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Abstract—Stochastic distribution control (SDC) systems are
known to have the two-dimensional characteristics regarding time
and probability space of a random variables, respectively. A
double closed-loop structure, which includes iterative learning
(IL) modeling (ILM) and iterative learning control (ILC), is
proposed for non-Gaussian SDC systems. The ILM is arranged
in the outer loop, which takes a longer period for each cycle
termed as a BATCH. Each BATCH is divided into a modeling
period and a number of control intervals, called batches, being
arranged in the inner loop for ILC. The output probability
density functions (PDFs) of the system are approximated by
a radial basis function neural network (RBFNN) model, whose
parameters are updated via ILM in each BATCH. Based on the
RBFNN approximation of the output PDF, a state-space model
is constructed by employing the subspace parameter estimation
method. An IL optimal controller is then designed by decreasing
the PDF tracking errors from batch to batch. Model simulations
are carried out on an 4th-order numerical example to examine
the effectiveness of the proposed algorithm. To further assess
its application feasibility, a flame shape distribution control
simulation platform for a combustion process in a coal-fired
gate boiler system is constructed by integrating WinCC interface,
Matlab simulation programs and OPC communication together.
Simulation study over this industrial simulation platform shows
that, the output PDF tracking performance can be efficiently
achieved by this double closed-loop IL strategy.

Index Terms—Iterative learning (IL), optimal tracking control,
probability density function (PDF), radial basis function neural
network (RBFNN), stochastic distribution control (SDC), sub-
space identification, temperature field distribution control.

I. INTRODUCTION

Stochastic control has been one of the most energetic areas
in control theory and applications for the simple fact that
many real industrial processes are subject to various sources of
randomness. Following the development of minimum variance
control [1] and linear quadratic (LQ) control [2], a number of
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approaches have been developed and applied in real applica-
tions such as upper-bound minimum variance control, stochas-
tic adaptive control, stochastic optimization and forecasting,
sliding mode control [3]–[5], etc. In these methods, mean
and variance are considered in controller design for systems
with Gaussian random signals. For systems with non-Gaussian
signals such as food processing unit, jet flame control in
furnace systems, molecular weight distribution control (MWD)
or particle size distribution (PSD) control in polymerization
processes [6]–[8], mean and variance control can be largely
limited and higher-order distribution information is required.
To address this problem, a new method which directly controls
the distribution function of system output is developed, which
is referred to as stochastic distribution control (SDC) or
probability density function (PDF) shaping control [9]–[11].

The output PDF modeling and control was originally pro-
posed to solve the distribution control problems in paper
making machines where the paper sheet produced needs to
have uniform distribution in both longitude direction and cross
direction [9]. In this method, there are two subspaces regarding
the time sequence and the probability distribution, respectively.
Further development included optimal PDF tracking control,
robust PDF tracking control and minimum entropy control,
etc. [12]–[19], which brings improvement in PDF control from
various aspects.

To establish a dynamic PDF model for the purpose of
closed-loop control, B-spline neural networks are normally
used to approximate the output PDF where the basis function
weights are calculated from the PDF fitting, and the model for
weights dynamics can be obtained by least-square estimation
or other regression methods. Fixed B-spline basis functions are
used in most PDF modeling. To be adaptive to large process
variations, more recently, a iterative learning control (ILC)
strategy has been presented using a fixed structure controller
for PDF control while iteratively tuning the basis function
parameters, thus the basis functions, for PDF approximation
[14], [22], [23]. In fact, the ILC in output SDC systems can be
realized by iteratively adjusting the controller and/or updating
the basis functions in PDF approximation. In the former
case, the ILC design is implemented to tune the controller
while keeping the basis functions fixed. Control algorithms
developed in this way take two assumptions, one is that the
output PDFs can be well approximated by the chosen (fixed)
basis functions, another is that the dynamic characteristics of
the developed model is reasonably close to that of the actual
system. In the case of IL for model update, the parameters
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of the basis functions in PDF approximation are iteratively
adjusted while keeping a fixed controller. The assumption in
the latter case is that the fixed controller will satisfy the control
requirements during the period of model updating, which is
not always easy to guarantee since the change of modeling
will inevitably affect the control performance.

ILC is a model-free controller, but the learning rate of ILC
can be better selected and adjusted when a system model
is available. In general, it is difficult to measure or estimate
the output PDF for SDC systems in an online fashion. This
makes it hard to achieve online closed-loop control of output
PDF. In ILC of a SDC system, the quality of the model
affects not only the online estimation of the output PDF,
but also the learning rate adjustment in controller design. A
good modeling relies on the choice of informative data, and
also the radial basis function neural network (RBFNN) for
the output PDFs approximation. The RBFNN describes the
relationship between the parameters of the basis functions and
the output PDF. The modeling error in PDF approximation can
be reduced by adjusting the parameters of the basis functions
properly. Therefore, in order to improve the approximation
accuracy of a PDF model and the control performance, it is
necessary to update the dynamic PDF model following the
adjustment of the basis functions.

In a standard ILC, the control horizon is divided into a
number of batches normally of the same length in time. When
the modeling and controller design are considered together,
the ILC with a fixed controller structure may have two disad-
vantages. One is that both the model parameter identification
and the PDF tracking controller design are performed within
each batch, which not only involves intensive computational
efforts but also causes frequent change of model parameters.
The other drawback is that the controller update is only related
to the tuning of the basis functions, which could be inadequate
due to the integral action on the control performance index.
In this work, an IL-based double closed-loop structure for
modeling and controller design is proposed for SDC systems
where the whole control process is divided into several large
modeling periods, each one called a BATCH, and each BATCH
is divided into a number of control periods, called batches.
This new structure achieves two objectives: (1) in each
BATCH, the basis function parameters are tuned to adjust the
shape of the basis functions used in PDF approximation, and
then a state-space model is established via subspace parameter
estimation using the updated B-splines; (2) an optimal ILC is
designed within each batch to make the system output PDF
follow the target PDF in a timely manner.

The remaining part of this article is organized as follows.
The output PDF model representation based on the RBFNN
and subspace identification are briefly introduced in Section
II. The optimal ILC algorithm and the RBF parameter tuning
method are given in Section III. In Section IV, the double
closed-loop structure and the associated controller design
and model identification are developed. In Section V, the
effectiveness of the proposed method is discussed through
numerical simulations. The application study is carried out
in Section VI where a simulation platform is established for
temperature field distribution control operation in a chain of

grate boilers and this platform is employed for the simulation
study of the double closed-loop PDF control. Conclusions are
given in Section VII.

II. PROBLEM FORMULATION

A. Model Representation

For a dynamic stochastic system, define o(t) ∈ [a, b] as
a uniformly bounded random variable for the output of the
system and u(t) ∈ Rd×1 as the input vector to control the
distribution shape of the output. At any time t, the distribution
shape of o(t) can be represented by its PDF γ(y, u(t)) [9],

P{a ≤ y ≤ ζ, u(t)} =

∫ ζ

a

γ(y, u(t))dy (1)

where P{a ≤ y ≤ ζ, u(t)} represents the probability of the
random variable y locating in [a, ζ] with control u(t). Similar
to [9], the output PDF is approximated by a truncated Gaussian
type of RBFNN:

Rl(y) = exp

(
− (y − µl)2

σ2
l

)
, l = 1, 2, · · · , n (2)

where l is the index of the network nodes and n is the total
number of nodes; µl and σl are the parameters representing
the center and width of the node function Rl(y). The output
PDF can be approximated by this RBFNN as

γ(y, uk) =

n∑
l=1

wl,kRl(y) + ek(y) (3)

where the subscript k is the sample time index, wl,k is the
weight of the l-th node , ek(y) represents the PDF approx-
imation error at time k and

∫
ek(y)dy = 0. Define rl =∫ b

a
Rl(y)dy, λl = Rl(y)−Rn(y)rl/rn. Let L(y) = r−1

n Rn(y),
Λ(y) = [λ1, · · · , λn−1], and Vk = [w1,k, · · · , wn−1,k]T, the
PDF approximation in (3) can be written as

γ(y, uk) = Λ(y)Vk + L(y) + ek(y). (4)

Ignoring ek(y) for simplicity, the RBFNN approximate
weights vector, Vk, can be computed from the following
equation

Vk =

[∫ b

a

ΛT(y)Λ(y)dy

]−1 ∫ b

a

ΛT(y)[γ(y, uk)− L(y)]dy.

