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Abstract—The paper focuses on industrial interaction robotics
tasks, investigating a control approach involving multiples learn-
ing levels for training the manipulator to execute a repetitive
(partially) changeable task, accurately controlling the interaction.
Based on compliance control, the proposed approach consists in
two main control levels: i) iterative friction learning compensation
controller with reinforcement and ii) iterative force-tracking
learning controller with reinforcement. The learning algorithms
relies on the iterative learning and reinforcement learning pro-
cedures to automatize the controllers parameters tuning. The
proposed procedure has been applied to an automotive industrial
assembly task. A standard industrial UR 10 Universal Robot has
been used, equipped by a compliant pneumatic gripper and a
force/torque sensor at the robot end-effector.

Index Terms—Learning Procedures, Dynamics Compensation,
Interaction Control, Impedance Control.

I. INTRODUCTION

Nowadays, light-weitght robotics applications are increasingly

devoted to improve automation and flexibility in high-accuracy

industrial autonomous interaction tasks [1]. Moreover, many

markets demands are commonly requiring customizable prod-

ucts with common features [2]. To achieve high production

performance, the robotic system has to automatically adapt its

behavior to (partially) new products/environments. In fact, it is

not reasonable for a human operator to manually set the robot

behaviour for each target task, i.e., a directly teaching the ma-

nipulator. Target industrial interaction applications with high-

accuracy requirements [3] involve i) an interaction controller

with ii) robot dynamics compensation and iii) a force tacking

control. While interaction controllers can be implemented by

standard compliance controllers [4], robot dynamics compen-

sation and force tacking control require an analysis of both the

specific robot modeling and interaction properties in the target

executed task. Specifically, robot dynamics compensation is

mostly affected by the identification of the joints friction [5]

(function of the robot hardware, loads on joints, temperature,

etc.). Force tacking control is mostly affected by the interacting

environment compliance that affects the stability and the

control performance of the global system controlled robot -

interacting environment [6]. Both the controllers tuning can

be automatized by applying the machine learning techniques,

avoiding complex estimation/modeling and/or a direct human

manual controllers tuning.
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A. Learning Procedures in Industrial Robotics Applications

To adapt the manipulator behavior to a new application,

learning algorithms are increasingly applied [7]. Three basic

classes of learning paradigms can be identified: supervised

learning, unsupervised learning and reinforcement learning

[8]. Supervised learning is performed under the supervision of

an external teacher [9]. Unsupervised learning is performed in

a self-organized manner in that no external teacher or critic

is required to guide synaptic changes in the network [10].

Reinforcement learning involves the use of a critic that evolves

through a trial-and-error process [11]. Considering interaction

tasks and the related complexity, the reinforcement learning

procedures represent a particularly suitable solution to imple-

ment adaptive controllers capable to tune the robot behavior in

unknown scenarios (i.e., without a specific modeling), defining

simple policies to achieve a target task goal (i.e., force tracking

capabilities with force overshoots avoidance).

B. Friction Modeling and Compensation & Learning

Many efforts have been made on the friction modeling (also

considering temperature effects) [12], identification and com-

pensation [13] to improve the controlled robot performance

[14]. However, such common procedure takes a lot of time

to execute experiments and for the data analysis. Moreover,

considering adaptive controllers [15] to be robust to friction

parameters uncertainties, the robot control bandwidth has

to be limited. Learning procedure has been also used to

identify and compensate for friction effects [16]. However,

such methods are very complex and not easy to implement

in a real application. In fact, they have only been applied

in simulation scenarios or on 2 degrees of freedom systems

by performing simplified tasks, not related to real complex

industrial scenarios.

Fig. 1: Experimental set-up. A Universal Robot UR 10 involved in
the assembly of the target automotive component.
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C. Interaction Control & Learning

Considering compliance controllers, impedance control [4]

is particularly effective in order to interact with compliant

environments. Learning procedures have also been developed

in order to achieve a compliant behavior of the controlled

manipulator without any identified model [17]. Learning so-

lutions have also been designed in order to physically teach

a task to the robot [18] or to cooperate with humans during

interaction tasks [19]. To perform a tracking of a target force

based on the impedance control and preserving the properties

of the impedance behavior, many works have been presented,

adapting the impedance control parameters based on the inter-

action force. Such works can be divided in two main families:

class (a) force-position tracking impedance controllers and

class (b) variable impedance controllers [20]. Both the control

class (a) and (b) require the definition of a specific interaction

model in order to achieve high force-tracking performance,

being very related to a target interaction scenario. Some works

are also applying learning approaches to establish a stable

contact during interaction tasks execution [21], [22], [23],

[24]. However, the most of these approaches are only using

such learning approaches to define a compliant behavior of

the manipulator, without taking into account force-tracking

capabilites and the important problem of force overshoots is

not considered (critical issue when the robot is manipulating

a fragile-delicate component). Additionally, many works are

only proposing simulation results (proposed approaches are

too difficult to be implemented on real robots).

