysis start from a linear discrete-

time system where almost all the coefficient matrices are

unknown, to a nonlinear discrete-time system in which both

the nonlinear function and the system order are completely

unknown. At first, a linear data dynamic model is developed

among the inputs, states and outputs for a repetitive system.

The linear datamodel includes an unknown Jacobian/gradient

matrix as well as a total accumulative disturbance containing

all the influences on system states and outputs caused by the

disturbances from the initial time instant to the current time

instant between two consecutive iterations.

Aiming to estimate the expanded disturbance in the derived

linear data model, two ILADOBmethods are presented in the

iteration domain using the measurable system states and sys-

tem outputs respectively where a parameter iterative updat-

ing algorithm is included for the estimation of the gradient

matrix. The two proposed ILADOB methods are conducted

in iteration domain pointwisely using the data of the system

states, outputs and control inputs from preceding trials. The

convergence and stability of the developed ILADOBs are

addressed with rigorous analysis. Simulations further demon-

strate the validity of the two ILADOB methods.

The rest of this paper is organized bellow. Section 2 designs

an iterative learning-based disturbance observer for a linear

repetitive system with analysis. Section 3 extends the results

to nonlinear repetitive systems. The simulation study is pro-

posed in Section 4. Finally, Section 5 concludes this paper.

II. ILADOB FOR LINEAR TIME-VARYING SYSTEMS

A. PROBLEM FORMULATION AND LINEAR DATA MODEL

A repetitive linear time-varying system is considered as

follows,







xk (t + 1) = A(t)xk (t) + B(t)uk (t) + dk (t)

yk (t) = C(t)xk (t)
(1)

where xk (t) ∈ Rn, uk (t) ∈ Rl , and yk (t) ∈ Rm are the system

state, input and output respectively; dk (t) ∈ Rn is the system

disturbance; t ∈ {0, . . . ,N }, and N denotes the terminal

time instant of the repetitive system; k denotes the iteration

number. The system matrix A(t) ∈ Rn×n, B(t) ∈ Rn×l

are unknown but bounded, and C(t) ∈ Rm×n is known and

bounded, that is, ‖A(t)‖ ≤ bA, ‖B(t)‖ ≤ bB, ‖C(t)‖ ≤ bC ,

where bA, bB, bC are positive constants.

Two assumptions about the system (1) are made, shown as

follows.

Assumption 1: The system initial state xk (0) is invariant,

that is, xk (0) = x0, where x0 is a constant matrix.

Assumption 2: The disturbance dk (t) is bounded, i.e.,

‖dk (t)‖ ≤ bd , where bd is a constant.
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According to [26], system (1) is transformed as,


























































xk (t + 1) =

t
∏

i=0

A(i)xk (0)

+

t+1
∑

i=1

i−1
∏

j=1

A(t+1−j)B(t+1−i)uk (t + 1 − i)

+

t+1
∑

i=1

i−1
∏

j=1

A(t + 1 − j)dk (t + 1 − i)

yk (t) = C(t)xk (t)

(2)

Define an iteration-difference operator 1, i.e., 1xk (t) =

xk (t) − xk−1(t). Then, according to Assumption 1, we have






















1xk (t + 1)

=

t+1
∑

i=1

i−1
∏

j=1

A(t+1−j)B(t+1−i)1uk (t+1−i) + δk (t)

yk (t) = C(t)xk (t)

(3)

where δk (t) denotes the total disturbance to the system state,

δk (t) =

t+1
∑

i=1

i−1
∏

j=1

A(t + 1 − j)1dk (t + 1 − i).

Define

8(t) =

[

t
∏

i=1

A(i)B(0)
t
∏

i=2

A(i)B(1) . . . A(t)B(t − 1) B(t)

]

and Uk (t) =
[

uTk (0) u
T
k (1) . . . uTk (t)

]T
.

Then, an alternative linear data model of system (1) is built

finally as
{

xk (t + 1) = xk−1(t + 1) + 8(t)1Uk (t) + δk (t)

yk (t) = C(t)xk (t)
(4)

where 8(t) is bounded because A(t) and B(t) are bounded.

Remark 1: According to (3), the accumulate distur-

bance δk (t) contains both the system uncertainties (e.g., the

unknown matrix A) and the external disturbances together.

So, its estimation is important for the subsequent controller

design as a compensation of the uncertainties.

Remark 2: The linear data model (4) does not have any spe-

cial physical backgrounds but describes the data relationships

and virtually exists in the computer, which is most different

from the traditional mechanistic model.

B. STATE-BASED ILADOB WITH MEASURABLE

SYSTEM STATES

1) STATE-BASED ILADOB DESIGN

Considering system (1) where system states are measurable

and using the linear data model (4), a state-based ILADOB is

developed as,

δ̂k (t) = Kxk−1(t + 1) − zk (t + 1) (5a)

zk+1(t + 1)

= zk (t + 1) + K(8̂k (t)1Uk (t) + δ̂k (t)) (5b)

8̂k (t)

= 8̂k−1(t)

+
η1(1xk−1(t + 1) − 8̂k−1(t)1Uk−1(t))1U

T
k−1(t)

µ1 +
∥

∥1UT
k−1(t)

∥

∥

2

(5c)

where δ̂k (t) is the estimation of δk (t), zk (t) ∈ Rn is a

state variable, 8̂k (t) is the estimation of 8(t), µ1 > 0 is

a weighting factor and η1 ∈ (0, 2) is a step factor; K =

(In − Ŵ) ∈ Rn×n, where Ŵ = diag{γ1, γ2, . . . , γn}, and

|γi| < 1, i = 1, 2, . . . , n , is a proper constant.

