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This paper discusses the problem of squatting training of stroke patients. The main idea is to correct the patient’s training trajectory
through an iterative learning control (ILC) method. To obtain better rehabilitation effect, a patient will typically be required to
practice a reference posture for many times, while most of active training methods can hardly keep the patients training with
correct posture. Instead of the conventional ILC strategy, an impedance-based iterative learning method is proposed to regulate
the impedance value dynamically and smartly which will help patients correct their posture gradually and perform better. To
facilitate impedance-based ILC, we propose two objectives. The first objective is to find the suitable values of impedance based
on the ILC scheme. The second objective is to search the moderate learning convergence speed and robustness in the iterative
domain. The simulation and experimental results demonstrate that the performance of trajectory tracking will be improved
greatly via the proposed algorithm.

1. Introduction

Stroke has been the third major cause of permanent disability
or death around the world. According to statistics, in China,
the incidence of stroke is 1.82%; up to 10.36 million adults,
over 40 years of ages, suffer stroke [1]. Retraining movement
is a critical part of recovery for the stroke patients, and walk-
ing and other standing dynamic balance activities are typi-
cally very high on the list of goals for the patients [2]. To
make stroke patients regain motion ability and release the
burden of physical therapists, many lower limb rehabilitation
robots are developed. Among them, Lokomat is a typical rep-
resentative, which is a kind of external skeletal type lower
limb rehabilitation robot, taking hybrid force-position con-
trol strategy, is patient-driven, and enables the patient to
accomplish free walking movement [3]. The KineAssist is a
wheeled mobile robot for gait and balance training, which
allows patients to walk freely and provides balance assistance
and weight support [4, 5]. Both of them are highly praised
and have achieved great results in the rehabilitation field.
Gait training is an important section of lower rehabilitation

robot, which attracts a lot of researcher’s attention. On the
opposite, although squatting training is an indispensable
section, it is rarely mentioned. Instead of focusing on gait
training, we put emphasis on squatting training in this paper,
necessary for improving hip and thigh power production [6].
The underlying problem is that it is hard to adapt to different
patients and ensure the accuracy of tracking and the safety
and comfort of patients and, meanwhile, give necessary assis-
tance to patients.

During rehabilitation training, the robots have to have
direct interaction with humans and safety is a critical con-
cern. To ensure the robot’s safe interaction with an unknown
environment, a form of impedance control was first raised by
Hogan in 1985, based on the idea that neither position nor
force should be controlled, but rather the dynamic relation
between the two [7]. A patient-driven training strategy
requires interactive robot-patient control and is mostly
achieved by the use of impedance control. Various researches
on impedance control for rehabilitation robots have been
studied [8–10]. By adjusting the impedance of the robotic
rehabilitation devices, the behavior of the robot can be
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adjusted from very stiff to very compliant. The robot behav-
ior can be made more compliant if the patient is slightly
impaired so that the patient can contribute more voluntary
effort in the robotic training process. Similarly, the robot
behavior can be made stiffer if the patient is unable to achieve
the required degree of motion during the robotic training
process [11]. Using impedance control is helpful to improve
the security and comfort of human-robot interaction, a strat-
egy widely proved.

