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Abstract

In this paper we present a new method to capture the

temporal evolution of a surface from multiple videos. By

contrast to most current methods, we introduce an algo-

rithm that uses no prior of the nature of tracked surface.

In addition, it does not require sparse features to constrain

the deformation but only relies on strictly geometric infor-

mation : a target set of 3D points and normals. Our ap-

proach is inspired by the Iterative Closest Point algorithm

but handles large deformations of non-rigid surfaces. To

this end, a mesh is iteratively deformed while enforcing lo-

cal rigidity with respect to the reference model. This rigid-

ity is preserved by diffusing it on local patches randomly

seeded on the surface. The iterative nature of the algo-

rithm combined with the softly enforced local rigidity al-

lows to progressively evolve the mesh to fit the target data.

The proposed method is validated and evaluated on several

standard and challenging surface data sets acquired using

real videos.

1. Introduction

Capturing the motion and deformation of object surfaces

is a fundamental task when analysing dynamic scenes using

several cameras. In essence, this task relies on the ability to

build shape models from multiple views as well as to iden-

tify the motion of such models over time sequences. While

numerous computer vision methods solve for the first issue

and allow precise photometric models of objects to be build

using multiple static views[12], less consider the second is-

sue and provide motion information. However motion cues

are required by many applications that analyse or duplicate

shape evolution over time as, for instance, body motion cap-

ture applications.

One strategy to tackle surface tracking is to establish a

succession of mappings between shapes independently re-

constructed at adjacent time frames. This can be done by

diffusing the information brought by sparse visual and ge-

ometric features[14, 1, 16]. The interest is to be able to

Figure 1. Results on the Kickup sequence[15]. We show a

coloured version of the deformed mesh. The fact that the colouring

stays consistent over the sequence indicates dense tracking.

estimate motion information without any assumption on the

observed shape. On the other hand, this strategy fails to pro-

vide a consistent model over time unless a dense correspon-

dence function is identified, which appears to be difficult to

achieve in a robust manner over several frames.

Another strategy consists in evolving a reference sur-

face with respect to the shape information obtained over

time sequences. In that case, the surface representation is,

by construction, temporally consistent. Recent works, e.g.

[8, 17], have demonstrated the efficiency of this approach

to robustly model complex surface evolutions, although the

reference surface limits the range of possible deformations.

We adopt a similar strategy in this paper and propose

to track a deforming mesh using independent reconstruc-

tions obtained with a multiple camera set-up. In contrast to

the afore mentioned works, our method does not assume a

parametric motion model nor requires specific features, e.g.

photometric features, both being not necessarily available in

many practical situations. Instead, we directly estimate the

motion and deformation from purely geometric information

as obtained by the acquisition system. Our approach builds

on the Iterative Closest Point algorithms[4] and iteratively

re-estimates point to point associations using surface point

locations and surface normals. The current surface is then

deformed with rigid motions estimated locally by averaging

point displacements on randomly seeded patches. The local

rigidity of the deformation is ensured by two mechanisms

which operate at different levels of details.

At the finest level, we use the preservation of local dif-

ferential coordinates which has been successfully used in



interactive modeling applications[13]. In our case, the de-

formation must be constrained automatically. We therefore

introduce for robustness an other rigidity constraint at the

coarser patch level that diffuses locally the computed rigid

motions between neighbouring patches. As a result, the al-

gorithm finds a compromise between surface observations

and local rigidity constraints and the deformed surface only

approximates the surface observations, hence being more

robust to corrupted data sets. These data sets can come from

various acquisition systems including multi-view stereo or

shape from silhouette. While simple the proposed scheme

appears to be efficient and versatile as demonstrated in this

paper with various scenarios.

The remainder of this paper is organised as follows : in

section 2 we discuss other approaches to our problem. In

Sections 3 and 4 we present our algorithm and our results.

