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Iterative Learning Control and Feedforward for LPV Systems:

Applied to a Position-Dependent Motion System

Robin de Rozario, Tom Oomen and Maarten Steinbuch

Abstract— Iterative Learning Control (ILC) enables perfor-
mance improvement by learning from previous tasks. The
aim of this paper is to develop an ILC approach for Linear
Parameter Varying (LPV) systems to enable improved perfor-
mance and increased convergence speed compared to the linear
time-invariant approach. This is achieved through dedicated
analysis and norm-optimal synthesis of LPV learning filters.
Application to a position-dependent motion system shows a
significant improvement in accuracy and convergence rate,
thereby confirming the potential of the proposed approach.

I. INTRODUCTION

Iterative Learning Control (ILC) enables the performance

enhancement of systems that perform batch-to-batch tasks

[1] such as: wafer stages [2], industrial printing systems [3],

and pick-and-place machines [4].

Among the different ILC design frameworks, Linear Time-

Invariant (LTI) methods [5] have gained popularity because

accurate LTI models can be obtained using well-established

system identification tools [6]. Using these models to design

the ILC learning-filters leads to fast converging schemes,

where the rate of convergence is governed by the model

accuracy [7]. However, increasingly stringent throughput

requirements result in ever lighter mechatronic systems [8]

with configuration-dependent dynamics [9]. Since these sys-

tems cannot be reasonably approximated by an LTI model,

excessive robustness measures are required in the ILC design

to achieve convergence [10], or alternatively, the learning

speed is decreased to the point where it takes many trials

to converge to an acceptable level of performance [11].

These nonlinear dynamic systems can often be accurately

modeled as Linear Parameter Varying (LPV) systems [12], as

is evidenced by the large number of successful applications

to mechatronic systems [13], [14], [15].

Extending the ILC framework to the class of LPV systems

would greatly benefit these applications, as is recognized in

[16], [17] and [10]. In [16], a D-type learning algorithm

is proposed for Linear Time-Varying (LTV) systems by

discretizing the time axis, which results in a controller that

interpolates local controllers in the time domain. In [17], the

scheduling parameter is assumed to be constant during each

trial, but changes from trial-to-trial. This leads to a trial-

varying learning filter that aims to optimize the performance

despite trial-varying dynamics, but is not treating varying

dynamics during a task. In [10], an LTV learning filter
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is determined separately for each scheduling trajectory of

interest, thereby not addressing the full LPV case.

Although recent developments have shown the potential of

beyond-LTI learning filters in ILC, at present no systematic

framework is available yet. The aim of this paper is to fill this

gap through optimal discrete-time LPV filter design, using

dedicated criteria that are derived based on ILC properties.

By considering tasks of infinite time, an approach results

wherein robustness can be explicitly addressed and which

requires only a single synthesis step, thereby providing a

significant extension to [10]. In addition, since feedforward

control can be interpreted as a single ILC iteration, the same

approach is applied to the synthesis of feedforward con-

trollers. This is achieved through the following contributions.

C1 In Section II, the LPV ILC problem is posed and an

update law is proposed along with conditions under

which monotonic convergence is guaranteed. This re-

sults in an optimal left- and right-inverse matching

problem for the design of learning filters and feed-

forward controllers respectively.

C2 In Section III, the structure of the inverse of LPV

systems is analyzed and the obtained insights are

used to extend fixed-lag smoothing [18] and preview-

based control [19] to the LPV case, thereby effectively

constituting a complete design framework for the syn-

thesis of learning filters and feedforward controllers

for discrete-time LPV systems.

C3 In Section IV, the proposed approach is applied to a

simulated position-dependent motion system, thereby

establishing the practical relevance of this method.

C2 is provides an extension of optimal inverse matching

for LPV systems [20] by including preview to allow for

non-causal filters. This is related to preview-based stable

inversion [21] for Non-Minimum Phase systems (NMP). In

this context, C2 extends stable inversion to LPV systems, by

combining optimal inverse design with ILC as in [22].