(5)
Equation (5) shows the relationship between the output PDF
γ(y, uk) and the approximation weights vector Vk. Consider-
ing linear dynamics in Vk, a standard state-space model can
be written for the output SDC systems:

xk+1 = Axk +Buk

Vk = Cxk +Duk

γ(y, uk) = Λ(y)Vk + L(y).

(6)

where xk ∈ Rq×1 is the process state vector, uk ∈ Rd×1

is the control input vector, Vk ∈ Rp×1 is the approximation
weights vector (p = n− 1 from (3)). A ∈ Rq×q , B ∈ Rq×d,
C ∈ Rp×q and D ∈ Rp×d are parameter matrices. The first
and second equations in (6) reveal the state dynamics and
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weights dynamics, respectively; the third one is the RBFNN
approximation of the output PDF. It’s not a trivial task to
establish this state-space model using input-output data to
meet the required modeling and accuracy with a reasonable
computational load. In this work, the subspace identification
method is employed to conduct online parameter estimation,
the efficiency of which is higher than other commonly used
parameter estimation methods such as the recursive least
square (RLS) estimation. In the subspace identification, the
main computing load is in matrix calculations. The computing
speed won’t be much affected when the order of the system
is increased. It is therefore also suitable for online estimation
of multivariable systems.

Remark 1: If there’s no feed-forward loop in the SDC
system, model (6) can be simplified as

EVk+1 = C̄Vk + D̄uk

γ(y, uk) = Λ(y)Vk + L(y)
(7)

where E = (CTC)
−1
CT, C̄ = A (CTC)

−1
CT, D̄ = B.

B. Subspace Modeling

An online estimation of the state-space model in (6) can be
achieved through standard subspace identification approaches,
for example, N4SID and MOESP [24], [25], to obtain the
parameters in (A,B,C,D). The major steps in using MOESP
for estimation of (A,B,C,D) is briefed in the following.
Further information can be found from literature [24], [25].

Using subspace identification, the Hankel Matrices need to
be constructed with the input and output data. Denote the
collected input and output data as

( u0 u1 · · · us+N−2 )
( V0 V1 · · · Vs+N−2 )

respectively, the input and output Hankel matrices are

U0|s−1 =


u0 u1 · · · uN−1

u1 u2 · · · uN
...

...
. . .

...
us−1 us · · · us+N−2

 ∈ Rs×N

and

V0|s−1 =


V0 V1 · · · VN−1

V1 V2 · · · VN
...

...
. . .

...
Vs−1 Vs · · · Vs+N−2

 ∈ Rs×N

where s and N stand for the number of rows and columns of
the Hankel matrices, s+N −1 is the total number of samples
in time. To guarantee the reliability of the identification, N
should be large enough to cover the full dynamic process and
s should be larger than the system dimension.

It should be noted that the modeling in this paper is
used to facilitate the controller design. To ensure tha all
the independent weights can be controlled, theoretically, the
minimum order of the model should be n − 1. However, the
model order should not be too high and the maximum order
of the model is recommended to be n for a reliable parameter
identification.

The RBFNN-based SDC modeling procedures can be
grouped into three steps.

(1) Determine the basis functions. Choose a proper RBFNN
to approximate the output PDF.

(2) Collect the modeling data uk and γ(y, uk) at all sam-
pling points. Use the chosen RBFNN to approximate
the output PDFs, the weight vector Vk can be calculated
using (5).

(3) Use Vk and the system inputs uk to construct the
input and output data pairs for subspace identification.
Implement the steps in MOESP [24], [25] to estimate
parameter matrices (A,B,C,D).

III. THE ILC CONTROLLER DESIGN AND THE
PARAMETERS UPDATE OF RBFNN

A. The IL-based Controller Design

Following the idea of ILC, divide the control horizon into a
number of intervals of the same length in time domain, the first
two state-space equations in (6) can be re-written as follows:{

xj,k+1 = Axj,k +Buj,k
Vj,k = Cxj,k +Duj,k

(8)

where j indicates the j-th iteration for controller design, also
called batch in this paper. k represents the k-th sample time
in each batch. The following algorithm is formulated similar
to the ILC-PDF control strategy in [28], [29]. Only key steps
of this algorithm are given in the following without expanding
the details.

Combining the two equations in (8) gives the weights vector
at the k-th sampling time.

Vj,k = CAkxj,0 +

k−1∑
s=0

CAk−1−sBuj,s +Duj,k (9)

The above equation contains Markov parameters of the
system, which can be denoted as:

h0 = D
hk = CAk−1B

In the j-th control iteration, denote Uj to group control
inputs at all sampling time, Vj as the corresponding output
weights vector with initial condition of Vj,0, i.e.,

Uj = [uTj,0, u
T
j,1, · · · , uTj,k, · · · , uTj,L]T

Vj = [V T
j,0, V

T
j,1, · · · , V T

j,k, · · · , V T
j,L]T

Vj,0 = [CT, ATCT, · · · , (Ak)TCT, · · · , (AL)TCT]Txj,0

L is the total number of sampling points (in the j -th iteration)
in the time horizon for controller design. Define G with
(A,B,C,D) as follows

G =


h0

h1 h0 0
h2 h1 h0

...
...

...
. . .

hL hL−1 · · · h1 h0

 .
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The weights vector in (9) collected at all sampling time points
can be written into a compact format:

Vj = Vj,0 +GUj . (10)

In the ILC design process, the initial values of Vj,0 are kept
the same at the beginning of each batch.

The following quadratic function is defined to evaluate the
ILC performance

Jj+1 = ‖Ej+1‖2Q + ‖Uj+1 − Uj‖2R
= ET

j+1QEj+1 + (UT
j+1 − UT

j )R(Uj+1 − Uj)
(11)

in which Q and R are the pre-defined positive matrices, Ej is
the output error vector in the j-th batch defined by

Ej =
[
V T
j,0 − V T

g , V
T
j,1 − V T

g , · · · , V T
j,L − V T

g

]T
(12)

The first term in (11) represents the difference between Vj
and the target PDF weights vector while the second term is
regarding the control input Uj . From (10) and (12), the output
error of the (j + 1)-th batch can be calculated as

Ej+1 = Ej +G(Uj+1 − Uj) (13)

By substituting (13) into (11), the ILC performance index can
be re-written as

Jj+1 =(Ej +G(Uj+1 − Uj))TQ(Ej +G(Uj+1 − Uj))
+ (Uj+1 − UT

j )R(Uj+1 − Uj)
(14)

Taking partial derivative of (14) with respect to Uj+1 gives

∂Jj+1

2∂Uj+1
= GTQEj + [GTQG+R](Uj+1 − Uj). (15)

An optimal solution will be obtained when ∂Jj+1

2∂Uj+1
= 0, that

is,
Uj+1 = Uj − [GTQG+R]−1GTQEj . (16)

Denote the control learning rate as Γ =
−[GTQG+R]−1GTQ, the following ILC strategy

Uj+1 = Uj + ΓEj (17)

is similar to a P-type learning rule of ILC where G is the
correlation matrix of the system Markov parameters. This ILC
is terminated when the tracking error performance ‖Ej‖2Q is
below the given threshold, otherwise it goes to the (j + 1)-th
batch.

