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Abstract: Iterative learning control (ILC) has been shown to be effective in improving tracking performance of 
repetitive tasks, and is widely used in the motion control systems of CNC machines, semiconductor manufacturing 
equipment, hard disk drives, etc. However, applying ILC to robot manipulators requires careful consideration of 
nonlinear dynamics. We propose using a computed torque controller and the disturbance observer (DOB) to robustly 
linearize the dynamics of robot manipulators. The PD feedback controller is then applied for each joint to achieve the 
desired bandwidth and damping ratio. Both control-based ILC and command-based ILC are implemented separately in 
the linearized system as a feedforward compensator to enhance trajectory tracking accuracy. The proposed control 
system is realized in a six-axis industrial robot. Experimental results show that DOB is indispensable for robust 
feedback linearization so that ILC can work on the linearized system to improve the tracking performance for 
repetitive motion. Satisfactory and similar performance is accomplished by both control-based ILC and 
command-based ILC. 
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Introduction 

Robot manipulators are widely used in production 
lines in tasks including assembling, welding, painting, 
deburring, polishing, etc. Increasing product complexity 
and miniaturization requires increased  manufacturing 
precision and speed, raising significant challenges to 
robot motion control systems. Such control systems have 
been extensively investigated over the past few decades 
[1]. Among proposed control methodologies, iterative 
learning control (ILC) has attracted considerable 
attention recently because of its effectiveness in 
enhancing tracking performance of repetitive motions 
[2]. 

Conventional ILC is designed to control linear 
time-invariant systems in a feedforward manner by 
modifying either the control input or the command [3]. 
However, robot manipulators are known for their 
complicated nonlinearities, which must be carefully 
processed before ILC can be applied. Typical methods to 

deal with nonlinearities include linearization of the 
model along the trajectory, linearization by feedback 
control laws, and diminishing the nonlinear effects 
through the delicate design of electrical/mechanical 
systems. 

The authors in [4,5] linearized the robot dynamics 
along the trajectory. Since the linearized system was just 
an approximation of the nonlinear one around the 
operating point, only local convergence of errors can be 
guaranteed, and the control performance was limited 
due to the approximation error. On the other hand, 
Norrlöf [4] and Zhao et al. [5] implemented their ILCs on 
commercial industrial robots with integrated feedback 
controllers. Due to the well-designed feedback 
controllers, the closed-loop dynamics of the robot 
manipulator was close to a linear system. ILC was then 
used for disturbance rejection by iteratively learning 
external disturbances [4], or for improving the absolute 
accuracy of the point-to-point movement by learning the 
kinematic parameters of the robot manipulator [5]. 
Although the commercial feedback controllers work well 
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for linearization, they are closed systems, meaning that 
end users are neither allowed to retrieve detailed 
information (e.g. motor currents), nor to modify key 
parameters of the robot (e.g. D-H parameters). Thus if an 
additional outer-loop controller or feedforward 
controller is added on top of the commercial feedback 
controllers, the available information and tunable 
parameters are very limited. 

Nonlinear robot dynamics are dominated by linear 
joint motors whenever high gear-ratios are used [6]. 
Under these circumstances, a frequency-domain ILC was 
proposed for the robot manipulators [7]. In [8], the 
proposed robot manipulator was designed such that the 
1st joint is much heavier than the other joints; therefore 
the dynamics of the 1st joint can be regarded as linear by 
neglecting the coupling effects of the other joints. The 
iterative learning input shaping technique was proposed 
to suppress the residual vibration of the 1st joint. 
However, ignoring nonlinearities like [7] and [8] can work 
only for a special class of robot manipulators. In addition, 
more applications of ILC to robot manipulators such as 
impedance control [9] and hybrid force/velocity control 
[10] have been reported.  