Remark 3: Different from the traditional DOB in time

domain, the proposed state based ILADOB (5a)-(5c) is exe-

cuted in a batch over {1, 2, . . . , N} along iteration direction

and aims to estimate the accumulative disturbance in the

linear data model (4) as a total influence to the system states.

Remark 4: It is seen from (5a)-(5c) that no model infor-

mation about system (1), such as A(t) and B(t), is used at

all. Therefore, proposed state based ILADOB is a data-driven

method even though it is derived from linear systems. Actu-

ally, the results can be easily extended to a general unknown

nonlinear system, as shown subsequently.

2) STABILITY ANALYSIS

Define ek (t) = δk (t) − δ̂k (t) as the disturbance estimation

error and 8̃k (t) = 8(t) − 8̂k (t) as the parameter estimate

error.

The convergence of the state-based ILADOB (5a)-(5c) is

guaranteed by the theorem below.

Theorem 1: For system (1) satisfying Assumption 1-2,

by properly selecting the observer parameters such that η1 ∈

(0, 2), µ1 > 0, and |γi| < 1, i = 1, 2, . . . , n, the pro-

posed state-based ILADOB (5a)-(5c) guarantees that 8̂k (t)

is bounded and the disturbance estimate error ek (t) converges

to a bound related to the parameters bδ , bK , and bγ which are

defined subsequently.

Proof: Subtracting8(t) from both sides of (5c), in terms

of (4), we have

8̃k (t)

= 8̃k−1(t)

−
η1(8(t)1Uk−1(t)+δk−1(t)−8̂k−1(t)1Uk−1(t))1U

T
k−1(t)

µ1 +
∥

∥1UT
k−1(t)

∥

∥

2

= 8̃k−1(t)

(

I −
η11Uk−1(t)1U

T
k−1(t)

µ1 +
∥

∥1UT
k−1(t)

∥

∥

2

)

−
η1δk−1(t)1U

T
k−1(t)

µ1 +
∥

∥1UT
k−1(t)

∥

∥

2
(6)

Since both the systemmatrixA(t) and the disturbance dk (t)

are bounded and the system time interval is finite, one can

find a constant bδ such that the accumulative disturbance

VOLUME 7, 2019 79289
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is also bounded, i.e., ‖δk (t)‖ ≤ bδ . In addition, Uk (t) is

given bounded for the practical system identification. Then,

we have,
∥

∥

∥

∥

∥

η1δk−1(t)1U
T
k−1(t)

µ1 +
∥

∥1UT
k−1(t)

∥

∥

2

∥

∥

∥

∥

∥

≤ b1

where b1 is a positive constant.

Taking norm on both sides of (6), we have,

∥

∥

∥
8̃k (t)

∥

∥

∥
≤

∥

∥

∥

∥

∥

8̃k−1(t)

(

I −
η11Uk−1(t)1U

T
k−1(t)

µ1 +
∥

∥1UT
k−1(t)

∥

∥

2

)
∥

∥

∥

∥

∥

+b1

(7)

Consider the first item on the right of (7),

∥

∥

∥

∥

∥

8̃k−1(t)

(

I −
η11Uk−1(t)1U

T
k−1(t)

µ1 +
∥

∥1UT
k−1(t)

∥

∥

2

)∥

∥

∥

∥

∥

2

=

∥

∥

∥
8̃k−1(t)

∥

∥

∥

2
−

(

2 −
η1 ‖1Uk−1(t)‖

2

µ1 +
∥

∥1UT
k−1(t)

∥

∥

2

)

×
η1

∥

∥

∥
8̃k−1(t)1Uk−1(t)

∥

∥

∥

2

µ1 +
∥

∥1UT
k−1(t)

∥

∥

2

Due to η1 ∈ (0, 2) and µ1 > 0,

2 −
η1 ‖1Uk−1(t)‖

2

µ1 +
∥

∥1UT
k−1(t)

∥

∥

2
> 0

Therefore, there exists a positive constant 0 < b2 < 1 such

that
∥

∥

∥

∥

∥

8̃k−1(t)

(

I −
η11Uk−1(t)1U

T
k−1(t)

µ1 +
∥

∥1UT
k−1(t)

∥

∥

2

)∥

∥

∥

∥

∥

≤b2

∥

∥

∥
8̃k−1(t)

∥

∥

∥

(8)

According to (7) and (8), we can obtain that

∥

∥

∥
8̃k (t)

∥

∥

∥
≤b2

∥

∥

∥
8̃k−1(t)

∥

∥

∥
+b1 ≤ · · · ≤ bk2

∥

∥

∥
8̃0(t)

∥

∥

∥
+

b1

1 − b2
(9)

from which we have that 8̃k (t) is bounded because 8(t)

is bounded and 8̂0(t) is also given bounded. Consequently,

8̂0(t) is bounded too.