D. Paper Contribution

From state-of-the-art methods analysis no approaches for the

automation of (partially) unknown real complex industrial

interaction tasks (combining learning methodologies at both

low and high control level) for the optimization of the robot

behaviour have been found. The main issue is related to the

force overshoots avoidance (critical for interaction tasks). In

order to automatize the execution of a repetitive (partially)

changeable interaction task, the proposed compliance control

based approach consists in two main control levels: an i) itera-

tive friction learning algorithm with reinforcement and ii) an

iterative force tracking learning algorithm with reinforcement.

Following the approach described in [21], the main idea of

this paper is to combine iterative learning controllers [25] with

the reinforcement learning procedures. Therefore, a policy that

evolves through a trial-and-error process is defined for both

the learning procedures, guiding the evolution of each control

parameter. More in details, the iterative friction learning algo-

rithm allows to improve the dynamics compensation low level

control. The main purpose of the method is to define a friction

parameter learning procedure for manipulators involved in a

real cluttered industrial environment, in which the motion

of the robot is limited in a small region of its working

space. In fact, lightweight manipulators might be involved in

many different applications (e.g., with changeable payload)

and might be moved in different locations inside the plant

with different limitations on their working space. Therefore,

the definition of a task-dependent friction parameters learning

procedure (firstly performed in free-space, and then executed

at each repetition of the task to indirectly take into account

modifications of the friction parameters related to any change

affecting the task execution - e.g., joint temperature) in relation

to a specific Cartesian task allows to overcome the definition of

general optimized identification joint trajectories. The iterative

force tracking learning algorithm allows to improve the force-

tracking high level control. The proposed method is defined

to iteratively learn the proportional force-tracking control gain

and the Cartesian damping gain to achieve an overdamped

dynamics of the coupled controlled robot - environment system

without any estimation of the environment parameters. The

proposed procedure has been applied to an industrial assembly

task (compliant automotive component assembly, Figure 1).

A standard industrial UR 10 Universal Robot has been used,

equipped by a force/torque sensor at the robot end-effector.

Experimental results show the obtained performance in both

the proposed approaches, improving the friction compensation

(with respect to the local identification described in Section

VI) and guaranteeing force overshoots free tracking capabili-

ties.

II. ROBOT MODELING AND CARTESIAN IMPEDANCE

CONTROL

To design and implement the proposed learning procedure on

the UR 10 Universal Robot manipulator, the global dynamics

identification and compensation is needed, together with the

Cartesian impedance control. Many works have covered the

robot dynamic parameters identification procedure [26]. Hav-

ing the following manipulator dynamics [27]:

B(q)q̈+C(q, q̇)+g(q)+h f ,q(q̇) = τττ−J(q)T hext (1)

where, B(q) is the robot inertia matrix, C(q, q̇) is the robot

Coriolis vector, g(q) is the robot gravitational vector, h f ,q(q̇)
is the robot joint friction vector, q is the robot joint position

vector, J(q) is the robot Jacobian matrix, and hext is the robot

external force/torque vector, τττ is the robot joint torque vector,

the parameters to be identified are the link masses (l parame-

ters, where l is the number of robot links) and centers of mass

(3 × l parameters) parameters, the inertia parameters (9 × l

parameters) and the friction parameters (m × l parameters,

where m is the number of friction parameters from the friction

model) - See Section VI-A.

Based on the identified dynamics in (1) it is possible to design

the Cartesian impedance control [27] (as described in Section

VI-B), obtaining an equivalent mass-spring-damper dynamic

behavior of the controlled manipulator:

Mẍ+Dẋ+K∆x = hext (2)

where M, D, K are the impedance mass, stiffness and damping

matrices composed by both the translational and rotational

parts, and ∆x, ẋ, ẍ are, respectively, the Cartesian position,

velocity and acceleration of the controlled manipulator com-

posed by both the translational and rotational parts. On the

basis of the developed controller, the learning algorithm for the

friction compensation optimization and for the force-tracking

optimization can be designed.
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III. FRICTION PARAMETERS ITERATIVE LEARNING

PROCEDURE WITH REINFORCEMENT

A. Iterative Learning Procedure with Reinforcement Design

In the following, an iterative learning controller with rein-

forcement is defined. The policy guiding the whole procedure

is described, relying on the robot states (the Cartesian po-

sitions/orientations) and on a target reward function to track

for procedure improvements in the task execution, allowing

to iterative learn the friction parameters Fp independently for

each joint, on the basis of a defined friction model h f ,q(q̇).
In order to define the target policy for the friction parame-

ters learning, the error function E is introduced. Such error

function is based on the calculation of the Cartesian position

tracking error (obtained by comparing the target action exe-

cution xd with the target system state x):

∆x = x−xd (3)

(3) is used to evaluate the equivalent Cartesian friction

force/torque matrix h f ,c. In fact, the friction deforms the robot

Cartesian trajectory during the task execution equivalently to

the external force/torque vector:

h f ,c =−K∆x (4)