B. The IL-based Model Update of RBFNN

Apart from the IL operation in controller design, the IL
strategy can also be introduced into the update of the RBFNN
used for output PDF approximation [14], [22], [23]. In the
RBFNN PDF modeling as briefed in Section II, each RBF is
determined by two parameters, the center µl and the width
σl. To make an accurate approximation of the output PDF, it’s
important to set up these two parameters properly for each
RBF and also choose the right number of basis functions to
construct the RBFNN. The PDF approximation errors need to
be kept small, otherwise the poor modeling may deteriorate
the controller design. The RBFNN tuning can be dealt with

either by adjustment of RBF parameters, and/or by changing
the nodes number in the RBFNN. In this paper, the number
of nodes is fixed, only the tuning of the two RBF parameters
is conducted since they are the main factors determining the
PDF approximation accuracy. The RBFNN model update is
obtained through the following IL method.

Following the idea of iterative learning, divide the whole
control horizon into a number of intervals as BATCHes. For an
unknown controlled plant, only the control inputs ui,k and the
output PDFs γ(y, ui,k) can be provided, where i indicates the
i-th BATCH, k represents the k-th (time) sampling point in the
data sequence. Consider K samples collected in the modeling
period and these data are used M times for the update of
RBFNN in each modeling BATCH. Using subscript m to stand
for the m-th update of RBFNN (m = 1, · · · ,M ), in the i-th
BATCH after the m-th tuning of RBFNN, the output PDF
calculated from the RBFNN model is γi,m,k at each sample
k. The error between the model output PDF and the measured
PDF can be defined as

εi,m,k(y) = γi,O,k(y)− γi,m,k(y) (18)

where γi,O,k(y) is the ‘ideal’ or measured PDF at each sample
k in the i-th BATCH, and γi,m,k :=

∑n
l=1 ωl,i,m,kRl,i,m(y),

Rl,i,m is the l-th RBF in the i-th BATCH after the m-th tuning;
ωl,i,m,k can be computed by (5). Due to the complex nonlinear
nature of εi,m,k regarding µl,i,m and σl,i,m in (18), it will be
too complicated to update the RBFNN model using this error
formulation directly. An adaptive algorithm is proposed in the
following.

A quadratic performance index is chosen to measure the
errors between the ’ideal’ or measured PDF and the modeling
PDF at each sample k:

J̄i,m,k =

∫ a

b

ε2i,m,k(y)dy. (19)

The measure of modeling errors in the m-th tuning of the i-th
BATCH is then represented by a vector as

Ēi,m =
[
J̄i,m,1, J̄i,m,2, · · · , J̄i,m,K

]T
. (20)

The total modeling errors in the i-th BATCH after the m-th
tuning is given by

Ēi,m =

K∑
k=1

J̄i,m,k. (21)

The adaptive tuning of the RBFNN parameters should guaran-
tee the decrease of Ēi,m in the modeling iterations. This can
be achieved when the following conditions are satisfied:

Ēi,m+1 ≤ Ēi,m

Ēi+1,1 = Ēi,M .
(22)

Ēi+1,1 = Ēi,M means that the initial setting of RBFNN
parameters in the (i + 1)-th BATCH is the same as the last
tuning results in the i-th BATCH. That is, the modeling error
in each BATCH is no larger than that in the previous BATCH.
The termination condition of this ILM can be set with a fixed
number of iterations or through a modeling error threshold.



5

For simplicity, a fixed iteration number (M ) is used in this
section.

Remark 2: Ēi,m is the measure of the overall approxima-
tion errors in the m-th update in the i-th modeling interval.
Denote ∆J̄i,m,k = J̄i,m,k − J̄i,m−1,k. If ∆J̄i,m,k ≤ 0, the
convergence condition (22) will be held since J̄i,m,k is a
non-negative function. An adaptive tuning law should thus be
developed aiming to assure ∆J̄i,m,k ≤ 0.

Define the increments of the two RBF parameters for Rl,i,m
as ∆µl,i,m and ∆σl,i,m, respectively. The following adaptive
law is applied to the tuning of the RBF parameters:

µl,i,m = µl,i,m−1 + ∆µl,i,m−1 := µl,i,m−1 + Λµ,l,i,mĒi,m−1

σl,i,m = σl,i,m−1 + ∆σl,i,m−1 := σl,i,m−1 + Λσ,l,i,mĒi,m−1

(23)

where

Λµ,l,i,m = εµ,l,i,m · λi ·~1, Λσ,l,i,m = εσ,l,i,m · λi ·~1
in which ~1 ∈ R1×K is the all-ones vector; λi is taken as an
adjusting factor; εµ,l,i,m and εσ,l,i,m are the learning rates to
be determined to assure updating efficiency and stability of
the learning process.

The increment of performance index J̄i,m,k can be derived
from (19) to be

∆J̄i,m,k =

∫ b

a

2(γi,m,k(y)− γi,O,k(y))∆γi,m,k(y)dy (24)

where ∆J̄i,m,k = J̄i,m,k − J̄i,m−1,k, and ∆γi,m,k(y) =∑n
l=1 wl,i,m,k∆Rl,i,m.

∆Rl,i,m(y) = Rl,i,m(y)−Rl,i,m−1(y)

≈ ∂Rl,i,m−1(y)

∂µl,i,m−1
∆µl,i,m−1 +

∂Rl,i,m−1(y)

∂σl,i,m−1
∆σl,i,m−1

=
y − µl,i,m−1

σ2
l,i,m−1

Rl,i,m−1(y)Λµ,l,i,mĒi,m−1

+
(y − µl,i,m−1)

2

σ3
l,i,m−1

Rl,i,m−1(y)Λσ,l,i,mĒi,m−1

(25)

Following Remark 2, the condition of ∆J̄i,m,k ≤ 0 is
expanded as∫ b

a

(γi,m,k(y)− γi,O,k(y))

×
n∑
l=1

wl,i,m,k

(
y − µl,i,m−1

σ2
l,i,m−1

Rl,i,m−1(y)Λµ,l,i,mĒi,m−1

+
(y − µl,i,m−1)

2

σ3
l,i,m−1

Rl,i,m−1(y)Λσ,l,i,mĒi,m−1

)
dy ≤ 0

(26)

Moreover, if∫ b

a

(γi,m,k(y)− γi,O,k(y))

n∑
l=1

ΨΠΛµ,l,i,mdy ≤ 0

and∫ b

a

(γi,m,k(y)− γi,O,k(y))

n∑
l=1

ΨΠ2σl,i,m−1Λσ,l,i,mdy ≤ 0

ILC

Dynamic 

Stochastic 

System

Feedback Gain

Subspace 

Identification

Data 

Storage

RBF 

Tuning

( )y

g( )y

e

PDF 

Approximation

Model

Fig. 1. Block diagram of the double closed-loop ILM and ILC System (solid
lines: ILC, dashed lines: ILM)

where Π =
y−µl,i,m−1

σ2
l,i,m−1

and Ψ = wl,i,m,kRl,i,m−1(y)Ēi,m−1,
then the convergence condition (26) will be satisfied.

The weights vector Vi,M,k :=
[ω1,i,M,k, ω2,i,M,k, · · · , ωn−1,i,M,k] can be calculated from
(5) using the M -th tuned RBFNN, and a state-space model
(6) can be established by the subspace identification as shown
in Section II.B. This state-space model will be used for
controller design to achieve the PDF tracking performance.