Now, we proceed to the proof of the stability of the dis-

turbance observer. According to (5a), the dynamics of the

accumulative disturbance estimation error is

ek+1(t) = δk+1(t) − Kxk (t + 1) + zk+1(t + 1) (10)

Then from (4) and (5b), equation (10) becomes,

ek+1(t) = δk+1(t) − K(xk−1(t + 1) + 8(t)1Uk (t) + δk (t))

+ zk (t + 1) + K(8̂k (t)1Uk (t) + δ̂k (t))

= δk+1(t)−δk (t)+δk (t)−(Kxk−1(t + 1)−zk (t+1))

−Kek (t) − K8̃k (t)1Uk (t) (11)

By virtue of (5a), one can obtain from (11) that

ek+1(t)=1δk+1(t)+(In−K)ek (t)−K8̃k (t)1Uk (t) (12)

Since K = (In − Ŵ), one can rewrite (12) as

ek+1(t) = 1δk+1(t) + Ŵek (t) − K8̃k (t)1Uk (t) (13)

Taking the norm on the both sides of (13), yields,

‖ek+1(t)‖ ≤ ‖Ŵ‖ ‖ek (t)‖ + ‖1δk+1(t)‖

+ ‖K‖
∥

∥

∥
8̃k (t)

∥

∥

∥
‖1Uk (t)‖ (14)

Since uk (t) is bounded, then 1Uk (t) is bounded too. Fur-

ther, the boundedness of 8̃k (t) has been proved and K is

also bounded, thereafter, ‖K‖
∥

∥

∥
8̃k (t)

∥

∥

∥
‖1Uk (t)‖ ≤ bK is

boundedwhere bK is a constant. As for the diagonal matrixŴ,

we have ‖Ŵ‖ ≤ bγ , where bγ denotes its maximum eigen-

value and 0 < bγ < 1 because γi < 1(i = 1,2,. . . ,n).

Therefore, one can get from (14) that

‖ek+1(t)‖ ≤ bγ ‖ek (t)‖ + 2bδ

+ bK ≤ · · · ≤ bk+1
γ ‖e0(t)‖ +

2bδ + bK

1 − bγ

It is obvious that the disturbance estimation error conver-

gence boundedly with the increasing iterations, i.e.,

lim
k→∞

‖ek (t)‖ ≤
2bδ + bK

1 − bγ

.

Remark 5: It is apparent that Theorem 1 guarantees the

convergence of the state-based ILADOB along the iteration

axis. By using the information in previous trials, the observ-

ing performance of the proposed state based ILADOB can be

improved iteratively. Instead, the traditional DOB in the time

domain achieves convergence only when the time instants

approach to infinity. So, the traditional DOB is not suitable

for observing the disturbances of a repetitive system due to

the finite time interval.

C. OUTPUT-BASED ILADOB WITH UNMEASURABLE

SYSTEM STATES

1) OUTPUT-BASED ILADOB DESIGN

By considering the case that the system state is unmeasurable

and using the linear data model (4), an output based ILADOB

method is proposed as follows,

δ̂k (t) = KC+(t + 1)yk−1(t + 1) − zk (t + 1)

+KN(t + 1)xk−1(t + 1) (15a)

zk+1(t + 1)

= zk (t + 1) + K(8̂k (t)1Uk (t) + δ̂k (t)) (15b)

8̂k (t) = 8̂k−1(t) −
η18̂k−1(t)1Uk−1(t)1U

T
k−1(t)

µ1 +
∥

∥1UT
k−1(t)

∥

∥

2

+
η1(MC(t + 1))L+M1yk−1(t + 1)1UT

k−1(t)

µ1 +
∥

∥1UT
k−1(t)

∥

∥

2

(15c)
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where C+ denotes a pseudo-inverse of the matrix C,

(MC)L+ denotes a left inverse of MC, which satisfies

(MC)L+MC = I , and I is the identity matrix, N(t + 1) =

In −C+(t + 1)C(t + 1), and KN(t + 1)xk−1(t + 1) is added

in (15a) as a compensation.

According to [9], there exist matrix H(t + 1) ∈ Rn×h and

V ∈ Rh×n satisfying H(t + 1)V = KN(t + 1), where h =

rank(KN(t + 1)).

SinceKN(t+1)xk−1(t+1) cannot be measured, we define

a state function vector,

βk (t) = Vxk−1(t + 1) ∈ Rh (16)

where βk (t) denotes an unknown state, and an estimator for

βk (t) is designed further.

So, the final output based ILADOB is designed as

δ̂k (t) = KC+(t + 1)yk−1(t + 1)

− zk (t + 1) +H(t + 1)β̂k (t) (17a)

zk+1(t + 1)

= zk (t + 1) + K(8̂k (t)1Uk (t) + δ̂k (t)) (17b)

8̂k (t) = 8̂k−1(t) −
η18̂k−1(t)1Uk−1(t)1U

T
k−1(t)

µ1 +
∥

∥1UT
k−1(t)

∥

∥

2

+
η1(MC(t + 1))L+M1yk−1(t + 1)1UT

k−1(t)

µ1 +
∥

∥1UT
k−1(t)

∥

∥

2

(17c)

β̂k (t) = ξ k (t) + Q(t + 1)yk−1(t + 1) (17d)

ξ k+1(t) = R(t + 1)ξ k (t) + S(t + 1)yk−1(t + 1)

+Wu,k (t + 1)1Uk (t) +W δ(t + 1)δ̂k (t) (17e)

where β̂k (t) ∈ Rh is to estimate βk (t), and Wu,k (t + 1) =

(V −Q(t + 1)C(t + 1))8̂k (t), ξ k (t) ∈ Rh,W δ(t + 1) = V −

Q(t+1)C(t+1); for the matrices S(t) ∈ Rh×m,Q(t) ∈ Rh×m,

and R(t) ∈ Rh×h, they satisfy that

(Ih − R(t))(V − Q(t)C(t)) − S(t)C(t) = 0 (18)

Remark 6: Different from the state based ILADOB

(5a)-(5c), the proposed output based ILADOB utilizes the

system output and the pseudo-inverse of output matrix to

denote the system state. Further, a state observer (17d)

is employed to denote the comprehensive state as a

compensation.