2. Related Work

As stated in the introduction, our algorithm tackles sur-

face tracking by evolving a reference mesh over time. To

this aim, it iteratively deforms the reference mesh and re-

estimates point-to-point correspondences between the mesh

vertices and a set of target points. In that respect it is in-

spired by the Iterative Closest Point algorithm[7, 4] that

was initially proposed to register rigid motions of solid ob-

jects. While extensions of this work to non-rigid deforma-

tions have been proposed, e.g. [9, 2, 3], to the best of our

knowledge none applies to the case of large deformations

as observed when capturing body motions. Over the exist-

ing methods that address this issue, two main classes can be

identified in connection with our approach:

Dense matching from sparse features The traditional

way to match two surface points is to consider two-

dimensional image interest point descriptors such as SIFT,

among others. Unfortunately such interest points are usu-

ally non-uniformly distributed on the surface, hence giv-

ing little information on how textureless regions deformed.

Different solutions have been proposed to obtain more

homogeneously distributed sparse matches. For instance

Naveed[1] propagates the sparse features information on the

rest of the mesh using level sets of harmonic functions.

Other visual features, such as edges, are used by Starck

and Hilton[15, 14]. In [6], a similar problem of marker-

less garment capture is addressed by using the boundaries

of the garment as anchors to guide the establishment of a

consistent cross-parametrization between the independently

reconstructed surfaces.

Geometric features have also been used. Varanasi et

al. [16] match mesh extremities identified as the extrema

of the geodesic integral [10]. Starck and Hilton [14]

add uniformly distributed geometric features, in the form

of the geodesic-intensity histogram, and then regularize

the assignment using a MRF on the graph of the mesh.

These geodesic features require special care when topology

changes appear, as they loose the reliability one expect from

sparse features.

Our work avoids the need for such features and focuses

on how to fit a mesh with a set of target points.

Tracking by deformation This class of approaches re-

quires rigidity priors that guide the surface deformation and

improve its robustness. The particular case of human shape

and motion has received a lot of attention. Several methods

in this category perform the deformations of an initial high

resolution mesh template, obtained using a laser-scanner for

instance [5, 8, 17]. In [8, 17], and closely related to our

work, silhouette constraints are diffused over the mesh by

enforcing the preservation of Laplacian coordinates. In [8],

a coarse volumetric mesh is first deformed, then higher fre-

quency deformations are estimated locally. In [17] a pose

is first estimated by fitting a skeleton model and then the

corresponding shape estimation is then refined by inflating

the surface in order to match the silhouettes. Interestingly,

the method presented in [16], based on the preservation of

differential coordinates, is able to handle topology changes

by performing a mesh morphing step after the deformation

of the surface. Unfortunately, the lack of rigidity constraint

in the morphing stage prevents long term accuracy.

We propose a simple but efficient way to enforce the

local rigidity of a surface. First, fine details are kept by

preserving differential coordinates. Second, larger defor-

mations are limited by a lower resolution spring like force

applied to sparse points seeded independently at each time

step. Our contribution with respect to existing approaches

is to provide rigidity constraints that are surface based and

that are localized both in space and time. As shown in the

paper, the associated deformation scheme allows to track

surfaces in standard data-sets without the need for precise

prior models nor for specific features. In addition, we be-

lieve that this scheme allows for further explorations of the

problem that include topology changes.

3. Method

Our approach belongs to the tracking by deformation

class of methods that deform a reference surface over time.

In a way similar to the ICP algorithm, the method itera-

tively re-estimates point-to-point correspondences between

the target point cloud and the current approximation of

the deformed mesh. This assignment procedure is detailed

in 3.1. Using the reference surface as a model reduces the

impact on the tracking of corrupted data and wrong assign-

ments that appear when dealing with highly deformable sur-

faces. In the framework we use, the surface deformation is

achieved by setting position constraints on some vertices of

the mesh. The evolved mesh is obtained by finding a com-



(a) Averaging rigid motions on

patches.