The updating of the RBFNN model parameters is actually
an adaptive tuning process for modeling. If the whole process
is divided into several modeling intervals (BATCHes), then the
modeling accuracy in terms of PDF approximation is increased
from BATCH to BATCH. The update of RBFNN parameters
is also regarded as IL modeling (ILM).

Up to now the IL-based modeling and the IL-based control
are taken as two separate matters. The ILC is implemented
in the time domain. The ILM is undertaken in both the
probability distribution domain and the time domain. For a
SDC problem, the ultimate goal is to reduce the tracking errors
in output PDF. For this purpose, a novel strategy that integrates
ILM and ILC in one framewrok is proposed in the next section.

IV. IL-BASED DOUBLE CLOSED-LOOP MODELING AND
CONTROL

A. Modeling and Control in Two Closed Loops

The idea of putting ILC and ILM in the same framework
is to improve both the modeling accuracy and the control
performance through iterative learning. This is particulary
useful when the system output goes through large variations
where the re-modeling is required to be adaptive. A simple
way to combine ILC and ILM is to implement both with
the same iterative period, and update the model and the
controller together in each iteration. This, however, will be
computationally inconvenient since the tuning periods required
for modeling and control could be quite different. In general,
the modeling update should take a longer period than the
controller IL tuning. In this work, the ILC design is taken as a
fast process and the ILM as a slower process. As illustrated in
Fig.1, the ILC is put in the inner tuning loop and the ILM is
arranged in the outer loop. In the inner loop is a standard ILC
design based on the developed state-space PDF model, and in
the outer loop is the ILM for the update of the RBFNN PDF
approximation which has a longer iterative period.
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…

Modeling
Time

BATCHi-1

…

BATCHi

ILC
ILC

…

batch

Modeling

 ILMILM

…

batch

Fig. 2. Time period division of the iterative cycles in modeling and control

Remark 3: In this IL-based double closed-loop modeling
and control framework, the targets of ILC and ILM are the
same, both meant to drive the output PDF towards a target
PDF. The two tracking errors, as defined in (12) for controller
design and in (19) to (20) for model update, are used as the
errors in ILC and ILM, respectively, that should be decreased
through iterations.

Following the structure of the double closed-loop IL design,
the whole time horizon is firstly divided into several intervals
for ILM with a large period, denoted as BATCHes. In each
BATCH, the time horizon is further divided into a modeling
period plus several ILC intervals of the same time length,
the latter are called batches. The first modeling period is
used to update the RBF parameters, which is to re-tune the
center and width parameters of RBFs so that the average PDF
approximation error in this BATCH is smaller than the previous
BATCH. This update can be implemented several times (M
times) to reach the modeling accuracy. With the updated
RBFs, new weights for PDF approximation are calculated,
the subspace identification method is used to re-establish the
space-state model using the new weights and the collected
control inputs. Note that in the modeling period, the control
law stays the same as that from the final batch in the previous
BATCH. After the modeling period, in the ILC batches, the
fixed (updated) model is used for ILC to drive the output PDF
towards the desired PDF. In this way, the IL-based modeling
and control are integrated into one framework where ILM is in
the outer loop and ILC in the inner loop. Fig. 2 illustrates the
division of modeling and control cycles in the time horizon.

The algorithms for ILC and ILM are similar to those
presented in Section III. In the double closed-loop structure,
rewrite the state-space model with subscripts i and j added to
indicate the i-th BATCH and the j-th batch:

xi,j,k+1 = Aixi,j,k +Biui,j,k

Vi,j,k = Cixi,j,k +Diui,j,k

γ(y, ui,j,k) = Λi(y)Vi,j,k + Li(y)

(27)

The update of the RBFNN parameters can be referred to
Section III.B. The ILC design is similar to Section III.A
in general, with only the tiny difference of introducing the
i-th BATCH in the algorithm description as briefed in the
following.

From the state-space representation in (27), the weights
vector can be calculated as follows,

Vi,j,k = CiA
k
i xi,j,0 +

k−1∑
s=0

CiA
k−1−s
i Biui,j,s +Diui,j,k (28)

Denoting
hi,0 = Di

hi,k = CiA
k−1
i Bi

Ui,j = [uTi,j,0, u
T
i,j,1, · · · , uTi,j,k, · · · , uTi,j,L]T

Vi,j = [V T
i,j,0, V

T
i,j,1, · · · , V T

i,j,k, · · · , V T
i,j,L]T

Vi,j,0 = [CT
i , (CiAi)

T, · · · , (CiAki )T, · · · , (CiALi )T]Txi,j,0

Gi =


hi,0

hi,1 hi,0 0
hi,2 hi,1 hi,0

...
...

...
. . .

hi,L hi,L−1 · · · hi,1 hi,0


then (28) can be written in a compact form as follows:

Vi,j = Vi,j,0 +GiUi,j (29)

where the initial values in Vi,j,0 are kept the same in each
control iteration. Similarly, a quadratic performance index is
used to evaluate the control performance.

Ji,j+1 = ‖Ei,j+1‖2Q + ‖Ui,j+1 − Ui,j‖2R
= ET

i,j+1QEi,j+1 + (Ui,j+1 − UT
i,j)R(Ui,j+1 − Ui,j)

(30)

where

Ei,j =
[
V T
i,j,0 − V T

i,g, V
T
i,j,1 − V T

i,g, · · · , V T
i,j,L − V T

i,g

]T
(31)

is the vector of PDF tracking errors (written in the form of
weights) in the i-th BATCH. The ILC law for the double
closed-loop structure is therefore

Ui,j+1 = Ui,j − [GT
iQGi +R]−1GT

iQEi,j (32)

Due to the parameter tuning by ILM, the RBFNNs are actually
different in each BATCH leading to different desired weights
vector in each BATCH although the target PDF is the same.
The termination condition of this ILC can be set by a tracking
error threshold, i.e., ‖Ei,j‖2Q−‖Ei,j+1‖2Q ≤ δ0 (where δ0 is a
small positive number), or a fixed iteration number for control
update. In this work, a fixed iteration number is introduced, but
the ILC will terminate when reaching the threshold condition
(before reaching the largest iteration number) in each BATCH.
The work flow of the double-loop IL structure is shown in
Fig.3. The main steps of the proposed method is summarized
as follows.

1) The saved data of the output PDFs and control inputs
from the previous BATCH are used to tune the RBF
parameters by IL mechanism (23) (The RBF parameters
in the first BATCH are given).

2) Using the updated RBFNN, the weights vector for PDF
apptoximation is re-calculated from the saved data of
output PDFs, and the state-space model of the output
SDC system is established using the subspace identi-
fication technique as described in Section II.B (Model
parameters for the first BATCH are estimated directly by
random input excitation). Following the modeling period
in each BATCH, the established state-space model will
be used for all the afterwards ILC batches within the
same BATCH.
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Fig. 3. Work flow of the double closed-loop ILM and ILC system

3) In the ILC batches, the PDF controller is iteratively
updated so as to achieve the closed-loop PDF tracking
performance. All of the output PDFs and the control
inputs are collected and saved to be used in the next
BATCH to update the model.

4) Terminate the double closed-loop iteration if the PDF
tracking performance is satisfactory or reaching the end
of the BATCH, otherwise go back to 1) to move to the
next BATCH.

Remark 4: Two factors are crucial to the data-based model-
ing in this work. One is that the data should contain adequate
information for parameter identification. This may be solved
to some extent by collecting sufficient data in each BATCH.
The other is the RBFNN that provides the model structure for
PDF approximation. If the RBF parameters are not properly
chosen, the PDF approximation error could be large, then the
parameter identification based on the poor weights calculation
won’t be able to faithfully describe the characteristics of
the dynamic system. For this reason, the iterative update of
RBF parameters is important in assuring the SDC control
performance.