Previous studies suggest that optimal performance 
requires combining the feedback linearization controller 
and feedforward ILC. However, despite the widespread 
use of ILC in robot motion control, few attempts have 
been made to create such an integrated design. 
Therefore, we propose a joint space trajectory tracking 
control system consisting of a computed torque controller 
to linearize the robot dynamics, a disturbance observer 
(DOB) to enhance robustness of the linearized system, a 
proportional-derivative (PD) feedback controller to 
achieve the desired bandwidth and damping ratio for 
each joint, and an ILC to further enhance tracking 
performance for repetitive tasks. Both control-based ILC 
and command-based ILC are considered. A unified 
control framework is developed to implement either ILC 
with the aforementioned computed torque, DOB, and PD 
controllers. The proposed control system is implemented 
on a six-axis industrial robot. Experimental results show 
robust and satisfactory performance. 

This paper is organized as follows. Section II 

illustrates the dynamic model of the robot manipulator. 
Section III presents the proposed control system. 
Experimental verification is conducted in Section IV and 
Section V concludes the paper.  

Dynamic Model of the Robot Manipulator 

The dynamic equation of an n-joint robot 
manipulator is given as follows: 
 𝐌(𝐪)�̈� + 𝐂(𝐪, �̇�)�̇� + 𝐆(𝐪) + 𝐅(�̇�) = 𝛕 + 𝛕𝑑 (1) 
where 𝐪, �̇�, �̈� ∈ ℝ𝑛 are respectively the joint position, 
velocity, and acceleration vectors. 𝐌(𝐪), 𝐂(𝐪, �̇�) ∈ ℝ𝑛×𝑛 
respectively denote the inertia matrix, and Coriolis and 
centrifugal matrix. 𝐆(𝐪), 𝐅(�̇�) ∈ ℝ𝑛  respectively are 
the gravitational and frictional torque vectors. 𝛕, 𝛕𝑑 ∈ℝ𝑛  respectively are the joint torque and external 
disturbance. Note that 𝛕𝑑  could be non-repetitive. 
Suppose that 𝐌(𝐪) = 𝐌0(𝐪) + Δ𝐌(𝐪) 𝐂(𝐪, �̇�) = 𝐂0(𝐪, �̇�) + Δ𝐂(𝐪, �̇�) 𝐆(𝐪) = 𝐆0(𝐪) + Δ𝐆(𝐪) 𝐅(�̇�) = 𝐅0(�̇�) + Δ𝐅(�̇�) 
where the subscript 0 denotes the nominal model and 
the symbols with  on the left denote model 

uncertainties. 
We investigate the problem of robust tracking of a 

repeated trajectory in the joint space. In other words, the 
robot manipulator must repeatedly follow the same 
desired trajectory 𝐪𝑑(𝑡) ∈ ℝ𝑛, 0 ≤ 𝑡 ≤ 𝑇, in the joint 
space. Under the influence of model uncertainties and 
external disturbance 𝛕𝑑, we derive the joint torque 𝛕𝑗  
for the jth trial, 𝑗 = 1,2,⋯, such that the joint angle of 
the jth trial, 𝐪𝑗(𝑡), gradually approaches 𝐪𝑑(𝑡), 0 ≤ 𝑡 ≤𝑇, as j increases. 

Proposed Control Law 

Let the tracking error be �̃� = 𝐪𝑑 − 𝐪. Then the 
unified framework of the proposed control law is 

 
𝛕 = 𝐌0(𝐪)(�̈�𝑑 + 𝐮𝑓𝑏 + 𝐮𝐷𝑂𝐵 − 𝐮𝐼𝐿𝐶) 

   +𝐂0(𝐪, �̇�)�̇� + 𝐆0(𝐪) + 𝐅0(�̇�𝑑) (2) 

where 𝐮𝑓𝑏 , 𝐮𝐷𝑂𝐵 , 𝐮𝐼𝐿𝐶  respectively denote the control 
inputs from the feedback controller, DOB and 
control-based ILC. These control inputs will be 
introduced shortly. We can see that (2) is in the form of 
the computed torque controller that cancels the nominal 
nonlinearities of (1). Note that �̇�𝑑 is used instead of �̇� 
in the friction term of (2) to avoid chattering caused by 
the measurement noise in �̇� and the switching term in 𝐅0 that represents the Coulomb friction.  

