
Iterative Local Dynamic Programming

Emanuel Todorov and Yuval Tassa

Abstract— We develop an iterative local dynamic program-
ming method (iLDP) applicable to stochastic optimal control
problems in continuous high-dimensional state and action
spaces. Such problems are common in the control of biological
movement, but cannot be handled by existing methods. iLDP
can be considered a generalization of Differential Dynamic
Programming, inasmuch as: (a) we use general basis functions
rather than quadratics to approximate the optimal value
function; (b) we introduce a collocation method that dispenses
with explicit differentiation of the cost and dynamics and
ties iLDP to the Unscented Kalman filter; (c) we adapt the
local function approximator to the propagated state covariance,
thus increasing accuracy at more likely states. Convergence is
similar to quasi-Netwon methods. We illustrate iLDP on several
problems including the “swimmer” dynamical system which has
14 state and 4 control variables.

I. INTRODUCTION

DESPITE an intense interest in optimal control theory
over the past 50 years, solving complex optimal control

problems even approximately remains a challenge. Exist-
ing general-purpose methods can be classified as global
and local. Global methods, which have been the focus in
Reinforcement Learning, are typically based on Bellman’s
Optimality principle. Such methods attempt to find optimal
controls for all states, and consequently tend to run into the
curse of dimensionality. Function approximation alleviates
the problem somewhat. However, the state spaces of complex
dynamical systems (especially biological systems) can be so
vast that only a small fraction of all states are actually visited
in the system’s lifetime – and so the data needed for global
optimization may be unobtainable. Local methods, more
commonly studied in Control Theory (e.g. [2]), are related to
Pontryagin’s Maximum principle. Such methods find controls
that are only locally-optimal in the vicinity of an “extremal”
trajectory, and furthermore assume deterministic dynamics
and yield open-loop controls. But the curse of dimensionality
is avoided – which makes local methods a more natural point
of departure in tackling complex problems.

A good blend of the advantages of local and global opti-
mization is provided by Differential Dynamic Programming
[1], as well as iterative LQG [7]. These are still local
methods in the sense that they maintain a representation
of a single trajectory and improve it iteratively using local
information; the improvement however is based on dynamic
programming – within a narrow “tube” in trajectory space.
This feature allows construction of feedback control laws and
some extensions to stochastic dynamics.

E. Todorov is with the Department of Cognitive Science, University of
California San Diego, todorov@cogsci.ucsd.edu

Y. Tassa is with the Center for Neural Computation, Hebrew University
of Jerusalem, Israel, tassa@alice.nc.huji.ac.il

This work was supported by the US National Science Foundation.

But as we show here, the 1st- and 2nd-order value function
approximations employed by existing local methods make
stochastic generalizations difficult. Even the simplest form of
additive noise turns out to cause complications that require
higher-order approximations.

The goal of the present paper is to develop a new lo-
cal method (Section 3), that is better suited for stochastic
problems and is generally more accurate. At the same time
we want to preserve computational efficiency – by avoiding
discretization of state or action spaces, as well as extensive
Monte Carlo sampling.

A. Overview of existing local methods

Since local methods are rarely used in the Reinforcement
Learning community, and are closely related to our new algo-
rithm, we provide a brief overview. Consider a deterministic
dynamical system ẋ = f (x,u) with state x (t) ∈ RD and
control u (t) ∈ RM . Throughout the paper we assume that
the initial state x0 and the final time T are specified. Given
a final cost h (x (T)) ≥ 0 and a cost rate ` (x,u) ≥ 0, we
want to find the open-loop control law u (t) minimizing the
total cost J (u) = h (x (T)) +

∫ T

0
` (x,u) dt. A necessary

condition for u (t) and its corresponding state trajectory
x (t) to be optimal is the existence of a “costate” trajectory
p (t) ∈ RD satisfying Pontryagin’s Maximum principle:

u = argmin
v

{
` (x,v) + f (x,v)T p

}
−ṗ = `x (x,u) + fx (x,u)T p

ẋ = f (x,u)
subject to the boundary conditions:

p (T) = hx (x (T)) ,
x (0) = x0

(1)

Defining the Hamiltonian function

H (x,u,p) , ` (x,u) + f (x,u)T p,

Eq (1) becomes:

u = argmin
v

H (x,v,p)

−ṗ = Hx (x,u,p)
ẋ = Hp (x,u,p) .