Remark 5: One role of the dynamic model is to support
ILC design so as to improve the PDF tracking performance.
The modeling error is not directly considered in the control
performance evaluation. To save the computational efforts in
modeling, there’s no need to fine tune the model to reach the
possible minimum modeling error, instead, we can either set
up a reasonable time bound for the modeling period, or set up
a threshold for the modeling error to terminate the modeling
process in each BATCH.

Remark 6: The length of each individual ILC can be set
following the time characteristics of the dynamic system
together with the trial-and-error efforts. The interval of ILM
is not predetermined. It is the result of the modeling period
plus the number of ILC actually taken multiplied by the
ILC interval. The interval of ILM is therefore different from
BATCH to BATCH.

B. The Identifiability Issue
The double closed-loop structure for ILM and ILC includes

a ’closed-loop’ subspace identification process in the modeling

period. For most of the closed-loop systems, the noise in
the output will affect the input signal through the feedback
channel, therefore the input noise is related to the output noise.
This could result in a non-identifiability problem for parameter
estimation [26]. However, in this double closed-loop structure,
both the inner loop and the outer loop are developed based on
iterative learning algorithms, which has some special features
to avoid or reduce the levels of non-identifiability problem.

(1) In each control batch, the PDF tracking errors are not
instantly used to form the closed-loop control input.
Instead, they are collected during the batch, only used to
produce the control actions in the next batch. This makes
a delay of one batch period between the output tracking
error and the control input calculation, therefore largely
reduces the noise correlations between the input and
output signals. In another word, an ’open-loop’ control
is applied in each individual batch although the control
is run in closed-loop in the whole BATCH.

(2) Each modeling BATCH contains a modeling period and
a number of ILC batches. In order to meet the require-
ments of ILC, in each batch initialization, the control
inputs are set to the same initial values rather than
taking the values from the end of the previous batch.
The control input handled this way can be regarded as
a man-made noise introduced into the system with a
periodic step change, as illustrated in Fig.4.

(3) During the whole process horizon, the model parameters
are periodically changed by the iterative learning update.
At the beginning of BATCHi, new model parame-
ters (Ai, Bi, Ci, Di) are obtained that provide the key
information for ILC design in each batch afterwards.
Therefore, the controller design is also a process with
periodical ’interruptions’. See Fig.5 for an illustration of
this strategy.

(4) Following the iterative learning update of the RBFNN,
the target weights vector also goes through a change
following the BATCH period even though the target PDF
γg(y) is kept unchanged. In the modeling period of the
i-th BATCH, the target weights vector, Vi,g , is calculated
using the updated RBFNN and applied to formulate the
PDF tracking error in (31). The periodic update of Vi,g
is shown in Fig.6.

(5) There are always PDF modeling errors using RBFNN
or any other nonlinear approximations. This error, to-
gether with the measurement noise, can be seen as the
noise input introduced to the control system through the
closed-loop feedback channel.

It can be seen from the above discussions that this double
closed-loop IL structure has its set point (weights vector for
the target PDF) going through periodic changes. The controller
is nonlinear, time-varying, and iteratively updated. There’s a
delay in the feedback channel in terms of using the output
PDF for closed-loop feedback control. The nonlinear modeling
errors can be taken as continuous excitable noise input from
the feedback channel, which is not correlated to the noise in
the feedforward channel. Therefore it can be reasonably stated
that the system is practically identifiable from the engineering
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application point of view [27].

V. SIMULATION STUDY OF AN NUMERICAL EXAMPLE

In this section, a 4th-order SDC system is used in simulation
study to examine the effectiveness of the proposed double
closed-loop IL algorithm.

A. RBFNN-based PDF Modeling

In the output SDC systems, the output PDF γ(y, uk), as the
variable to be controlled, should be measured or estimated by
using instruments (for example, digital camera) or Bayesian
estimation technique [30]. In this simulation, the inputs uk and
the output PDFs γ(y, uk) are assumed to be known. Consider
the following model:

xk+1 = A0xk +B0uk

Vk,0 = C0xk +D0uk

γ0(y, uk) = Λ0(y)Vk,0 + L0(y)

(33)

where the parameter matrices are given to be

A0 =

 0.0 1.0 0.0
0.0 0.0 1.0
−1.0 −5.0 −3.0

 , C0 =

1 0 0
0 1 0
0 0 1

 ,
B0 =

 0.5 0.3 0.0
0.0 0.9 0.1
−0.5 −0.2 0.1

 , D0 = 0.

In this numerical example, the output PDFs of the SDC system
are produced by a three-layer neural network with four RBFs
defined by (2). Vk,0 = [ω1,k,0, ω2,k,0, ω3,k,0]T, y ∈ [−3, 3],
Λ0(y) = [λ1,0, λ2,0, λ3,0] and L0(y) = r−1

4,0R4,0(y) with

RBFNNi-1

RBFNNi

RBFNNi+1Desired PDF

Vg,i-1

Vg,i

Vg,i+1

Fig. 6. Periodic change of the target weights vector under the same γg

rl,0 =
∫ 3

−3
Rl,0(y)dy and λl,0 = Rl,0(y) − R4,0(y)rl,0/r4,0

(l = 1, 2, 3). Assuming the RBF parameters to be µ1,0 =
−1.5, µ2,0 = −0.5, µ3,0 = 0.5, µ4,0 = 1.5, and σ1,0 = σ2,0 =
σ3,0 = σ4,0 = 0.4. The initial weights vector is set to be
V0,0 = [0.10, 0.50, 0.05]T. The weights vector for the desired
PDF is set to be Vg,0 = [0.2, 0.0, 0.6]T. Model (33) will be
used to produce the pseudo-measurement data for modeling.

In this simulation, the number of RBFs is also chosen to be
4, which is the same as the RBFNN model used to produce the
simulation data. In the first BATCH, the RBF parameters are
chosen as µ1,1 = −1.2, µ2,1 = −0.2, µ3,1 = 0.2, µ4,1 = 1.2,
and σ1,1 = 0.3, σ2,1 = 0.4, σ3,1 = 0.3, σ4,1 = 0.4. The
PDF model structure is given in (27). The order of the state-
space model is chosen to be 4, and the subspace identification
algorithm used in this simulation is N4SID. In parameter
estimation of the first BATCH, a random excitation signal
(pseudo-random binary sequence (PRBS)) is used as the input
signal. The identified parameter matrices (A1, B1, C1 and D1)
are as follows:

A1 =


0.9011 −0.1213 0.0891 0.0265
−0.4217 0.1673 0.3658 0.0553
0.1391 −0.2629 0.8538 −0.1104
−0.0679 −0.7310 −0.3301 −0.1200



B1 =


0.0057 0.0352 0.0036
−0.0102 0.1437 0.0172
−0.0554 −0.0584 −0.0021
−0.0796 0.0451 0.0305


C1 =

 9.2949 −0.7030 −7.1057 0.7292
−0.5191 7.0259 0.5729 0.2517
−1.9479 −7.7595 1.6298 0.6037


D1 = 0

Remark 7: It’s important to make a proper calculation in
the first BATCH, otherwise there might be numerical problems
growing in the RBFNN update in the subsequent BATCHes.
The modeling quality in the first BATCH is mainly assured
through the large amount of random excitation data in input
signal. In the subsequent BATCHes, the input and output data
used for parameter estimation are collected from the previous
BATCH.

Remark 8: The order of the state-space model is recom-
mended to be n− 1 or n when the number of RBFs is n and
n ≥ d. In this simulation, the model order can also be 3.

