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A
nnually, 15 million people worldwide su�er a 

stroke, and 5 million are left permanently dis-

abled. A stroke is usually caused when a blood 

clot blocks a vessel in the brain and acts like a 

dam, stopping the blood reaching the regions 

downstream. Alternatively, it may be caused by a hemor-

rhage, in which a vessel ruptures and leaks blood into sur-

rounding areas. As a result, some of the connecting nerve 

cells die, and the person commonly su�ers partial paraly-

sis on one side of the body, termed hemiplegia. Cells killed 

in this way cannot regrow, but the brain has some spare 

capacity and, hence, new connections can be made. The 

brain is continually and rapidly changing as new skills are 

learned, new connections are formed, and redundant ones 

disappear. A person who relearns skills after a stroke goes 

through the same process as someone learning to play ten-

nis or a baby learning to walk, requiring sensory feedback 

during the repeated practice of a task. Unfortunately, the 

problem is that they can hardly move and, therefore, do not 

receive feedback on their performance. 

Stroke survivors often have a complex pattern of upper-

limb motor impairments, resulting in a loss of functional 

abilities such as reaching. The relationship between reach-

ing and independence is reflected in measures of func-

tional independence, such as the Barthel index [1] where 

the ability to reach is required for over half of the activity of 

daily living tasks. The current prognosis for upper-limb 

recovery following a stroke is poor, with a review reporting 

that complete recovery occurs in less than 15% of patients 

with initial paralysis [2]. Stroke is also an age-related dis-

ease [3], placing an increasing burden on long-term health 
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and related resources unless improvements are made in 

achieving independence. Consequently, there is a pressing 

need to improve the effectiveness of treatments. Enabling 

rehabilitation outside the hospital, supported by mobile 

technology, may lead to reduced cost, increased intensity of 

therapy, and a shift in the emphasis of responsibility for 

good health from health professionals to patients. 

Research into conventional therapy and motor learning 

theory provides evidence that the intensity of practice of a 

task and feedback are important [4]–[7]. This knowledge is 

motivating the development of novel treatments such as 

robotic therapy that provide the opportunity for repetitive 

movement practice. Although the use of robotic therapy in 

upper-limb rehabilitation is relatively recent, reviews of the 

literature suggest that robot-aided therapy improves motor 

control of the proximal upper limb and may improve func-

tional outcomes [8], [9]. Moreover, electromechanical and 

robotic devices may have an advantage over conventional 

therapies in the frequency of movement repetitions because 

of an increased motivation to train and the opportunity for 

independent exercise [8]. Based on existing evidence, use 

of rehabilitation robots is recommended in the U.K. stroke 

guidelines [10]. 

Clinical evidence exists to support the therapeutic use of 

functional electrical stimulation (FES) to improve motor 

control [11]. FES makes muscles work by causing electrical 

impulses to travel along the nerves in much the same way 

as electrical impulses from the brain, and if stimulation is 

carefully controlled, a useful movement can be made. The-

oretical results from neurophysiology [12] and motor learn-

ing research [13] support clinical research with the 

conclusion that the therapeutic benefit of stimulation is 

maximized when applied coincidently with a patient’s own 

voluntary intention to move [14]. A hypothesis is proposed 

in [15] to explain the added benefit of increased recovery 

when FES is used to mimic a weak or paralyzed movement, 

describing how the anterior horn (AH) cell synapses may 

be strengthened by receiving simultaneous impulses along 

the motor nerves due to FES and voluntary effort, and 

thereby allowing AH cells to compensate for damage to the 

subject’s motor system. This hypothesis explains why the 

increased degree of functional recovery is closely related to 

the accuracy of the stimulation applied to assist the sub-

ject’s own voluntary completion of a task. 

A variety of FES model-based control methods have 

been employed to control movement [16], however, the 

majority are intended for spinal cord injury (SCI) subjects, 

which is reflected in the number of approaches focused on 

the lower limb. A contributing factor to the far greater 

number of FES schemes available for the lower limb is the 

simplicity of the musculoskeletal system compared with 

the upper limb, and the relative ease of muscle selectivity 

and recruitment. Examples include optimal [17], H` [18], 

and fuzzy [19] control of standing, sliding mode control of 

shank movement [20], data-driven control [21] of the knee 

joint, and multichannel proportional integral derivative 

(PID) control of the wrist [22]. Artificial neural networks 

have been applied to both the upper [23], [24] and lower 

limbs [25] of paretic subjects, although disadvantages to 

the approach have been reported [26]. 

Advanced techniques, such as those referenced above, 

have rarely transferred to clinical practice [27], especially 

in the case of stroke rehabilitation, where the strategies 

adopted are either open loop or the stimulation is triggered 

using limb position or electromyographic (EMG) signals to 

provide a measure of participant’s intended movement 

[28]–[30]. Closed-loop control has been achieved using 

EMG [31], but this has not been incorporated in model-

based controllers since EMG does not directly relate to the 

force or torque generated by the muscle. In the few cases 

where model-based control approaches have been used 

clinically, they have enabled a far higher level of tracking 

accuracy. 

A principal reason for the lack of model-based methods 

finding application in a program of patient trials is the dif-

ficulty in obtaining reliable biomechanical models. In the 

clinical setting there is minimal set-up time, reduced con-

trol over environmental constraints, and little possibility of 

repeating any one test in the program of treatment under-

taken; controllers are required to perform to a minimum 

standard on a wide number of subjects and conditions. 

Moreover the underlying musculoskeletal system is highly 

sensitive to physiological conditions, including skin imped-

ance, temperature, and moisture and electrode placement, 

in addition to time-varying effects such as spasticity and 

fatigue [32]. These problems are often exacerbated in the 

case of stroke because hemiplegic subjects exhibit both vol-

untary and involuntary responses to applied stimulation. 

The limited number of model-based approaches that have 

been used in stroke rehabilitation therefore provide limited 

scope to adapt the applied stimulation to changes in the 

underlying system due to fatigue or spasticity, leading to 

reduction in performance and an inability to fully exploit 

the therapeutic potential. 

Iterative learning control (ILC) is one model-based 

approach to stroke rehabilitation that has progressed to a 

program of clinical trials, which constitute the first major 

stage towards the eventual transfer into practice. In con-

trast to other approaches employed to control FES, ILC 

exploits the repeating nature of the patients’ tasks to 

improve performance by learning from past experience. By 

updating the control input using data collected over previ-

ous attempts at the task, ILC is able to respond to physio-

logical changes in the system, such as spasticity and the 

presence of a patient’s voluntary effort, which would other-

wise erode performance. ILC can also closely regulate the 

amount of stimulation supplied, ensuring that minimum 

assistance is provided thereby promoting the patient’s 

maximum voluntary contribution to the task completion. 

As the treatment progresses, this control action encourages 
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patients to exert an increasing voluntary effort with each 

trial and a corresponding decrease in the level of FES 

applied. 

In an initial feasibility study, FES was applied to gener-

ate torque about the elbow joint, and ILC was used to 

update the stimulation level to assist a patient’s completion 

of a planar reaching task. To enable accurate performance, 

dynamic models of the arm [33] were developed, together 

with model-based ILC schemes [34]. Clinical trials pro-

duced statistically significant results across a range of out-

come measures that showed impairment in arm function 

reduced over the course of 18 treatment sessions [35], 

thereby establishing the effectiveness of the approach. 

Unsurprisingly, the improvement in motor function in 

this clinical trial is only significant across tasks similar to 

those trained during treatment. This motivates ongoing 

development of a rehabilitation system using ILC to assist 

unconstrained three-dimensional (3-D) movement through 

FES applied to a greater number of muscles, again with 

clinical trials. Further improvements in outcome measures 

will increase the recognition of ILC as a significant advance 

by end users, that is, practitioners in health care. This 

research will also contribute to establishing the use of ILC 

within rehabilitation, with research already emerging from 

other groups, such as [36]–[38], in the area of lower-limb 

robotic rehabilitation. The clinical trials are among the first 

to use advanced FES controllers and to combine both robot-

ics and electrical stimulation for the purpose of stroke 

rehabilitation. 

This article describes the application of ILC in upper-

limb stroke rehabilitation, focusing first on the planar 

robotic system in which the development of a biomechani-

cal model and subsequent design of ILC is described. 

Results are reported from a clinical trial where these ILC 

schemes were employed to assist movement tasks with 

stroke patients, together with a discussion of the outcome 

measures used by physiotherapists to assess the effect of 

rehabilitation therapy. Having confirmed feasibility, on-

going research on a 3-D system to train unconstrained 

upper-limb movements is described, which involves a sub-

stantial extension of the underlying ILC framework to sig-

nificantly increase the potential of rehabilitation. This 

article also summarizes clinical results from a recent fur-

ther program of trials with stroke patients, and concludes 

with a discussion of the limitations and areas of future 

research into the use of ILC in stroke rehabilitation. 

ILC-BASED STROKE REHABILITATION  

FOR PLANAR TASKS 

Relearning skills after a stroke requires a person to practice 

movements by repetition and use feedback from previous 

attempts to improve the next one. The problem is that prac-

tice is limited, or impossible, due to the effects of the stroke, 

which means stroke patients do not receive sensory-motor 

feedback of performance, such as sight, touch, and joint 

position sense. When applying stimulation to overcome 

this problem, a suitable strategy is for the patient to attempt 

to complete a prescribed tracking task over a finite dura-

tion, performance to be measured, and the resulting infor-

mation used to adjust the level of stimulation applied 

during the next attempt. Ideally, as the number of repeti-

tions of the task increases, the error between the supplied 

reference and the measured output position decreases 

under some appropriate measure. The control system 

structure exactly corresponds with that of ILC for engi-

neering applications, with a background on this control 

design method provided in “ILC Basics.” Over the course 

of several treatment sessions, in which a variety of tasks are 

trained, the voluntary effort supplied by the patient should 

increase and the level of stimulation assistance decrease. 

