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Abstract. In this work, we are interested in a class of problems of
great importance in many areas of industry and engineering. It is
the invese problem for the biharmonic equation. It consists to com-
plete the missing data on the inaccessible part from the measured
data on the accessible part of the boundary. To solve this ill-posed
problem, we opted for the alternative iterative method developed
by Kozlov, Mazya and Fomin which is a convergent method for
the elliptical Cauchy problems in general. The numerical imple-
mentation of the iterative algorithm is based on the application
of the boundary element method (BEM) for a sequence of mixed
well-posed direct problems. Numerical results are performed for a
square domain showing the effectiveness of the algorithm by BEM
to produce accurate and stable numerical results
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1 Introduction

In this paper, we consider an inverse problem for biharmonic equation called
data completion problem, which aims at recovering missing conditions on
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some inaccessible part of the boundary (which cannot be evaluated due to
the physical difficulties or inaccessibility geometric) from the over-specified
boundary data on the remaining part of the boundary.
The biharmonic equation in two dimensions arises naturally in many physical
applications. It is a well-known example of a mathematical model governing
the interior two-dimensional flow of viscous fluids at small Reynolds numbers,
i.e., the Stokes flow or the Kirchhoff theory of plates in elasticity.

The knowledge of the appropriate boundary conditions across the bound-
ary of the domain of the solution results in direct problems of the biharmonic
equation which have been widely studied in the literature [1], [2], [3]. Un-
fortunately, many technical problems are not part of this category. Indeed,
the boundary conditions are often incomplete or in the form of the boundary
conditions, under-specified and over-specified on different parts of the bound-
ary, or the solution is prescribed at some internal points in the domain. It is
the inverse problems known to be generally ill-posed, namely, the existence,
uniqueness and stability of their solutions are not always guaranteed [4].

Concerning the inverse problem for the Laplace equation, it has been
subject of several works in which many works are focused to develop regu-
larizing methods to overcome the ill-posed aspect of this problem. Among
the deterministic method, we find the most ancient of them is the one based
on optimization tools introduced by Kohn and Vogelius [5], we mention the
method of Quasi-reversibility introduced by Latès since 1960 [6], and recently
used by [7],[8], Thikhonv method [9] and the iterative method [10].

Obtaining a numerical solution for the Cauchy problem for the biharmonic
equation, which is an extention of the Laplace equation, is very important
since the inverse problem is still ill-posed as the solution is not stable with
respect to small perturbations in the input data. Hence, the Cauchy problem
fo the biharmonic equation has been investigated by [16], [17] and [18]. The
aim of this study is to introduce a stable numerical method for obtaining this
solution approximately in the case of square domain which is an example of
nonsmooth geometry for the biharmonic inverse problem with four conditions
on the accessible part of the boundary Γ0 that are u, ∂nu, ∆u and ∂n∆u.

Having distinguished the different categories of methods for solving Cauchy
problems, we opted for the group of iterative methods that particularly have
two advantages over other methods, namely; the simplicity of numerical im-
plementation and the ability to easily consider any physical constraint in
the iterative scheme. Among the iterative methods, we find the method of
Kozlov and al. [10], that was widely used and studied [11], [12], [13], [14].

To solve the Cauchy problem, the two equations resulting from the factor-
ization of the biharmonic inverse problem are discretised using the boundary
element method (BEM). The advantages of this method for linear partial
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differential equations over domain discretisation methods, such as finite dif-
ference or finite element method, are well-known [15]. This paper is orga-
nized as follows. In section 2, we present the mathematical formulation of
the inverse problem for the biharmonic equation with the adapted boundary
conditions and its corresponding factorized problem. The iterative algorithm
is presented in section 3. The discretization of the well-posed mixed prob-
lems by the boundary element method is described in section 4. Section 5 is
devoted to computational aspects and numerical results for typical example
for a square domain.

2 Mathematical formulation

2.1 Biharmonic inverse problem

We consider an open bounded domain Ω ⊂ R2 of boundary Γ = Γ0 ∪ Γ1,
where Γ0, Γ1 6= ∅ and Γ0 ∩ Γ1 = ∅.
We consider that the domain Ω is governed by the biharmonic equation
difined by:

42u = 0 in Ω (2.1)

that is equivalent to system of equations:{
4u = ω in Ω
4ω = 0 in Ω

(2.2)

This system is a well known example of a mathematical model which model
the Stokes flow, in which case the functions u and ω are called the current
function and the swirl of the fluid flow. The biharmonic operator also governs
the flexing of thin plates in small displacements.