Substitute (2) into (1) and note that 𝐌0(𝐪)  is 
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positive definite for all values of 𝐪. Then we have 

 �̈̃� = −𝐮𝑓𝑏 − 𝐮𝐷𝑂𝐵 + 𝐮𝐼𝐿𝐶 + 𝐝 (3) 
where 𝐝 = 𝐌0−1(𝐪)(𝐡 − 𝛕𝑑) and 𝐡 = Δ𝐌(𝐪)�̈� + Δ𝐂(𝐪, �̇�)�̇� + Δ𝐆(𝐪) + 𝐅(�̇�) − 𝐅0(�̇�𝑑) 
is the uncertain term. 

PD Feedback Controller 

Let the PD feedback controller be used here, i.e. 
 𝐮𝑓𝑏 = −[𝐊𝑑(�̇� − �̇̃�) + 𝐊𝑝(𝐫 − �̃�)] (4) 
where 𝐊𝑝, 𝐊𝑑 ∈ ℝ𝑛×𝑛  are positive definite diagonal 
matrices, i.e. 𝐊𝑝 = diag(𝑘𝑝1, ⋯ 𝑘𝑝𝑛)  and 𝐊𝑑 =diag(𝑘𝑑1⋯𝑘𝑑𝑛) , where diag(⋅)  denotes a diagonal 
matrix and 𝑘𝑝𝑖, 𝑘𝑑𝑖 > 0  for 𝑖 = 1,⋯ , 𝑛 . 𝐫  is the 
control input from the command-based ILC, which will be 
introduced later. Then for each joint, (3) and (4) can be 
expressed as the block diagram in Figure 1, where the 
subscript i denotes the ith joint, 𝑖 = 1,⋯ , 𝑛. By properly 
setting the PD gains 𝑘𝑝𝑖  and 𝑘𝑑𝑖, we can achieve the 
desired damping ratio and bandwidth for the ith joint. 

Figure 1. Block diagram of the ith joint based on (3) and (4). 

Disturbance Observer 

The disturbance d degenerates the desired 
performance set by the PD controller; DOB is introduced 
to overcome this problem. We redraw the system from −𝑢𝑓𝑏,𝑖  to �̃�𝑖  in Figure 1 and include DOB explicitly as 
shown in Figure 2, where 𝑄𝐷𝑂𝐵,𝑖(𝑠) is a low-pass filter 
with a relative degree greater than 2. Then from Figure 2 
we have 𝑢𝐷𝑂𝐵,𝑖(𝑠) = 𝑄𝐷𝑂𝐵,𝑖(𝑠)𝑠21−𝑄𝐷𝑂𝐵,𝑖(𝑠)�̃�𝑖(𝑠) − 𝑄𝐷𝑂𝐵,𝑖(𝑠)1−𝑄𝐷𝑂𝐵,𝑖(𝑠)𝑢𝑖(𝑠)  (5) 
where 𝑢𝑖 = 𝑢𝐼𝐿𝐶,𝑖 − 𝑢𝑓𝑏,𝑖. 

Figure 2. Robot motion controller with DOB. 

Remark: We do not implement the double differentiators 
in Figure 2; instead, (5) is used to realize DOB. Note that  

both 
𝑄𝐷𝑂𝐵,𝑖(𝑠)𝑠21−𝑄𝐷𝑂𝐵,𝑖(𝑠) and 

𝑄𝐷𝑂𝐵,𝑖(𝑠)1−𝑄𝐷𝑂𝐵,𝑖(𝑠) are proper. 