A. Concepts and Notation

Let R, Z and Z+ denote the set of reals, integers and

nonnegative integers respectively. A discrete time signal s

denotes the map s ∶ Z ↦ R
ns , and q is defined as the shift

operator, such that qτs[k] = s[k + τ], with τ, k ∈ Z. This

paper considers Single-Input Single-Output (SISO) discrete

time LPV systems, which are represented in state-space as

[23],

Σ(ρ) ∶ {x[k + 1] = A(ρ[k])x[k] +B(ρ[k])u[k],
y[k] = C(ρ[k])x[k] +D(ρ[k])u[k], (1a)

(1b)
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where ρ[k] ∈ D ⊂ R
nρ , with D the parameter space. For

a given sequence ρ, the input-output map is denoted as

Σ(ρ) ∶ u[k] ↦ y[k], i.e. y[k] = Σ(ρ[k])u[k], where the

dependence on k is omitted when no ambiguity occurs. For

a constant scheduling sequence, i.e. ρ[k] = ρ̄ ∈ D ∀k, (1)

describes an LTI system, which is called the frozen behavior

of the LPV system at ρ̄ [23]. Moreover, the l2-induced norm

of Σ(ρ) for a given sequence ρ, is defined as,

∥Σ(ρ)∥2,2 ≜ sup
u∈l2

∥y∥2∥u∥2 , ∥s∥2 =
¿ÁÁÀ ∞

∑
k=−∞

s⊺[k]s[k].
With slight abuse of notation, ∥.∥L∞

≜ ∥.∥2,2 and ∥.∥H∞
≜∥.∥2,2 indicate the L∞ and H∞-norm of operators operating

on l2(Z) and l2(Z+), respectively. If Σ(ρ) is such that∥Σ(ρ)∥2,2 <∞ for every possible sequence ρ, the system is

called Bounded-Input Bounded-Output (BIBO) stable in the

l2-norm [12]. In the remainder of this work, stability refers

to BIBO stability. Moreover, let the plant to be controlled be

given by the l2-BIBO stable LPV system G(ρ) with static

parameter dependence, i.e. it depends only explicitly on ρ[k]
and not on ρ[k+n], n ∈ Z /0. Moreover, define the tracking

error as e ≜ r − y, where r is the desired output.

II. ILC AND FEEDFORWARD CONTROL OF LPV

SYSTEMS BY INVERSE MATCHING

Iterative Learning Control is typically employed to im-

prove the tracking performance of systems that perform

repeating tasks. The aim of this section is to extend the ILC

framework to LPV systems for trials of infinite length. To this

end, an input update law is proposed and the corresponding

convergence criterion is presented, which is constitutes con-

tribution C1. The convergence condition leads to an optimal

left-inverse matching problem for the ILC learning filter.

In addition, it is shown that feedforward control leads to

a similar right-inverse matching problem.

A. Iterative Learning Control for LPV Systems

For a system G(ρ) with input uj and scheduling sequence

ρj , the tracking error during the j-th trial is given by,

ej = r −G(ρj)uj , (2)

where the initial condition is assumed to be zero without

loss of generality [7], i.e., x[k0] = 0. ILC aims to decrease

ej by iteratively updating uj , based on errors that were made

during past trials. In the present paper, the following LPV

ILC the update law is considered,

uj+1 = Q(uj +L(ρj)ej), (3)

where Q is a stable, possibly non-causal LTI robustness filter

and L(ρ) is an LPV learning filter. This contains the LTI

variant [5] as a special case, which is obtained by freezing

the learning filter L(ρ̄) for a specific value of the parameter.

The benefit of the proposed extension with respect to the LTI

case is shown in Section IV. The updated input generated by

(3) can indeed increase the tracking performance iteratively

as is presented in the following theorem.

L(ρ) G(ρ)

r e

Fig. 1. G(ρ) is the plant to be controlled by the feedforward controller
L(ρ) which the aims to reduce e, which is induced by r.