(b) Computing inter-patch con-

straints : the target patch posi-

tions knowing the neighbouring

rigid motions.

(c) Computing final targets for the

patch centers.

(d) Use these targets as soft con-

straints to the deformation frame-

work.

Figure 2. Method Outline

promise between these soft-constraints and the preservation

of the position of each vertex with respect to his neighbour-

ing vertices. This could seem to be a sufficient way of en-

forcing local rigidity. However, as show in 3.2, the way this

framework handles error on the constraints is not sufficient.

This motivates the need for a a higher level rigidity model,

as introduced in 3.3 which complements the first by adding

a rigidity force between the constraints themselves. To help

the reader go trough the next paragraphs we give an outline

of the method Algorithm 1. The inner loop of the algorithm

is illustrated in Figure 2.

Algorithm 1 Method Outline

1: X̂0 = X0

2: for t in timeFrames do

3: Seed patches randomly on the surface

4: while the patch centres are moving do

5: Compute a target position field.

6: Average the rigid motions on patches.

7: Compute inter-patch constraints.

8: Compute the final targets for the patch centres.

9: Use them as soft constraints in the mesh deforma-

tion framework.

10: end while

11: Output (M, X̂t) as approx for time t

12: end for

3.1. Computing target positions for the vertices

As our method deforms a reference mesh across the se-

quence without changing its topology, we are actually keep-

ing the same connectivity (ν, τ) where ν is the set of ver-

tices and τ is the set of triangles. We are only re-evaluating

a position function X̂ : ν 7→ R
3 mapping vertices to their

cartesian coordinates.

The classical ICP algorithm looks for the rigid motion

minimizing a distance function between a solid model and

the observed data. Another point of view is to consider

that the closest compatible point search suggests a position

function on ν and that the rigid motion estimation that fol-

lows is providing a regularization of the function by forcing

the deformation to be a direct isometry.

Our closest compatible point search is very simple as we

declare a point of the target set and a point of the deformed

mesh compatible if their normals form an angle smaller than

45◦. However we proceed in a slightly different way : in-

stead of having the vertices of the deformed mesh look for

the closest point in the target set, we go through the target

set and have each of the vertices contribute to the position

of its closest compatible point in the deformed mesh. This

means that we are not forcing the function to be defined

densely on ν. The weight of the contribution is simply the

dot product of normals. This preserves the contribution of

unmatched parts of the surface even if they are still far away

and is therefore more efficient at getting out of local min-

ima, although it also increases our sensitivity to errors in the

target point set.

Our approach is motivated by the fact that the regular-

isation of the deformation field and therefore of the posi-

tion function can be done locally on the mesh. In our case

the notion of locality involves using the connectivity of the

graph τ which differentiates us from the regular ICP which

only consider point clouds.

3.2. Mesh Deformation Framework

Among the mesh deformation methods which have

been developped in the computer graphics community, the

preservation of local differential coordinates has proven to

be a reliable and easy way to deform surfaces using only a

reference mesh. It was also identified as a powerful tool for

computer vision, particularly for the specific problem we

address[8, 16, 17].

The reference mesh defines an initial position function

X0 which can be written as three |ν| × 1 vectors x0, y0, z0

containing the cartesian coordinates. The idea is to build

the laplacian matrix L from (ν, τ), weighted with cotangent



weights[11] computed with X0. It is then possible to define

a rigidity energy for each of the cartesian coordinates x, y, z

independently (here for the x coordinate) :

Er = ‖Lx − Lx0‖2 (1)

Solving for x using this constraint only yields an under-

constrained linear system of equations. Given a set of ver-

tices whose positions we wish to constrain, we can define

a diagonal weight matrix Wc (with weight 0 if the vertex

is un-constrained) and three vectors xc, yc, zc containing

the target cartesian coordinates for the constrained vertices.

We are then solving for each coordinate independently a

system :

Er + Ec = ‖Lx − Lx0‖2 + ‖Wc(x − xc)‖
2 (2)

Provided we have at least one constrained vertex, this

yields a full-rank system in the least-squares framework.