If u (t) is a local minimizer of J (u), it can be shown1 that
p (t) equals the gradient of the value function.

1Consider a closed-loop control law u (t,x) and its value function
V (t,x). Differentiating Bellman’s equation −Vt (t,x) = ` (x,u) +
f (x,u)T Vx (t,x) w.r.t. x and using the identity V̇x = Vtx + Vxxẋ
yields −V̇x = `x + fT

xVx + Huux. When u (t,x) is locally optimal
the last term drops because Hu = 0. By setting p = Vx we recover
Pontryagin’s equation −ṗ = `x + fT

xp.

todorov
Typewritten Text
In IEEE ADPRL 2009

ODE: The minimization in Eq (1) implicitly defines a
function u (x,p). If that function can be computed effi-
ciently, one can solve the ODE by general-purpose numerical
methods for boundary value problems (such as Matlab’s
BVP4C). Efficient minimization of the Hamiltonian is pos-
sible for problems in the general form

f (x,u) = a (x) +B (x) u

` (x,u) = q (x) + 1
2u

TRu
(2)

where the solution is u (x,p) = −R−1B (x)T p. Note
that many problems of interest are in this form, because
mechanical systems have multiplicative control-dependent
dynamics, and cost functions are naturally decomposed into
a state-dependent term and an energy-related control penalty.

Policy gradient: Another appealing property of Eq (1) is
that it yields the gradient of the total cost J (u) w.r.t. any
open-loop control law u (t), not necessarily a minimizer of
the Hamiltonian. Suppose x (t) and p (t) satisfy Eq (1) for
a given u (t). Such a state-costate trajectory can be easily
computed by first integrating ẋ = f (x,u) forward in time,
and then integrating −ṗ = `x (x,u)+fx (x,u)T p backward
in time. It can then be shown that δJ/δu = Hu (x,u,p).
Thus the policy gradient can be computed analytically, and
a discrete-time u (t) can be found with any general-purpose
gradient-based optimization method.

DDP: Differential Dynamic Programming [1] also im-
proves u (t) iteratively, but is a second-order method [5].
Instead of computing just the x (t) and p (t) = Vx (t)
that are consistent with the current u (t), DDP also com-
putes the Hessian Vxx (t) along the trajectory x (t), by
using quadratic approximations to ` and f centered at
x (t). This locally quadratic approximation to the value
function yields a locally linear feedback control law: For
problems in the form of Eq(2) the optimal control is
u (x) = −R−1B (x)T

Vx (x). Using the approximation
Vx (x + ∆x) = Vx (x) + Vxx (x) ∆x yields the feedback
component −R−1B (x)T

Vxx (x) ∆x, which is linear in the
displacement ∆x. This feedback component makes the pol-
icy improvement stage much more efficient, with a quadratic
convergence rate comparable to Newton’s method, which can
offset the increased computational burden of calculating the
quadratic approximations to ` and f .

iLQG: The generalized iterative LQG method developed
recently [7] also uses quadratic approximations to V and `,
but only a linear approximation to f . Since the calculation of
f is usually the computational bottleneck in such methods,
iLQG is faster than DDP and equally accurate in practice.

II. THE NEED FOR HIGHER-ORDER METHODS IN
STOCHASTIC PROBLEMS

In deterministic problems the above methods converge to
local minima of J (u), and the only approximation errors
arise from discretizing time. Intuitively, this is possible
because Eq 1 propagates Vx along a single trajectory, without
any knowledge of how V behaves along nearby trajectories.

Noise destroys this property2: to compute Vx exactly, it
seems necessary to have knowledge of V in a neighborhood
of x (t) whose size is related to the noise magnitude. One
might have hoped that 2nd-order methods like DDP and
iLQG can approximate V in such a neighborhood, but as
we show next such approximations are generally inadequate.