The Cartesian position tracking error (3) is multiplied by the

impedance control stiffness matrix K, returning an estimation

of the friction action in the Cartesian space. To evaluate the

friction torque to be compensated at the joint side, Cartesian

friction force/torque vector h f ,c can be projected in the joint

space through the Jacobian matrix J(q). The error matrix E

can be expressed as:

E = JT (q)h f ,c (5)

The error matrix E has size [l,T ] (where l is the number of

robot joints, T is the total samples of a target reinforcement

learning procedure iteration). The error matrix E is calculated

Fig. 2: Friction learning schema is detailed, highlighting the use of
the updated friction parameters in the control law.

at each iteration k (and overwritten) of the proposed learning

procedure. The definition of the error matrix E in (5) allows

a faster update of the friction parameters related to the most

excited joints, based on the target task directions. Unexcited

task direction results in a joint contribution to the friction

parameters update that −→ 0.

Such estimation of the friction torques at the joint level

can be used to define the reinforcement signal R as the

root mean square (rms) of (5). In such a way, each joint

friction parameters are independently updated through the

reinforcement learning iterations based on:

R(i, k) := rms (E(i, :)) =

√

1

T

T

∑
t=0

E(i, :)2 (6)

Reinforcement signal R has size [l,n] (where n is the max-

imum number of iterations of the learning procedure). The

learning direction matrix S for the actual learning iteration is

evaluated as follows:

S := sign(R(i, k)−R(i, k−1)) (7)

The learning direction matrix S has size [l,1]. The learning

direction matrix is calculated at each iteration k (and over-

written) of the proposed learning procedure. Therefore, the

learning matrix L is updated, taking into account the learning

gain matrix G:

L := diag(R(:, k))diag(S) G (8)

The learning matrix L has size [l,m] (where m is the num-

ber of friction parameters for each joint, depending on the

target friction model). The learning matrix is calculated at

each iteration k (and overwritten) of the proposed learning

procedure. Friction parameters Fp can, therefore, be updated

at each iteration (and overwritten) on the basis of the following

policy:
{

i f k = 0 Fp = F0
p

i f k > 0 Fp ← Fp−L
(9)

Friction parameters Fp has size [l,m]. F0
p are the initialized

friction parameters at iteration k = 0. It has to be underline

that in the proposed formulation the friction parameters Fp on

the left side of the second equation are the updated parameters

at the k iteration on the basis of the previously calculated

parameters Fp on the right side at iteration k− 1. Updated

friction parameters are used in (1) to calculate h f ,q(q̇) in each

k iteration of the target task execution. Such procedure allows

to test the updated friction parameters and to calculate the next

update parameters set.

A global reward function P can be defined in order to eval-

uate the global improvements during the learning procedure

execution for each iteration:

P(k) :=
1

l

l

∑
i=1

R(i, k) (10)

Figure (2) synthesizes the described learning procedure for

the friction parameters update. The internal on-line loop is

active during the task execution and it allows to collect the

required data at each time step t (i.e., the Cartesian position
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tracking error ∆x and the robot Jacobian J) in order to

calculate the error function E. The external off-line loop

allows to evaluate the defined policy in (9) and the reward

function P guiding the evolution of the learned friction

parameters (and, consequently, of the friction compensation).

The procedure succeeds when the global reward function is

lower than the target tolerance ρ. The procedure stops if the

maximum number of iterations n is reached. If instabilities

or divergence arise in the k iteration (i.e., overcompensated

friction), learning gain matrix G is reduced by a factor

λ and the iteration k + 1 will use Fp = λFp (where Fp

on the right side are the friction parameters calculated in

the k − 1 iteration). In such a way, a divergence of the

procedure is stopped and the algorithm is able to continue.

An additional condition is included in order to stop the

procedure after a number σ of consecutive iterations without

any improving in the friction compensation with respect to

the minimum calculated value of P(k). The optimal set of

friction parameters (i.e., minimizing (10)) will be selected at

the end of the procedure.

B. Iterative Learning Procedure with Reinforcement Conver-

gence and Stability

Since the proposed algorithm is not based on classical rein-

forcement learning paradigms, its convergence and stability

can be shown as in the following. Considering the robot

dynamics in (1), considering that no external forces are applied

to the manipulator (i.e., hext = 0, and considering that the

gravity and Coriolis terms (g(q) and C(q, q̇)) are perfectly

compensated by the control torque, equation (1) can be written

as follows:

q̈ = B(q)−1
(

B(q)τimp +h f ,q(q̇)−h f ,q(q̇)
)

(11)

where τimp results from the impedance control (VI-B) and

h f ,q(q̇) is related to the friction compensation torque on the

basis of the learned friction parameters in (9) at the k iteration

of the learning process.