Concerning the boundary conditions if for example u and its normal
derivative ∂u

∂n
or u and ω or u and ∂ω

∂n
are prescribed at all points of the

boundary Γ = ∂Ω, in this case, it is a well-posed direct problem, then the
solutions u and ω can be uniquely identified throughout the domain Ω. How-
ever, in many experimental situations, it is not always possible to specify the
boundary conditions at all points of the boundary Γ; but other inside infor-
mation or limit can be given elsewhere, then the problem is called an inverse
problem for the biharmonic equation which is ill-posed. Such as, if on a part
of the boundary Γ0 ⊂ Γ the conditions u, ∂u

∂n
, 4u, and ∂4u

∂n
are prescribed

and the remaining part Γ1 = Γ \ Γ0 has no limit conditions.
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In this paper, we are interested in the mathematical formulation of the inverse
problem associated with the biharmonic equation with four boundary condi-
tions defined by u, ∂u

∂n
, 4u and ∂4u

∂n
on the accessible part of the boundary

Γ0 and no conditions are specified on the remaining part Γ1.
Thus, the inverse problem assicieted to a biharmonic equation can be formu-
lated as follows: 

42u = 0 in Ω
u = u0 on Γ0
∂u
∂n

= u′0 on Γ0

4u = ω0 on Γ0
∂4u
∂n

= ω′0 on Γ0

(2.3)

The problem consists in solving the Cauchy problem (2.3) that is from
the data u0, u

′
0, ω0 and ω′0 on the accessible part Γ0 of the boundary Γ recre-

ate the information on all the boundary and thus find the solution u in the
interior of the domain.

The problem (2.3) admits a unique solution for a compatible data on the
part of the boundary Γ0.

Thus; we consider that the solution u is in the space H2
0(42,Ω), defined

by [19]:

H2
0(42,Ω) = {u ∈ H2(Ω) / 42u = 0} (2.4)

Then, the space of compatible data on Γ0 is defined by:

K(Γ0) = {(u0, u
′
0, ω0, ω

′
0) ∈ X(Γ0) / ∃ u ∈ H2

0(42,Ω)and (u,
∂u

∂n
,4u,

∂4u

∂n
)/Γ0

= (u0, u
′
0, ω0, ω

′
0)} (2.5)

where;

X(Γ0) = H3/2(Γ0)×H1/2(Γ0)×H−1/2(Γ0)×H−3/2(Γ0).

Remark. It should be noted that other formulations exist with condi-
tions on the accessible part of the boundary [17].

2.2 The factorised problem

To solve the problem (2.3), we propose the factorization of the problem in two
inverse Cauchy problems associated with the Laplace and Poisson equations.
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In the problem (2.3), we made the change of unknown function:

4u = ω (2.6)

Then, the problem becomes:

4u = ω in Ω
4ω = 0 in Ω
u = u0 on Γ0
∂u
∂n

= u′0 on Γ0

ω = ω0 on Γ0
∂ω
∂n

= ω′0 on Γ0

(2.7)

This problem is composed of two inverse Cauchy problems:


4ω = 0 in Ω
ω = ω0 on Γ0
∂ω
∂n

= ω′0 on Γ0

(P1) and


4u = ω in Ω
u = u0 on Γ0
∂u
∂n

= u′0 on Γ0

(P2) (2.8)

with (P1) is an inverse problem for the Laplace equation and (P2) is the
inverse problem associated with the Poisson equation which can be solved by
the iterative algorithm descibed in the next section.

3 Description of the iterative algorithm

The resolution of the problem (2.3) is equivalent to the resolution of the two
problems (P1) and (P2) of (2.8). This will allow us to iteratively solve, by
the boundary element method, both direct mixed problems associated with
problems (P1) and (P2).

The KMF iterative algorithm investigated proposed by [10] is a convergent
algorithm for solving elliptic Cauchy problems and is widely used in the case
of Cauchy problems with Laplace’s and Poisson’s equation [11], [13] and [14]
and propsed in this work in the case of the biharmonic problem with the
specified conditions in (2.3). This algorithm is based on reducing this ill-
posed problem to a sequence of mixed well-posed boundary value problems
and consists of the following steps:
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Step 1: Specify an initial guess ω1 and u1 on Γ1.