Consider the stochastic system dx = f (x,u) dt +
F (x,u) dω, where ω (t) ∈ RW is a standard Brownian
motion process, and let Σ (x,u) = F (x,u)F (x,u)T. For
a given control law u (t,x) the value function satisfies the
Hamilton-Jacobi-Bellman (HJB) equation

− Vt (t,x) = ` (x,u) + f (x,u)T
Vx (t,x)

+ 1
2 tr (Σ (x,u)Vxx (t,x)) (3)

First- and second-order approximations treat Vxx as a con-
stant independent of x. Now suppose we have noise with
constant Σ. Then the entire tr (·) term in Eq 3 is treated as
a constant, and therefore has no effect on the optimization
process. Thus existing local methods are blind to the simplest
form of additive noise3.

We now discuss an important problem in biological control
where additive noise makes all the difference. Suppose you
want to keep your arm in a fixed posture. Normally you
would do that with your muscles fairly relaxed. But if
I tell you that I am about to shake your arm, you will
probably stiffen it by co-activating opposing muscles (this
works because muscle stiffness and damping scale with
activation). Indeed, adjustment of limb impedance through
muscle co-activation is an integral part motor behavior,
and is extensively studied in the Motor Control literature.
Optimal control provides a fruitful theoretical framework for
biological movement [8]. Building more realistic models,
however, will require efficient methods for nonlinear stochas-
tic problems, and in particular methods that predict muscle
co-activation.

Here is a concrete example that captures the essence
of the above discussion. Let x (t) = [p (t) ; k (t)] where
p corresponds to position and k to stiffness. The control
problem is

dp = −kp dt+ σ dω h = 0 (4a)
dk = (u− k) dt p (0) = 0 (4b)

` (p, k, u) = p2 + u2 k (0) = 0 (4c)

We want to keep p = 0 with minimal control energy. The
position p decays to 0 at a rate proportional to k. The stiffness
k is set by the control u through a low-pass filter. Since
k cannot change instantaneously, it seems appropriate to

2Although a stochastic variant of the Maximum principle has been derived
[3], it is a stochastic forward-backward differential equation that does not
appear to yield local methods. Another way to see the problem is to repeat
the derivation of Eq 1 starting with the stochastic HJB in Eq 3. This now
yields terms containing Vxx and Vxxx, so Eq 1 is no longer a closed system
of equations.

3When Σ depends on u and/or x, one can use a 2nd-order expansion
of tr (ΣVxx) and pick up some noise-dependent terms even when Vxx is
assumed constant. We have done that in iLQG [7], but it remains to be
established how close to locally-optimal the resulting control law is.

maintain k > 0 in order to resist unexpected perturbations. To
see this more formally, consider the stochastic Hamiltonian
H = p2 + u2 − kpV ∗p + (u− k)V ∗k + σ2V ∗pp/2 where
V ∗ is the optimal value function. Since this problem is in
the form of Eq 2, the optimal control is u∗ = −V ∗k /2.
Focusing on the state p = k = 0 and substituting u∗ we
get the minimized Hamiltonian H∗ = σ2V ∗pp/2 − (V ∗k)2 /4.
Consider for simplicity the case T → ∞ and a discounted
cost with time constant τ → ∞. In that case the HJB
equation simplifies to H∗ = 0, yielding

u∗ = σ
√
V ∗pp/2

Thus the optimal control at state [0; 0] is roughly proportional
to the noise magnitude (but note that V ∗pp varies with σ). The
numerical solution is shown in Fig 1. In contrast, existing
local methods yield the solution u∗ = 0. This is because such
methods ignore additive noise with constant covariance, and
for σ = 0 the optimal control is clearly u∗ = 0.

III. ITERATIVE LOCAL DYNAMIC PROGRAMMING (ILDP)

Our new iLDP algorithm seeks a feedback control law
u = π (t,x) that is a local minimum of the performance
criterion J (π) = Eω

(
h (x (T)) +

∫ T

0
` (x, π (t,x)) dt

)
for

the stochastic system dx = f (x,u) dt + F (x,u) dω, with
x (0) = x0 and t ∈ [0;T]. Each iteration of the algorithm
starts with a π (t,x) and generates a candidate improvement
π′ (t,x), using quasi-Newton optimization. Global conver-
gence is achieved via backtracking linesearch, which seeks a
πnew = απ′ + (1− α)π, 0 < α ≤ 1, such that J (πnew) <
J (π).