But this approach has problems as soon as we work with

large deformations. If, for example, we rotate the sur-

face by 180◦ with respect to the reference pose, Er will

push the vertex in the wrong direction. In recent works by

Sorkine[13], an iterative scheme is presented to evaluate lo-

cal rotations of the surface, which allows to bring a degree

of rotation invariance to the process. Taking into account

the re-estimated local rotations and the constraints, the idea

is to then minimize the following energy the least-square

sense:

Er + Ec = ‖Lx − R(Lx0, Ly0, Lz0)‖2

+‖Wc(x − xc)‖
2

(3)

The method presented in the paper solves iteratively for

x and the function R. It is as advertised easy to implement

and efficient in that the costly Cholesky factorisation of the

big sparse matrix LT L+W 2

c only happens once for a given

Wc matrix.

The idea of setting dense constraints on the mesh and

letting the least-square procedure de-noise the dense posi-

tion field is tempting. From equation 3 we understand that

a choice of Wc = I would give the preservation of local

differential coordinates and the constraint coordinates the

same importance. If we assume that the observation noise

on our set of vertices is centred, uncorrelated and gaussian,

the least square minimization performs extremely well as

shown in Figure 3. Unfortunately, computing a target posi-

tion field by looking for the closest compatible point yields

un-centred and highly correlated vertex position errors.

3.3. Sparse constraints and high level rigidity

These last remarks on the position error brought by

the closest compatible point search have motivated our ap-

proach. Instead of constraining each vertex to its target po-

sition, we seed patches on the mesh with a maximal patch

Figure 3. The original mesh (left) is rotated and translated then

added to zero meaned uncorrelated noise (centre). Minimizing the

least square error on differential coordinates allows to recover the

rigid motion correctly (right)

Figure 4. Patches are randomly seeded on the surface to deform.

The first mesh is the initial pose. The second one is a deformed

version of the first, patched differently because the patching pro-

cess happens independently for each frame of the sequence.

radius. We compute for each patch centre a target position

by averaging and diffusing the rigid motions on the patches.

The resulting sparse set of soft constraints on the patches

centres is then used to control the mesh deformation.

The patch seeding takes place at each time step indepen-

dently. This means that the patching procedure is not part

of our model. This helps in keeping localised the compu-

tation of constraints not only spatially but also temporally.

The process starts by distributing patch centres on the ex-

tremities, which are local maxima of the geodesic integral

defined from the geodesic distance as in [10]. The rest of

the patches is distributed randomly until the whole graph is

covered. An example of patchings for two different frames

of a same sequence is presented in Figure 4.

First we estimate a rigid motion of the patches toward

their associated target data points. It is done by comput-

ing an average of direct rigid transformations of the ver-

tices to their assigned target positions. To do so we use the

same technique[13] as the one we use to compute local ro-

tations of the surface with respect to the reference pose in

the laplacian deformation framework. The residual error of

this rigid motion is a first measurement of the quality of the

future alignment and is therefore used to weight the associ-

ated constraint in the deformation step.

Because patch centres often lie pretty close to the centre



Figure 5. The rigid motion is diffused between neighbouring

patches.

of gravity, the closest point force does not provide much ro-

tation information to the deformation step alone. Enforcing

a local rigidity model ensures robustness to point assign-

ment errors and diffuses rigid motions and their certainties

at a coarser level of detail : the patch level. Instead of

simply computing the target position for the patch centre

ci using the rigid motion of the corresponding patch i, we

also use the rigid motions from the neighbouring patches

j ∈ N(i) to predict the target position. Basically, for the

patch i we look for the information : ”Where would my

neighbours think I should be if we were a rigid transforma-

tion of (ν, τ, Xt−1) or (ν, τ, X̂0) ?”.