Remark 7: The solvability of the condition (18) has been

shown in [9]. In addition,M can be set asM = In, butM can

also be set as other values, and the choice of M is relatively

free [9].

2) STABILITY ANALYSIS

Theorem 2: Consider a repetitive linear time-varying sys-

tem (1) satisfying assumptions 1-2. By choosing Q(t), R(t),

and S(t) properly such that condition (18) is satisfied, and

η1 ∈ (0, 2), µ1 > 0, and |γi| < 1, i = 1, 2, . . . , n,

properly, the proposed output based ILADOB (17a)-(17e)

guarantees that: (i) 8̂k (t) is bounded for all iterations over

{1, 2, . . . , N}; (ii) both the observer error of the accumulative

disturbance, ek (t), and the observer error of the extended

state, εk (t) = βk (t) − β̂k (t), over {1, 2, . . . , N} convergence

boundedly with increasing iterations.

Proof: Subtracting 8(t) from both sides of (17c),

in terms of (4), we have

8̃k (t)

= 8̃k−1(t) +
η18̂k−1(t)1Uk−1(t)1U

T
k−1(t)

µ1 +
∥

∥1UT
k−1(t)

∥

∥

2

−
η1(MC(t + 1))L+MC(t + 1)1xk−1(t + 1)1UT

k−1(t)

µ1 +
∥

∥1UT
k−1(t)

∥

∥

2

= 8̃k−1(t)

(

I −
η11Uk−1(t)1U

T
k−1(t)

µ1 +
∥

∥1UT
k−1(t)

∥

∥

2

)

−
η1δk−1(t)1U

T
k−1(t)

µ1 +
∥

∥1UT
k−1(t)

∥

∥

2
(19)

After that, the proof of the stability of 8̂k (t) is similar to

those in Theorem 1. So, we omit the detail proof for simplic-

ity. Now, we proceed to the stability analysis of estimation

error ek (t).

Define εk (t) = βk (t) − β̂k (t) as the estimation error

of βk (t). By virtue of (16) and (17d), one has

ξ k (t) = βk (t) − εk (t) − Q(t + 1)C(t + 1)xk−1(t + 1)

= (V − Q(t + 1)C(t + 1))xk−1(t + 1) − εk (t) (20)

Then, we can get that,

εk+1(t)= (V−Q(t + 1)C(t + 1))xk (t + 1)−ξ k+1(t) (21)

Substituting (4) and (17e) into (21), yields

εk+1(t) = (V − Q(t + 1)C(t + 1))(xk−1(t + 1)

+ 8(t)1Uk (t) + δk (t))

− (R(t + 1)ξ k (t) + S(t + 1)C(t + 1)xk−1(t + 1)

+Wu,k (t + 1)1Uk (t) +W δ(t + 1)δ̂k (t)) (22)

In view of (20) and (22), one can get

εk+1(t)

= ((V−Q(t+1)C(t+1)) − R(t+1)(V−Q(t+1)C(t+1))

−S(t + 1)C(t + 1))xk−1(t + 1) −Wu,k (t + 1)1Uk (t)

+ ((V−Q(t+1)C(t+1))8(t)1Uk (t) −W δ(t + 1)δ̂k (t)

+ ((V − Q(t + 1)C(t + 1))δk (t) +W δ(t + 1)ek (t)

+R(t + 1)εk (t) (23)

By virtue of equation (18) and the definitions ofWu,k (t+1)

andW δ(t + 1), (23) is rewritten as

εk+1(t) = (V − Q(t + 1)C(t + 1))ek (t) + R(t + 1)εk (t)

+ (V − Q(t + 1)C(t + 1))8̃k (t)1Uk (t) (24)
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Since βk (t) = Vxk−1(t + 1) and β̂k (t) = βk (t) − εk (t),

we have

δ̂k (t) = KC+(t + 1)yk−1(t + 1) − zk (t + 1)

+H(t + 1)(Vxk−1(t + 1) − εk (t))

= KC+(t + 1)yk−1(t + 1) − zk (t + 1)

+KN(t + 1)xk−1(t + 1) −H(t + 1)εk (t)

= Kxk−1(t + 1) − zk (t + 1) −H(t + 1)εk (t) (25)

Then,

ek+1(t) = δk+1(t) − δ̂k+1(t)

= δk+1(t) − Kxk (t + 1) + zk+1(t + 1)

+H(t + 1)εk+1(t) (26)

According to (4) and (17b), one can obtain from (26) that

ek+1(t) = δk+1(t) − K(xk−1(t + 1) + 8(t)1Uk (t) + δk (t))

+ zk (t + 1) + K(8̂k (t)1Uk (t) + δ̂k (t))

+H(t + 1)εk+1(t)

= δk+1(t) − (Kxk−1(t + 1) − zk (t + 1))

−K(δk (t) − δ̂k (t))

−K8̃k (t)1Uk (t) +H(t + 1)εk+1(t) (27)

Substituting (25) into (27), one has

ek+1(t) = δk+1(t) − δk (t) + δk (t) − δ̂k (t) −H(t + 1)εk (t)

−Kek (t) − K8̃k (t)1Uk (t) +H(t + 1)εk+1(t)