As in DDP and iLQG, the improvement is based on
approximate dynamic programming in the vicinity of the
average trajectory x (k) generated by π (k,x)4. Unlike DDP
and iLQG, the new algorithm works with any smooth approx-
imation Ṽ (k,x) to the value function V (k,x) corresponding
to the control law π′ (k,x) · · ·π′ (K − 1,x). At the last time
step we set Ṽ (K,x) = h (x). Then for each time step k,
starting at k = K − 1 and going backwards to k = 1, we
perform the following dynamic programming backup:

1. Select a set of states
{
x(n)

}
n=1···N that are clustered

around the mean state x (k).
2. At each x(n) compute the optimal control u(n) by

minimizing the Hamiltonian

H (k,x,u) , ` (x,u) + f (x,u)T
Ṽx (k + 1,x)

+ 1
2 tr

(
Σ (x,u) Ṽxx (k + 1,x)

)
The minimization uses a quasi-Newton method (or
sequential Quadratic Programming when u is con-
strained) with initialization π

(
k,x(n)

)
. For added effi-

ciency we can compute the Hessian only at x (k) and

4In the rest of the paper we use discrete-time notation. The time step is
∆ and the discrete-time index is k, thus t = k∆. The number of time steps
is K = floor (T/∆).

reuse it for all x(n). For problems in the form of Eq 2,
H is quadratic5 in u and so u(n) is found immediately.

3. At each x(n) approximate the value v(n) , V
(
k,x(n)

)
using the HJB equation

V
(
k,x(n)

)
≈ ∆ H

(
k,x(n),u(n)

)
+Ṽ

(
k + 1,x(n)

)
Note that it is possible to increase the accuracy of v(n)

by sampling (Section 3.3)
4. Fit the function approximation Ṽ (k,x) to the set of

state-value pairs
{
x(n), v(n)

}
. If a feedback control law

π′ (k,x) defined for all x is needed, fit another function
approximation to the state-control pairs

{
x(n),u(n)

}
.

This general algorithm can be instantiated in many ways
by making different choices in each step. The specific in-
stantiations described next optimize computational efficiency,
while allowing the user to set the balance between speed and
accuracy.

A. Efficient function approximation through collocation

Fitting Ṽ and evaluating Ṽ , Ṽx, Ṽxx is done repeatedly,
therefore these operations must be highly optimized. This
calls for a linear function approximation scheme. Let φ (x) ∈
RP be a vector of P < N real-valued twice-differentiable
basis functions (i.e. features). We will use the time-varying
linear approximation

Ṽ (k,x) = φ (x−x (k))T w (k)

where w (k) is a parameter vector. Then Ṽx = φT
xw and,

with slight abuse of notation, Ṽxx = φT
xxw. Note that the

average trajectory x (k) is fixed throughout one iteration of
the algorithm. The reason for subtracting x (k) is to center
the approximation at the average state, and also to speed-up
the fitting process (see below).

The parameters w can be estimated at each time step
k via linear regression. Defining the vector of target val-
ues v =

[
v(1); · · · ; v(N)

]
, and the matrix of features

Φ =
[
φ
(
x(1)−x (k)

)
· · ·φ

(
x(N)−x (k)

)]
, the square error∥∥v − ΦTw

∥∥2
is minimized by

w =
(
ΦΦT

)−1
Φv

The feature matrix Φ depends on the time-varying cloud
of states

{
x(n)

}
, and so it might appear that we have

to invert ΦΦT at each time step. Fortunately this can be
avoided by using the following idea: we will always choose
x(n) = x (k) + ε(n), where the set of ”collocation” vectors{
ε(n)

}
is the same for all times k. This creates a fixed cloud

of states
{
x(n)

}
sliding along the average trajectory x (k).

We then have Ṽ
(
k,x(n)

)
= φ

(
ε(n)

)T
w (k), and so the

feature matrix Φ is constant (not only over time, but also
over iterations of the algorithm). Therefore

(
ΦΦT

)−1 Φ can
be precomputed.