The ultimate aim is that the patient relearns how to do the 

movement without any added stimulation. 

A stroke patient ideally needs to relearn complex func-

tional 3-D tasks but there are many two-dimensional (2-D) 

tasks where rehabilitation would also significantly improve 

mobility. The latter are considered in this section and a 

robotic-based rehabilitation system is described from 

design through to clinical trial results [33]–[35], [39]–[41], 

given in the next section, where model-based ILC is used to 

control the level of FES applied. 

Stroke patients typically exhibit partial paralysis on one 

side of the body and, as a result, have little or no ability to 

reach out with the affected arm in the 2-D plane, for exam-

ple, to an object across a flat table top. In the robotic-assisted 

system of [33]–[35], [39]–[41] patients are seated with their 

arm supported by the robot and elliptical reaching trajecto-

ries are projected onto a target above their hand. FES is 

then applied to their tricep muscle to assist their tracking of 

a point that moves along the reference trajectory. At the end 

of the task, the arm is returned to the starting position in 

preparation for the next trial. During the reset time, plus a 

rest time to prevent muscle fatigue, an ILC algorithm is 

used to calculate the stimulation to be applied on the sub-

sequent trial. The aim is that, as the number of trials 

increases, the error between the illuminated spot traveling 

along the reference trajectory and the actual path followed 

by the patient’s hand goes to zero. Figure 1 shows a frontal 

view of a patient using the system, and Figure 2 shows a 

plan view, showing the position of the patient’s arm and 

the reference trajectory to be followed with the hand sup-

ported by the robot. Figure 3 is a schematic of the robotic 

workstation and shows the signal flow. 

In Figure 1, surface electrodes that deliver the FES to 

assist the tracking task are shown located on the patient’s 

triceps. The choice of this muscle is based on clinical need 

since patients typically have difficulty with arm extension. 

The controlled input variable is the pulsewidth of the 

applied stimulation. The workstation employs the robotic 

arm to constrain the arm to move in the horizontal plane, to 

recreate the effect that the subject is moving a simple point 
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A
n often-encountered industrial control application in-

volves a system or machine that repeatedly performs the 

same task, at the end of which resetting to the starting loca-

tion occurs prior to the task being repeated. An example is a 

gantry robot undertaking a pick and place operation where 

the following steps must be undertaken in synchronization 

with a conveyor system: collect an object from a fixed lo-

cation, transfer it over a fixed, finite duration, place it on a 

moving conveyor, return to the original location for the next 

object, and then repeat the previous four actions for as many 

objects as required. 

A controller with no learning applied will give the same 

tracking error on each trial and although outputs, inputs, and 

error signals from previous trials are available and rich in in-

formation, they are not used by a controller with no learning 

capability. The objective of iterative learning control (ILC) [S1] 

is to improve the performance from trial-to-trial by using pre-

vious trial information in the construction of the current trial 

input. ILC differs from other learning-type control paradigms, 

such as adaptive control, in modifying the control input rather 

than the controller. Controllers designed in the ILC setting can 

achieve a high performance with low transient tracking error 

even in the presence of large model uncertainty and repeating 

disturbances. 

Let uk 1 t 2  denote the input to the system on trial k  which is 

of duration T, that is, 0 # t # T , ` and let r 1 t 2  denote the 

desired or reference signal, which does not depend on the trial 

number. The error on trial k  is 

 ek 1 t 2 5 r 1 t 2 2 yk 1 t 2  (S1) 

and the objective of constructing a sequence of input functions 

such that the performance achieved is gradually improved with 

each successive trial can be refined to a convergence condi-
tion on the input and error, that is, 

 lim
kS`

7ek 7 5 0, lim
kS`

7uk 2 u` 7 5 0,  (S2) 

where 7 # 7  denotes the norm on the underlying function space. 

In this formulation, u` is termed the learned control. 

ILC is an established area in control systems research [S2], 

[S3], in both the underlying theory, experimental verification, 

and application to physical systems. The ILC algorithms cur-

rently available include those with a simple structure that do 

not require an explicit plant model, such as the P-type ILC. 

Consider an application operating in discrete time where the 

noise present is such that deterministic signals can be as-

sumed. Then P-type ILC has the form 

 uk11 1 t 2 5 uk 1 t 2 1 Gek 1 t 2 ,  (S3) 

where G is the proportional learning gain that could be allowed 

to vary form trial-to-trial. At the start of each new trial the com-

plete previous trial output is available and, hence, it is also pos-

sible to utilize the error at advanced time steps. One example 

is phase-lead ILC, which takes the form 

 uk11 1 t 2 5 uk 1 t 2 1 Gek 1 t 1 l 2 .  (S4) 

How to fully exploit the use of previous trial data is one of the 

major questions to be answered in both theory and applica-

tion domains. A review of the ILC literature demonstrates that 

simple structure algorithms such as the P-type can be highly 

successful with many experimental implementations reported. 

Note that ILC is often combined with standard feedback con-

trollers, to achieve baseline tracking and performance. 

P-type ILC and phase-lead ILC are special cases of the fol-

lowing law expressed in terms of the z-transform 

 vk11 1z 2 5 vk 1z 2 1 L 1z 2ek 1z 2 ,  (S5) 

where L 1z 2  is a suitable noncausal operator. A wealth of con-

vergence and robustness analysis exists for such a class of 

update algorithm [S2], [S3]. The form (S5) is also commonly 

used for nonlinear system models, where L 1z 2  is typically cal-

culated using a time-varying linearized plant description. One 

example is the Newton method based ILC that is applied in 

this article. 

Linear model based ILC schemes are often based on mini-

mizing a suitable cost function where the available state-space 

model is often written as 

 xk11 1 t 1 1 2 5 A 1 t 2xk11 1 t 2 1 B 1 t 2uk11 1 t 2 ,  
 yk11 1 t 2 5 C 1 t 2xk11 1 t 2 ,  (S6) 

where xk 1 t 2  is the state vector on trial k. The cost function in 

norm optimal ILC is 

 Jk11 1uk11 2 5
1

2a
T

t50

Aek11
T 1 t 2Qek11 1 t 2

 1 Auk11 1 t 2 2 uk 1 t 2BTR Auk11 1 t 2 2 uk 1 t 2BB,  (S7) 

where Q and R are symmetric positive definite matrices. 

The cost function (S7) is the ILC version of the linear qua-

dratic performance criterion from optimal control theory and is 

a combination of the optimal tracking of the reference and the 

disturbance accommodation, regarding uk 1 t 2  as a known distur-

bance on trial k 1 1. The term uk11 1 t 2 2 uk 1 t 2  is the difference in 

the control input on successive trials and this algorithm aims for 

optimal reduction of the current trial error without an excessive 

change in the control input used on the previous trial. 

The norm optimal ILC solution computes the current trial 

control input as 

uk11 1 t 2 5 uk 1 t 2 2 5BT 1 t 2K 1 t 2B 1 t 2 1 R621BT 1 t 2K 1 t 2A 1 t 2 5xk11 1 t 2
 2 xk 1 t 2 61 R21BT 1 t 2jk11 1 t 2 ,  (S8) 

ILC Basics 
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mass with damping, and to provide assistance about the 

shoulder since the FES applied is unable to actuate this 

joint. The emphasis, however, is on FES driving the task 

completion rather than the robot. The strapping shown in 

where 

jk11 1 t 2 5 5I 1 K 1 t 2B 1 t 2R21BT 1 t 2 6215AT 1 t 2jk11 1 t 1 1 2
 1 CT 1 t 2Qek 1 t 1 1 2 6,  jk11 1T 2 5 0 (S9) 

and 

K 1 t 2 5 AT 1 t 2K 1 t 1 1 2A 1 t 2 1 CT 1 t 2QC 1 t 2 2 AT 1 t 2K 1 t 1 1 2B 1 t 2
3 5BT 1 t 2K 1 t 1 1 2B 1 t 2 1 R621BT 1 t 2K 1 t 1 1 2A 1 t 2 , K 1T 2 5 0. 

 (S10) 

The Ricatti equation (S10) need only be solved once before 

the trials begin and the predictive component (S9) can be com-

puted in the resetting time between successive trials [S4]. 

Of the currently available ILC algorithms for nonlinear dy-

namics, this article makes use of the Newton ILC where the 

control update is 

 uk11 5 uk 1 gr 1uk 221ek,  

where gr 1uk 2  is the system Jacobian. Calculating the inverse is 

computationally expensive and may lead to ill conditioning, but 

rewriting the last equation as 

 uk11 5 uk 1 zk11,  

corresponds to solving the equation 

 zk11 5 gr 1uk 221ek, 

or

 ek 5 gr 1uk 2zk11.