Furthermore,  

 �̃�𝑖(𝑠) = 1𝑠2𝑢𝑖(𝑠) + 1𝑠2 (1 − 𝑄𝐷𝑂𝐵,𝑖(𝑠)) 𝑑𝑖(𝑠) (6) 

Hence, at the low frequency band where 𝑄𝐷𝑂𝐵(𝑠) ≈ 1, 𝑑𝑖  is eliminated and thus �̃�𝑖(𝑠) ≈ 1𝑠2𝑢𝑖(𝑠). 
On the other hand, at the high frequency band where 𝑄𝐷𝑂𝐵(𝑠) ≈ 0, we have �̃�𝑖(𝑠) = 1𝑠2(𝑢𝑖(𝑠) + 𝑑𝑖(𝑠)) 
as if DOB did not exist.  

Combining (4) and (6) yields 

 

�̃�𝑖(𝑠) = 𝐺𝑖(𝑠) [𝑢𝐼𝐿𝐶,𝑖(𝑠) + (𝑘𝑝𝑖 + 𝑘𝑑𝑖𝑠)𝑟𝑖(𝑠)+ (1 − 𝑄𝐷𝑂𝐵,𝑖(𝑠)) 𝑑𝑖(𝑠)] (7) 

where 𝐺𝑖(𝑠) = 1𝑠2+𝑘𝑑𝑖𝑠+𝑘𝑝𝑖. 
To further improve tracking performance, we apply 

either control-based ILC (from 𝐮𝐼𝐿𝐶) or command-based 
ILC (from 𝐫) to eliminate the repetitive component in 𝐝 
and in other unmodeled sources. The ILC design is 
discussed in the subsequent subsections. 

Control-based ILC 

In Figure 2, the control-based ILC 𝑢𝐼𝐿𝐶,𝑖  modifies 𝑢𝑓𝑏,𝑖  based on the control input and the error of the 
previous trial. To determine 𝑢𝐼𝐿𝐶,𝑖, we let 𝑟𝑖  in (7) be 
zero and discretize (7) as follows: 
 �̃�𝑖(𝑘) = �̅�𝑖(𝑧)𝑢𝐼𝐿𝐶,𝑖(𝑘) + 𝑑𝑖′(𝑘) (8) 
where �̅�𝑖(𝑧) is the discrete-time counterpart of 𝐺𝑖(𝑠) 
and 𝑑𝑖′ = 𝐺𝑖(𝑠) (1 − 𝑄𝐷𝑂𝐵,𝑖(𝑠)) 𝑑𝑖 . �̃�𝑖  is regarded as 
the output of (8), and the objective of the control-based 
ILC is to regulate �̃�𝑖  to zero. Therefore the control-based 
ILC is 𝑢𝐼𝐿𝐶,𝑖𝑗+1 (𝑘) = 𝑄𝑡𝑖(𝑧)(𝑢𝐼𝐿𝐶,𝑖𝑗 (𝑘) + 𝐿𝑡𝑖(𝑧)𝑞�̃� 𝑗(𝑘 + 1)) 
where the superscript j denotes the jth trial. 𝐿𝑡𝑖(𝑧) =�̅�𝑖−1(𝑧) is the learning filter. 𝑄𝑡𝑖(𝑧) is the robust filter, 
which is a low-pass filter with a relative degree larger 
than one. The block diagram consisting of the feedback 
controller and the control-based ILC is shown in Figure 3. 

Figure 3. Control-based ILC. 

From the theorem of ILC, �̃�i𝑗 converges to �̃�𝑖∞(𝑧) = 1 − 𝑄𝑡𝑖(𝑧)1 − 𝑄𝑡𝑖(𝑧)(1 − 𝑧𝐿𝑡𝑖(𝑧)�̅�𝑖(𝑧)) 𝑑𝑖′(𝑧) 
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as 𝑗 → ∞ if the following condition holds [3] ‖𝑄𝑡𝑖(𝑧)(1 − 𝑧𝐿𝑡𝑖(𝑧)�̅�𝑖(𝑧))‖∞ < 1 

Remarks:  

1. 𝐺𝑖(𝑠) is composed of the feedback loop of a double 
integrator and a PD controller (see Figure 1); 
therefore 𝐺𝑖(𝑠)  is known exactly without model 
uncertainty. However the robust filter is still required 
since the disturbance 𝑑𝑖′  may contain 
non-repetitive components which are not cancelled 
by the disturbance observer. 