Considering the exponential friction model characterized by

four parameters for each joint (where ηηη = [ηηη1,ηηη2,ηηη3,ηηη4]
is the real friction parameters matrix with size [l,m], same

model used in the experimental results Section V-A), h f ,q(q̇)
at iteration k can be written as follows:

h f ,q(q̇) = diag(Fp1
)q̇

+ sign(q̇)
(

diag(Fp2
)−diag(Fp3

)
)

e−diag(Fp4)q̇
(12)

where Fp = F0
p +∑k diag(S) G = [Fp1

,Fp2
,Fp3

,Fp4
] is the

learned friction parameters matrix at k = k.

Substituting (12) in (11):

q̈ = B(q)−1(B(q)τimp +∆Fp,1q̇

+ sign(q̇)(∆Fp,2−∆Fp,3)e−∆Fp,4q̇)
(13)

where ∆Fp,1 = diag(Fp1
) − diag(ηηη1), ∆Fp,2 =

diag(Fp2
) − diag(ηηη2), ∆Fp,3 = diag(Fp3

) − diag(ηηη3),

∆Fp,4 = diag(Fp4
)−diag(ηηη4).

By imposing that the acceleration |q̈| < q̈max is limited (the

control action is stable, i.e., the estimation of the friction

parameters is converging), it is clear from (13) that the

initialization of the friction F0
p and the learning gain matrix

G are affecting the convergence of the proposed algorithm.

While F0
p = 0 can be imposed, the selection of the learning

gain matrix G is crucial in order to define the convergence

and the velocity of the evolution of the learned friction

parameters. Therefore, the proposed solution for arising

instabilities/divergence limiting G allows to select reasonable

values to guarantee a required sensibility of the method

during the learning task. Guidelines for the definition of such

learning gain matrix are givenn in Section V-A. It has to be

underlined that the stability of the method is valid for any

friction model.

Remark 1.While the described methods takes as an input

a Cartesian target trajectory, the methodology projects the

Cartesian quantities in the joint space. Therefore, the method

is valid for any Cartesian trajectory required by a target task.

IV. ITERATIVE LEARNING PROCEDURE WITH

REINFORCEMENT APPLIED TO FORCE-TRACKING

IMPEDANCE CONTROL TUNING

As described in [28], the impedance controlled robot - envi-

ronment interaction can be modeled as follows:

Mẍ+(D+De) ẋ+(K+Ke) x = Kxd (14)

where De is the interacting environment damping, and Ke is

the interacting environment stiffness. Such equation defines

the dynamics of the coupled controlled robot - interacting

environment and it is used to develop the proposed control

strategy for the force-tracking application.

Since the Cartesian impedance control decouples the dynamics

of the controlled manipulator and under the assumption that

only small rotations are allowed in the task execution (as in

many industrial tasks, such as polishing, assembly, disassem-

bly tasks), it is possible to consider only one translational DoF

to design the reinforcement learning based procedure. The

algorithm can be extended to all the cartesian translational

DoFs without loss of generality.

The impedance control set-point xd can be on-line calculated

to track a target force f d . The simplest impedance control

set-point definition results in:

xd = x0
e +GpK−1 f d−GdK−1ẋ (15)

x0
e is the equilibrium position of the target environment.

The force-tracking control gain Gp allows to perform the force

tracking task in the presence of compliance in the interacting

environment. In fact, imposing Gp = 1 and substituting (15)

in (14), the steady state robot position results in:

x =
f d

K +Ke

Considering an infinite rigid equivalent interacting elastic

system (i.e., Ke → 0) and x0
e = 0 the measured force at the
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robot end-effector f = −K(x− xd) → f d since x→ 0, while

considering a compliant equivalent interacting elastic system

(i.e., Ke = Ke) the measured force at the robot end-effector

f = −K(x− xd) = f d− K f d

K +Ke

< f d .

The additional damping control gain Gd allows to in-

crease the coupled system damping, achieving the critically-

dampend/overdamped behavior. To avoid any force overshoot

during the task execution, the additional damping gain Gd

parameter has to be properly shaped, satisfying (see [20]):

(D+De +Gd)
2−4M(K +Ke)≥ 0 (16)

Therefore, to avoid any force overshoot during the task exe-

cution while tracking a target force to achieve a target goal,

the force-tracking control gain Gp has be properly imposed to

compensate for any elasticity of the interacting environment

and the additional damping gain Gd has to be properly shaped

to obtain a critically-damped/overdamped coupled system

(14). To face such problem in a (partially) unknown scenario,

the learning procedure on the control gain Gp and on the

additional damping gain Gd parameters is described in the

following.

1) Force-Tracking Control Gain Gp Iterative Learning Pro-

cedure with Reinforcement: To avoid any estimation of the

environment parameters {Ke, De} (particularly critical in com-

plex industrial scenarios such as the EuRoC Project, challenge

1, benchmarking task [29]) an automatic tuning of the control

gain Gp allows to proper track the target force f d .