Iterative learning control (ILC) has become one of the
most effective control methodologies in dealing with
repeated tracking control problems or periodic disturbance
rejection problems [12]. The notion of ILC is that the perfor-
mance of a system that executes the same task multiple times
can be improved by learning from previous execution (trials)
[13]. Meanwhile, many ILC algorithms have been proposed
to design a purely feedforward action depending solely on
the previous control performance [14–17]. The iterative
learning controller, a feedforward controller, generates an
improved tracking signal over a specific trajectory utilizing
past control results to the plant. Since modeling errors are
unavoidable, the real ILC system may violate its convergence
condition, although the ILC satisfies the condition for a nom-
inal plant model [18, 19]. In practice, a robust control is usu-
ally imported, along with the ILC, for system robustness
enhancement and better tracking performance [20, 21].
Ahead of the application of ILC, a feedback controller is typ-
ically implemented to act as a prestabilizer which will ensure
the closed-loop stability and suppress exogenous disturbance
by learning from previous iterations, while the iterative learn-
ing controller provides improved tracking performance over
a specific trajectory utilizing past control results. In the past
decade, ILC is introduced into rehabilitation field owing to
its learning characteristic. Due to the characteristic of gait
motions, Joonbum andMasayoshi proposed a gait rehabilita-
tion strategy that the assistive torque in the current stride is
calculated based on the information from the previous
strides, inspired by an iterative learning algorithm [22].
RUPERT, an exoskeleton robot used for assisting rehabilita-
tion of arm functions, which has a closed-loop controller
combining a PID-based feedback controller and an iterative
learning controller based on a feedforward controller, is
designed to assist in repetitive therapy tasks related to activ-
ities of daily living [23]. Recently, Freeman et al. developed
an FES-based upper limb rehabilitation system which can
adjust FES signals according to subject’s tracking perfor-
mance through ILC [24]. Joonbum andMasayoshi developed
wearable lower limb rehabilitation robots for gait training
which will provide smart assistive torque for patients with
the help of ILC. Both RUPERT and Freeman et al.’s robots
put emphasis on upper limb rehabilitation and combined a
feedback controller with ILC to make the system stable.

In this paper, an impedance-based ILC method is
proposed and analyzed for the squatting training of stroke
patients in the iterative domain and time domain. The
method is to correct patient’s training trajectory by integrat-
ing the ILC scheme with the value of impedance. Specifically,
the correction of the training trajectory input for the rehabil-
itation robot controller is derived by learning the proper

impedance value via ILC. By learning the past trajectory
tracking information, the proposed ILC method is able to
gradually improve the performance of trajectory tracking,
and specific training condition of different individuals can
be obtained. The convergence and effectiveness of the
proposed methods are validated through the results of case
studies via simulations and the experiments.

2. Lower Limb Rehabilitation Robot System
Description

2.1. Hardware Description. As shown in Figure 1, the robot
system is mainly composed of omnidirectional mobile chas-
sis (OMC) and body weight support (BWS) system. The
OMC consists of two passive wheels and two active wheels,
the former ones are installed in the front of the robot which
can move in all directions and the latter ones are laid out in
the back of the robot. Each active wheel is driven by two inde-
pendent servo motors, one for driving and the other one is
used for steering. Encoders are mounted on each motor shaft
to record the rotate angle through which the position of the
robot can be calculated. Actually, patients would be divided
into different groups taking into account their disability level.
The disability level of patients suffering from stroke impair-
ments varies from person to person and also for the same
patient during the course of rehabilitation. Patients in high
disability level may unable to stand up, not to speak of train-
ing, under normal gravity environment. Hence, the BWS sys-
tem is designed to provide 0–100% body weight support,
which can relieve the burden of patient’s legs. Furthermore,
the BWS system contains 3-DOF (marked as ①, ②, and ③

in Figure 1) to satisfy the demands of free walking and each
DOF can be restricted by the locking mechanism. The BWS
system is installed on the guide rail, driven by an indepen-
dent servo motor, which makes it to have one more transla-
tional DOF in vertical direction.

At the end of the BWS system, two six-axis force/torque
sensors, manufactured by ADI, are installed to record the

z
1 x

0 y
0

z
0

y
1

x
1

m
1

f

2

3

Figure 1: Overview of the rehabilitation system.
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human-robot interaction force. Forces can be measured of up
to 200N applied in the horizontal plane with a resolution of
0.0122N. The human subjects will be required to wear a spe-
cially designed belt which is strapped on the force sensors
tightly. In this case, the end-effector of the robot and human
subject is almost overlapped, so we hypothesized that the
end-effector of the patient is the same to the robot’s. The
patient’s task is to repeat squatting according to a given tra-
jectory; in addition, the monitor will provide visual feedback
of the tracking performance during the training. In the track-
ing task, the robot’s job is to give the patient certain support,
to apply assistance during the tracking task, and to move the
patient’s position when necessary.