= 1δk+1(t) + (In − K)ek (t) − K8̃k (t)1Uk (t)

−H(t + 1)εk (t) +H(t + 1)εk+1(t) (28)

Again, substituting (24) into (28), yields,

ek+1(t) = (In − K +H(t + 1)(V − Q(t + 1)C(t + 1)))ek (t)

+ (H(t+1)R(t+1) −H(t+1))εk (t) + 1δk+1(t)

+ (H(t + 1)(V − Q(t + 1)C(t + 1))

−K)8̃k (t)1Uk (t) (29)

Combining (29) and (24), the dynamics of ek (t) and εk (t)

can be formulated as
(

ek+1(t)

εk+1(t)

)

= E1(t + 1)

(

ek (t)

εk (t)

)

+ E2(t + 1) (30)

where

E1(t + 1)

=

[

E1,1(t + 1) H(t + 1)R(t+1) −H(t+1)

V − Q(t + 1)C(t + 1) R(t + 1)

]

,

E1,1(t + 1)

= In − K +H(t + 1)(V − Q(t + 1)C(t + 1)),

E2(t + 1)

=

(

E2,1(t + 1)

(V − Q(t + 1)C(t + 1))8̃k (t)1Uk (t)

)

,

E2,1(t + 1)

= 1δk+1(t)

+ (H(t + 1)(V − Q(t + 1)C(t + 1)) − K)8̃k (t)1Uk (t).

Since the elements of E2(t + 1) are bounded, ‖E2(t + 1)‖

is bounded too. Since condition (18) is satisfied, it is clear

that E1(t+1) is stable, then one can guarantee that both ek (t)

and εk (t) are bounded as the iteration number increases.

III. EXTENSION TO MIMO NONLINEAR

NONAFFINE SYSTEMS

A. FORMULATION AND LINEAR DATA MODEL

A MIMO nonlinear discrete-time repetitive system is

considered,
{

xk (t + 1) = f (xk (t),uk (t)) + dk (t)

yk (t) = C(t)xk (t)
(31)

where xk (t) ∈ Rn, uk (t) ∈ Rl , and yk (t) ∈ Rm are the system

state, input and output; dk (t) ∈ Rn is the system disturbance;

t ∈ {0, . . . ,N } and N denotes the terminal time instant of

the repetitive system; k ∈ {0, 1, . . . ,∞} denotes the iteration

number; f (. . .) is an unknown vector-valued function. The

system matrix C(t) ∈ Rm×n is a known and bounded matrix,

that is

‖C(t)‖ ≤ bC

where bC is a positive constant.

Besides assumptions 1-2, the nonlinear nonaffine system

(31) also satisfies the following assumption.

Assumption 3: The partial gradients f (. . .) with respect to

the input vectors uk (t) and the disturbance dk (t) are both

continuous and bounded.

Then, according to [24], the nonlinear state equation of

system (31) becomes

xk (1) = f (xk (0),uk (0)) + dk (0) = g0(xk (0),uk (0), dk (0))

xk (2) = f (xk (1),uk (1)) + dk (1)

= f (g0(xk (0),uk (0), dk (0)),uk (1)) + dk (1)

= g1(xk (0),uk (0),uk (1), dk (0), dk (1))

...

xk (t + 1) = gt (xk (0),uk (0), . . . ,uk (t − 1),uk (t),

dk (0), . . . , dk (t − 1), dk (t))

where gt (· · · ) ∈ Rn is a corresponding nonlinear vector-

valued functions and is a compound function of f (. . .) and

thus its partial derivative of uk (t) and dk (t) is also continuous

and bounded according to Assumption 3.

Define Uk (t) =
[

uTk (0) u
T
k (1) . . . uTk (t)

]T
and Dk (t) =

[

dTk (0) d
T
k (1) . . . dTk (t)

]T
.

Making a difference of system outputs between two

iterations, there exist some functions ζ 1,k ∈ (xk (0) −

1xk (0), xk (0)), ζ 2,k (t) ∈ (Uk (t) − 1Uk (t),Uk (t)), and

ζ 3,k (t) ∈ (Dk (t) − 1Dk (t),Dk (t)) such that

1xk (t + 1) = gtx(ζ 1,k )1xk (0) + gtU (ζ 2,k (t))1Uk (t)

+ gtD(ζ 3,k (t))1Dk (t) (32)

where gtx = ∂gt/∂x, gtU = ∂gt/∂U , gtD = ∂gt/∂D.

79292 VOLUME 7, 2019



Y. Wei et al.: ILADOB for Repetitive Systems via a Virtual Linear Data Model

According to Assumption 3, it is obvious that gtx(ζ 1,k ),

gtU (ζ 2,k (t)), and gtD(ζ 3,k (t)) are bounded. By virtue of

Assumption 1, i.e., 1xk (0) = 0, therefore (32) becomes

1xk (t+1)=gtU (ζ 2,k (t))1Uk (t)+gtD(ζ 3,k (t))1Dk (t) (33)

So, a linear data model of nonlinear system (31) is derived as,

{

xk (t + 1) = xk−1(t + 1) + 4k (t)1Uk (t) + δk (t)

yk (t) = C(t)xk (t)
(34)

where 4k (t) = gtU (ζ 2,k (t)) is the gradient parameter vector

and δk (t) = gtD(ζ 3,k (t))1Dk (t) denotes the accumulative

disturbances of system (31), and both of them are bounded.