The proposed iterative learning controller with reinforcement

is defined to adapt the force-tracking control gain Gp. The

policy guiding the whole procedure is described, relying on

the robot states (the measured Cartesian interaction force

at the steady state fs) and on a target reward function to

track for procedure improvements in the task execution. The

reinforcement signal RGp can be defined as:

RGp =
f d

fs

−1 (17)

The force tracking control gain Gp can be, therefore, updated

for each iteration through the following policy on the basis of

the reinforcement signal RGp :

Gp = Gp +GGpRGp (18)

where GGp is the reinforcement gain to speedup the learning

procedure. Therefore, the force-tracking control gain Gp can

be iteratively updated to track the target interaction force. A

global reward function PGp can be defined in order to eval-

uate the global improvements during the learning procedure

execution for each iteration:

PGp(k) := ( f d− fs)/ f d (19)

The force-tracking control gain Gp is not affecting the stability

of the system (see (14), (15)) since it has constant value during

the task execution.

2) Damping D Parameter Iterative Learning Procedure

with Reinforcement: Since no estimates of the environment

parameters {Ke, De} are available to analytically impose the

additional damping gain Gd in (16), such control gain has to

be iteratively learned. The additional damping gain Gd can be

written as:

Gd = 2ξM
√

K/M (20)

where ξ is the additional damping ratio. On-line calculating ξc

(coupled damping ratio of (14)) by the logarithmic decrement

methodology [30] (measuring consecutive force picks f 1
p , f 2

p ):

ξc =
δ√

δ2 +4π2
(21)

where δ = log
(

f 1
p/ f 2

p

)

, the proposed iterative learning con-

troller with reinforcement is defined to adapt the additional

damping gain Gd . The policy guiding the update of the

additional damping ratio ξ is described, relying on the robot

states (the measured Cartesian interaction force) and on a

target reward function to track for procedure improvements in

the task execution. A reinforcement signal Rξ can be defined

as:

Rξ = 1−ξc (22)

The additional damping ratio ξ can be, therefore, updated for

each iteration (to calculate the additional damping gain Gd

as in (20)) through the following policy on the basis of the

reinforcement signal Rξ:

ξ = ξ+Gξ Rξ (23)

where Gξ is the reinforcement gain to speedup the learning

procedure. A global reward function Pξ can be defined in

order to evaluate the global improvements during the learning

procedure execution for each iteration:

Pξ(k) := ( f d− fmax)/ f d (24)

where fmax is the maximum measured force during the task

execution. The additional damping gain Gd is not affecting

the stability of the system (see (14), (15)) since it has constant

value during the task execution and it only increases the

closed-loop damping.

Remark 2.Since the impedance control decouples the

Cartesian DoFs, the method can be applied independently to

each interaction direction/multi-contact scenario.

Remark 3.Exit strategies from the proposed learning proce-

dure can be defined. A target force tracking reward function

value Pt
Gp

= ±0.1 is defined (i.e., the admissible difference

between equilibrium force and target force is 10%) and a

target damping reward function value Pt
ξ
= 0.05 is defined

(i.e., the admissible difference between maximum force and

target force is 5%). As soon as the reward functions (19),

(24) satisfy the exit conditions the learning procedure is

concluded. Achived performance are related to Pt
Gp

= ±0.05

and Pt
ξ
= 0.025 (limited by the control frequency and hardware

properties). Such performance are however comparable with

state-of-the-art methods in terms of bandwidth, tracking error,

steady state oscillations (amplitude < 0.5[N]) [20], [31].



1551-3203 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2017.2748236, IEEE

Transactions on Industrial Informatics

6

0 1 2 3 4 5 6 7 8

[s]

-8

-6

-4

-2

0

2

4

6

[m
]

×10-3

∆x(k = 10)
∆x(kopt = 20)
∆x(k = 25)

0 1 2 3 4 5 6 7 8

[s]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

[°
]

∆Rz(k = 10)
∆Rz(kopt = 20)
∆Rz(k = 25)

∆x ∆Rz

Fig. 3: The x position tracking error ∆x and the z rotation tracking error ∆Rz are shown for iterations k = [10,20,25].

V. EXPERIMENTAL RESULTS

Experimental validations of the proposed methods have been

carried out using as a test platform a Universal Robot UR10.

Its controller allows to torque control the manipulator and to

record the required data (robot joint and Cartesian positions

and velocities, robot Jacobian) with a control/sampling fre-

quency of 125 Hz. The equipped force sensor allows to record

the interaction forces/torques.

A. Friction Compensation Experiment

The selected friction model has been the exponential model.

Such friction model is characterized by four parameters for

each joint (i.e., m = 4, with parameters ηηη1, ηηη2, ηηη3, ηηη4). The

friction torque acting on the ith joint can be expressed as:

h f ,q(q̇i) = η1,i q̇i + sign( q̇i )(η2,i−η3,i)e
−(η4,i |q̇i|) (25)

A free-motion task along the Cartesian direction x has been

selected as a target task. Such task is representative of an

insertion task to be performed in impedance control. The

friction learning has to be performed without any external

force/torque acting on the manipulator. Once the learning

procedure is completed, the friction can be compensated in

the interaction task to improve the controller performance.

iterations
0 5 10 15 20 25

P
(k
)
[N

m
]

6

8

10

12

14

16

18

Fig. 4: Reward function P through the learning procedure. Optimal
iteration kopt = 20.