2.2. Modeling and Linearization. As shown in Figure 2, it is
the geometry of the human and robotic system. During the
tracking task, the robot needs to compensate the position of
X-direction and Z-direction when the subject squats. Since
the motion in Y-direction is unnecessary in this task, the
redundant DOF of BWS system are restricted by means of
the locking mechanism. Meanwhile, the position of the sub-
ject’s foot is taken as the origin of the coordinate system,
because it is almost fixed on the ground during the training.
It is assumed that the subject interacts with the robot by
applying a vector of forces and torques at point Q, the inter-
action point, where the forces and torques are measured by
two force sensors.

The combined human-robot interaction dynamic model
can be described as

M q q +V q, q q + G q = τd + τh, 1

where q, q, and q represent the vectors of robot’s position,
velocity, and acceleration, respectively. M is the system
mass matrix, V is a Coriolis matrix, and G is the gravita-
tional matrix. The matrix τh is the vector of interaction tor-
que of the human-robot system. The matrix τd represents
the vector of impedance, the dynamic relationship between
human and robot, used to guide the subject’s limbs on ref-
erence trajectory.

It is well known that accurate robot motion control
requires complex nonlinear controllers [25]. Considering
the complexity and uncertainty of modeling, it is difficult
to design the controllers. To facilitate the design of con-
troller, we linearized the nonlinear human-robot system
and described it as state-space representation [26]. The
general state-space representation of a linear system is
given as follows:

x = Ax + Bu

y = Cx,
2

where the term A = −M−1V , the term B = −M−1, and the term
C = diag 1 1 . The input term u t represents the torque sig-
nal, and the output term y t represents the velocity vector of
interaction point Q.

2.3. Trajectory Planning. As there is no specific reference tra-
jectory for tracking, an experiment is conducted by a healthy
subject to reveal the law of squatting trajectory. In this

procedure, the robot is set to following mode to respond to
the subject’s motion, and encoders’ data is stored in real time.
As shown in Figure 3, it is a diagram of squatting trajectory
generated by recorded position parameters. Although the
displayed trajectories shown in Figure 3(a) look confusing,
all of the trajectories are inside the safety zone. Different from
other trajectory tracking tasks, squatting training is very
possible to cause falling down or injury which indicates the
given trajectory for human subjects should not cross the
safety zone. To have a good knowledge of the variation of
each training trajectory, three dashes are picked from
Figure 3(a). We can see that the three dashes shown in
Figure 3(b) are irregular because the test subject’s motion is
optional and unrestrained. To make the tracking task easy,
the reference trajectory should be smooth and simple. So
the idea is that the given trajectory is generated according
to the test data; meanwhile, position deviation within a cer-
tain range is tolerated which will guarantee the compliance
during training.

As shown in Figure 4, it is a diagram of the human sub-
ject’s lower limbs. Points A and B represent two extreme
positions of training. L1, the distance from joint ankle to joint
knee, is the length of shank, and L2 is the length of thigh. The

human joint angle vector is θ = θ1 θ2
T , where θ1 and θ2 are

the joint angles of ankle and knee, respectively. It is found
that the training trajectory of subjects varies from person to
person while the variation of joint angles is similar. There-
fore, the kinematic formulation of squatting trajectory is
given as

qr = f θr , lr , 3

where qr is a vector that represents the reference training tra-
jectory, θr is a vector of the reference joint variables, and lr is
a vector of the kinematic parameters. Given that lr can be
measured in advance, the trajectory of the end-effector is
mainly determined by θr .