This avoids calculation of the inverse and can be solved by any 

ILC algorithm that results in global convergence for an arbi-

trary LTV system, such as norm optimal ILC [S4]. 
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FIGURE 1 A frontal view of a patient using the planar robotic work-

station showing (a) shoulder strapping, (b) tracking task, and (c) 

surface electrodes. The patient is seated with her arm supported 

by the robot and elliptical trajectories are projected onto a target 

above the hand and functional electrical stimulation is applied to 

her triceps, using the surface electrodes, in order to assist track-

ing of a point that moves along the reference trajectory. At the end 

of the task, the arm is returned to the starting position in prepara-

tion for the next trial. During the reset time, plus a rest time to 

prevent muscle fatigue and allow transients to decay, an iterative 

learning control algorithm is used to calculate the stimulation to be 

applied on the subsequent trial. The stimulation applied to the tri-

ceps muscle produces a torque about the elbow and the control 

problem is equivalent to controlling the angle qf. The shoulder 

strapping is to prevent forward movement by the patient’s trunk 

during the trials, which would conflict with the desired objective of 

reaching out with the arm.
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FIGURE 2 An example of the tracking task geometry for a patient 

with right-hand-side hemiplegia for the planar case, showing the 

initial and final positions of the elbow, shoulder, and arm, respec-

tively. The iterative learning control adjusted stimulation is applied 

during the time when the outgoing reference is the target to be 

achieved.
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Figure 1 is to prevent forward movement by the patient’s 

trunk during the trials, which would conflict with the 

desired objective of reaching out with the arm. In control 

systems terms, it is the forearm angle qf 1t2  that forms the 

controlled variable, which is required to track a supplied 

reference qf
* 1t2 .

Figure 4 shows a block diagram of the control scheme 

used in the clinical trials, consisting of a feedback control-

ler, a linearizing controller, and an ILC feedforward con-

troller. The former block acts as a prestabilizer and provides 

satisfactory tracking during initial trials. During the arm 

resetting time at the end of trial k, the ILC controller uses a 

biomechanical model of the arm and muscle system, along 

with the previous tracking error, to calculate the feedfor-

ward update signal vk111t2  for application on the next trial. 

To explain the presence of the feedback controller, a large 

class of ILC algorithms for discrete linear systems is based 

on lifting the dynamics into an equivalent standard linear 

system state-space model that describes the trial-to-trial 

updating. If the system considered is unstable or has unac-

ceptable transient dynamics, a feedback loop is first 

designed to stabilize or suitably control the response, and 

ILC is applied to the resulting controlled dynamics. 

The accuracy of the human arm and muscle model has a 

strong effect on the overall performance of the control 

scheme of Figure 4, and is constructed from a stimulated 

muscle structure that accounts for the torque y 1t2  acting 

about the elbow generated in response to the applied FES 

u1t2 ,  and a two-link system that produces the resulting 

angular movement qf 1t2 . The biomechanical model 

employed during the clinical trials is specifically developed 

for stroke patients [33] and is identified by kinematically 

exciting the arm and optimally fitting parameters using a 

least-squares criterion. 

Limit Switches

Emergency Stop Buttons

Data Projector

LED Display

Six-Axis Torque/Force Sensor

Brushless dc Motor Input Signals

Encoders and Hall Effect Transducers

FES Digital Pulse Width Demands

Data Acquisition System

FES Stimulation Signals

Modified Four Channel Stimulator

FIGURE 3 Schematic of the robotic workstation. The data flow, and how the various signals required are physically measured and 

applied, are highlighted. The limit switches and emergency stop buttons are required in order to obtain ethical clearance for experiments 

with human subjects.
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FES and the Muscle Model 

FES employs short electrical pulses to generate contrac-

tions in the muscles that can be coordinated to actuate 

joints. The intention of FES is often orthotic, for example, 

when applied to enable the standing of subjects with com-

plete SCI. More commonly, especially with systems where 

stimulation is applied through skin surface electrodes, the 

objective is to achieve a therapeutic response, that is, a 

functional movement that after repetition leads to improved 

motor control when the stimulation is not applied. A cover-

age of FES with particular emphasis on its use in both open 

and closed-loop control schemes for other biomedical and 

rehabilitation problems is given in [27]. 

The lack of closed-loop model-based strategies in FES 

technology, especially for the upper limb, is primarily due 

to the difficulty in obtaining an accurate plant model. 

Muscle models form a crucial part of such a representation, 

and vary widely in structure in the model-based control-

lers reported in the literature. No explicit form of muscle 

model is used in [42]–[44], linear forms are employed in 

[22], [45] and a general nonlinear form is given in [21]. The 

most widely assumed structure is the Hill-type model [46], 

which describes the output force as the product of three 

independent experimentally measured factors, that is, the 

force-length property, the force-velocity property, and the 

nonlinear muscle activation dynamics under isometric 

conditions, respectively. 

The form of the first two experimentally measured fac-

tors is chosen to correspond with physiological observa-

tions [47]–[49]. The activation dynamics (AD) are almost 

always represented by a static nonlinearity in series with 

linear dynamics, and constitute an important component 

of the model since controlled motions are typically smooth 

and slow; therefore the effects of inertia, velocity, and series 

elasticity are small, and the isometric behavior of muscle 

dominates. The nonlinearity is parameterized in several 

ways, taking the form of a simple gain with saturation in 

[50], a piecewise linear function [47], [51], and a predefined 

functional form in [52] and [53]. The linear dynamics are 

assumed to be first order in [47], a series of two first-order 

systems in [48], [54], critically damped second order in 

[55]–[57], and second-order system with a possible trans-

port delay in [58] and [51]. 

The use of Hammerstein structure representations of the 

activation dynamics is supported by a correspondence with 

biophysics where the static nonlinearity, denoted hIRC 1u2 , 
represents the isometric recruitment curve (IRC) which is 

the static gain relation between stimulus activation level 

u1t2  and steady-state output torque w1t2  with the muscle 

held at a fixed length. The linear activation dynamics (LAD) 

represents the muscle contraction dynamics hLAD 1s2 , with s 

denoting the Laplace transform variable, which convolve 

with the IRC to give the overall torque generated y 1t2 . The 

block diagram representation of this muscle representation 

is given in Figure 5 with expanded discussion in “Modeling 

Human Muscle Response to FES Stimulation.” 
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FIGURE 4 Block diagram representation of the iterative learning control (ILC) scheme in the planar case, consisting of a feedback con-

troller, a linearizing controller, and an ILC feedforward controller. The former block, taken as a proportional plus derivative controller, acts 

as a prestabilizer and provides satisfactory tracking during initial trials. During the arm resetting time at the end of trial k, the ILC control-

ler uses a biomechanical model of the arm and muscle system, along with the previous tracking error, to produce the feedforward update 

signal vk+1(t) for application on the next trial.

Static

Nonlinearity

Linear

Dynamics

u w y

hIRC(u ) hLAD(s )

FIGURE 5 Hammerstein structure representation of activation 

dynamics. The static nonlinearity, denoted by hIRC(u), represents 

the isometric recruitment curve, that is, the static gain relation 

between stimulus activation level u(t) and steady-state output 

torque w(t), when the muscle is held at a fixed length. The linear 

activation dynamics represents the muscle contraction dynamics 

hLAD(s), which convolve with the isometric recruitment curve to 

give the overall isometric torque generated, denoted y(t), about 

the elbow.
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Planar Arm Model 

Figure 6 shows the geometry of the dual human and robotic 

system, in which x0, y0, and z0 are components of the robotic 

base coordinate frame, and x, y, and z are those of the 

human arm base coordinate frame, with the two systems 

related by a translation. The robot joint angle vector is 

qr 5 3q1 q24T, and the torque supplied by the motor is given 

by tr 5 3t1 t24T, whose components are in the directions of 

q1 and q2,  respectively. The upper link of the human arm 

extends from the acromion to the olecranon process of the 

elbow, with length lu. The second link represents the fore-

arm, from the elbow to the thumb web, with length lf.

The constraint imposed by connecting the hand to the 

robot requires the forearm to lie in the horizontal plane and 

rotation is possible about the axis along the upper arm. 

Assistance is provided by the triceps, modeled as supply-

ing a torque te $ 0 acting about an axis orthogonal to both 

the upper arm and forearm. The subject interacts with the 

robot by applying a vector of forces and torques at the point 

Q, which has a z0 component of lz. The vector of the compo-

nents of the forces applied in the x and y directions, respec-

tively, is given by hr 5 3Fx Fy 4T. A form of impedance control 

is used to govern the torque demand supplied to the motors 

in order to guarantee safe interaction with patients [59]. 

The resulting relationship is given by 

 2hr 5 Krx
|2 Brx

#

2 M rx
$

, (1)

T
hree limitations restrict the application of the Hammerstein 

structure [S5] to upper-limb stroke rehabilitation and must be 

overcome. The first limitation is that functional electrical stimula-

tion (FES) is applied to either in vitro or paretic muscles in the 

vast majority of experimental verification tests, thus removing 

the possibility of an involuntary response to stimulation that may 

occur when applied to subjects with incomplete paralysis, such 

as stroke. In addition to motivating the need for experimental 

validation on such subjects, the excitation inputs used widely 

to identify the Hammerstein structure, that is, pseudo-random-

binary sequences (PRBS) white noise, and pulses, are not ap-

propriate since they would elicit an involuntary response from 

the subject. 

The second restriction is the absence of test results from 

subjects with incomplete paraplegia, which means that physio-

logically based constraints on the form of the dynamics, such as 

the assumption of a critically damped system [S6], [S7], may not 

be justified. Thirdly, almost all previously reported in vivo studies 

and control implementations have applied FES to the lower limb, 

even though upper-limb functional tasks require finer control, 

and are more subject to adverse effects such as sliding elec-

trodes and the activation of adjacent muscles during stimulation. 

To address such drawbacks, identification schemes and 

accompanying sets of excitation inputs are developed in [S5]. 

The excitation signal must be chosen from a physiological 

perspective, and hence the identification scheme cannot use 

rapidly changing inputs and must be applicable to an arbitrary 

choice of signal. Moreover, a general form of linear dynamics 

represented in transfer-function form is used, together with a 

smooth function with continuous derivatives in the representa-

tion of the static nonlinearity since it is preferable to that of a 

piecewise linear function. Detailed investigation in [S5] led to 

four candidate tests for use in the identification of electrically 

stimulated muscles in stroke patients and examples of the ex-

citation inputs employed in each are given in Figure S1. 