2. The properties of minimum phase and relative 
degree may not be preserved during the conversion 
from 𝐺𝑖(𝑠) to �̅�𝑖(𝑧); however, it can be shown that 
if 𝐺𝑖(𝑠) is critically damped and the conversion is 
based on the impulse invariance method, then �̅�𝑖(𝑧) is a minimum phase system with a relative 
degree of one. The proof is presented in the 
Appendix. 

3. Many design methods for the learning filter and the 
robust filter of ILC have been proposed [3]. Since 
there are no model uncertainties and no 
non-minimum phase zeros in �̅�𝑖(𝑧) , the plant 
inversion method is used here to achieve the fastest 
convergence rate. The experimental results 
presented in the next section show that the ILC 
converges in just one iteration (see Figure 7). The 
only problem of the plant inversion method is the 
non-causality of the learning filter. However, it can 
be solved by choosing the robust filter with a 
sufficiently large relative degree. 

Command-based ILC 

     Now, we consider the command-based ILC. 
Suppose that 𝑢𝐼𝐿𝐶,𝑖 = 0; then (7) becomes 

 �̃�𝑖(𝑠) = 𝐺𝑟𝑖(𝑠)𝑟𝑖(𝑠) + 𝑑𝑖′ (9) 

where  𝐺𝑟𝑖(𝑠) = 𝑘𝑑𝑖𝑠+𝑘𝑝𝑖𝑠2+𝑘𝑑𝑖𝑠+𝑘𝑝𝑖.  

     Let �̅�𝑟𝑖(𝑧) be the discrete-time counterpart of 𝐺𝑟𝑖(𝑠). Then the command-based ILC is 𝑟𝑖𝑗+1(𝑘) = �̅�𝑟𝑖(𝑧)(𝑟𝑖𝑗(𝑘) + 𝐿𝑟𝑖(𝑧)𝑞�̃� 𝑗(𝑘 + 1)) 
where the learning filter is 𝐿𝑟𝑖(𝑧) = �̅�𝑟𝑖−1(𝑧). The robust 
filter 𝑄𝑟𝑖(𝑧) is a low-pass filter with a relative degree 
greater than two. The block diagram consisting of the 
feedback controller and the command-based ILC is 
shown in Figure 4. Similar to the control-based ILC, �̃�i𝑗 
converges to �̃�𝑖∞(𝑧) = 1 − 𝑄𝑟𝑖(𝑧)1 − 𝑄𝑟𝑖(𝑧)(1 − 𝑧𝐿𝑟𝑖(𝑧)�̅�𝑟𝑖(𝑧)) 𝑑𝑖′(𝑧) 
as 𝑗 → ∞ if the following condition holds ‖𝑄𝑟𝑖(𝑧)(1 − 𝑧𝐿𝑟𝑖(𝑧)�̅�𝑟𝑖(𝑧))‖∞ < 1 

Remark: The Appendix shows that if 𝐺𝑟𝑖(𝑠) is critically 
damped and the conversion to �̅�𝑟𝑖(𝑧) is based on the 

impulse invariance method, then �̅�𝑟𝑖(𝑧) is a minimum 
phase system with a relative degree of zero. 

Figure 4. Command-based ILC. 