The disability level of stroke patients varies from person
to person; some patients may be impaired seriously, while
the others are impaired slightly. Therefore, taking into
account the different disability levels of patients, the time
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Figure 2: The geometry of the dual human and robotic system.
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taken, T, to travel along the given trajectory, takes a value
between 5 and 15 s. Besides, subjects will often be required
to track the same trajectory over 20 times. The main idea of
this paper is to correct the subjects’ posture according to
the reference trajectory and make the training process very
compliant and comfortable by modifying the term τd with
iterative learning method.

3. Impedance-Based Iterative Learning Control

3.1. Impedance Control. A widely used impedance model is
given as

τd = Kk qr − q + KB qr − q + KM qr − q 4

The terms KK = KK I, KB = KBI, and KM = KMI are the
gain matrices, where I is the identity matrix. If we hope the
subject moves freely along the trajectory, the gain Kk is often
set as 0 and the values of KB and KM are assumed to be pos-
itive values to create a natural feel. We can let the robot
moves the patient’s position along predefined trajectories
with setting Kk = KkI with the scalar Kk > 0. The higher the
gain Kk is, the stiffer the system is and vice versa. Therefore,
the stiff and compliant characteristic is mainly determined by
the gain Kk.

As mentioned above, the robot’s job is to give subjects
help when necessary and guarantee a safe interaction. How
the impedance gain is set is a tough task. Adaptive impedance
control of the rehabilitation robot is a well-established
method to modify the robotic assistance in gait training
based on the concept of setting the robotic impedance high
(low compliance) if little effort or participation is detected
and vice versa [11]. However, high impedance will increase
the robotic assistance in order to guide the subject’s limbs
on reference trajectory which will make the subjects uncom-
fortable and more likely to fall down. Different from adaptive
impedance control method, ILC can reduce position error
gradually. The object of this paper is to develop a trajectory
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corrector that can correct the subject’s posture through ILC
and improve the subject’s tracking performance.

3.2. Iterative Learning Impedance. Before the discussion of
our method, a brief introduction to ILC is presented. As
shown in Figure 5, the formulation of ILC is given as follows.
Consider the following linear discrete time-invariant system,
that is,

x t + 1 = Ax t + Bu t

y t = Cx t ,
5

where t is the time index, x t ∈ Rn, u t ∈ Rr , and y t ∈ Rr

represent the state, control input, and output, respectively.
The vectors A, B, andC are matrices with corresponding
dimensions. The control target is to find a suitable input ui
(denoted by ur) which produces yi that precisely follows a
reference trajectory yr . The integrator, or I term, is rarely
used for learning function because ILC has a natural integra-
tor action from one trial to the next [13]. Therefore, the PD-
type learning law can be given as

ui+1 t = ui t + kpei t + kdei t , 6

where kp is the proportional gain, kd is the derivative gain,

and ei = yr − yi is the tracking error. From (4) and (6), the
impedance learning law can be given as

τdi+1 t = τdi t + Γ ei t − Rei t , 7

where Γ and R are the learning gain matrix.

3.3. Robustness Analysis. The robustness will be discussed as
follows. In our case, the human subject will return to the
starting point at the end of the tracking cycle so the initial
state condition remains the same at each iteration. Then,
the output trajectory can be estimated in terms of the desired
output trajectory and the initial state error.

Theorem 1: The initial condition at each iteration is always
the same; that is, xi 0 = x0.

If
0 < ∥I − CBΓ∥∞ ≤ ρ < 1, 8

the update law (6) ensures that

lim
i→∞

yi t = yd t + eRtC x0 − xd 0 , 9

where τd is simplified as y.

Proof. Let ua t be a control input

yd t + eRtC x0 − xd 0 = CeAtx0 + C
t

0

eA t−θ Bua θ dθ

10

The problem is equivalent to prove lim
i→∞

ui t = ua t .

We define

δui t = ua t − ui t 11

The main idea of the proof is to show that
∥δui+1 t ∥λ ≤ ρ0∥δui t ∥λ, where 0 ≤ ρ0 < 1.