Experimental tests to identify and validate muscle models 

are performed using the iterative learning control (ILC) work-

station so that conditions and setup procedures match exactly 

those used in clinical trials. During the experiments, the posi-

tion of the robotic arm is fixed using a locking pin, at an elbow 

extension angle of approximately p/2 rad. This removes the 

nonisometric components of the biomechanical model, and 

the resulting system corresponds to the Hammerstein structure 

shown in Figure 5. Detailed comparison of the algorithms and 

excitation inputs can be found in [S5], where greatest perfor-

mance levels are observed using the staircase test input that 

avoids the problem of eliciting a voluntary response, whilst still 

proving sufficiently exciting. Although these algorithms provide 

high levels of performance and are suitable for stroke reha-

bilitation, they are only valid in short time intervals due to the 

slowly time-varying properties of the muscle system caused by 

fatigue, spasticity, and other physiological effects. Motivated 

by such deficiencies, recursive versions of the procedures are 

developed in [S8] that are suitable for the conditions encoun-

tered during clinical trials. The development and analysis of 

ILC algorithms using such recursively updated plant models is 

an open research problem. 
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where x̂ is the reference position, x|5 x̂2 x, x5 kr 1qr 2 , 
x
#

5 Jr 1qr 2q# r,  and x
$

5 Jr 1qr 2q$r 1 J
#

r 1qr, q
#

r2q# r. Here x5 kr 1qr 2  is 

the direct kinematics equation, and Jr
T 1qr 2  is the system 

Jacobian. When the robot is moved freely by the subject 

with no assistance, the gain matrices have the respective 

form Kr 5 0, Br 5 BrI, and M r 5 M rI, where Br and M r are 

positive scalars, to replicate a natural movement task. 

When the robot is required to move the subject’s arm along 

predefined trajectories, it is necessary to set Kr 5 KrI, with 

the scalar Kr . 0 and I  denotes the identity matrix with 

compatible dimensions. 

To satisfy the horizontal constraint the elbow angle, that 

is, the angle between the upper arm and forearm must sat-

isfy 

 qe1qf2 5 arccos12cfcg 2 , (2)

where g denotes the fixed upper arm elevation angle, and 

cf and cg denote cos1qf2  and cos1g 2 , respectively, and like-

wise for sin1 # 2 . The dynamic model of the constrained arm 

can now be expressed in the form 

 Bp1qp2q$p 1 Cp1qp, q
#

p2q# p 1 Fp1qp, q
#

p2 5 tp 2 Jp
T 1qp2h, (3)

where Bp, Cp[ R
232 are the inertial and Coriolis matrices, 

respectively, as detailed for the planar system in [34], 

qp 5 3qu, qf4T is the joint angle vector, Jp1qp2  is the system 

Jacobian and the external force vector satisfies h5 hr as a 

consequence of the connection with the robotic arm. The 

moment vector about the forearm axis produced by applied 

FES is 

 tp 5 c 0

tes 1qf2 d ,    s 1qf2 5
2sfcg, 

"12 cf
2cg

2
. (4)

The decoupled form of the nonconservative force 

Fp1qp, q
#

p2 5 3Fu1qu, q
#

u2 , Ff 1qf, q
#

f2 4T provides a satisfactory 

compromise between repeatability and the accuracy of the 

overall model [33] and includes effects such as spasticity. 
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FIGURE S1 An example of four candidate tests. In the triangular ramp test of (a) the pulse duration rises linearly from 0 to 300 ms and 

then returns to 0, with a uniformly distributed range. In the filtered random noise test of (b), the pulse width signal is produced by low-

pass filtering white noise, using a suitable cut-off frequency to balance the opposing physiological and identification issues. Having fil-

tered the signal, an offset and gain are applied to ensure the desired pulsewidth range is spanned. In the staircase test of (c) the 

duration of each pulse changes step by step. The number of steps should be large enough to identify the nonlinearity and their width 

chosen carefully. Let t = Es/4, where Es is the 98% settling time, where it is recommended to use mixed step widths, with step width t 

for 1/3 of the test period, 2t for another 1/3 of the test period, 3t for the remaining 1/3 of the test period, and to randomize widths when 

creating the test signals. In the pseudo random multi-level sequence test of (d), the excitation signal is an multi-level pseudo random 

sequence that is a periodic deterministic signal with an autocorrelation function similar to white noise. The amplitude level is uniformly 

distributed over the full range. 
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The torque, te, generated by electrically stimulated 

muscle acting about a single joint is given by 

 te1u, qe, q
#

e2 5 h1u, t2 3 Fm1qe, q
#

e2 1 Fs1qe, q
#

e2 , (5)

where the term h1u, t2  represents the Hammerstein struc-

ture shown in Figure 5. The term Fm1qe, q
#

e2  models the 

multiplicative effect of the joint angle, and joint angular 

velocity, respectively, on the active torque developed by the 

muscle [33]. The term Fs1qe, q
#

e2  accounts for the passive 

properties of the joint. Since g is invariant, (2) means that 

Fs1qe, q
#

e2  is accounted for when the general form Ff 1qf, q
#

f2  
is used and can therefore be omitted. The FES drives com-

pletion of the task by assisting movement about the elbow, 

the robotic arm is purely only of assistance about the shoul-

der. To provide assistance torque solely about the upper-

arm axis to follow a reference q̂u, (3) gives that a suitable 

form of the robotic control force (1) is 

 h5 Jp
2T 1qp2 cKu1q̂u 2 qu2 2 Buq

#

u 2 Muq
$

u

2Bfq
#

f 2 M fq
$

f

d , (6)

with parameters 5Ku, Bu, Mu6  and 5Bf, M f6  governing the 

dynamic components about the upper arm and forearm, 

respectively. The form (6) is achieved through appropriate 

selection of Kr, Br, and M r in the robotic arm (1). It is shown 

in [34] that the parameter x̂ is the point of intersection of 

the reference path and a line extending along the forearm, 

which confirms that tracking assistance is applied only 

about the upper arm. If q̂u is chosen to be sufficiently 

smooth, the upper arm dynamics are decoupled from the 

system (3) to leave only the forearm dynamics, shown in 

Figure 7, which are used for FES control law design [34]. 

Planar Control Schemes 

The strategy selected to control the stimulation applied to 

the subject consists of a linearizing controller in a feedback 

arrangement, with an additive ILC feedforward controller 

as shown in Figure 4. This representation includes a model 
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FIGURE 6 Geometry of dual planar human arm and robotic system. In the notation used, x0, y0, and z0 are components of the robotic 

base coordinate frame, and x, y, and z are those of the human arm base coordinate frame, and the two systems are related by a trans-

lation. The robot joint angle vector is qr 5 3q1 q2 4T, and the torque supplied by the motor is tr 5 3t1 t2 4T, whose components are in the 

directions of q1 and q2, respectively. The upper link of the human arm extends from the acromion to the olecranon process of the elbow, 

with length lu. The second link represents the forearm, from the elbow to the thumb web, with length lf.
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FIGURE 7 Continuous-time model of stimulated planar human arm used in control law design for planar case.
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of the influence of the patient’s volitional action. Although 

this can be captured by the recording of EMG during move-

ment, the incorporation of EMG into model-based control-

lers is only beginning to receive attention in the literature, 

but is not well understood [60]. Within the ILC framework 

the trial-invariant component of voluntary effort can be 

treated as a repeating disturbance and completely canceled, 

however incorporation of EMG within the model is still an 

open problem. The first component of the linearizing con-

troller is the inverse of the isometric recruitment function 

identified for each subject. The controller’s subsequent 

action is motivated by the form of the remaining nonlinear 

terms s 1qf2 , Ff 1qf, q
#

f2 , and Fm1qe, q
#

e2 , respectively, in the 

arm model of Figure 7. All three functions vary slowly when 

the trajectories used for rehabilitation are followed with an 

error that is small in magnitude, and consequently the con-

trol action employed comprises a steady-state linearization 

approach to remove their effect, creating a system that 

approximates the linear activation dynamics in series with 

the linear arm dynamics [33]. The approximate linearizing 

controller, with input j, is given by 

 u5 hIRC
21 a Ff 1qf, q

#

f2 1 j

s 1qf2Fm1qe, q
#

e2 b, (7)

and in combination with the robotic controller produces 

 
qf 1s2
j 1s2 5 hLAD 1s2 1

sA1 If 1 M f2s1 BfB 5 G 1s2 , (8)

where If is the inertia of the forearm with respect to the 

elbow. Results and analysis given in [34] confirm that (8) 

accurately approximates the combined approximate linear-

izing controller and arm system for the range of trajectories 

and arm dynamics required in stroke rehabilitation. A lim-

itation of the controller (7) is that the system (8) is not an 

accurate representation at high frequencies but this is not a 

major problem at the initial feasibility phase of research in 

this problem area. 

To supply the torque demand j, a proportional deriva-

tive (PD) controller C 1s2  is tuned individually for each sub-

ject. The resulting bandwidth is limited in the main by the 

stipulated end-effector dynamics and the muscle dynam-

ics. Many ILC algorithms have been developed and experi-

mentally tested in engineering applications, but with the 

aim of keeping the overall scheme as simple as possible in 

the initial feasibility phase attention is restricted to two 

simple structure algorithms. 

The phase-lead ILC algorithm can provide high perfor-

mance, despite its simplicity and limited parameter set, 

and is given in z-transform terms by 

 vk111z2 5 vk1z2 1 Lzlek1z2 , (9)

where the error is calculated as ek1t2 5 qf
* 1t2 2 qf, k1t2 , L is a 

scalar gain, l is the phase-lead in samples, k is the trial 

number, and vk11 is the updated control input. The control-

ler is selected based on the nominal system 

P 1z2 5 1C 1z2G 1z22 / 111 C 1z2G 1z22  and then tuned heuristi-

cally. Higher frequencies that may gradually increase are 

removed by a noncausal zero-phase filter applied to either 

the error or control input vk11 [61], however the small 

number of trials undertaken means that this is unneces-

sary in the present application. The sampling time is 11/402 -s in correspondence with the frequency at which the 

stimulation pulses are applied to the patient. 