Only the x component of xd is therefore defined as a cycloidal

function, keeping other components constant:

xd = x0 + h

(

c− sin(2πc)

2π

)

with h the length of the target motion and c = 0 : 0.001 : 1.

Mass matrix has been set as M = diag([5, 5, 5, 5, 5, 5]), stiff-

ness matrix as K = diag([5000, 5000, 5000, 250, 250, 250]),
and damping ratio vector as ξξξ = [0.7, 0.7, 0.7, 0.7, 0.7, 0.7].
The diagonal element D(i, i) of the damping matrix is calcu-

lated as D(i, i) = 2ξξξ(i)M(i, i)
√

K(i, i)/M(i, i).
The learning gain G can be imposed by measuring the

reinforcement signal R in (6) at iteration k = 0 by imposing

F0
p = 0. The following definition of G can be used:

G = diag(R(:,0))−1Fpκ f

where Fp can be a rough estimation of the friction parameters

from literature and κ f is a coefficient experimentally defined

in the range [0.01,0.1] allowing to have a good estimation

resolution during the learning procedure. The reducing factor

can be imposed as λ = 0.5 in order to increase the estimation

resolution when instabilities or divergences arise. First

iteration of the performed task is executed imposing Fp on

the basis of results in Table IV. Subsequent iterations adapt

friction parameters matrix Fp based on (9). Considering the

selected task direction x, two Cartesian DoFs are mostly

excited: translation x and rotation Rz.

Figure 3 shows the x position error ∆x and the z rotation error

∆Rz during the task execution, considering different iterations

of the learning procedure. Such data have been recorded as

TABLE I: Learned optimal friction parameters.

Optimal Set of Friction Parameters

Fp1 j
[Ns/m] Fp2 j

[Ns/m] Fp3 j
[Ns/m] Fp4 j

[s/rad]

joint 1 37.40 11.90 9.91 3.9755 ·106

joint 2 157.49 31.28 26.52 7.3053 ·106

joint 3 25.98 8.14 6.02 5.6843 ·106

joint 4 1.95 2.99 1.85 4.2840 ·106

joint 5 8.35 10.12 4.16 4.5838 ·106

joint 6 3.49 4.38 1.00 4.1280 ·106
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Fig. 5: Learned force-tracking control gain and impedance control damping ratio through iterations.
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Fig. 6: Interaction force through iterations. The learning procedure is capable to adapt the control gains to achieve the target performance.

described in Section III-A, Figure 2, by the on-line internal

loop. The minimum error iteration is highlighted. The same

behavior is shown for the remaining DoFs. Considering

iteration kopt = 20, the obtained tracking error is comparable

with the state-of-the-art compliance controllers with friction

compensation [27]. In fact, the defined compliance results

in a deviation from the target trajectory during the motion

execution. The advantage of the proposed solution is related to

the possibility to use a user-defined friction model and locally

perform the optimization of its parameters while executing

a target Cartesian task. Moreover, the implementation of

the proposed method is easily applicable to a real n-DoFs

manipulator as shown in the proposed experiment. Figure 4

shows the evolution of the reward function in (10). Table I

details the learned optimal friction parameters.

Remark 4.As shown in Figure 4, the reward function P

reaches its minimum at iteration k = 20. The following in-

creasing of the reward function P (as described in Section

III-B) is due to the overcompensation of the friction. The

algorithm modifies the learning gain G in order to correct the

friction parameters estimation. Due to the defined stop criteria,

the methods ends the learning of the friction parameters at

iteration k = 25.

B. Force-Tracking Experiment

The learning methods have been applied to an automotive

industrial assembly task (Figure 1). The assembly trajectory

is the same specified in Section V-A (main assembly direc-

tion along x axis). The impedance control parameters have

been imposed as follows: M = diag([10, 10, 10, 10, 10, 10]),
K = diag([100, 100, 100, 10, 10, 10]). The learning gain for

the force-tracking control gain has been imposed equal to

GGp,x = 1 (to only use the reinforcement signal RGp to

guide the learning) and the learning gain for the damping

ratio has been imposed equal to Gξ,x = 10 (to speedup the

learning process), while the force-tracking control gain and

the damping ratio have been initialized as follows: Gp,x(1) = 1

(i.e., as described in Section IV, considering Ke→ 0 the target

force f d can be perfectly tracked - f → f d), ξx(1) = 1 (the

robot behavior is imposed to be critically damped).

In general, the learning gain GGp,x for the force-tracking

control gain can be imposed ≤ 1 in order to increase the

estimation resolution during the learning process. From ex-

perimental validation, the suggested range for such parameter

is [0.1,1]. The learning gain for the damping ratio Gξ,x can be

imposed on the basis of the estimation of the target interacting

environment damping ratio ξe. In fact, on the basis of the

environment properties (e.g., material), an estimation can be

performed from literature. The learning gain for the damping

ratio can be calculated as Gξ,x = ξeκξ, where κξ is a coefficient

experimentally defined in the range [1,20].
The task consists in two phases: firstly, the robot finds the

assembly surface (detecting a force fx > 5N, then the assembly

task is performed (with f d
x = 10N). In the second phase, the

learning procedures are performed.