From (4) and (9), we obtain

δui+1 t = ua t − ui t − Γ yd t − yi t

= Ir − CBΓ δui t − Γ CA − RC
t

0

eA t−θ Bδui θ dθ

12

Taking the norm · ∞ on both sides of (11), we have

δui+1 t
∞
≤ Ir − CBΓ

∞
· δui t ∞

+ Γ CA − RC
∞

t

0

eA t−θ

∞
B

∞
δui θ ∞

dθ

= ρ δui t ∞
+ h

t

0

ea t−θ δui θ ∞
dθ,

13

where h ≜ Γ CA − RC ∞ · B ∞, and a ≜ A ∞.

By multiplying both sides of (12) by e−λt and taking the
norm · λ,

δui+1 t λ ≤ max
0≤t≤T

e−λt δui+1 t
∞

≤ ρ δui t λ + hmax
0≤t≤T

t

0

e a−λ t−θ max
0≤t≤T

e−λθ δui t ∞
dθ

= ρ + h
1 − e a−λ T

λ − a
δui t λ

14

Assume that 0 ≤ ρ < 1, it is possible to choose λ suffi-
ciently large to have

ρ0 = ρ + h
1 − e a−λ T

λ − a
< 1 15

Thus,

lim
i→∞

δui t λ = 0 16
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According to the definition of the norm · λ, these
convergence are uniform on t ∈ 0, T . Therefore,
lim
i→∞

ui t = ua t uniformly on 0, T .

From (10), (11), (12), (13), (14), (15), and (16), we have
lim
i→∞

yi t = yd t + eRtC x0 − xd 0 .

Note that, in the proof, the initial state condition of each
iteration remains the same. Therefore, the resulting output
trajectory can be exactly estimated by the design gain R and
the initial state error x0 − xd 0 . From (9), if R = 0, the
converged output trajectory follows the desired trajectory
with the offset of the initial error, and if R is chosen such that
λ R < 0, the learned control input enables the system to
possess an asymptotic tracking capability even in the face of
nonzero initial error.

4. Simulation and Experiment Results

As shown in Figure 6, it is the schematic block of the pro-
posed scheme. The position controller in the overall iterative
learning impedance scheme generates the impedance based
on the trajectory tracking errors, but does not consider the
contribution of human subjects’ active force. The ILC block
is used to store the input impedance signal in the previous
run which will be used in the next run after modified. Thus,
the impedance of the robot will, in turn, increase or decrease
where the human subject deviates or not. Under the circum-
stances, the human subjects will move freely in the prelimi-
nary stage; then, with the help of the controller, they will
get help when they deviate from the predefined trajectory.
The more mistakes, the more impedance and vice versa.

The dynamic model is applied in the simulation, and the
geometric parameters of human subject are shown in Table 1.
The simulation is conducted to validate the proposed algo-
rithm on a MATLAB R2014a with a simulation toolbox.
Then, the experiments are complemented on the rehabilita-
tion robot for validating the proposed algorithm.

4.1. Simulation Studies. The parameters of the human-robot
system in simulation are

A =
−0 1695 0

0 −0 1
,

B =
−0 0477 0

0 3

17

The learning gains of the impedance controller are given
as follows:

Γ =
−10 0

0 0 5

R =
3 0

0 2
,

18

where the term Γ and the term R satisfy the convergence
condition (8).

In the simulation, the impedance gains are set to make
the system compliant and the convergence of the proposed
algorithm is verified. Since it is hard to predict the sub-
ject’s active force, the active force is taken as a repeated

MEM

MEM

Controller

+
−

+
+ �di+1

F

�
d
i

�
h

q
i+1

q
i

q
r

e
i

L

Patient

Robot
dynamics

Figure 6: Schematic block of the proposed scheme.

Table 1: Geometric parameters of human subject.