B. Simulation of ILM

The simulation is divided into several ILM BATCHes (i =
1, 2 · · · ), and each BATCH contains one modeling period plus
8 ILC batches (j = 1, · · · , 8). The control horizon of each
batch has 50 sampling time points (L = 50). The total number
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TABLE I
IL UPDATE OF RBF PARAMETERS USING A 4TH-ORDER MODEL

i (µ1,i, σ1,i) (µ2,i, σ2,i) (µ3,i, σ3,i) (µ4,i, σ4,i)
1 (-1.200,0.300) (-0.200,0.400) (0.200,0.400) (1.200,0.300)
2 (-1.204,0.303) (-0.199,0.412) (0.213,0.412) (1.324,0.381)
3 (-1.216,0.310) (-0.196,0.431) (0.239,0.439) (1.385,0.423)

of RBFNN update in the modeling period is set to be 20 (M =
20), each modeling period contains 400 × i samples (K =
400 × i). There are 120 samples uniformly collected in the
definition domain of [−3, 3] for the output PDF. The RBF
parameters are updated by the IL mechanism (23), where the
adjusting factors λi are calculated as

λi =



10−ceil(log10(
∑

k J̄i,k)−2), log10

(∑
k

J̄i,k

)
≥ 1

10−3, −3 < log10

(∑
k

J̄i,k

)
< 1

0, log10

(∑
k

J̄i,k

)
≤ −3

in which ceil(X) rounds the elements of X to the nearest
integers towards positive infinity. The learning rate values εµ
and εσ of the i-th BATCH are chosen as follows,

εµ,1,i
εµ,2,i
εµ,3,i
εµ,4,i

 =


−1.5 0 0 0

0 −1.8 0 0
0 0 −1.9 0
0 0 0 −2.0



µ1,i−1

µ2,i−1

µ3,i−1

µ4,i−1



εσ,1,i
εσ,2,i
εσ,3,i
εσ,4,i

 =


−4.2 0 0 0

0 −4.0 0 0
0 0 −3.0 0
0 0 0 −4.4



σ2

1,i−1

σ2
2,i−1

σ2
3,i−1

σ2
4,i−1


The PDF tracking performance meets the given threshold re-

quirement after 3 BATCHes. The RBFNN parameter updating
results of the 20-th tuning in each BATCH are listed in Table
I. The change of the 4 RBFs after 3 iterations are illustrated
in Fig.7, in which the solid lines represent the RBFs in the
1st BATCH and the dash-dot line indicate the RBFs in the 3rd
BATCH. Figure 8 shows the output PDF approximation errors
in the second and third BATCHes. The improvement in PDF
approximation accuracy is clearly seen after 3 iterations.

In the third BATCH, the state-space model is estimated to
have the following matrices.

A3 =


0.5533 0.6243 −0.2236 0.0342
0.2112 0.2848 0.4885 −0.0334
0.0295 −0.1089 −0.0209 −0.2085
0.0010 −0.0811 −0.0337 0.9772



B3 =


0.5074 −0.1384 −0.0671
0.0870 1.2669 0.1729
−0.1208 −0.1976 −0.0005
0.0497 0.1937 0.0247


C3 =

 0.5463 0.6447 −0.1432 0.1082
−1.3025 0.5536 −3.4939 0.6568
1.2898 −0.5326 4.6296 −0.8293


D3 = 0
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R
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Fig. 7. The initial and the final RBFs (solid lines: i = 1, dotted lines: i = 3)
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Fig. 8. The RBFNN approximation errors of output PDF during the modeling
period (q = 4)

TABLE II
IL UPDATE OF RBF PARAMETERS USING A 3RD-ORDER MODEL

i (µ1,i, σ1,i) (µ2,i, σ2,i) (µ3,i, σ3,i) (µ4,i, σ4,i)
1 (-1.200,0.300) (-0.200,0.400) (0.200,0.400) (1.200,0.300)
2 ( -1.205,0.303) (-0.202,0.417) (0.211,0.412) (1.326,0.382)
3 (-1.218,0.310) (-0.203,0.438) (0.232,0.436) (1.389,0.426)
4 (-1.240,0.322) (-0.207,0.465) (0.252,0.461) (1.423,0.443)
5 (-1.270,0.341) (-0.212,0.490) (0.269,0.480) (1.448,0.446)

It can be found that (A3, B3, C3) are quite different from
(A1, B1, C1).

The state-space model can also be described by other orders.
When using a 3rd-order description in simulation, the PDF
tracking performance meets the threshold requirement after
5 BATCHes. The parameter updating results after the 20-th
tuning in all BATCHes are listed in Table II and the output
PDF approximation errors in each BATCH is shown in Fig.9.
It can be seen that good modeling results are achieved for both
3rd- and 4th-order state-space models.

C. Simulation of ILC

In the inner loop, there are 8 ILC batches in each BATCH.
The learning rate is chosen according to (32), where Q =
2I1, R = 0.001I2, I1, I2 are unit matrices of proper di-
mensions. The termination condition of ILC is given as∑50
k=1

∫ b
a

(γ(y, ui,j,k) − γg(y))2dy < 0.01. A performance
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Fig. 9. The RBFNN approximation errors of output PDF during the modeling
period in all BATCHes (q = 3)
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Fig. 10. The PDF tracking errors of all ILC batches in 3 ILM iterations
(where J̃i,j,k :=

∫ b
a (γ0(y, ui,j,k)− γg(y))2dy)

measure in the inner ILC loop is illustrated in Fig.10. Indeed,
Fig.10 shows that the optimal ILC results in an efficient
output PDF tracking and ensures the stability of the inner ILC
loop. It can be seen that the performance of the first batch
(j = 1, k = 1, 2, · · · , 50) inside the first BATCH (i = 1)
as shown in Fig.10 is not good before the ILC action. The
evolution of the output PDFs in the third BATCH is shown
in Fig.11. Also, the desired PDF and the final PDF in the 8-
th batch of the third BATCH are illustrated in Fig.12, which
shows a perfect tracking performance. As discussed in Section
III.A, in this IL-based double closed-loop structure, the control
cost function in (11) should always decrease monotonically.
Fig.13 demonstrates the total ILC performance index of each
batch in 3 BATCHes (the difference between the second and
third BATCH is visually indistinguishable), which shows the
convergence of the double closed-loop IL algorithm.

VI. APPLICATION STUDY: TEMPERATURE FIELD
DISTRIBUTION CONTROL ON A VISUAL OPERATION

PLATFORM OF A COAL COMBUSTION PROCESS

The idea of SDC is of particular interest to many in-
dustrial processes with controlled variables having a spatial
distribution characteristics such as food processing, paper-
making, polymerization, and combustion processes. However,
due to the difficulties in online PDF measurement and the

Fig. 11. Dynamic evolution of output PDFs in the final BATCH (8 ILC
batches included)
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Fig. 12. The desired PDF and the final PDF at the end of the completed IL
process

computational complexity of SDC modeling and control, the
majority of work in this subject is still on the theoretical
aspect and the practical application results are extremely rare.
One feasible approach towards industrial applications is to use
simulation technology to construct a visual platform where
the simulation operation is very close to the actual system in
operation. Based on this pseudo operation system, the SDC
modeling and control strategy can be implemented to the full
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Fig. 13. The control performance index in all BATCHes (8 ILC iterations
in each BATCH)
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Fig. 14. The boiler coal combustion system, IDF: Induced draft fan; FDF:
Forced draft fan; and AIC: Air inlet chambers

operation range. In this section, we first construct a visual
simulation platform for the system of chain coal-layer-fired
boilers as shown in Fig.14, in which the furnace temperature
field distribution is the system output to be controlled. We then
apply the double-loop IL modeling and control to this system
to investigate how the system performance can be improved
through the iterative learning process.