Experimental Results 

The proposed control law is implemented on a 
personal computer (PC) to control a RA605 6-axis 
industrial robot made by Hiwin Technologies Corp, 
Taiwan (Figure 5). The drivers of joint motors are placed 
in an electrical cabinet and the PC-based controller sends 
torque commands to the drivers through an EtherCAT 
network. A 17-bit absolute encoder is installed in each 
joint motor to measure the joint angle, and the joint 
velocity is obtained by numerical differentiation of the 
joint position. The gear ratios for joints 1~6 are 
respectively 80, 100, 80, 81, 80, 50. 

The sampling time is 1ms, and the gains of the PD 
controller are chosen as 𝐊𝑝 = diag(3600,1600,1225,2500,5625,11025) 𝐊𝑑 = diag(120,80,70,100,150,210) 

 

Figure 5. RA605 6-axis Industrial Robot. 

With these gains, the linearized joint dynamics are 
critically damped for all joints, and the (undamped) 
natural frequencies for joints 1~6 are respectively 60, 40, 
35, 50, 75, 105 (rad/sec) for joint 1~6. In designing 𝑄𝐷𝑂𝐵,𝑖(𝑠), a low order filter is preferred because it avoids 
introducing excessive phase lag into the closed-loop 
system. The cutoff frequency is tuned by trial and error 
to minimize disturbance without jeopardizing system 
stability. Therefore 𝑄𝐷𝑂𝐵,𝑖(𝑠)  is designed as a 

𝑄𝑟𝑖(𝑧) Memory + 𝐿𝑟𝑖(𝑧) 
1𝑠2 𝑘𝑑𝑖𝑠 + 𝑘𝑝𝑖 − 

0 

𝑑𝑖′ 
+ 

−𝑢𝑓𝑏,𝑖 + 
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+ 
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second-order Butterworth low-pass filter with cutoff 
frequencies at 15, 15, 8, 15, 30, 30 (Hz) corresponding to 𝑖 = 1,⋯ ,6 . For both the control-based ILC and 
command-based ILC, the robust filters 𝑄𝑡𝑖(𝑧)  and 𝑄𝑟𝑖(𝑧) have cutoff frequencies at 20, 13, 20, 10, 13, 13 
(Hz) respectively for joints 1~6. 

The test trajectory in the joint space is shown in 
Figure 6. For each joint, the trajectory is a mixture of 
sinusoidal signals with 4 different frequencies up to 3 Hz. 
Therefore this trajectory represents an arbitrary fast 
movement of the robot in a small range, and it is 
designed to test the tracking accuracy and bandwidth of 
the proposed controller. 

 

Figure 6. The test trajectory in the joint space. 

Experiments on tracking the test trajectory were 
conducted repetitively to verify the performance of both 
control-based and command-based ILC. Figure 7 shows 
the root-mean-square (RMS) tracking error of each joint 
as the number of iteration increases. From Figure 7, we 
can see that both ILCs converge at the first iteration and 
are stable as the number of iterations increases. This fast 
convergence can be attributed to the use of plant 
inversion as the learning filters in both ILCs. 

As shown in the previous section, the proposed 
control law contains several components including 

computed torque controller, PD feedback controller, DOB, 
and control-based ILC or command-based ILC. To verify 
the contribution of each component, we repeat the 
experiments with four control systems that include 
different combinations of the aforementioned 
components. These control systems are (1) computed 
torque plus PD feedback controller (CT), (2) 
computed-torque plus PD feedback controller and DOB 
(CT+DOB), (3) computed torque plus PD feedback 
controller, DOB, and control-based ILC (CT+DOB+Ctrl-ILC), 
and (4) computed torque plus PD feedback controller, 
DOB, and command-based ILC (CT+DOB+Cmd-ILC). 
According to Figure 7, we choose the data in the 5th 
iteration of both types of ILCs for comparison with other 
control systems. 