Gender
Age

(years)
Leg length

(m)
Thigh

length (m)
Height
(m)

Body
weight (kg)

Male 22 0.42 0.51 1.71 72
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Figure 7: The variation of joint angle in simulation.
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disturbance noise 0 5sin 3 14t in order to verify the effec-
tiveness of the proposed control scheme in an actual work
environment. The simulation results are shown in
Figures 7 and 8, and the potential problems are discussed
in the following.

As shown in Figure 7, it is a diagram of the variation of
joint angle calculated by the reverse solution of (1). Although
the comparison between desired trajectory and tracking
trajectory reflects the quality of the training directly, the
tracking performance of joint angle is more important which
can provide us more training details especially for doctors.
The blue dash, green dash, and black dash represent the
variation of joint angle in different iterations. We can learn
that the proposed method shows the ability of rejecting a
repeating disturbance.

As shown in Figure 8, the tracking performance of
reference trajectory and tracking trajectory is compared.
We can learn that the tracking errors converge to zero with
the increase of iteration.

4.2. Experimental Results. As mentioned above, the conver-
gence condition and robustness of the proposed algorithm
are proved. Further, we apply the proposed algorithm on
the lower limb rehabilitation robot to verify its actual perfor-
mance. In experiment, the test subject was required to track
the reference trajectory 10 times whose geometric parameters
are shown in Table 1. Body weight support was not used dur-
ing the experiments as the test subject was not suffering from
stroke or neurologic impairments. Experiments with healthy
subject were conducted to evaluate if the iterative learning
impedance scheme could modify the robotic assistance based
on the past tracking information.

As shown in Figure 9, it is a diagram of the variation of
joint angle in the experiment. During the first several trials,
the test subject’s tracking performance of joint angle is not
good which indicates that his posture is not correct. With
the increase of iteration, the variation of test subject’s joint
angle approximately approaches to the reference one, which
indicates that the subject’s training performance is gradually
improved under the assistance of the robot.

As shown in Figure 10, it is a diagram of the root mean
square (RMS) error corresponding to the proposed method
which converges to approximately 8mm. Considering that
the squatting training is a relatively tough task for the subject,
error within 15mm is acceptable. It can be seen that the error
reduces rapidly in the first several training cycles which indi-
cates the improvement in tracking accuracy that the PD-type
ILC schemes can provide.

As shown in Figure 11, the reference trajectory and track-
ing trajectory of the test subject are compared indicating that
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the test subject can almost track the reference trajectory accu-
rately in the 10th iteration.

5. Conclusion

In the paper, the method of iterative learning impedance has
been proposed to support training assistance and correct the
patient’s posture with the use of the lower limb rehabilitation
robot. The convergence condition of the proposed algorithm
is given, and the robustness to the parameter variables is ana-
lyzed. The simulation and experimental results show that
compliancy and assistance have been achieved with the pro-
posed iterative learning method. The most of current rehabil-
itation robot shows the same problem that it can hardly have
both compliancy and robotic assistance. Although many
robotic orthosis using impedance control can make the sub-
ject track the reference trajectory accurately, many subjects
are easy to get into a situation that their limbs are driven by
the robot passively. The main idea proposed in this paper
introduced a learning impedance method, which can give
subjects certain support where they underperform and make
them train voluntarily in most training period. The system
will enhance the impedance where the subjects deviate by
the learning of last operation information. Considering the
different geometric parameters of subjects, we proposed a
method to generate the training trajectory easily with the
absence of any training experiments. Although ILC algo-
rithms have moved beyond these relatively simple structure
types and now encompass as wide range of plant models
and control law structures, the approach taken here was
to apply ILC laws with the simplest structure which could
meet the necessary performance requirement. Future works
will be extended to the use of different structure types of
ILC algorithms such as considering the whole past opera-
tion information or taking current iteration structure which
will learn the current iteration error by introducing a feed-
back controller.
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