Remark 8: One can see that linear data model (34) for

a nonlinear nonaffine system (31) is similar to the one for

linear system (1) where the only difference is that the gradient

parameter matrix 4k (t) = gtU (ζ 2,k (t)) in (34) is iteration-

dependent, while 8(t) in (4) is iteration-independent.

B. ILADOB FOR NONLINEAR NONAFFINE SYSTEMS

Comparing linear data model (34) with (4), the previous

designed ILADOB methods (5a)-(5c) and (17a)-(17e) can

also be applicable to observe the accumulative disturbance

in (34). For the convenience of the readers, we rewrite them

here by replacing 8̂k (t) with 4̂k (t).

1) STATE-BASED ILADOB FOR NONLINEAR

NONAFFINE SYSTEM (31)

δ̂k (t) = Kxk−1(t + 1) − zk (t + 1) (35a)

zk+1(t + 1)

= zk (t + 1) + K(4̂k (t)1Uk (t) + δ̂k (t)) (35b)

4̂k (t) = 4̂k−1(t)

+
η2(1xk−1(t + 1)−4̂k−1(t)1Uk−1(t))1U

T
k−1(t)

µ2+
∥

∥1UT
k−1(t)

∥

∥

2

(35c)

where δ̂k (t) is to estimate δk (t), zk (t) ∈ Rn is a state variable,

4̂k (t) is the estimation of 4(t), µ2 > 0 is a weighted factor

and η2 ∈ (0, 2) is a step-size factor; K = (In − Ŵ) ∈

Rn×n, where Ŵ = diag{γ1, γ2, . . . , γn}, and |γi| < 1, i =

1, 2, . . . , n is a proper constant.

2) OUTPUT-BASED ILADOB FOR NONLINEAR

NONAFFINE SYSTEM (31)

δ̂k (t) = KC+(t+1)yk−1(t+1) − zk (t+1)+H(t+1)β̂k (t)

(36a)

zk+1(t + 1)

= zk (t + 1) + K(4̂k (t)1Uk (t) + δ̂k (t)) (36b)

4̂k (t) = 4̂k−1(t) −
η24̂k−1(t)1Uk−1(t)1U

T
k−1(t)

µ2 +
∥

∥1UT
k−1(t)

∥

∥

2

+
η2(MC(t + 1))L+M1yk−1(t + 1)1UT

k−1(t)

µ2 +
∥

∥1UT
k−1(t)

∥

∥

2

(36c)

β̂k (t) = ξ k (t) + Q(t + 1)yk−1(t + 1) (36d)

ξ k+1(t) = R(t + 1)ξ k (t) + S(t + 1)yk−1(t + 1)

+Wu,k (t + 1)1Uk (t) +W δ(t + 1)δ̂k (t) (36e)

where β̂k (t) ∈ Rh is to estimate βk (t); ξ k (t) ∈ Rh,Wu,k (t +

1) = (V −Q(t + 1)C(t + 1))4̂k (t),W δ(t + 1) = V −Q(t +

1)C(t + 1), the matrices S(t) ∈ Rh×m, Q(t) ∈ Rh×m, and

R(t) ∈ Rh×h satisfy that

(Ih − R(t))(V − Q(t)C(t)) − S(t)C(t) = 0.

3) STABILITY ANALYSIS

Assumption 4: Assume the gradient parameter 4k (t) is

slowly iteration-varying or iteration-invariant for a strong

repetitive system.

Remark 9: Actually, 4k (t) denotes differential signal of

a control system and is not sensitive to iteration-varying

factors such as iteration-varying parameters, structures, etc.

So, it can be regarded as a slow-iteration-varying param-

eter matrix especially when the difference of Uk (t) is not

too large. Consequently, one can regard 4k (t) as iteration-

invariant in the convergence analysis, similar to the most

popular methods in the well-known adaptive control theory

in dealing with slowly time-varying parameters which are

regarded as constants directly.

The convergence theorems of the state-based and output-

based ILADOB methods for the nonlinear nonaffine system

(31) are given respectively as follows.

Theorem 3: For the repetitive nonlinear nonaffine system

(31) satisfying assumptions 1-3, by properly selecting the

observer parameters such that η2 ∈ (0, 2), µ2 > 0, and

|γi| < 1, i = 1, 2, . . . , n, the proposed state based ILADOB

(35a)-(35c) guarantees that 4̂k (t) is bounded and the accumu-

lative disturbance estimate error ek (t) converges to a bound

iteratively.

Theorem 4: Consider a repetitive nonlinear nonaffine sys-

tem (31) satisfying assumptions 1-3. By choosing Q(t), R(t),

and S(t) properly such that condition (18) is satisfied, and

η2 ∈ (0, 2), µ2 > 0, and |γi| < 1, i = 1, 2, . . . , n, properly,

the proposed output based ILADOB (36a)-(36e) guarantees

that: (i) 4̂k (t) is bounded over {1, 2, . . . , N} for all iterations;

(ii) both the observer error of the accumulative disturbance

ek (t) and the observer error of the extended state εk (t) =

βk (t)− β̂k (t) over {1,2,. . . , N} convergence boundedly with

increasing iterations.

Proof: The proofs of theorems 3 and 4 are similar to that

of theorems 1 and 2, respectively. So, the detail proofs are

excluded for simplicity.
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IV. SIMULITION STUDY

Two examples are provided to show the validity of the

ILADOB methods. One is a MIMO linear time-varying sys-

tem and another is a MIMO nonlinear time-varying system.