Theorem 1 (LPV ILC Convergence). Given G(ρ), a refer-

ence r ∈ l2, and an admissible scheduling sequence ρ, which

are both trial-invariant, i.e., ρj = ρ∞ ∀j. Then, if,

∥Q(1 −L(ρ∞)G(ρ∞))∥L∞
< 1, (4)

the sequences uj and ej , governed by (2) and (3), converge

to the fixed point (u∞, e∞), given by,

u∞ = [1 −Q(1 −G(ρ∞)L(ρ∞))]−1QL(ρ∞)r,
e∞ = r −G(ρ∞)u∞,

(5)

along all possible parameter trajectories ρ, where ∥uj−u∞∥2
decreases to zero monotonically.

The proof follows by rewriting uj+1 in terms of r and

uj and determining the fixed point (5), which is enabled by

assuming trial-invariant dynamics. Application of the Banach

fixed-point theorem [7] to ∥uj − u∞∥2 then results in (4).

The convergence criterion (4) can be interpreted as an

inverse matching problem, since convergence is ensured if

L(ρ) accurately approximates G−1(ρ). In LTI methods, L is

commonly constructed based on a model of G and the robust-

ness filter Q is used to enforce convergence if the mismatch

with the true inverse system is too large. Note that for Q = 1,

it holds that e∞ = 0 and perfect tracking is obtained if (4) is

satisfied. In the remainder, it is assumed that G(ρ) is exactly

known and therefore Q = 1 considered throughout. Moreover,

since the convergence speed is inversely proportional to the

left hand side of (4) [7], fast convergence is achieved if L(ρ)
accurately approximates G−1(ρ). This aim is formalized as

follows.

Problem 1 (Left-inverse matching). Given G(ρ), obtain,

L∗(ρ) = argmin
L(ρ)

max
ρ[k]∈D

∥1 −L(ρ)G(ρ)∥L∞
.

Since L(ρ) is stable and possibly non-causal, existing LPV

H∞-synthesis approaches cannot be applied directly to solve

Problem 1. In the next section, an extension of fixed lag

smoothing [18] to LPV systems is considered to provide

a suitable approach to Problem 1. First, it is shown that

feedforward control leads to a similar right-inverse model

matching problem.

B. Feedforward Control for LPV systems

In feedforward control, the system G(ρ) is pre-

compensated by a filter L(ρ) to reduce the tracking as is

shown in Figure 1. A norm-optimal approach to feedfor-

ward design for LPV systems, which allows for non-causal

controllers, can be formulated as follows.

Problem 2 (Right-inverse matching). Given G(ρ), obtain,

L∗(ρ) = argmin
L(ρ)

max
ρ[k]∈D

∥1 −G(ρ)L(ρ)∥L∞
.
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Note that in the SISO LTI case, Problem 1 and 2 are

identical. However, for LPV systems this is not the case,

since the commutativity property is lost. The implication

of this difference will become apparent in the next section,

where a solution is provided by extending the concept of

preview control [19] to LPV systems.

III. OPTIMAL PREVIEW-BASED LPV INVERSES

The aim of this section is to obtain a method for solving

Problem 1 and 2. First, an analytic solution is treated, which

is only applicable to a limited class of systems. Extending

this direct approach to general systems is hampered by two

challenges. These are addressed by proposing an optimal

H∞-synthesis approach with four key recommendations on

the structure of L(ρ) that follow from the presented analysis.

These formulations constitute contribution C2.

A. Inverting LPV Systems of Relative Degree Zero

Note that Problem 1 and 2 are solved for L(ρ) = G−1(ρ).
In this section, the realization of the inverse of LPV systems,

with relative degree zero, is considered to analyze the struc-

ture of the optimal solution L∗(ρ). To this end, the relative

degree is defined as follows.

Definition 1 (Relative degree). A system Σ(ρ) is said to have

relative degree κ ∈ N, where κ is the lowest number such that

u[k] appears explicitly in y[k + κ] for some admissible ρ.

In the analysis to come, it is assumed that the relative de-

gree is constant for all admissible ρ. For systems G(ρ) with

κ = 0, G−1(ρ) allows the following state-space realization.