The adjoint ILC algorithm is an alternative to (9) with z-

transform representation 

 vk111z2 5 vk1z2 1 KP* 1z2ek1z2 , (10)

where 1 # 2* 1z2  denotes the noncausal adjoint operator. An 

added feature of this controller is that, when applied to the 

nominal plant P 1z2  with a sufficiently small scalar multi-

plier, K, it is guaranteed to satisfy the condition for mono-

tonic convergence over all frequencies, and hence ensure a 

satisfactory transient response. 

Experimental Results with Unimpaired Subjects 

The ILC algorithms (9) and (10) were implemented on ten 

unimpaired subjects taking part in a preliminary study. 

This study established the efficiency of control schemes 

prior to ethical approval and their subsequent use in a clin-

ical trial with stroke patients. For each subject the isometric 

muscle model was first identified using tests described in 

“Modeling Human Muscle Response to FES Stimulation,” 

and then components of the arm model dynamics (3) were 

identified through injection of sufficiently rich kinematic 

trajectories by the robot and least mean fitting of the result-

ing kinematic and force data [33]. The reference trajectories 

mimicked natural reaching movements for the impaired 

arm and Figure 2 shows an example of the reference path 

used in relation to the position of the subject’s glenohu-

meral joint. In this case the reference is set at an angle of 20° 

from the y axis, and individually calculated for each subject 

to extend their arm from 55%  to 95%  of their total arm 

length over the course of the movement. 

By moving along the extension half of this reference at 

two different speeds, two trajectories are created. For vali-

dation on unimpaired subjects only the first outgoing half 

of the reference is used. Each trajectory starts with a wait-

ing period where its value is set equal to the starting point 

of the reference. The slow trajectory lasted for 12.5 s in 

total, composed of a 5-s waiting period and a 7.5-s move-

ment along the reference, and the fast trajectory lasts for 

10 s, composed of a 5-s waiting period followed by a 5-s 

movement. The waiting period allows the ILC update to 

begin before the arm is required to move. Before each trial 

commences, the subject’s arm is moved to the initial posi-
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tion by the robot and released only when the trajectory 

starts. The subjects are not shown the trajectory before or 

during the test. 

The values of Bf and M f that dictate the end-effector 

char  acteristic are set at 5.78 Nm/rads21 and 0.29 Nm/rads22,  

respectively, creating a natural feel to the system and allow-

ing the chosen trajectories to be completed with moderate 

effort without limiting the bandwidth excessively. The feed-

back controller gains are tuned for each subject with empha-

sis on robustness rather than performance. 

Figure 8 gives representative results for a single subject 

using the phase-lead ILC algorithm (9) for various values of 

l. The slow trajectory is used together with PD controller 

gains of Kp 5 10 and Kd 5 2. The learning gain in (9) is 

chosen conservatively as L 5 0.2,  and therefore the speed 

of convergence is sacrificed for greater robustness. The root 

mean square (RMS) error corresponding to this phase-lead 

controller converges to approximately 5 mm with a mini-

mum value of 3.2 mm. Figure 9 shows the results obtained 

using L 5  0.2 and l 5 35 in greater detail, where during 

the first five trials the error reduces monotonically and the 

reference is closely tracked. The effect of the linearizing 

feedback controller in the absence of ILC is seen by inspec-

tion of the first trial with the ILC action applied. 

Figure 10 shows the associated stimulation inputs and 

ILC updates, where from Figure 10(a) the stimulation 

applied during k5 1 saturates at 300 ms, but that the effect 

of further trials removes this effect and produces lower 

levels of stimulation over the course of the trial. Moreover, 

ILC results in the application of stimulation during the ini-

tial 5-s waiting period before movement is required. Figure 

10(b) shows that the updated reference vk11 converges to a 

fixed trajectory over repeated trials. 

Figure 11 gives results from the first four subjects tested 

in the preliminary study using the adjoint ILC algorithm 
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FIGURE 8 Single unimpaired subject experimental results using 

the phase-lead iterative learning control law (9). Results for vari-

ous values of l are given for the slow trajectory together with pro-

portional derivative controller gains of Kp = 10 and Kd = 2. The 

learning gain in the control law (9) is chosen as L = 0.2,  and con-

sequently the speed of convergence is traded-off for greater 

robustness. The root mean square (RMS) corresponding to this 

phase-lead converges to approximately 5 mm and has a minimum 

value of 3.2 mm.
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FIGURE 9 Single unimpaired subject experimental tracking, where 

(a) is for qu(t), and (b) for qf(t), respectively, for the slow trajectory 

using the phase-lead iterative learning control (ILC) law (9) with L 

= 0.2 and l = 35. The effect of the linearizing feedback controller 

in the absence of ILC is seen by inspection of the first trial results.
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FIGURE 10 Single unimpaired subject experimental results. The 

results are from the phase-lead iterative learning control (ILC) 

algorithm (9) with L = 0.2 and l = 35, and the slow trajectory, and 

give the stimulation inputs and ILC updates. Part (a) shows that 

the stimulation applied on the first trial saturates at 300 ms, but that 

the effect of further trials produces lower levels of stimulation over 

the course of the trial. Moreover, use of ILC results in the applica-

tion of stimulation during the initial 5-s waiting period before move-

ment is required. Part (b) shows that the updated reference vk+1 is 

converging to a fixed trajectory over repeated trials.
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(10), where the results in Figure 11(a) and (b) are for the 

slow and fast trajectories, respectively. These results dem-

onstrate that convergence can be achieved within five trials 

for both trajectories, and an RMS tracking error of less than 

10 mm over the course of the movement is possible in all 

cases. The effect of model uncertainty, unmodeled dynam-

ics, nonrepeatable disturbance, and noise degrades the 

property of monotonic error convergence. Similar results 

are obtained using a reference whose inclination is 

increased from 20° to 40° from the y axis. Table 1 shows the 

mean and standard deviation of the RMS error obtained 

during the last trial, for both trajectories and all 18 subjects 

tested. 

These results confirm that the control laws (9) and (10) 

are capable of producing high levels of tracking accuracy 

for unimpaired subjects. The next section gives results 

from a clinical trial with stroke patients and discusses how 

the results obtained are assessed in this domain. 

CLINICAL ASSESSMENT 

The ILC algorithms of the previous section were applied 

during a clinical trial with five stroke patients. The evalua-

tion of any rehabilitation intervention is critical to establish 

effect, that is, the benefit or otherwise to the patient. 

 Choosing an appropriate clinical outcome measure requires 

a structured approach to selecting the relevant domains 

and establishing the criteria to evaluate the measures. The 

World Health Organization’s International Classification of 

Functioning, Disability, and Health (ICF) which is a frame-

work for measuring both health and disability [62], is help-

ful in determining suitable outcome measures. This 

classification consists of domains that are health and health 

related, described in the form of two lists, body functions 

and structures, and activity and participation, respectively. 

Within the classification, impairments are defined as prob-

lems in body function or structure (e.g. a significant devia-

tion or loss), activity is the execution of a task or action by 

an individual, and participation is involvement in a life 

situation society. 

Active assisted or partially facilitated exercises are rec-

ommended clinically in the United Kingdom for stroke 

patients who are unable to move by themselves [63], and to 

measure the effectiveness of such techniques, physiothera-

pists are more likely to use activity or participant based 

outcome measures. Impairment based measures, which 

normally require more equipment, explain why the 

changes are seen. In the clinical assessment of the ILC 

designs of the previous section, both the domains of 

impairment and activity and relevance to literature, respec-

tively. The forms of reliability considered included internal 

consistency, whether the test items measure the outcome 

consistently, and inter-rater reliability. The forms of valid-

ity considered are content, that is, whether the assessment 

items reflect the domain they claim to measure, construct, 

that is, whether the assessment measures the known attri-

butes of the theoretical construct under evaluation, and cri-

terion validity, that is, the agreement between results of the 

assessment under evaluation, and a criterion assessment or 

gold standard. The test time is less than 30 min, due to the 

number of tests that needed to be performed, and the pos-

sibility of stroke participant fatigue. The final general con-

sideration is how widely the test is used either in 

contemporary rehabilitation robotics, electrical stimula-

tion, or relevant clinical literature. Further background is 

given in “Clinical Assessment of Stroke Rehabilitation.” 

Following the University of Southampton ethical 

approval, five participants, three male and two female, 

were recruited and gave written consent. Their demo-

graphic characteristics are given in [35] and ranged in age 

Mean of last trial RMS error /mm

Type 20° trajectory 40° trajectory

Slow 9.41 (5.67) 10.22 (6.07)

Fast 12.18 (6.94) 12.93 (6.87)

TABLE 1 Mean (standard deviation) of last trial root mean 
square (RMS) error for all 18 subjects using the planar 
robot system.
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FIGURE 11 Results for the adjoint iterative learning control law (10) 

applied with four unimpaired subjects with K = 0.2. Part (a) is for 

the slow trajectory, and (b) the fast trajectory. The results demon-

strate that convergence can be achieved within five trials for both 

trajectories, and a root mean square (RMS) tracking error of less 

than 10 mm over the course of the movement is possible in all 

cases.
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T
he primary measure chosen for upper limb function is 

the Action Research Arm Test [S9] (ARAT) developed to 

monitor function related to everyday tasks and uses a hier-

archical measure of grasp, grip, pinch, and gross movement. 