5Control-dependent multiplicative noise is of particular interest in Motor
Control. Suppose the i-th column of F (u) is Ciu. Then it can be verified
that tr (Σ (u)Vxx) = uT

(∑
CT

i VxxCi

)
u.

Another benefit of propagating the collocation cloud x(n)

arises when the controller does not operate in the full
state-space of the dynamics. This is most common in the
transformation from an external to an internal (“egocentric”)
coordinate frame. While variables such as locations and
angles are measured externally relative to some coordinate
system, it makes no sense for the controller to have access
to these values and would indeed prevent the learned policy
from being invariant to translations and rotations. By basing
our algorithm on the explicit propagation of the collocation
cloud, any such “internalizing transformation” can be triv-
ially applied to the x(n) without any further modifications.
It should however be noted that if such a transformation is
state-dependent, the precomputation of

(
ΦΦT

)−1 Φ will no
longer be possible.

The type and number of features φ (x) can be chosen in
many ways, e.g. Gaussians or polynomials, and adapted to
the specific problem and desired accuracy level. A particu-
larly interesting feature set is: 1, xi, xixj , x

2
ixj . It contains

some 3rd order terms (and so can avoid the problems illus-
trated in Section II but has order D2 elements. This feature
set also has the property φ1 (x) = 1 and φp>1 (0) = 0,
which means that w1 (k) ≈ V (k,x (k)) and so the remaining
parameters w2···P are devoted to fitting derivative-related
information.

A similar function approximator can be used to fit π′ (k,x)
given

{
x(n),u(n)

}
. Note however that the basic iteration

(Steps 1-4) does not require access to a π′ (k,x) that is
defined for all x.

B. Adapting the collocation cloud to the state distribution

How should the collocation vectors be chosen? A basic
implementation can simply use a spherical zero-mean cloud{
ε(n)

}
. However, a more accurate value function approxi-

mation is obtained if the cloud resembles the distribution of
states resulting from π′. This is hard to accomplish because
π′ is constructed after

{
ε(n)

}
. Instead we will make

{
ε(n)

}
consistent with the current control law π, and hope that π
and π′ are similar. At the same time we will preserve the
efficiency of the collocation method.

Before the backups (Step 1-4) can begin, we have to apply
π to the stochastic system6

x (k + 1) = x (k) + ∆ f (x (k) , π (k,x (k))) +
√

∆ F (x (k) , π (k,x (k))) ξ (k) (5)

and compute the average trajectory x (k). A basic im-
plementation can approximate x (k) using several sample
trajectories, or perhaps even a single noiseless trajectory with
F = 0. But a better way to find x (k) is to propagate a
Gaussian approximation N (x (k) ;S (k)) to the distribution
of x (k) – which we do using the Unscented Transform
[4]. This involves evaluating f at x (k) and x (k) ±

√
3qi,

where qi are the columns of the matrix square root QQT =

6ξ (k) = (ω (k∆+∆)− ω (k∆)) /
√

∆ ∼ N (0; I). The square root
term

√
∆ appears because the covariance of a Brownian motion process

grows linearly with time.

S (k). Then x (k + 1) ;S (k + 1) are estimated as certain
weighted averages [4]. Finally, we add to S (k + 1) the noise
contribution ∆FFT evaluated at x (k). As an aside, note that
once we have the (x;S) resulting from some control law π
we can approximate J (π). This is useful in the linesearch
phase, where we need to compute J (πnew) without running
the dynamic programming algorithm.

The function approximator can now be adapted to the co-
variance S (k) = Q (k)Q (k)T. Suppose we have a spherical
set
{
ε(n)

}
such that 〈ε〉 = 0 and

〈
εεT
〉

= rI; the scale
r sets the “locality” of the approximation. For the backup
at stage k we will use the transformed collocation vectors
ε(n) = Q (k) ε(n), which have the desired covariance rS (k).

In section 3.1 it was possible to precompute
(
ΦΦT

)−1 Φ
because

{
ε(n)

}
was fixed. How can this appealing property

be preserved here, when we now have a new
{
ε(n)

}
at each

stage? The idea is to transform not only ε(n) but also the
features φ. We will now use7

φ (x) , φ
(
Q (k)−1 x

)
so that φ

(
ε(n)

)
= φ

(
Q (k)−1

Q (k) ε(n)
)

= φ
(
ε(n)

)
. Thus

Φ remains unchanged, while the backups now use a new
set of collocation vectors

{
ε(n)

}
at each time step k. The

new function approximator evaluated at the new collocation
vectors is Ṽ

(
k,x (k) + ε(n)

)
= φ

(
ε(n)

)T
w (k).