Lemma 1. Let G(ρ) ∶ u ↦ y be represented by (1) with

κ = 0. Then, G−1(ρ) ∶ y ↦ u is given by,

G−1(ρ) ∶ [ A(ρ) −B(ρ)D−1(ρ)C(ρ) B(ρ)D−1(ρ)
−D−1(ρ)C(ρ) D−1(ρ) ] .

The proof follows from inverting (1b) and substituting it

in (1a). In practice, this direct approach provides a solution

only for a limited class of systems due to the following.

I1 If κ > 0, G−1(ρ) is non-causal and cannot be described

by a state-space realization as given by (1).

I2 This approach does not guarantee that L(ρ) is stable.

More specifically, if the frozen system G(ρ̄) is NMP,

G−1(ρ̄) is unstable, an hence G−1(ρ) is unstable.

Challenge I1 is tackled in the next subsection by shifting

the input or output of the system forward in time, which is

also known as previewing. In the subsection after that, this

preview-based approach is combined with H∞-optimization

to provide a complete solution to Problem 1 and 2.

B. Towards Relative Degree Zero

Challenge I1 can be overcome as follows. I: Apply κ

samples input- or output preview to G(ρ) to obtain Ḡ(ρ) =
G(ρ)qτ or Ḡ(ρ) = qτG(ρ), respectively. II: Determine

L̄(ρ) = Ḡ−1(ρ) by means of Lemma 1. III: Apply κ

samples output- or input preview to L̄(ρ) respectively, by

composing the non-causal filter as L(ρ) = L̄(ρ)qκ or L(ρ) =

qκL̄(ρ), respectively. Note that the non-commutative nature

of qτ with LPV systems implies that when input-preview

is applied to G(ρ), output-preview needs to be applied to

L̄(ρ) to maintain equivalence, and vice versa. Step I can be

performed using state-space manipulations, as is presented

in the following Lemma, whereas the filter L(ρ) that results

from step III does not allow a state-space representation since

it is non-causal.

Lemma 2 (Input- and output-previewing). Let G(ρ[k]) ∶
u[k]↦ y[k] be a system with relative degree κ. Then, Ḡ(ρ) ∶
u[k+κ]↦ y[k], whose input is previewed by κ samples with

respect to the input of G(ρ), is given by,

Ḡ(ρ) ∶ [ A(ρ[k]) Aκ(ρ[k])B(ρ[k])
C̄(ρ[k]) C(ρ[k])Aκ−1(ρ[k])B(ρ[k]) ] .

Similarly, the realization of the output-previewed system

Ḡ(ρ) ∶ u[k]↦ y[k + κ], is given by,

Ḡ(ρ) ∶ [ A(ρ[k]) B(ρ[k])
C̄(ρ[k], ..., ρ[k + κ]) D̄(ρ[k], ..., ρ[k + κ]) ] ,

C̄(ρ) = C(ρ[k + κ]) κ−1∏
j=0

A(ρ[k + j]),
D̄(ρ) = C(ρ[k + κ]) κ−1∏

j=1

A(ρ[k + j])B(ρ[k]).
The proof follows by applying the appropriate state trans-

formation to Ḡ(ρ) in the case of input-previewing, as will

be presented elsewhere. The output-previewing case follows

directly from recursive evaluation and redefining the output.

Only if L̄(ρ) is stable will this direct approach solve

Problem 1 and 2. In the next section, stability of L̄(ρ) is

ensured through an H∞-synthesis approach that includes

preview to enable non-causal solutions L(ρ) in the same

manner as presented in this section. In doing so, Lemma

2 provides insight on the structure of the optimal solution

L∗(ρ) = G−1(ρ). Namely, when input previewing is applied,

Ḡ(ρ) only depends on ρ[k], whereas for output-previewing,

Ḡ(ρ) also depends on its time shifts ρ[k + 1], ..., ρ[k + κ].
These insight are exploited in next section to provide the

structure of L(ρ) in the optimization approach.