On Figure 5 we show that after computing the rigid mo-

tion for patch j between t − 1 and the target positions, we

can predict the position of the centre of patch i by assuming

that the rigid motion was the same for him. This way we

obtain a target tt−1

i|j . The exact same can be done by com-

puting the rigid motion for patch j from the reference mesh

to the target positions, yielding another target t0
i|j . With the

same notation we define t0
i|i and tt−1

i|i as the targets obtained

by using the rigid motions computed for the patch i itself.

We can finally set the final target ti as a weighted average

of all these targets.

ti =
1

wi + r
∑

wj

[α(wi.t
0

i|i + r
∑

Pj∈Ni

wj .t
0

i|j)

+(1 − α)(wi.t
t−1

i|i + r
∑

Pj∈Ni

wj .t
t−1

i|j )]

The r term controls the rigidity as it weighs the impor-

tance of the neighbouring rigid motions in the computation

of the target. The α term balances the influence of the pre-

vious and reference frames. In practice α = 0.4 was used

for all the results the results which we present in the next

section.

4. Results

We show in this section the performance of our algorithm

in different video sequences involving large surface defor-

mations. In the following paragraphs we present our results

on six sequences. Four of them were computed from recon-

structed photo-consistent meshes. The two others involved

noisy visual hulls computed with a very simple voxel carv-

ing algorithm.

4.1. Using Independently Reconstructed Meshes

Our method was initially tested using independently re-

constructed meshes from which we extracted 3D point and

normal data. The idea was to deform a low resolution and

smooth template using high resolution and uniformly sam-

pled target point sets.

Challenging sequences were provided by the Surfcap

project of J. Starck and A. Hilton 1 as a set of very smooth

reconstructions obtained with a graph-cut method[15]. As

the given geometry was at a extremely high resolution

(more than 100k vertices per mesh) we down-sampled the

target meshes to 10k vertices. The deformed reference

model was a down-sampled version of the first frame with

roughly 5k vertices. All the sequences were run with the

same set of parameters. The Figure 4 show the size of the

patches on two frames from the Kickup sequence. There

were were usually 23 to 28 patches seeded on the mesh and

thus as many control points used to guide the deformation.

The Kickflip sequence shown in Figure 6(a) presents a hip-

hop dancer performing a move exhibiting both large defor-

mations and very fast movement. Out of the 250 frames we

ran 150 because the 50 firsts had one of the hands attached

to the leg and therefore were not suited as models. Head,

Pop and Lock were the other sequences we ran. For them

we used frame 0 as reference and show in the correspond-

ing Figures 6(b), 6(c) and 9 that our approach did recover

a very wide range of large deformations. For each figure,

we show on the top line the the target meshes which are

not temporally consistent. On the bottom line we show a

coloured version of the deformed mesh. The consistence in

the colouring indicates dense tracking.

4.2. Using Visual Hulls

We tested our approach against two of the datasets

made publicly available by Daniel Vlasic2 from MIT. Both

1http://www.ee.surrey.ac.uk/CVSSP/
2http://people.csail.mit.edu/drdaniel/



(a) Kickflip results

(b) Lock results

(c) Head results

Figure 6. Results on the Starck and Hilton sequences. Shaded

models on the top lines are the independent reconstructions. On

the bottom lines we show coloured versions of the deformed

meshes computed by our algorithm. The consistence in the colour-

ing indicates dense tracking.

datasets are 174 frames long. We fed the calibration and sil-

houette data into a very simple voxel carving algorithm to

generate meshes whith roughly 10k-15k vertices.

The laser scanned reference meshes provided with the

datasets were extremely detailed but had too many ver-

tices and high frequency folds. We created sub-sampled

and smoothed out versions of these templates with approxi-

mately 3.5k vertices. We show in Figure 7 the results on the

sequences Handstand and Crane. On the top line we show

the independently reconstructed visual hulls. On the bottom

line we show the reference surface deformed along the se-

quence. Here again the consistency of the colouring shows

the density of our tracking.