A. The Visual Simulation Platform

A visual simulation platform used for the purpose of oper-
ational training, education or real-time analysis generally has
two parts. One is the numerical simulation of the real system,
which often includes a dynamic model with regards to key
parameters of the system. The other is the visualization of the
operational process, which is established through a real-time
simulation interface based on the model calculation. There
are various visualization tools available such as OpenGL and
3Dmax, also configurable softwares available such as WinCC,
InTouch and KingView, etc. These industrial control software
are particularly designed for automation control engineers, and
are widely applied in the field of process control [36]–[39].

The configuration software is a specialized software for data
acquisition and process control. It can be used as a software
development environment to support a variety of industrial
equipments and common communication protocols, and also
enables users to create their own human machine interface
(HMI). In this work, a configurable simulation system is
used to develop the visual simulation platform for the chain
grate boiler system with coal combustion. It provides an easy
configuration of the main system functions, a close simulation
to the real operating system and a simple evaluation of the
real-time operating data. This simulation platform can be
conveniently extended to a variety of simulation platforms,
and used as simulators for education and training of control
operations of similar boiler combustion processes. As shown
in Fig.15, WinCC, MATLAB and the OPC communications
are used to establish the simulation interface, programme the
model and control algorithms, and exchange data between the
interface and model.

The boiler coal combustion system is shown in Fig. 14. The
configurations of the boiler system and the furnace are shown
in Fig.16 and Fig.17, respectively. In this system, the main
controlled variable is the furnace field temperature distribution,
which is to a large extent, closely related to the flame shape

Operation Simulation Platform

Simulation 

Interfaces 

（WinCC）

Models

(Matlab)

External 

interface

(EI)

EIOPC

Fig. 15. The overall platform structure for operation simulation

Fig. 16. Operational interface of the boiler system

and color inside a furnace that can be physically measured
during the combustion process. The real-time distribution
produced from flame images are therefore taken as the output
PDF to be controlled, and the feedback signals are provided
by a charge-coupled device (CCD). In an ideal furnace, the
combustion air flow should be matched to the fuel flow to
assure complete combustion. In the real world, combustion
does not proceed in a perfect manner, therefore more air
(oxygen) is provided than it is theoretically estimated. The
temperature field distribution in the chain grate boilers is
mainly controlled by the coal feeder, the air inlet and the
grating. The openness of air inlet chambers determines the
total inlet air flow and the air-to-coal ratio, which is regarded
as a key operating factor that affects the combustion quality.
We select the inlet air chamber openness as the control input
in this system.

B. Coal and Flame Model

Model development of the coal combustion process is the
main challenge in establishing this visual simulation platform.
The chain boiler combustion process can be divided into the
bed combustion and the furnace gaseous combustion, among
which the former is the key process. A full mechanism model
of a bed combustion process is in general rather complicated
and the detailed modeling can be found from literature [31]–
[35]. In this work, a simplified combustion model is developed
to support the implementation of the double closed-loop IL
algorithm. The data flow diagram of modeling and control is
shown in Fig.18.

The so-called ”zoned model” or ”cell model” [40] is em-
ployed to describe the combustion process. Here the entire
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Fig. 18. Modeling and control data flow of the combustion process. ACR: air-coal ratio; CCD: charge-coupled devices.

Fig. 17. Operational interface of the furnace

0 1 2 3 4 5 6 7

Furance

The air inlet chambers

Flame

Fig. 19. Zone division of the furnace

furnace is divided into a series of separate but inter-connected
zones, each of the sub-zones is also called a cell. The laws of
mass balance and energy balance apply in each cell. Following
an industrial process of a ”DZL58-1. 6/150/90-AII” boiler, the
division modal of the air inlet zones is illustrated in Fig.19,
in which each cell corresponds to an air inlet chamber. When
coal is evenly fed to the furnace, the three-dimensional flame
shape can be reduced to two-dimensions, thus the height of
a rectangle in Fig.19 is taken as the height of flame in this
zone.

Celli-1

CCWi-1

Celli+1

CCWi+1

CWi

AWi

Celli

CCWi

CWi-1

AWi-1

Fig. 20. Chamber mass conservation: CW - coal weight, AW - ash (CCR)
weight, CCW - consumed coal weight

The following assumptions are made to establish the sim-
plified zoned model.

1) The flows of gas and solids inside the furnace are
upwards only. There is no return flow downwards.

2) The porosity rate in each cell is uniformly distributed.
No radial variations in porosity are considered.

3) The particle size distribution and the quality of the coal
are uniform through all the burning process.

4) The inner convective heat transfer is relatively small that
can be ignored in calculation.

5) The rate of gas and solid flow change is much higher
than the rate of heat transfer or the flow rate of each
gas component. The dynamic change of the gas and
solid flows is not considered. A static flow model is
used instead.

6) In each cell, unburned coal and coal combustion residues
(CCRs) are the only two materials in solid phase. The
coal combusts into CCR by a fixed ratio.

The quantity of coal on the grate consists of two parts. One
is the original unburned coal, mc, the other is the CCRs, mz ,
which are the materials remained after burning. Assume for
every kilogram of coal, there are Az amount of CCR produced
after the burning. According to the mass balance law, the
ordinary differential equation model for mc and mz in the
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i-th cell can be written as follows.
dmc,i

dt
= Pio(mc,i−1 −mc,i)− Pcr,imc,i − Plomc,i

dmz,i

dt
= Pio(mz,i−1 −mz,i)− Pcr,imc,iAz − Plomz,i

(34)

where mc,i−1 and mz,i−1 are the quantities of unburned coal
and CCR transferred, over a unit time, from the (i − 1)-th
cell, Pcr,i ∈ [0, 1] is the coal combustion rate in the current
cell; Pio is a function of grate frequency and Plo is the rate
of leakage coal. In these parameters , Pcr,i can be described
with a parabolic function about air coal ratio (ACR) to give

Pcr,i = −Kd2

(
PgKb,i

mc,i

)2

+Kd1

(
PgKb,i

mc,i

)
+Kd0 (35)

where Pg is the frequency of forced draft fan, Kb,i is the
openness of the i-th air inlet chamber which directly indicates
the inlet air flow in the furnace. Kd0,Kd1,Kd2 are constants.

In the two–dimensions model, the flame distribution can be
described by three parameters, i.e., height, width and color.
The color of flame is controlled by the ACR. The height can
be approximated by a proportion of the consumed coal weight,
mc,i, and the coal combustion rate, Pcr,i. The width can be
taken as a two-value function of mc,i.

Hf,i = Kf ·mc,i · Pcr,i

Df,i =

{
0, mc,i = 0

1, mc,i > 0

where Hf,i and Df,i are the height and the width of flame
and Kf > 0 is a constant.

C. Output SDC on the Visual Simulation Platform

The purpose of control in this system is to drive the PDF
of flame distribution to follow the desired PDF. The target
PDF for flame distribution is set up in the operation panel for
’desired PDF’ through HMI. Note that unlike the numerical
example in Section V, the desired/target PDF in the flame
system is not produced by a known RBFNN, instead, it is
manually set up through HMI (See Fig.21, here only the 2nd
to the 6th bars are used to adjust the desired PDF). All of
the simulation parameters including those used for process
modeling and those used for PDF modeling and controller
design such as the number of RBFs and their parameters,
sampling numbers, settings of ILM BATCH and ILC batch,
etc., can be easily set up in a parameter adjustment panel
through HMI (See Fig.22 as an example).