Figure 5 shows the learned force-tracking control gain Gp,x
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and the impedance control damping ratio ξx through iterations

execution. While the force-tracking control gain Gp,x modifies

its value based on the locally properties of the equivalent

interacting elastic system and based on the estimated environ-

ment equilibrium position x0
e , the damping ratio ξx increases

through the iterations until no force overshoots are shown in

the task execution. Figure 6 shows the obtained interaction

force during the learning procedure execution, highlighting the

obtained target performance at iteration k = 5. Iteration k = 1

shows a low-damped behavior of the closed-loop system (14)

with the initial value ξx(1) = 1 on the basis of (16). On the

basis of Remark 3, the experimental training of the control

parameters is concluded as soon as the reward functions satisfy

the defined exit strategies. As shown in Figure 6, iteration

k = 5 satisfies the defined exit strategies. It is possible to

modify the exit strategies parameters in order to improve

the obtained performance. It has to be underline that the

resulting steady-state oscillations are related to the defined

experimental set-up: since the high mass of the target assembly

location (i.e., the car door), the backlash in its mounting and

the flexibility of the manipulated component, the resulting

interaction dynamics is highly non-linear and under-damped.

The defined approach allows to compensate for such non-

linear under-damped dynamics, having a stable steady-state

interaction.

VI. CONCLUSIONS

In this paper, a control approach involving multiples learning

levels for training the manipulator to execute a repetitive

(partially) changeable task, while accurately controlling the

interaction force, has been presented. Based on compliance

control, the proposed approach consists in two main control

levels: i) iterative friction learning compensation controller and

ii) iterative force-tracking learning controller. The proposed

control procedure has been applied to an automotive industrial

assembly task. Experimental results show the validation of

the performance for both the proposed learning procedures,

improving the friction compensation (with respect to the local

identification described in Section VI) and guaranteeing force

overshoots free tracking capabilities. Ongoing work is devoted

to include a compliant robot mounting. Its dynamics will affect

the target task dynamics and the interaction at the robot end-

effector. Moreover, external force sensor will be replaced by

the estimation of the interaction forces through the robot motor

currents measurements.
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APPENDIX

A. Set-up: Modeling and Identification

Considering the Universal Robot UR 10 manipulator, the

number of links l = 6. From the CAD it is possible to obtain

the inertia and mass parameters of the links (Table II). It has

to be underline that the CAD of the manipulator only gives

an estimation of its mass and inertia parameters, since such

CAD model is not precise (as in many practical cases). While

the mass values have been used to initialize the estimation,

the inertia parameters have been imposed to the manipulator

link inertia to reduce estimation variables.

TABLE II: Estimated link mass and inertia.

Link

1 2 3 4 5 6

mass [kg] 7.78 10 2,2 1.96 1.96 0.2
inertia x

[

kgm2
]

0.006 0.2 0.09 0.001 0.001 0.0001

inertia y
[

kgm2
]

0.005 0.2 0.09 0.0009 0.0007 0.0002

inertia z
[

kgm2
]

0.006 0.02 0.004 0.0007 0.0009 0.0001

Adopting a friction model characterized by two parameters for

each joint (i.e., m = 2, with parameters ααα111, ααα222), the friction

torque acting on the ith joint, can be expressed as:

F(q̇i) = α1,i q̇i + sign( q̇i )α2,i (26)

A simple friction model has been considered to reduce the

number of parameters to be estimated. A more complex

friction model has been considered in the proposed learning

approach (Section III-A) to improve the control performance.

In such a way, the effectiveness of the proposed approach has

been highlighted, showing the capabilities of the developed

procedure to deal with any friction models.

The number of parameters to be identified is 36. The following

joint trajectories (and congruent velocities and accelerations)

have been imposed for the identification purpuses [32]:

q(t) = q0 + A cos(2π f1 (1 +
1

20
cos(2π f2 t )) t + φφφ) (27)

where vector q0 defines the starting position of the manip-

ulator, vector A defines the amplitude of the motion, vector

f1 and f2 define the movement frequency, vector φφφ defines

the (random) phase and t is the time instant of the trajectory

execution. The parameters used for the identification procedure

are shown in Table III. By measuring joint currents imsr (to

calculate measured joint torques τττmsr = kt imsr, with kt = 12.7
[Nm/A] experimentally determinated), the joint positions q(t),
velocities q̇(t) and accelerations q̈(t) and imposing the input

as described by (27) to the dynamic model (1) to estimate

the torques τττest , it has been possible to perform a non-linear

optimization (based on Matlab function lsqnonlin() [33]) on

the error function:

τττe(t) = τττmsr(t)− τττest(t) (28)

The non-linear optimization has resulted in the local esti-

mated link masses ([kg]), link centers of mass ([m ]), friction

parameters (ααα1

[

Nm
radian/s

]

, ααα2 [Nm]) as shown in Table IV.