Experimental results are shown in Figure 8. The 
maximum and RMS errors of each joint are summarized 
in Table 1. It can be seen that the computed torque plus 
PD feedback controller has the largest errors in all joints 
because of the uncompensated model uncertainties. 
Introducing DOB in the control loop significantly 
improves the tracking accuracy because a large portion 
of the model uncertainties are eliminated by DOB. Two 
types of ILCs are included as feedforward compensators 
to further reduce the tracking error. Generally speaking, 
ILC improves the tracking performance by compensating 
for external disturbances, model uncertainties, and the 
servo lag. However, in the proposed control system, the 
plant models for both ILCs (i.e. �̅�𝑖(𝑧) and �̅�𝑟𝑖(𝑧)) have 
no uncertainties, while the “equivalent commands” to 
both ILCs are zeros (see Figure 3 and Figure 4), making 
the “servo lag” irrelevant to the tracking performance. 
The performance enhancement by ILC mainly comes 
from rejecting the disturbance 𝑑𝑖′. In the experiments, 
however, the repetitive portion of the disturbance 
resulting from the repeated trajectory has a low 
bandwidth (up to 3 Hz); therefore most parts of the 

Figure 7. RMS error for each iteration. 
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repetitive disturbance are cancelled by DOB leaving little 
for ILC. Consequently, both types of ILCs only produce 
slight reductions to the tracking errors. The 
control-based ILC has the smallest tracking errors in 
almost all joints, but both ILCs have similar performance. 

The results show that the computed torque 
controller is effectively in principle for linearizing and 
decoupling a complicated nonlinear system such as the 
robot manipulator, and that the linearized system can 
achieve the desired damping ratio and natural frequency 
by using a simple PD feedback controller. However, the 
computed torque controller is very sensitive to model 
uncertainties, leading to poor performance in practice. 

The experiments show that DOB is indispensable 
for rejecting disturbance and model uncertainties. By 
introducing DOB in the control loop, the robot 
manipulator can be robustly linearized and then both 
control-based ILC and command-based ILC can be 
applied. Experimental data show that ILC improves the 
tracking performance for repetitive motion, and both 
types of ILC have similar performance. 
Remark: Although ILC can reduce model uncertainties, it 
is effective only for repetitive motions. The ultimate goal 
of the proposed robot control system is to achieve high 
tracking performance for most tasks, including repetitive 
and non-repetitive ones. Therefore, using DOB for robust 
linearization is preferable due to its wide applicability. As 
a result, the proposed control scheme can turn off ILC to 
accomplish highly accurate non-repetitive tasks, and turn 
on either control-based ILC or command-based ILC to 
further reduce tracking errors for repetitive tasks. Since 

the combinations of CT+Ctrl-ILC and CT+Cmd-ILC restrict 
the applications of the control system to only repetitive 
tasks, they are not included in the experiments for 
comparison.  

Table 1. Summary of the control performance for different controllers. 

Joint 1 2 3 4 5 6 

CT 

MAX 

(deg) 0.041 0.090 0.409 0.312 0.293 0.391 

RMS 

(deg) 0.022 0.025 0.174 0.131 0.124 0.098 

CT+DOB 

MAX 

(deg) 0.026 0.058 0.123 0.156 0.137 0.115 

RMS 

(deg) 0.008 0.023 0.051 0.063 0.047 0.045 

CT+DOB+Ctrl-ILC 

MAX 

(deg) 0.031 0.039 0.092 0.107 0.114 0.111 

RMS 

(deg) 0.006 0.015 0.030 0.050 0.039 0.036 

CT+DOB+Cmd-ILC 

MAX 

(deg) 0.033 0.040 0.092 0.109 0.118 0.123 

RMS 

(deg) 0.007 0.015 0.032 0.049 0.040 0.036 

Conclusion 

We applied ILC for trajectory tracking of robot 
manipulators in the joint space. The computed torque 
controller and DOB are used first to robustly linearize the 
highly nonlinear dynamics of robot manipulators. Then 
ILC is applied to the linearized system. Both 
control-based ILC and command-based ILC are 
implemented. Experimental results show that both types 
of ILC improve tracking accuracy and achieve similar 
performance. 