C. Optimal Preview-based Iterative Learning Control

The direct preview-based approach only provides a solu-

tion for a limited class of systems, since it does not address

I2. For Problem 1, this is overcome by recognizing that

by using input-previewing, the reference can equivalently

be delayed as is shown in Figure 2.II. This formulation is

especially useful since both Ḡ(ρ) and L̄(ρ) are causal, and

consequently, an H∞ problem can be formulated, whose

solution results in a stable controller L̄(ρ).
Problem 3 (Left-inverse matching with preview). Given

G(ρ) and a number of preview samples τ , obtain,

L̄∗(ρ) = argmin
L̄(ρ)

max
ρ[k]∈D

∥q−τ − L̄(ρ)G(ρ)∥H∞
. (6)
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L̄(ρ)G(ρ)

uj − u∞ uj+1 − u∞

qτ

q−τ

qτ

L(ρ)

Ḡ(ρ)

I:

II:

III:

L̄(ρ)G(ρ)

L̄(ρ)G(ρ)

uj − u∞

uj − u∞

uj+1 − u∞

uj+1 − u∞

Fig. 2. I: For G(ρ) with relative degree κ, the input is previewed by τ = κ
samples, thereby making it biproper. Consequently, the inverse L̄(ρ) also
has relative degree 0. II: This is equivalent to delaying the upper path, which
enables H∞-synthesis techniques to computing L̄(ρ). Additional preview
can be added to compensate NMP dynamics, i.e., τ ≥ κ. III: The non-causal
filter L(ρ) is obtained by previewing the output of L̄(ρ).

This problem can be solved using existing techniques [24],

[25], [26] and this approach thereby overcomes I1 and I2

related to the direct approach. The complete solution to

Problem 1 is depicted in Figure 2, where all three schemes

are equivalent mappings. In Figure 2.II, the causal filter L̄(ρ)
is obtained by solving Problem 3, whereas in Figure 2.III

the non-causal filter L(ρ) is obtained by output-previewing

L̄(ρ). Realizing that the structure of L̄(ρ) is revealed by

applying Lemma 1 to the realization of Lemma 2, leads to the

following recommendations for synthesizing learning filters

for LPV systems by means of solving Problem 3.

R1 It is sufficient for L̄(ρ) to depend explicitly on ρ[k]
only in order to include the case of perfect tracking.

R2 Care should be taken that L̄(ρ) allows a sufficiently

rich description of the functional dependence of ρ to

match G−1(ρ). For example, when G(ρ) depends on

ρ in an affine or polytopic fashion, Ḡ−1(ρ) generally

depends on ρ in a rational way. Consequently, methods

for solving Problem 3 that allow rational dependence

in L̄(ρ) are recommended, e.g. Linear Fractional Rep-

resentation (LFR) synthesis tools, [24], [26].

R3 The number of preview samples should be τ ≥ κ,

where κ is the relative degree of G(ρ) to include

the case of perfect tracking. Taking τ ≫ κ may be

necessary when G(ρ̄) has NMP dynamics for some

ρ̄ ∈ D, in order to guarantee a satisfying solution.

D. Optimal Preview-based Feedforward Control

Along the same lines as in the previous subsection, issue

I2 is overcome for Problem 2 by means of preview-control,

which results in the following formulation.

Problem 4 (Right-inverse matching with preview). Given

G(ρ) and a number of preview samples τ , obtain,

L̄∗(ρ) = argmin
L̄(ρ)

max
ρ[k]∈D

∥q−τ −G(ρ)L̄(ρ)∥H∞
. (7)

In this case, the reference can only be equivalently delayed

by applying output-previewing as is shown in Figure 3.

Consequently by Lemma 2, the optimal solution L̄∗(ρ)

L̄(ρ) G(ρ)

r e

qτ

L̄(ρ) G(ρ)

r e
q−τ

L̄(ρ) G(ρ)

r e

qτ

L(ρ)

Ḡ(ρ)

I:

II:

III:

Fig. 3. I: For G(ρ) with relative degree κ, the output is previewed by
τ ≥ κ samples, thereby making it biproper. Consequently, the inverse L̄(ρ)
also has relative degree 0. II: This is equivalent to delaying the upper path,
which enables H∞-synthesis techniques to computing L̄(ρ). Additional
preview can be added to compensate NMP dynamics, i.e., τ ≥ κ. III: The
non-causal filter L(ρ) is obtained by previewing the input of L̄(ρ).

depends on ρ[k], ..., ρ[k + τ]. This leads to the following

recommendation for synthesizing Feedforward controllers of

LPV systems by means of Problem 4.