C. Sampling-based refinements

The approximation errors in Ṽ (k,x) can in principle ac-
cumulate, because each backup uses value function estimates
from the previous backup. While we have not found that to
be a problem in practice, it is desirable to have ways of
improving approximation accuracy – especially towards the
end of the main iteration when we may want to refine the
final result. An obvious way to do this is to increase the
spread and density of the collocation set

{
ε(n)

}
, as well

as the number of parameters w. Alternatively, one can use
sampling.

The value function estimates v(n) obtained at stage
k in Step 3 can be improved as follows: initialize
a number of trajectories at x(n), sample Eq 5 using
π′ (k,x) . . . π′ (K − 1,x), and average the empirical costs.
Note that this procedure avoids the potential accumulation
of bias, but introduces variance. It is also much slower than
adding extra collocation vectors. This is because trajectories
starting at each time k have to be sampled until the final time
K, resulting in order K2 samples.

D. Related Work

The use of high-order local dynamic programming meth-
ods for the solution of biological control problems was
pioneered in [10]. There, Morimoto and Atkeson use the

7To better understand this transform, consider the feature
φ (x) = (x− c)T (x− c). Then φ(x) = φ

(
Q−1x

)
=(

Q−1x− c
)T (

Q−1x− c
)

= (x−Qc)T S−1 (x−Qc). So the
center c is scaled like ε(n), and the Cartesian metric is replaced by S−1.
The same applies to Gaussians.

0 0.5

0

0.1

HJB

iLDP

5 k(t)
u(t)

time (sec)
0

2
-2

2

0

1

kp

u*

(a) HJB optimal control law at t=0 (b) iLDP and HJB trajectories

p(t)

Fig. 1. Solution to the simple problem defined in Eqs (4) with T = 0.5sec

and σ = 1. (a) The optimal value function at time t = 0, computed via
numerical solution of the HJB equation on a dense grid. (b) Average state-
control trajectory obtained by the discretized HJB solution and by the iLDP
method. The variable k is scaled by 5 for visibility.

game-theoretic minimax quadratic game to extend the DDP
algorithm. While the regular controller seeks to minimize
the cost, a second adversarial controller (which models noise
under a risk-sensitive integral) is assumed to simultaneously
attempt to maximize it, leading to more prudent or robust
policies. Minimax DDP is very appealing theoretically, es-
pecially due to the explicit modeling of noise, but not easy
to implement numerically since the solution is not longer
a local extremum but rather a saddle point, which is more
difficult to find (e.g. monotonicity during convergence cannot
be assured).

Finally, we note that iLDP has commonalities with the
recently developed PSDP algorithm [9] although the latter
was developed for discrete domains and does not exploit any
differential properties of continuous problems. Specifically,
PSDP is not an intrinsically local algorithm and is not
naturally immune to dimensionality issues. While PSDP can
be adapted to continuous domains it still requires as input,
a sequence of distributions µk which provide a prior as to
where the solution lies, but in the high-dimensional spaces
in which we seek to solve control problems, that knowledge
amounts to a rather large part of the solution.

−5 0

−1

0

1

Fig. 2. Solution to a simple obstacle avoidance problem. For deterministic
dynamics (solid lines) the solution trajectories pass very close to the obsta-
cle. When the dynamics are stochastic and the estimated state covariance
is propagated (dotted circle indicates 1 standard deviation), the solution
trajectories (dotted lines) veer away from the obstacle (bottom solution)
and are unable to pass in the narrow channel between the obstacles.

E. Simulations

We present several instantiations of iLDP, of increasing
complexity.

In Fig 1 we plot the solution to the simple problem given in
Eqs (4). The iLDP method finds a solution very close to the
global minimum obtained by discretizing the HJB equation.
Note that we are using a substantial amount of noise, σ = 1.