Although the 2D segmentation was pretty close to per-

fect, the meshes obtained by voxel carving were still noisy.

The noise from shape from silhouette techniques is hard to

handle. It does not create small variations around the real

surface but creates fake volumes or even holes. In terms of

points and normals, this means we have a lot of completely

erroneous points pulling on the deformed mesh. Our algo-

rithm still managed to process the sequences but the quality

of the obtained deformations is directly related to the qual-

ity of the input data.

4.3. Quantitative evaluation

To evaluate our results qualitatively, we used the silhou-

ette reprojection error which is the proportion of pixels that

either project outside of the original silhouette when they

should be in, or project inside when they should be out. We

present in Figure 8(a) the evolution of this error in the pop

sequence. It must be noted that these results are obtained

without explicit fitting of the 2D silhouettes.

It is possible to apply a post processing step at each

frame where the deformed result mesh is further deformed

smoothly with the same framework, but this time such that

the silhouette reprojection error is minimized. This is a very

local procedure and works only because the deformed mesh

is already very close to the solution. We present numerical

results in Figure 8(b) to be compared with Figure 8(a).

4.4. Performance and Shortcomings

On the Kickup sequence, the average frame processing

time which was 4.8 seconds on a 2.5Ghz quad-core proces-

sor. The frame rate was constant throughout the sequence

which exhibits large deformations but no major ambiguity.

Unsurprisingly, our approach encounters problems when

confronted with ambiguous situations such as these brought

by topology changes such as self-intersections. The track-

ing can get locally lost for some time but the rigidity con-

straints with respect to the reference model allow it to re-

cover once the ambiguity disappears. We give an exam-

ple of such a situation in Figure 9. Our algorithm gets lost

shortly after frame 120. This corresponds to a subsequence



(a) Handstand results (b) Crane results

Figure 7. Results on the Vlasic sequences. The visual hulls are shown on the top lines. On the bottom lines we show coloured versions of

the deformed meshes computed by our algorithm. The consistence in the colouring indicates dense tracking. Note that the quality of the

recovered deformation is reasonable considering the quality of the input data.

Figure 9. Heavy topology changes create ambiguity around frame 130 but the tracking is recovered correctly at frame 136.

where the dancer crosses his arms and where the indepen-

dent reconstructions create fake volumes between the arms

and the body. However, a couple of frames later our al-

gorithm recovers because it uses the residual error on the

patches rigid motions approximations to weight the con-

straints. This means that a high residual error will relax the

corresponding constraints and let the mesh go back locally

to the reference position from which it finds better point-to-

point associations.

5. Conclusion

We presented a method for dense surface tracking by it-

eratively deforming a reference mesh along a temporal se-

quence. Our approach relies on nothing but on a set of

points and normals obtained from static 3D reconstruction

techniques. We iteratively deform the surface to progres-

sively fit the target point cloud. We ensure local rigidity at

a fine level by using a mesh deformation framework which

preserves local differential coordinates. We introduced a

simple way of enforcing rigidity at a coarser level, by seed-

ing patches on the surface and diffusing the rigid motion

estimations between neighbours. Our experiments on many
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(a) These results are obtained without explicit fitting of the

2D silhouettes.
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(b) After post-processing deformation to enforce silhouette

consistency the error is considerably lower.

Figure 8. Silhouette reprojection error in the 7 cameras on the pop

sequence.

datasets show the efficiency our approach and encourages

further exploration.

Acknowledgements

This research was funded by Deutsche Telekom Labo-

ratories. We would like to thank Jonathan Starck, Adrian

Hilton (U. of Surrey) and Daniel Vlasic (MIT) for giving us

access to the datasets.

References

[1] N. Ahmed, C. Theobalt, C. Rössl, S. Thrun, and H.-P. Sei-
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mesh animation from multi-view silhouettes. In SIGGRAPH

’08: ACM SIGGRAPH 2008 papers, pages 1–9, New York,

NY, USA, 2008. ACM.