R4 In addition to recommendations R2 and R3, L̄(ρ)
should depend explicitly on ρ[k], ..., ρ[k + τ] in or-

der to include the case of perfect tracking. This can

be achieved by using parameter-dependent Lyapunov

function-based synthesis [27].

In the aim of this section is to solve Problem 1 and 2. This

is achieved by the formulation of Problem 3 and 4 in combi-

nation with recommendations R1-R4, which followed from

analyzing the inverse of LPV systems. These approaches can

be viewed as the LPV extensions of fixed-lag smoothing and

preview control respectively.

IV. SIMULATION EXAMPLE

In this section, ILC and feedforward control are applied

to an example system with position-dependent dynamics by

applying the procedure as outlined in Section III to obtain

the non-causal filters L̄(ρ). A comparison is made with an

LTI approach which shows the relevance of this work and

constitutes contribution C3.

A. Plant Description

Consider the positioning system as shown in Figure 5.

Accurate positioning of the carriage in the y-direction is

hampered by a resonance mode that varies as a function

of its x-position as is schematically shown in Figure 5. A

symmetric force is applied to beam u = ul = ur and the

output is the average of the collocated sensors, y = 1

2
(yl+yr).

A simplified polytopic LPV model with κ = 1 is given by,

G(ρ) ∶ [ (1 − ρ[k])A1 + ρ[k]A2 B

C 0
] , D = [0,1],

A1 =

⎡⎢⎢⎢⎢⎣
0.99 0 −0.001 0

0 0.99 0 −0.001
0 0 0.99 0

0 3.969 0 0.9901

⎤⎥⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎢⎣
−0.05
0

50

50

⎤⎥⎥⎥⎥⎦
A2 =

⎡⎢⎢⎢⎢⎣
0.9875 0 −0.001 0

0 0.9875 0 −0.001
0 0 0.9875 0

0 6.2016 0 0.9876

⎤⎥⎥⎥⎥⎦ , C
⊺
=

⎡⎢⎢⎢⎢⎣
−1

β
0

0.001

⎤⎥⎥⎥⎥⎦ .
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Fig. 4. The frozen dynamics G(ρ̄) display a parameter-varying resonance.

y

x

ρ

ul ur

yl yr

Fig. 5. The mode shapes of an industrial flat bed printer dependent on its
configuration. A simplified model of this behavior is used here.

where for β = 1 in the C-matrix, the frozen behavior is shown

in Figure 4, which resembles the dynamics of a position-

dependent motion system, sampled at 1 kHz. The aim is

to accurately perform the motion r, while the parameter ρ

varies as shown in the upper plot of Figure 6.

B. Feedforward Control

Recommendations R2 and R4 as given in Section III-D

state that L̄(ρ) should be adequately parametrized in terms

of the dependency on ρ. The structure of the optimal L̄(ρ) is

revealed by applying Lemma 2 to G(ρ) with output preview

for κ = 1, followed by applying Lemma 1. This results in,

Ḡ(ρ) ∶ [ (1 − ρ[k])A1 + ρ[k]A2 B(1 − ρ[k])CA1 + ρ[k]CA2 CB
] ,

and subsequent application of Lemma 1 to Ḡ(ρ) yields,

Ḡ−1 ∶ [ (1 − ρ[k])Â1 + ρ[k]Â2 B(CB)−1

(CB)−1C((1 − ρ[k])A1 + ρ[k]A2) (CB)−1
] ,

Â1 = [I −B(CB)−1C]A2, Â2 = [I −B(CB)−1C]A2.