The reaching and grasping movements are rated on quality 

and speed in three dimensions. The ARAT assesses primar-

ily activity limitations, that is, a patient’s functional loss when 

interacting with the environment by means of the upper limb. 

Reliability [S9] and validity are established for the ARAT but 

the measure shows both floor and ceiling effects, which are 

limitations for people who have either low or high function. This 

test is widely used in the electrical stimulation literature. 

The primary outcome measure chosen to detect changes 

in upper limb impairment is the Fugl-Meyer assessment [S10] 

(FMA). This test primarily assesses impairment in terms of 

loss or abnormality of movement, that is, the ability to perform 

movements in accordance with specified joint motion pattern. 

It provides an adequate, reproducible, and fairly standardized 

picture of a patient’s sensorimotor and joint characteristics. 

The FMA is an ordinal scale testing gross movement, coordi-

nation, and sensation of the upper limb. The test is appropriate 

for severe to mildly affected patients and has high reliability 

[S11] and validity [S10]. The widespread use of the FMA in 

research involving rehabilitation robots [S12], together with its 

utility and standardized procedure, justify its choice as the im-

pairment outcome measure. In terms of resolution, the FMA 

could, in contrast to the ARAT, detect differences throughout 

the spectrum of motor dysfunction of the study population and 

is less affected by floor or ceiling effects. 

The nonclinical impairment measures recorded by robotic 

devices are positional, for example, tracking error and both 

isometric force, when locked, and force during movement. Ad-

ditionally data is produced that demonstrates the relationship 

between FES and time of the intervention. 

Electromyographic (EMG) is also used as an outcome mea-

sure in the planar study, and is defined as the study of muscle 

function through the inquiry of the electrical signal the muscles 

emanate [S13]. Surface EMG provides a simple noninvasive 

way to assess general muscle activation during performance 

of a task, is considered suitable for use with neurological pa-

tients [S14], and can aid in determining the intensity and timing 

of muscular activation and contraction, but is not able to distin-

guish between concentric or eccentric muscle activity. 

Once raw EMG data is collected, data processing typically 

includes filtering, rectification, and smoothing. A process of 

normalization is used to compare between different individuals, 

muscles, or between the same muscles on different occasions. 

The level of unassisted error tracking of a set of four trajecto-

ries was conducted at the beginning and end of each treatment 

session. Prior to and after the intervention FMA, ARAT, and the 

ability to apply isometric force in six directions, respectively, are 

assessed. In order to identify underlying changes in muscle acti-

vation patterns, sessions are conducted before and after the in-

tervention when the patients undertake nine tracking tasks with 

surface EMG recorded from seven muscles in their impaired 

shoulder and arm, and compared with activation patterns identi-

fied from neurologically intact participants in preliminary work. 

After both the planar and three-dimensional (3-D) interventions, 

participant perceptions of each iterative learning control system 

and intervention are sought. 
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Clinical Assessment of Stroke Rehabilitation 

from 38 to 77 years with a mean age of 52 years. Partici-

pants had suffered strokes ranging eight months to 8.4 

years, mean four years, prior to recruitment to the study; 

three were affected on the right-side and two on the left-

side. Patients one year beyond the stoke occurring are not 

likely to recover all lost functionality but improvement to a 

lower level could also have benefits and, for example, 

enable them to live independently. 

The intervention forming the clinical trials consisted of 

either 18 or 25 treatment sessions where participants prac-

ticed planar reaching tasks augmented by responsive FES 

of the triceps brachii muscle. Results from applying the 

stimulation to a stroke patient to assist tracking of the 

required trajectory are given in Figure 12(a) and (b), which 

show typical changes in the angle of the shoulder and 

elbow, respectively, over the duration of the supplied trajec-

tory. Figure 12(c) shows the FES pulse-width that is applied 

using ILC to produce the assisted movements. 

For each participant, the change in tracking error data 

over the four different unassisted tracking trajectories per-

formed at the beginning of each treatment session is shown 

in Figure 13, these vary in orientation, duration and length 
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[35]. During these tasks the patient received neither FES 

nor assistance from the robot. Although the trend for par-

ticipants is a decrease in tracking error over time, the 

change is not monotonic, that is, adjacent values may 

increase. The tracking error decreased most for partici-

pants three and five across all trajectories over the inter-

vention. The improvement in unassisted tracking is 

statistically significant in three of the four tasks [35]. 

The clinical results of the study are given in [35] which 

reports significant changes in the outcome measures, error 

tracking, isometric muscle force, percentage maximum 

level of stimulation required to correct error, and muscle 

activation patterns, respectively, for the five chronic stroke 

participants taking part in the intervention. The ILC system 

takes into account that the effect of FES is enhanced when 

associated with the participant’s intention to move [6] and 

that to maximize plasticity stroke participants need to work 

at their maximum effort in planning and executing tasks 

during rehabilitation interventions. Although systems have 

been developed where electrical stimulation is triggered by 

muscle activity [64], they do not allow feedback to adjust 

stimulation parameters during tasks, which is a drawback 

compared with the ability of the training modalities avail-

able during robotic assistance to promote voluntary activity 

[65]. By modifying the gain applied to the ILC update in 

accordance with the observed error, the ILC system adjusted 

the level of assistance in response to the users’ performance, 

and so provided only the minimum level of stimulation 

needed to assist the participant in performing the task to a 

specified level of accuracy. During the intervention, the 

error tracking remained within a limited range, specifically 

less than 15 mm, and the FES required to achieve this error 

tracking reduced over the course of the intervention. Thus, 

the balance of FES and voluntary effort required to perform 

the reaching task changed, with the participants propor-

tionally contributing greater voluntary movement, indicat-

ing that motor learning had occurred [35]. 

The effectiveness of any rehabilitation critically depends 

on participant perspectives of the procedures and equip-

ment used [66]. Currently there is no generic evaluation 

tool available to be used across different rehabilitation 

robot systems. Consequently, participant comments were 

recorded during the intervention sessions and subse-

quently a question set developed to explore effectiveness, 

acceptability, and usability of the ILC system. The question 

set was administered by a health psychologist to the five 

stroke participants, and found to be easy to interpret. The 

findings from this study using a robotic workstation and 

FES are congruent with other studies [67]–[69], robot-

assisted therapy is well accepted and tolerated by the 

patients. Patients’ comments on the best aspects of the 

study could be separated into physical and psychological 

benefits, research interaction, being involved, feedback, 

and enjoyment. 

The results of this feasibility study demonstrate that the 

ILC-based intervention is capable of delivering significant 

improvements in unassisted error tracking, isometric force, 

and reduction of impairments as measured using accepted 

clinical assessment procedures. Additionally, the stroke 

participants accepted and tolerated the intervention well. 

The results add to the growing body of evidence that sug-

gests that robotic or FES interventions can be used both to 

provide objective assessments, before, during, and after an 

intervention, in addition to being an accepted and well-

tolerated treatment that results in changes in impairment 

levels. In engineering terms, the next stage is to determine 
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FIGURE 12 Results from applying the stimulation to a stroke patient 

to assist tracking of a required trajectory, where (a) and (b) show 

the changes in the angle of the shoulder and elbow, respectively, 

over the duration of the supplied trajectory. In the plots, the solid line 

shows the ideal movements that would be required to complete the 

trajectory, the dotted line represents unassisted movement, and the 

dashed line shows movement assisted by functional electrical stim-

ulation (FES). Part (c) shows the FES pulse-width that is applied 

using iterative learning control to produce the assisted movements. 

During the 5-s countdown period, before the target movement 

starts, there is minimal stimulation. On the reach component of the 

trajectory, from 5 to 12.5-s, stimulation increases rapidly and there 

is a delay period of approximately 2-s between the stimulation peak 

and the peak shoulder and elbow angle, associated with the biome-

chanical response to stimulation. 
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if this approach can be extended to more complex 3-D 

 movements, as discussed in the next section. 

ITERATIVE LEARNING CONTROL OF THE 

UNCONSTRAINED UPPER LIMB 

In the work described above, the patient’s forearm is con-

strained to lie in a horizontal plane. The resulting simplifi-

cation to the underlying biomechanical model enables the 

development of a simple linearizing controller, and the 

subsequent implementation of linear ILC algorithms which 

generally have well defined convergence properties. To 

maximize the treatment’s potential for rehabilitation, it is 

necessary to use a wider range of more functional move-

ments, which more closely resemble the tasks necessary for 

daily living [35] and are aligned with the activity-based 

ARAT measures. This section develops the previous model 

of the arm to remove the planar forearm constraint, permit-

ting unconstrained movement, and applies ILC to the 

resulting system. 

Stimulated Arm Model 

When providing assistive FES during unconstrained 3-D 

upper-limb reaching movements, FES must be applied 

using a controlled environment to reduce fatigue and 

ensure safety and comfort across a broad spectrum of 

patient abilities. There exist many exoskeletal robotic sys-

tems capable of providing such support although very few 

have been combined with FES, and fewer still with model-

based FES control schemes. Here a commercially available 

device is selected, but the ILC algorithms may be applied to 

a range of such supports. The mechanical exoskeleton 

employed is shown in Figure 14 and has two springs incor-

porated in the mechanism to provide support to overcome 

gravity. This passive unweighing device allows patients to 

focus practice on the impaired muscles rather than those 

acting against gravity. While it is supplied with its own 

broad range of virtual reality tasks, these are not suitable 

for controller evaluation and a custom task display system 

has instead been developed. The patient is seated with their 

impaired arm strapped into the mechanical unweighing 

device, whose segmental lengths and degree of antigravity 

support are adjusted for each user. Joint positional data 
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FIGURE 13 Clinical intervention results for planar iterative learning control system: Tracking error data with no functional electrical 

stimulation assistance as a measure of patient improvement following treatment. For each participant, the change in tracking error data 

over the four different unassisted tracking trajectories performed at the beginning of each treatment session is shown. Although the 

trend for participants is a decrease in tracking error over time, the change is not monotonic and adjacent values may increase. The 

tracking error decreased most for participants three and five across all trajectories over the intervention. 
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provided by resolvers mounted on the support mechanism 

are transferred to the interface module, which connects 

external devices to the real-time hardware. 