The given mathematical models are used to represent a prac-

tical plant in the simulations. They only serve in generating

I/O data and are assumed not available for the observer

design. The performance of the designed ILADOB can be

evaluated by using the estimation errors of the system states

and outputs, respectively.

Example 1: Consider a MIMO linear time-varying system,

{

xk (t + 1) = A(t)xk (t) + B(t)uk (t) + dk (t)

yk (t) = C(t)xk (t)

where t ∈ {0, . . . ,N }, N = 80, and the system matrices are

given as

A(t)=

[

0.9630 + 0.01 sin(0.1t) 0.0181

0.1808 0.8195 + 0.01 cos(0.1t)

]

,

B(t) =

[

1 + 0.1 sin(2π t/80)

1 + 0.1 cos(2π t/80)

]

,

C(t) =

[

0.6 0.3 + 0.1 sin(2π t/50)

0.8 + 0.2 cos(2π t/50) −0.1

]

.

The disturbance dk (t) =

[

sin(t/40) + cos(k/40)

cos(t/40) + cos(k/40)

]

.

The estimate model of system states and outputs is taken

as the linear data model with estimated gradient parameter

vector and observed accumulative disturbances, shown as

follows,

{

x̂k (t + 1) = xk−1(t + 1) + 8̂k (t)1Uk (t) + δ̂k (t)

ŷk (t) = C(t)x̂k (t)

where x̂k (t) is the estimation of xk (t), ŷk (t) is the estimation

of yk (t). In the simulation, the system input is given as uk (t) =

0.5 sin(t/k).

Define that eix,k (t) = x ik (t) − x̂ ik (t)(i = 1, 2, . . . , n) is the

estimation error of the system state, eiy,k (t) = yik (t) − ŷik (t)

is the estimation error of the system output, and ēix,k =

sup

∣

∣

∣
eix,k (t)

∣

∣

∣
, ēiy,k = sup

∣

∣

∣
eiy,k (t)

∣

∣

∣
(t ∈ {1, . . . ,N }) are the

maximum estimation error of system state and output for each

iteration respectively.

When the system states are measurable, we apply the pro-

posed state-based ILADOB (5a)-(5c) by selecting η1 = 1,

µ1 = 1, Ŵ = diag{0.1, 0.3}, K = diag{0.9, 0.7}, M = In.

The system state estimation performance and the state estima-

tion error convergence are shown in Figs.1-2, respectively.

One can see that the proposed state-based ILADOB

achieves a well performance in estimating the total distur-

bance with an iterative convergence of the state estimation

error.

FIGURE 1. The estimation performance of system states in Example 1.

FIGURE 2. The convergence of state estimation error in Example 1.

FIGURE 3. The profile of state estimation error e1x in Example 1.

For comparison, the traditional state-based DOB for non-

repetitive linear systems [9] is also applied,

d̂(t) = Kx(t) − z(t)

z(t + 1) = z(t) + K((A(t) − In)x(t) + B(t)u(t) + d̂(t))

whereA andB are system statematrix,K=diag{K1, . . . ,Kn},

and |Ki| < 1, i = 1, 2, . . . , n is a proper constant.

By setting the parameter as K = diag{0.9, 0.7}, which is

the same as the state-based ILADOB, the absolute value of

state estimation error along time axis is shown in Figs.3-4.

It is seen that the traditional DOB has no learning ability

from iterations, and the profile of state estimation error holds
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FIGURE 4. The profile of state estimation error e2x in Example 1.

FIGURE 5. The estimation performance of system outputs in Example 1.

FIGURE 6. The convergence of output estimation error in Example 1.

unchanged from iteration to iteration. Instead, the proposed

state-based ILADOB method can learn from the I/O data in

previous iterations and the state estimation errors are reduced

with increasing iterations.

When the system state is not measurable, the proposed

output-based ILADOB (17a)-(17e) is applied as an alterna-

tive. Selecting η1 = 1, µ1 = 1, Ŵ = diag{0.1, 0.3}, V =

[ 1 −1 ], K = diag{0.9, 0.7}, M = In. Applying the output-

based ILADOB (17a)-(17e), the estimation performance of

system outputs and the maximum output estimation errors are

shown in Figs. 5-6, respectively.

It is clear that the output-based ILADOB method

(17a)-(17e) is capable of achieving a good output estimation

FIGURE 7. The profile of output estimation error e1y in Example 1.

FIGURE 8. The profile of output estimation error e2y in Example 1.

performance which reflects the effectiveness of the ILADOB

in observing the accumulative disturbance.

Further the traditional output-based DOB for nonrepeti-

tive linear systems [9] is also applied for the purpose of

comparison,

d̂(t) = KC+(t)y(t) − z(t) +H1(t)β̂(t)

z(t + 1) = z(t) +H2(t)β̂(t)

+K((A(t) − In)C
+(t)y(t) + B(t)u(t) + d̂(t))

β̂(t) = ξ (t) + Q(t)y(t)

ξ (t + 1) = R(t)ξ (t) + S(t)y(t) +Wu(t)u(t) +Wd (t)d̂(t)

whereH1(t)V = KN(t),H2(t)V = K(A−In)N(t),Wu(t) =

(V − Q(t)C(t))B(t), Wd (t) = V − Q(t)C(t), the definition

of matrix V and N(t) are similar to those in Section 2; for the

matrices R(t), Q(t), and S(t), they satisfy that

(V − Q(t)C(t))B(t) − R(t)(V − Q(t)C(t)) − S(t)C(t) = 0

By setting the parameter as K = diag{0.9, 0.7}, V =

[ 1 −1 ], which are the same as the output-based ILADOB,

the absolute value of output estimation error along time axis

is shown in Fig.7-8.