In order to build the dynamic model between the open-
ness of the air inlet chambers (control input) and the flame
distribution (system output), a PRBS signal is introduced to
change the opening of the 2nd to 6th air inlet chambers
(the 1st and the 7th air inlet chambers are shut down in
normal operating conditions). A total number of 255 samples
are collected for the initial modeling in the first BATCH.
The other parameters of the boiler are given as follows,
mc,0 = 7.71T/th, mz,0 = 0T/h, Kf = 1, Kb,1:7(0) =
[0, 0, 0, 0, 0, 0, 0] Kb,1:7(∞) = [0, 0.1, 0.44, 1, 0.87, 0.44, 0],

Fig. 21. The HMI panel for setting up of the desired flame distribution

Fig. 22. The parameters setting HMI

Kd0 = 0.01, Kd1 = 1.6/2.85, Kd2 = 1, Pio =
[15/19, 15/19, 18/19, 20/19, 18/19, 15/19, 15/19] and Plo =
0.

Seven RBFs are used in modeling the flame PDF. They all
have the same width, i.e., σ1 = · · · = σ7 = 0.5. The maximum
number of ILC batches is set to be 10 and each batch has 20
samples in time horizon. The modeling period for RBFNN
adjustment is also set to be 20. In the subspace identification,
the numbers of rows and columns for Hankel matrices are
s = 16 and N = length(U) − 14, where length(U) is the
length of input vector U. At the beginning of the IL process,
the centers of the 7 RBFs are set to be µ1 = 1.5, µ2 = 2, µ3 =
3.0, µ4 = 4.0, µ5 = 5.0, µ6 = 6.0, µ7 = 6.5 (see Fig.22 for
detail). Some simulation results are shown in Fig. 23 to Fig.
26.

Fig. 23 is a snapshot of the operational screen during the
modeling period in the first BATCH, which presents the desired
flame distribution, the real-time flame distribution and the PDF
tracking errors. The simulation result in Fig. 24 shows that
after the 9-th batch in the 4-th BATCH, the output PDF reaches
the target PDF within the error threshold. A good tracking
performance is achieved after 4 BATCHes. Note that there is
a ’missing-data’ period in Fig. 23 and 24 due to the operational
system switch for discharging CCR from the furnace. For the
same system, if we reduce the control time horizon within each
BATCH to an inadequate level, for example, set the maximum
number of ILC batches to be 5, the system fails to achieve
the PDF tracking performance even after going through several
ILM BATCHes. See Fig.25 and 26 for the results after 3rd and
10-th BATCHes, respectively. This suggests that in this double
closed-loop structure, the control horizon in each BATCH
needs to be adequately long to fulfill the control purpose using
the current modeling information.

VII. CONCLUSION

Compared with conventional stochastic control algorithms,
an extra dimension for processing of probability space in-
formation is required in output SDC. In such a system, the
output PDF to be controlled can be approximated by a RBFNN
model. The selection of a suitable RBFNN model will directly
affect the modeling accuracy of the dynamic PDF model, and
indirectly affect the controller design. In this work, the IL
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Fig. 23. Real-time operation screen 1: Top left - desired flame distribution;
top right - ’measured’ flame distribution; bottom - PDF tracking error signal
during the parameter identification process in the 1st BATCH.

Fig. 24. Real-time operation screen 2: the bottom figure shows the PDF
tracking error signal during the 9-th batch in the 4-th BATCH

update of both the RBFNN parameters and the controller are
integrated in the same framework that has a double closed-loop
structure. The outer loop is an iterative learning modeling loop
for updating the parameters of the RBFNN in the probability
space. The inner loop is an ILC loop for updating controller in
the time-domain. With this double closed-loop structure, the
system model can be improved through the iterative learning
update of the RBFNN parameters and the re-identification of
the state-space model, and the output PDFs are controlled
towards a target distribution through both ILC and ILM. The
practical identifiability of this double closed-loop structure is
discussed from the control engineering point of view to assure
the feasibility of the closed-loop IL modeling.

The output PDF control problem should be considered for
a general nonlinear stochastic system. It is difficult to achieve
the control target by using a linear state-space modeling as
presented in this paper [18], [21]. However, the double closed-
loop structure can help to overcome this disadvantage, to some
extent, by iteratively updating the linear model to increase
the modeling accuracy. Simulation examples demonstrate that
the double closed-loop IL modeling and control structure can
effectively achieve the PDF tracking performance. A visual
simulation platform of an industrial coal combustion process
with chain boilers is developed to evaluate the modeling and
control of the furnace temperature field distribution in opera-
tional environments. It can be seen from this pseudo-industrial

Fig. 25. Real-time operation screen 4: the bottom figure shows the PDF
tracking error signal during the 5-th batch in the 3rd BATCH when the
maximum number of ILC iterations in each BATCH is set to be 5

Fig. 26. Real-time operation screen 5: the bottom figure shows the PDF
tracking error signal during the 5-th batch in the 10-th BATCH when the
maximum number of ILC iterations in each BATCH is set to be 5

example that the proposed double closed-loop IL algorithm
can be implemented to tackle real-time SDC problems using
a standard computational platform.
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APPENDIX
NOTATIONS

Subscripts:
1) i - index for modeling BATCHes in the outer loop; (also

used to indicate cells in furnace modeling)
2) j - index for control batches in the inner loop;
3) k - index for sampling time in each batch or sample in

each BATCH;
4) l - index for radial basis functions; (l = 1, · · · , n)
5) m - index for RBFNN tuning times in the modeling

period (m = 1, · · · ,M );
6) Ordering sequence when several subscripts are used for

the same variable: l, i, j, k or l, i,m, k.
Scalars:
1) γ(y, u(t)) - output PDF;
2) P - probability;
3) Rl - radial basis function;
4) µl, σl - RBF parameters for center and width;
5) n - total number of RBFs;
6) e - PDF approximation error term (ignored in modeling);
7) ε - error between the ‘ideal’ PDF and the PDF approx-

imated by RBFNN;
8) s,N - number of rows and columns of Hankel matrices;
9) L - total number of sampling points in each ILC cycle;

10) K - total number of samples in the modeling period;
11) M - total updating times for the parameters of the basis

functions in the time horizon for modeling
12) Ji,j - ILC performance index in the j-th batch, i-th

BATCH;
13) J̄i,m,k-ILM performance index at time k in the i-th

BATCH after the m-th RBFNN tuning;
14) εµ, εσ - leaning rates for µ and σ in ILM;
15) q - order of the state-space model;
16) Ēi,m - measure of the overall PDF approximation errors

after the m-th RBFNN update in the modeling period
within the i-th BATCH.

Vectors and matrices
1) V ∈ Rp×1 - RBFNN weights vector, V =

[ω1, · · · , ωn−1]T, p = n− 1;
2) x ∈ Rq×1 -process state vector;
3) u ∈ Rd×1 -control input vector;
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4) A ∈ Rq×q,B ∈ Rq×d, C ∈ Rp×q, D ∈ Rp×d - state-
space model parameter matrices;

5) C̄ ∈ Rp×q, D̄ ∈ Rp×d -state-space parameter matrices
for the special case of no feed-forward loop;

6) Ej ∈ R(p(L+1))×1- output tracking error in the j-th ILC
batch;

7) Q ∈ R(p(L+1))×(p(L+1)), R ∈ R(d(L+1))×(d(L+1)) -
weighting matrices for E and U in the quadratic ILC
performance function J ;

8) G ∈ R(p(L+1))×(d(L+1)) - intermittent matrix in ILC;
9) Γ ∈ R(d(L+1))×(p(L+1)) - learning rate to update Uj+1;

10) Ēi,m ∈ RK×1- modeling error vector in the m-th tuning
within the i-th ILM BATCH;

11) Λµ ∈ R1×K ,Λσ ∈ R1×K -learning rates vectors for µ
and σ in ILM.