Considering the link mass parameters and comparing the

estimated values with respect to the CAD values, a significant



1551-3203 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2017.2748236, IEEE

Transactions on Industrial Informatics

9

TABLE III: Identification joint trajectories parameters.

Joint

1 2 3 4 5 6

f1 [Hz] 0.05 0.075 0.08 0.1 0.11 0.12

f2 [Hz] 0.0167 0.0167 0.0167 0.0167 0.0167 0.0167

A [rad] π/6 π/9 π/6 π π5/9 π

TABLE IV: Estimated mass, centers of mass and friction parameters.

joint

1 2 3 4 5 6

mass 2.8 11.801 4.974 0 0 1.610

x 0.00008 0.2914 −0.0733 0 0 0.0085

y 0.00244 0.0609 0.0384 0.110949 0.0018 0.0289

z −0.037 0 0 0.01634 0.11099 0

ααα1 79.63 56.73 32.92 8.22 15.54 12.07

ααα2 21.26 17.61 9.97 2.59 2.76 1.51

difference arises. Such difference is related to both the facts

that the CAD model is not accurate and the optimization

procedure allows to obtain an equivalent set of parameters de-

scribing the robot dynamics that can differ from the real robot

parameters. A validation of the estimated parameters have been

performed using the joint trajectory defined in (27) with the

parameters in Table V (different parameters with respect to

the identification parameters in Table III, i.e., resulting in a

different robot motion and sub-workspace exploration). The

torque error characteristics have been analyzed evaluating the

root mean square (rms) of the torque error:

rmseτ :=

√

1

T

T

∑
t=0

(τττmsr(t)− τττest(t))
2

(29)

Obtained results are shown in Table VI. The obtained root

mean square of the torque error for each joint is comparable

with the state-of-the-art identification methods [26].

The estimated link mass parameters have been used in the

experimental tests in both Sections V-A and V-B, resulting

in an adequate controlled robot dynamics in comparison with

the state-of-the-art compliance controllers [27].

The effect of the inertia values has been verified in simulation,

imposing a 4 times inertia values and the validation trajectory

with parameters defined in Table V. The simulation has

resulted in a negligible torque variations for the UR

10 manipulator (< 0.2Nm), allowing to neglect inertia

parameters in the estimation of the dynamics.

B. Impedance Control Loop Design

As described in [27], an impedance controller with dynamics

compensation can be design based on (1), defining the robot

joint torque vector τττ as:

τττ = B(q)γγγ+C(q, q̇)+g(q)+h f ,q(q̇) (30)

TABLE V: Validation joint trajectories parameters.

Joint

1 2 3 4 5 6

f1 [Hz] 0.04 0.065 0.07 0.09 0.1 0.1

f2 [Hz] 0.015 0.015 0.015 0.015 0.015 0.015

A [rad] π/5 π/7 π/5 π2/3 π/2 π2/3

γγγ is the impedance control law. It can be written as:

γγγ = J(q)−1
(

ẍ− J̇(q, q̇)q̇
)

(31)

where the target acceleration ẍ = [p̈; ϕ̈ϕϕcd ] derives from the

target translational impedance behavior p̈, and the target

rotational impedance behavior ϕ̈ϕϕcd described by the intrinsic

Euler angles representation:

p̈ = M−1
t (−D t ṗ−Kt ∆p+ f)

ϕ̈ϕϕcd = M−1
r

(

−Dr ϕ̇ϕϕcd−Kr ϕϕϕcd +TT (ϕϕϕcd)µµµd
) (32)

Considering the translational part of the impedance control, Mt

is the target mass matrix, Dt is the target damping matrix, Kt

is the target stiffness matrix, f is the external forces vector. p is

the actual Cartesian positions vector, while ∆p= p−pd , where

pd is the target positions vector. Considering the rotational part

of the impedance control, Mr is the target inertia matrix, Dr

is the target damping matrix, Kr is the target stiffness matrix.

ϕϕϕcd is the set of Euler angles extracted from Rd
c = RT

d Rc,

describing the mutual orientation between the compliant frame

(at the end-effector) and the target frame. µµµd is the external

torques vector referred to the target frame. Matrix T(ϕϕϕcd)
defines the transformation from Euler angles derivatives to

angular velocities ωωω = T(ϕϕϕcd)ϕ̇ϕϕcd [27].

Substituting (32), (31), and (30) in (1), under the hypothesis

that the manipulator dynamics is known, the controlled robot

dynamics results in:

Mẍ+Dẋ+K∆x = hext

where M, D, K are the impedance matrices composed by

both the translational and rotational parts, ∆x = x− xd =
[∆p;ϕϕϕcd ], and hext = [f,TT (ϕϕϕcd)µµµd ] considering the external

forces/torque acting on the robot (i.e., related to the interaction

with the surrounding environment).
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