One can see that the proposed output-based ILADOB

method can reduce the output estimation error with the
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increasing iterations. However, the traditional output-based

DOB has no learnability from the repetitive dynamics and the

output estimation error is repeated without any improvement

though the system runs repetitively.

To show the effectiveness of the proposed ILADOB for

the accumulative disturbance estimation, we assume that the

linear system in Example is known exactly, i.e.,8(t) is known

a priori without need of estimation.

Let E ix,k (t) = δik (t)− δ̂ik (t), (i = 1, 2, . . . , n) be the estima-

tion error of the total disturbance with state-based ILADOB

and E iy,k (t) = δik (t) − δ̂ik (t) be the estimation error of the

total disturbance with output-based ILADOB, and Ē ix,k =

sup

∣

∣

∣
E ix,k (t)

∣

∣

∣
, Ē iy,k = sup

∣

∣

∣
E iy,k (t)

∣

∣

∣
(t ∈ {1, . . . ,N }) be the

maximum estimation error of the total disturbance for each

iteration.

When the system states are measurable, we apply the

proposed state-based ILADOB (5a)-(5c) by selecting Ŵ =

diag{0.1, 0.3}, K = diag{0.9, 0.7}, M = In. The accumula-

tive disturbance estimation performance and estimation error

are shown in Figs.9-10, respectively.

FIGURE 9. The estimation performance of total disturbance by using
state-based ILADOB in Example 1.

FIGURE 10. The convergence of total disturbance estimation error by
using state-based ILADOB in Example 1.

One can see that the proposed state-based ILADOB is

effective for the estimation of the accumulative disturbance.

When the system state is not measurable, the proposed

output-based ILADOB (17a)-(17e) is applied. Selecting Ŵ =

diag{0.1, 0.3}, V = [ 1 −1 ], K = diag{0.9, 0.7}, M = In,

FIGURE 11. The estimation performance of total disturbance by using
output-based ILADOB in Example 1.

FIGURE 12. The convergence of total disturbance estimation error by
using output-based ILADOB in Example 1.

the simulation results are shown in Figs. 11-12. Clearly,

the output-based ILADOB also achieves a good estimation

of the accumulative disturbance.

Example 2: Consider a MIMO nonlinear system [33],

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
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
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


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
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



















x1k (t + 1)

=
2.5x1k (t)x

1
k (t − 1) + 0.09u1k (t)u

1
k (t − 1)

1 + x1k (t)
2 + x1k (t − 1)2

+ d1k (t)

+ 1.2u1k (t) + 1.6u1k (t − 2) + 0.09u1k (t)u
2
k (t) + 0.5u2k (t)

+0.7 sin(0.5(x1k (t)+x
1
k (t−1))) cos(0.5(x1k (t)+x

1
k (t−1)))

x2k (t+1)=
5x2k (t)x

2
k (t−1)

1+x2k (t)
2+x2k (t−1)2+x2k (t−2)2

+ u2k (t)

+ 1.1u2k (t − 1) + 1.4u2k (t) + 0.5u1k (t)

y1k (t) = (1 + 0.5 sin(2π t/100))x1k (t) − x2k (t)

y2k (t) = x1k (t) + (1 + 0.5 cos(2π t/100))x2k (t)

where the disturbance dk (t) is

dk (t) =

[

0.02 cos(0.3t) + 0.01 cos(0.1k)

0.02 sin(0.2t) + 0.01 cos(0.1k)

]

In the simulation, the system input is given as u1k (t) =

0.01(sin(t/100) − sin(k/100)), u2k (t) = −0.01(cos(t/100) +

sin(k/100)).

Consider the case that the system state is measurable.

Applying the state-based ILADOB for nonlinear system
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(34a)-(34c) with η2 = 0.5, µ2 = 1, Ŵ = diag{0.3, 0.3},

M = In, the results are shown in Figs. 13-14. One sees

that the proposed state-based ILADOB method is applicable

to general nonlinear systems without depending any model

information and a perfect estimation performance can be

achieved with increasing iterations.

FIGURE 13. The estimation performance of system states in Example 2.

FIGURE 14. The convergence of state estimation error in Example 2.

FIGURE 15. The estimation performance of system output in Example 2.

Further, consider the case that the system state is unmea-

surable. Select η2 = 0.5, µ2 = 1, Ŵ = diag{0.3, 0.3},

V =
[

1 −1
]

, K = diag{0.7, 0.7}, M = In. Applying the

proposed output-based ILADOB (35a)-(35e), the results are

shown in figures 15 and 16, respectively.

Apparently, the proposed output-based ILADOB is also a

data-driven approach, which only uses I/O data and very little

model information, and is able to estimate the accumulative

disturbance of nonlinear systems and attains an iteratively

convergent performance of the output estimation error.

FIGURE 16. The convergence of output estimation error in Example 2.

V. CONCLUSION

Two novel ILADOB methods are proposed to observe the

nonrepetitive disturbances in a repetitive system. By using

a virtual linear data model, the dynamic relationship of the

repetitive system is built between two consecutive iterations

where the nonrepetitive disturbances are also represented

as an accumulative one. Both state-based and output-based

ILADOB methods are proposed by incorporating a gradient

parameter estimation law to update the linear data model

using I/O data. The two ILADOB methods are executed

along the iteration axis using little information of mechanistic

model.
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