To increase potential for rehabilitation, FES is applied to 

both the anterior deltoid and triceps muscles in accordance 

with the clinical objective of providing more assistance, a 

greater degree of feedback, enabling more accurate move-

ments and ensuring more muscles are usefully activated. 

The biomechanical system comprises the human arm 

and exoskeleton mechanical support system shown in 

Figure 15(a). Figure 15(b) shows the kinematic structure of 

the exoskeleton support, where the joint variables 

qa 5 3q1, q2, q3, q4, q54T correspond to the measured joint 

angles. Note that the parallelogram structure of the upper-

arm section results in q3 5 2qr3. The human arm is shown 

in Figure 15(c), and since it is strapped to the support 

within the necessary joint ranges there exists a unique 

bijective transformation between their coordinate sets, 

given by qu 5 fa1qa2 . Here qu 5 3qa, qb, qc, qd, qe4T contains 

the anthropomorphic variables shown in Figure 15(c). 

Using this relationship, application of Lagrangian analysis 

produces a dynamic model of the combined robotic and 

human arm systems given in terms of anthropomorphic 

coordinates as 

Bu1qu2q$u 1 Cu1qu, q
#

u2q# u 1 Fu1qu, q
#

u2 1 Gu1qu2 1 Ku1qu2
 5 tu1u, qu, q

#

u2 2 Ju
T 1qu2h, (11)

where Bp, Cp[ R
535 are the inertial and Coriolis matrices, 

respectively, for the 3-D system, Gu [ R
5 is the vector of 

moments produced by gravity, and Ku [ R
5 is the vector of 

moments produced by the unweighing action where [70] 

gives a full description of the individual components. The 

nonconservative forces assume the same form as in the 

planar case, and hence Fu1qu, q
#

u2 5 3Fa1qa, q
#

a2 ,c
Fe1qe, q

#

e24T, whose components incorporate friction and 

spasticity. The vector due to stimulated muscle 

tu1u, qu, q
#

u2 5 30, tb1ub, qb, q
#

b2 , 0, 0, te1ue, qe, q
#

e2 4T contains 

elements of the form (5) in which ub1t2  and ue1t2  are the 

electrical stimulation sequences applied to the triceps and 

anterior deltoid muscles, respectively, and 
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FIGURE 14 Three-dimensional iterative learning control system 

components: (a) unweighing robotic device, (b) surface electrodes 

on triceps and anterior deltoid, (c) functional electrical stimulation 

module, (d) real-time processor and interface module, (e) PC, (f) 

monitor displaying task, and (g) operator monitor.
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u5 3ua, ub, uc, ud, ue4T. The term h represents a vector of 

external forces and torques applied by the therapist using a 

handle mounted on a sensor attached to the robotic sup-

port. This is only used during identification tests. The 

model (11) is used by the FES control system to calculate a 

control signal that results in accurate tracking of a refer-

ence trajectory. Since assistive torque is applied about the 

qb and qe axes only, the system is underactuated. When 

applied during the treatment of patients, the controller 

assists tracking about qb and qe alone, and, in response to 

clinical guidelines, it is assumed that the patient has suffi-

cient control over the remaining axes to adequately per-

form the task. 

Unlike the planar case, here it is not feasible to display a 

real world tracking task in 3-D and therefore a virtual task 

is displayed to the patient to ensure clarity, with provision 

for additional visual instructions and performance feed-

back. The patient’s screen runs a 3-D virtual reality envi-

ronment which displays a graphic of their arm in real time, 

together with the trajectory tracking task, and is shown in 

Figure 16. The aim of the tracking task is for the patient to 

follow a sphere which travels along the trajectory at various 

speeds, while FES controllers designed using the biome-

chanical system (11) assist their completion. The graphic of 

the patient’s hand changes color to indicate their current 

error level. Feedback of performance is also given by an 

error percentage score displayed after each set of trials. A 

graphic of the initial arm position is displayed to ensure 

accurate resetting of the system at the start of each trial. 

Nine custom reference trajectories are generated for 

each participant, producing tracking tasks which extend 

the arm out in front of the patient in response to clinical 

need. These are calculated using their identified workspace 

to establish the maximal arm extension directly in front of 

them, and out to their affected side. By interpolating these 

two points, a third intermediate point is then generated. 

Each reference starts from an initial point close to the 

patient’s body, and extends 60, 80, and 100% of the distance 

to one of these points. The task comprises reaching out to 

one of the end-point locations, with the fixed trajectories 

for each of the five joints generated by scaling a third-order 

ramp signal of 10-s duration and adding an offset, so that it 

smoothly connects the required start and end joint angles. 

This results in the vector of reference trajectories 

qu
* 1t2 5 3qa

* 1t2 , qb
* 1t2 , qc

* 1t2 , qd
* 1t2 , qe

* 1t24T where the pres-

ence of nonfixed qa
* 1t2 , qc

* 1t2 , and qd
* 1t2  components makes 

the task more natural to the patients, who can use their 

remaining voluntary effort to move these joints. An exam-

ple of the reaching tasks used during testing and in clinical 

trials is given in Figure 17. 

3-D Control Schemes 

First the phase-lead algorithm (9) is applied to this 3-D case 

by considering the system to be composed of two single-

input, single-output (SISO) systems, the control and move-

ment of forearm and upper arm are independent of each 

other. Since FES is applied only about qb and qe, L is multi-

plied by the matrix diag50, 1, 0, 0, 16, and the error is given 

by ek5 qu
* 2 qu. As illustrated in Figure 18 ILC operates in 

conjunction with a feedback controller given by jk/ek5 C 1s2  
that provides baseline tracking and disturbance rejection. 

In operation the phase-lead controller performs best when 

the system approximates a simple time delay and with an 

appropriately tuned feedback controller can ensure rapid 

convergence over initial trials [71]. As in the planar case, 

the problem of high frequency components gradually 

increasing when a large number of trials are performed can 

FIGURE 16 Three-dimensional virtual reality environment for 

patients, showing reaching trajectory comprising a sphere moving 

along a path and a graphic of the arm. Visual feedback provided 

by changing sphere color.
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always be addressed through use of a zero-phase filter 

applied to the error or control input, however the low 

number of trials performed means that it is unnecessary in 

the present application. 

In contrast to the simpler phase-lead approach, Newton 

method-based ILC [72] uses the full model in the calcula-

tion of the new input. Firstly the closed-loop connection of 

the system (11) and feedback controller is written as the fol-

lowing discrete-time state-space model 

 
xk1t 1 12 5 f 3xk1t2 , vk1t24, 
qu,k1t2 5 h3xk 1t24,  

(12)

where t [ 30, 1, 2,c, N 2 14  is the sample number, xk1t2  is 

the state vector, and N 5 T/Ts 1 1 with Ts the sampling fre-

quency. Introducing the vectors 

 vk5 3vk102T, vk112T,c, vk1N 2 12T 4T,
 qu,k5 3qu,k102T, qu,k112T,c, qu,k1N 2 12T 4T, (13)

and the reference vector 

 qu
* 5 3qu

* 102T, qu
* 112T,c, qu

* 1N 2 12T 4T, (14)

the Newton method-based ILC update takes the form 

 vk11 5 vk1 gr 1vk221ek, (15)

where ek5 qu
* 2 qu,k is the tracking error. The term gr 1vk2  is 

equivalent to the system linearization around vk, with the 

system q|u 5 gr 1vk2v| corresponding to the linear time-vary-

ing (LTV) system 

 
x| 1t 1 12 5 A 1t2x| 1t2 1 B 1t2v| 1t2 ,

q|u1t2 5 C 1t2x| 1t2 1 D 1t2v| 1t2 ,   t 5 0, 1,c, N 2 1

 (16)

with 

 A 1t2 5 a 'f
'x
b

vk1t2,xk1t2, B 1t2 5 a 'f
'vk

b
vk1t2,xk1t2,

 C 1t2 5 a'h
'x
b

vk1t2,xk1t2,  D 1t2 5 a 'h
'vk

b
vk1t2,xk1t2. (17)

The term gr 1vk221 in (15) is computationally expensive and 

may be singular or contain excessive amplitudes and high 

frequencies. To overcome this difficulty, introduce 
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FIGURE 18 Block diagram representation of the iterative learning control (ILC) scheme for the three-dimensional (3-D) rehabilitation 

system.
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 ek5 gr 1vk2Dvk11, (18)

and then Dvk11 5 vk11 2 vk equals the input that forces the 

LTV system (16) to track the error ek. This is itself an ILC 

problem and can be solved in between experimental trials 

using any ILC algorithm that converges globally. In this 

article norm optimal ILC [73] is considered, with the input 

and output on trial j denoted by ek,j and Dvk11,j, respec-

tively. On trial j 1 1, the trade off between minimizing the 

tracking error, ek2 ek,j and the change in control input 

Dvk11,j11 2 Dvk11,j, is represented by the cost function 

 Jj11 5 a
N21

t50

1ek2 ek,j 2 1t2TQ 1ek2 ek,j 2 1t2
 1 a

N21

t50

1Dvk11,j112Dvk11,j2 1t2TR 1Dvk11,j11 2 Dvk11,j2 1t2 ,
 (19)

where Q and R are symmetric positive definite weighting 

matrices of compatible dimension. The ILC computation is 

stopped after 100 trials or after the error reaches a preset 

threshold. The input obtained, Dvk11,j, is then used to 

approximate Dvk11 in (15) to generate the control input for 

the next trial. 