Figure 8. Experimental Results. 
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Appendix 

This appendix shows that �̅�𝑖(𝑧)  and �̅�𝑟𝑖(z)  in 
Section III are minimum phase systems with respective 
relative degrees of one and zero. 
Lemma: Let 𝐺𝑖(𝑠) = 1𝑠2+𝑘𝑑𝑖𝑠+𝑘𝑝𝑖  and 𝐺𝑟𝑖(𝑠) =𝑘𝑑𝑖𝑠+𝑘𝑝𝑖𝑠2+𝑘𝑑𝑖𝑠+𝑘𝑝𝑖, where 𝑘𝑑𝑖 , 𝑘𝑝𝑖 > 0. Suppose that �̅�𝑖(𝑧) and �̅�𝑟𝑖(z) are respectively the discrete-time counterparts of 𝐺𝑖(𝑠)  and 𝐺𝑟𝑖(𝑠)which are obtained by the impulse 
invariance method. If 𝐺𝑖(𝑠)  and 𝐺𝑟𝑖(𝑠)  are critically 
damped, then �̅�𝑖(𝑧) and �̅�𝑟𝑖(z) are minimum phase 
systems with respective relative degrees of one and zero. 
Proof: Since 𝐺𝑖(𝑠)  and 𝐺𝑟𝑖(𝑠)  are critically damped, 
they have multiple poles at 𝑟 = −√𝑘𝑝𝑖 < 0. Therefore 𝐺𝑖(𝑠) and 𝐺𝑟𝑖(𝑠) can be decomposed as follows: 𝐺𝑖(𝑠) = 1(𝑠 − 𝑟)2 , 𝐺𝑟𝑖(𝑠) = 𝐴1𝑠 − 𝑟 + 𝐴2(𝑠 − 𝑟)2 

where 𝐴1 = 𝑘𝑑𝑖 = 2√𝑘𝑝𝑖  and 𝐴2 = −𝑘𝑝𝑖. 
 Discretizing 𝐺𝑖(𝑠)  and 𝐺𝑟𝑖(𝑠)  by the impulse 
invariance method yields �̅�𝑖(𝑧) = 𝑇2𝑒𝑟𝑇𝑧−1(1 − 𝑒𝑟𝑇𝑧−1)2 = 𝑇2𝑒𝑟𝑇𝑧(𝑧 − 𝑒𝑟𝑇)2 �̅�𝑟𝑖(𝑧) = 𝑇𝐴1 + 𝑇𝑒𝑟𝑇(𝑇𝐴2 − 𝐴1)𝑧−1(1 − 𝑒𝑟𝑇𝑧−1)2  = 𝑇𝐴1𝑧2 + 𝑇𝑒𝑟𝑇(𝑇𝐴2 − 𝐴1)𝑧(𝑧 − 𝑒𝑟𝑇)2  

Clearly, the relative degree of �̅�𝑖(𝑧) is one, and 
the only finite zero is at 𝑧 = 0 . Hence �̅�𝑖(𝑧)  is 
minimum phase. 
 On the other hand, the relative degree of �̅�𝑟𝑖(𝑧) 
is zero, and the two finite zeros locate at 𝑧 = 0 and  

 𝑧 = − 𝑒𝑟𝑇(𝑇𝐴2 − 𝐴1)𝐴1 = 𝑒−√𝑘𝑝𝑇 (√𝑘𝑝𝑇2 + 1) (10) 

Obviously, (10) is always positive. Moreover, if we 
treat the right hand side of (10) as a function of √𝑘𝑝𝑇, 
then it can be shown that 𝑧(√𝑘𝑝𝑇)  is a strictly 
decreasing function. Therefore 0 < 𝑧 (√𝑘𝑝𝑇) < 𝑧(0) = 1, ∀𝑘𝑝 > 0 

This validates that �̅�𝑟𝑖(𝑧) is a minimum phase system. 
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