It can thus be concluded that Ḡ−1 also depends on ρ in a

polytopic fashion and it only depends explicitly on ρ[k].
For this case, Problem 4 is solved as presented in [25]. The

obtained solution to problem 4 for τ = 1, yields an upper

bound on the H∞-norm in (7) of γ = 5.62 ⋅ 10−4. Applying

the obtained feedforward controller as shown in Figure 1,

leads to u and e, as shown in the lower plot of Figure 6. This

shows that the computed controller indeed achieves perfect

tracking. Alternatively, the analytically determined Ḡ−1(ρ)
proves to be quadratically stable [13] and thus the direct

approach yields the exact solution for this case.

C. Iterative Learning Control

Next, the system is considered for β = −1 which results

in frozen NMP dynamics ∀ρ̄ ∈ D. Consequently, the analytic
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Fig. 6. Upper: the reference r and scheduling trajectory ρ. Lower: the
optimal feedfoward input u = L∗(ρ)r, which results in perfect tracking as
is evidenced by the tracking error e. L∗(ρ) is obtained as in Section III.

τ

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

γ

0.4

0.6

0.8

1

Fig. 7. The achievable performance bound γ as a function of the number of
preview samples τ . This shows that the convergence rate can be increased
by increasing τ , since γ is inversely proportional to this rate.

inverse is not stable and the procedure described in Section

III-C is key to computing convergent learning filters. Along

the same lines, it is concluded that a polytopic parametriza-

tion of L̄(ρ[k]) is sufficient. Following recommendation R3,

problem 3 is solved for increasing values of τ . Indeed,

this results in an upper bound γ on the H∞-norm in (6)

that decreases as τ increases, as is shown in Figure 7. The

obtained controller for τ = 35 is used for ILC by updating the

input as given by (3) with Q = 1. The progression of ∥e∥2
2

is

shown as a function of the iterations in Figure 8. This shows

that that ∥e∥2
2

converges to zero at a steady pace which results

in excellent tracking performance after 20 iterations.

D. Comparison to ILC for LTI Systems

To highlight the relevance of this work, an LTI learning

filter is implemented and compared to the LPV case. Since

ρ[k] averages around 1

2
, the LPV learning filter L(ρ̄) is

frozen at ρ̄ = 1

2
to obtain a sensible LTI filter. It turns out

that application of this filter does not lead to a convergent

ILC due to the varying resonance. This can be visualized

by considering the LTI convergence criterion [5] for frozen

dynamics, i.e., considering (4), ∀ρ̄ ∈ D, where ρ[k] = ρ̄ ∀k,

∣Q(ejω)(1 −L(ejω, ρ̄)G(ejω, ρ̄))∣ < 1, ∀ω ∈ [0,2π). (8)

This condition is necessary, but not sufficient in case ρ[k]
is time-varying. For the considered LTI filter with Q = 1,
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2

converges for the LPV learning filter L∗(ρ), whereas

for the LTI filter L∗(ρ̄), with ρ̄ = 1

2
, additional robustness is required as

is shown in Figure 9, resulting in limited performance. Lower: u and e
that result after 20 iterations with the LPV filter, which show that perfect
tracking is achieved.
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Fig. 9. Visualization of (8) for the LTI filter L(ρ̄) with ρ̄ = 1

2
. This shows

that the criterion is violated due to the variation in resonant dynamics. To
satisfy (8), robustness needs to be added, which is the main drawback of
applying LTI techniques to LPV systems.

is (8) is violated as is shown in Figure 9. To satisfy (8),

a robustness filter is added. Even though satisfying (8) is

not sufficient, the ILC converges as is shown in Figure 8.

However, the achieved performance is not as good as for the

full LPV case. The latter did not require any robustness filter,

since the parameter-varying dynamics are explicitly taking

into account by the learning filter. This is the main motivation

for adopting the full LPV method as proposed in this paper.

V. CONCLUSION

In this paper, an extension of ILC is proposed for discrete-

time LPV systems. This is achieved by the development of a

fixed-lag smoothing approach for the design of LPV learning

filters. Moreover, a similar preview-based control approach

is suggested for the design of LPV feedforward controllers.

The effectiveness of these methods is shown by application

to a motion system simulation study.
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