Experimental Results with Unimpaired Subjects 

The phase-lead ILC and Newton method-based ILC algo-

rithms have been experimentally implemented on six 

unimpaired participants as an essential step in obtaining 

ethical approval for patient trials, and representative 

results and summary statistics are given in this section. 

Each participant is seated in the robot, which is adjusted to 

their individual arm dimensions. Electrodes are positioned 

over their triceps and anterior deltoid muscles in such a 

way that maximum movement is generated through appli-

cation of FES. The stimulation amplitude and maximum 

pulsewidth are adjusted so that they are within comfort-

able limits. As discussed in the previous section, the model 

of the human arm includes two person-dependent param-

eters that define the position of the anterior deltoid axis, 
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which is fixed with respect to the shoulder as shown in 

Figure 15(c). These are determined before experiments are 

carried out, by simply applying FES to the anterior deltoid 

and recording the resulting movements of the human arm. 

Since the rotation of the human upper arm should then be 

about the anterior deltoid axis [see Figure 15(c)] this axis is 

identified by fitting a plane to the elbow position by least 

mean squares optimization. The vector perpendicular to 

the plane, which is also through the pivot, then equates to 

the required anterior deltoid axis [70]. 

The initial results using the phase-lead ILC algorithm 

show good performance. Figure 19 gives tracking 

 performance results for two participants. The RMS error is 

given for both qb and qe over 10 trials, where for trial k 

 RMSi,k5Å 1

N a
N21

t50

Aqi
* 1t2 2 qi,k1t2B2,    i 5 b, e, (20)

where N  is the number of samples in the discrete represen-

tations of the reference qi
* 1t2  and recorded joint angle 

sequence qi 1t2 . Due to the kine-

matic redundancy of the task, this 

is a more reliable measure than the 

Cartesian end-point error, which 

was used in the planar case. 

The tracking error in the unim-

paired study reduces quickly and 

maintains a low level over latter 

trials. In some cases the RMS error 

increases slightly in later trials 

because the participant’s triceps 

started to suffer from fatigue but 

the ILC was quickly able to modify the stimulation to main-

tain a low error. Figure 20 shows tracking performance for 

the same two participants, illustrating close reference 

tracking for both controlled angles. 

Table 2 provides summary statistics for six unimpaired 

participants who have undertaken testing. Each participant 

undertook ILC trials using two trajectories, the first moved 

their arm out in front of them and the second moved it out 

and to their side. The average RMS error was calculated for 

each trajectory and the mean and standard deviation calcu-

lated across participants. These calculations were then 

repeated using the lowest RMS error recorded for each tra-

jectory. 

Experimental results using Newton method-based ILC 

scheme using full knowledge of the system dynamics (11) 

are also available. Figure 21 shows error norm results over 

10 trials of the Newton method-based ILC algorithm for 

two patients, using a long off center and a medium off 

center trajectory. The results are representative of all the 
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FIGURE 21 Root mean square (RMS) error plots for two participants using Newton method-based iterative learning control: (a) subject 

one and (b) subject two.

Trajectory 1 Trajectory 2

Shoulder RMS  

error (rad)

Best trial only 0.2415 (0.0693) 0.0574 (0.0557)

Mean of first six trials 0.0949 (0.0906) 0.1691 (0.1609)

Elbow RMS  

error (rad)

Best trial only 0.0721 (0.0700) 0.0837 (0.0900)

Mean of first six trials 0.1480 (0.1327) 0.2189 (0.1723)

TABLE 2 Mean (standard deviation) root mean square (RMS) error for six 
unimpaired participants undertaking two trajectory tracking exercises using the 
three-dimensional robot system with no voluntary assistance.
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tasks tested and confirm that accurate tracking is achieved 

within very few trials. The weighting matrices used in the 

tests are Q 5 30I  and R 5 I, respectively. Figure 22 shows 

representative input, output, and error signals recorded on 

trial 8 for one participant and confirm that a high level of 

tracking performance is achieved with an input signal that 

is not excessive. The theoretical quality of rapid monotonic 

convergence to zero tracking error is degraded due to inac-

curacies in the human arm model which deteriorate perfor-

mance, motivating development of more accurate 

identification procedures, and future use of online and 

recursive techniques. Such identifications routines, how-

ever, must be suitable for application within the restrictive 

conditions of clinical trials, where there is limited set-up 

time, little opportunity to repeat measurements, and where 

techniques must yield satisfactory results for a wide range 

of patients and changing physiological conditions. 

CLINICAL ASSESSMENT 

Clinical trials using the 3-D system have recently been 

undertaken. Their form closely replicates those of the 

planar case, again including five patients with treatment 

taking place over 18 sessions of 1-h duration. A range of the 

tasks shown in Figure 17 were selected by the therapist for 

training using the phase-lead update algorithm to supply 

assistance. The protocol matched that of the preliminary 

trials. Assessment again involved pre and post-interven-

tion Fugl-Meyer and ARAT measures, and unassisted 

tracking with no FES supplied was recorded at the begin-

ning and end of each treatment session using four stan-

dardized tasks. Unassisted tracking results are given in 

Figure 23 and show how the performance increases as the 

treatment progresses [74] with trends observed that are sta-

tistically significant. The Fugl-Meyer scores also showed 

significant improvement in patients’s ability to move; how-
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ever, this did not transfer to a significant increase in ARAT 

scores. This is consistent with the planar case and with a 

number of systematic reviews reporting that robotic ther-

apy reduces motor impairment but does not currently 

improve functional impairment. 

CONCLUSIONS AND FURTHER RESEARCH 

In response to next generation health care needs there is 

currently significant interest in both rehabilitation robotics 

and therapeutic application of FES, with a clinically sup-

ported need to combine technologies whilst developing 

controllers for the latter that enable precise control of move-

ment during functional tasks. This article describes how 

robotic and FES controllers may be integrated to supply 

complementary assistance driven by clinical need. A 

scheme that yielded significant clinical results is first 

described, and then the methodology generalized to allow 

dual robotic and FES controller derivation during more 

functional tasks involving unconstrained arm movement. 

The progress reported in this article forms a critical first 

step in the development of FES controllers for full reach 

and grasp movements involving shoulder, elbow, wrist, 

and hand stimulation during fully functional movements 

and there are many areas for further research in both engi-

neering and clinical assessment before uptake by practic-

ing medical professionals is possible. In the latter aspect, 

the use of any new medical intervention or treatment will 

require randomized control trials. The low number of 
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patients used in the clinical trials in this article show feasi-

bility and a sample size calculation can be conducted to 

establish exactly how many patients would be needed to 

conduct a randomized controlled trial. 

In engineering terms, further development of the algo-

rithms used is required. One area for short to medium term 

research is the question of how to select the reference signal 

for each patient. At present this is done by a physiotherapist 

from an assessment of the patient without any decision 

support tools and if the task given to patients is already 

within their capability then no rehabilitation takes place as 

a result of the treatment. Conversely, a task which is far 

beyond current capabilities can lead to serious patient de-

motivation. An open question then is whether the region of 

effective operation can be estimated from pre-assessment 

and measurement data. 

The ability to use the hand is an integral component of 

the ARAT and other functional outcome measures, and 

therefore clearly motivates development of ILC for func-

tional control of the hand and wrist. As the movement com-

plexity increases, there is more emphasis on model-based 

approaches to provide optimal performance which 

 maximizes effectiveness of therapy. However there are vir-

tually no model-based control approaches for the hand and 

wrist which have been applied clinically [16], making this 

an important area for further research. Additionally, as dis-

cussed previously, the accurate extraction and incorpora-

tion of voluntary effort into the model using EMG signals is 

still an open problem. 

Effective FES-based rehabilitation demands that patients 

are assisted during functional tasks in a manner that mimics 

their performance in the absence of impairment. There 

exists extensive literature on motor control for both unim-

paired and stroke subjects which provide kinematic analy-

sis of movement, for example framing tasks as constrained 

optimization problems [75]. As perhaps the only model-

based upper-limb FES control approach that has been 

employed clinically, the ILC framework holds potential as a 

route to embed existing motor control research within reha-

bilitation. However, such exploitation requires develop-

ment of ILC laws which do not comprise the tracking of 

fixed reference trajectories defined over the task duration, 

but rather incorporate point-to-point movements with 

embedded input and output constraints [76]. These con-

straints may also reflect explicit coordination acting between 

joint variables and the presence of muscle synergies. 

Furthermore, it is also necessary to adapt the task objec-

tive in response to identified system knowledge and on-

going performance, incorporating expert knowledge, 

clinical data, prior performance relationships, and estab-

lished task progression models. Lastly the robust stability 

of the overall system, incorporating adaptive model identi-

fication, ILC learning, and task adaption loops must be 

established in a general framework. 
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Callouts:

In response to next generation health care needs there is 

currently significant interest in both rehabilitation robotics 

and therapeutic application of FES.

The relationship between reaching and independence is 

reflected in measures of functional independence, such as 

the Barthel index where the ability to reach is required for 

over half of the activity of daily living tasks. 

Effective FES-based rehabilitation demands that patients 

are assisted during functional tasks in a manner that mimics 

their performance in the absence of impairment.

Iterative learning control is one model-based approach 

to stroke rehabilitation that has progressed to a program 

of clinical trials.

Relearning skills after a stroke requires a person to prac-

tice movements by repetition and use feedback from previ-

ous attempts to improve the next one. 