In Fig 2 we show the solution to simple obstacle avoid-
ance task, under deterministic and stochastic conditions. The
position of a point mass in a frictionless plane evolves under
linear Newtonian dynamics. The cost function (drawn in
grayscale) is the distance to the origin with two circular
obstacles of higher cost. When the dynamics are deter-
ministic, two symmetric solutions are found for the initial
condition x(0) = (−5, 0), circumventing the obstacle on
either side. When Gaussian noise is added to the system and
the distribution of the state is propagated (dotted circle indi-
cating 1 standard deviation), one trajectory veers away from
the obstacle to account for the possibility of being forced
onto it by the noise, while the other trajectory is unable to
pass between the two obstacles which are effectively fused
together by the noise.

(a) swimmer.

(b) reward.

Fig. 3. (a) A 5-link swimmer with a red “nose” and a green ring-shaped
target. (b) The functional form of the state reward component. This form
translates into a steady swimming gait at large distances with a smooth
braking and stopping at the target.

In Fig 3 we depict a far more complex problem involving
the control of a multilink “swimmer”, a simulated chain
of sticks in a viscous medium. The 14-dimensional state is
composed of 5 angles, 5 angular velocities, 2 center-of-mass
coordinates and their corresponding velocities. The controller
applies 4 torques at the joints in order to maximize the reward

function8

r(x, u) = −cx
||xnose||2√
||xnose||2 + 1

− cu||u||2

While the dynamics involve the angles {θk}k=1..5 of the
links WRT some external axis, the controller has access
only to the joint angles {θk+1 − θk}k=1..4. Besides being
biologically sensible, this transformation makes the policy
rotationally invariant. By using the collocation method de-
scribed in section III-A, this internalizing transformation can
be trivially applied to the collocation cloud x(n).

Further details of the solution are reported in [6] and a
package allowing live user interaction with the controlled
swimmers is available online9.

IV. DISCUSSION

Though local or trajectory-based dynamic programming
techniques have been available to the control community
for many years, they have only recently made inroads
in the fields of biomechanics, reinforcement-learning, and
other biologically-related motor control fields. While local
methods are intrinsically robust to dimensionality limitations,
other characteristics of biological systems such as extreme
nonlinearity and the omnipresence of noise in the system
(much of it due to noisy control signals), require that local
methods be modified to enhance their applicability. This
has been the goal of this paper. We’ve presented iLDP, a
generalized local dynamic programming algorithm of which
many specific instantiations are possible. The classic DDP
and its sibling iLQG can be considered two such instanti-
ations. iLDP allows for stochastic dynamics, general basis
functions, and arbitrary transformations of the state into an
internal coordinate set.

8The problem is phrased in (equivalent) terms of reward-maximization
rather than cost-minimization for biological similitude.

9http://alice.nc.huji.ac.il/∼tassa

REFERENCES

[1] Jacobson, D & Mayne, D (1970) Differential Dynamic
Programming. Elsevier: New York

[2] Kirk, D (1970) Optimal Control Theory: An Introduction.
Prentice Hall: New Jersey

[3] Yong, J & Zhou, X (1999) Stochastic Controls: Hamiltonian
Systems and HJB Equations. Springer: New York

[4] Julier, S; Uhlmann, J & Durrant-Whyte, H (2000) A new
method for the nonlinear transformation of means and covariances
in filters and estimators. IEEE Trans Automatic Control 45: 447.

[5] Pantoja, J (1988) Differential dynamic programming and
Newton’s method. Int J Control 47:1539

[6] Tassa, Y et al (2007) Receding horizon differential dynamic
programming. In NIPS 2007.

[7] Todorov, E & Li, W (2004) A generalized iterative LQG
method for locally-optimal feedback control of constrained non-
linear stochastic systems. In proceedings of the American Control
Conference.

[8] Todorov, E & Jordan, M (2002) Optimal feedback control as
a theory of motor coordination. Nature Neuroscience 5: 1226

[9] Bagnell, J et al (2003) Policy search by dynamic program-
ming. In NIPS 2003.

[10] Morimoto, J et al (2002) Minimax differential dynamic
programming: An application to robust biped walking. In NIPS
2002.