Step 2: Solve the following mixed well-posed boundary value problems:


4ω(0) = 0 in Ω
ω(0) = ω1 on Γ1

∂ω
∂n

(0)
= ω′0 on Γ0

and


4u(0) = ω(0) in Ω
u(0) = u1 on Γ1

∂u
∂n

(0)
= u′0 on Γ0

to obtain
∂ω(0)

∂n |Γ1

= v1 to obtain
∂u(0)

∂n |Γ1

= h1

Step 3:
i) If the approximation (u(2k), ω(2k)) is constructed, solve the two mixed well-
posed boundary value problems:


4ω(2k+1) = 0 in Ω
ω(2k+1) = ω0 on Γ0

∂ω
∂n

(2k+1)
= vk+1 on Γ1

and


4u(2k+1) = ω(2k+1) in Ω
u(2k+1) = u0 on Γ0

∂u
∂n

(2k+1)
= hk+1 on Γ1

to obtain ω
(2k+1)
|Γ1

= ωk+2 to obtain u
(2k+1)
|Γ1

= uk+2

ii) If the approximation (u(2k+1), ω(2k+1)) is constructed, solve alternatively
the two mixed well-posed boundary value problems:

4ω(2k+2) = 0 in Ω
ω(2k+2) = ωk+2 on Γ1

∂ω
∂n

(2k+2)
= ω′0 on Γ0

and


4u(2k+2) = ω(2k+2) in Ω
u(2k+2) = uk+2 on Γ1

∂u
∂n

(2k+2)
= u′0 on Γ0

to obtain
∂ω

∂n

(2k+2)

|Γ1

= vk+2 to obtain
∂u

∂n

(2k+2)

|Γ1

= hk+2

Step 4: Repeat step 3 for k ≥ 0 until a specified stopping criterion is satis-
fied.

This algorithm consists in constructing iteratively the traces which approx-
imate the data on the part of the boundary Γ1 of a function which verifies
the biharmonic equation in the domain Ω.
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4 The boundary element method

The boundary integral equations are classical kind of formulations for partial
diferential equations [15], [17]. They have been used to solve a wide variety
of real world problems.

In the presented iterative algorithm, we have to solve two types of mixed
well-posed problems with Laplace and Poisson equation, where we will use
the boundary elements method.
In order to give a brief description of boundary integral equations, we consider
the following mixed boundary value problem:

Let Ω ⊂ R2 of boundary Γ = Γ0 ∪ Γ1 such that Γ0 ∩ Γ1 = ∅
4ω = 0 in Ω
ω = ω0 on Γ0

qω = ω1 on Γ1

(4.1)

where qω = ∂ω
∂n

is the normal derivative of ω.

The obtained integral equations for the function ω solution of mixt Laplace
equation are:

ω(xP ) +

∫
Γ

(
ω(xQ)

∂G

∂n
(xP , xQ)− qω(xQ)G(xP , xQ)

)
dΓQ = 0 xP ∈ Ω

(4.2)

1

2
ω(xP ) +

∫
Γ

(
ω(xQ)

∂G

∂n
(xP , xQ)− qω(xQ)G(xP , xQ)

)
dΓQ = 0 xP ∈ Γ

(4.3)
where ω is the solution of the mixed well-posed problem for Laplace equa-

tion and G the fondamental solution of Laplace equation in Ω defined by:
G(xP , xQ) = 1

2π
ln 1

r(xP ,xQ)
avec r(xP , xQ) = ‖xP − xQ‖2

We consider a subdivision of the domain boundary Ω in a finite number
N of boundary elements Γk, i.e. Γ = ∪Nk=1Γk.

We consider that the center of each element Γk is designated as a collo-
cation node xk.

If we pose: ∂G
∂n

(xP , xQ) = Kd(xP , xQ) and G(xP , xQ) = Ks(xP , xQ)
Then;

with the discretization described, we replace xP by l-th node xl where l =
1, · · · , N , and the integral Γ by a sum of integrals on Γk for k = 1, · · · , N .
On each element Γk the functions ω and qω are constants i.e ω = ωk et
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qω = qωk
.

We obtain, ∀ l, k = 1, · · · , N

1

2
ω(xl) +

N∑
k=1

ωk

∫
Γk

Kd(xl, xQ) dΓQ︸ ︷︷ ︸
Hlk

−
N∑
k=1

qωk

∫
Γk

Ks(xl, xQ) dΓQ︸ ︷︷ ︸
Glk

= 0

⇔ 1

2
ω(xl) +

N∑
k=1

ωk Hlk −
N∑
k=1

qωk
Glk = 0 ⇔ 1

2
ω + H ω︸ ︷︷ ︸
H̃ω

−G qω = 0

H̃ and G are two square matrices of order N .
ω = [ω1, ω2, · · · , ωN ]T ∈ RN the data of ω on Γ.

qω = [qω1 , qω2 , · · · , qωN
]T ∈ RN the data of ∂ω

∂n
on Γ.

By rearranging the matrix system, such that all the unknowns on the right
side and known ones the left side, we obtain the linear system:

Ax = G̃b︸︷︷︸
f

⇔ Ax = f

with;
A and G̃ are two square matrices of order N .

x = [qω1 , · · · , qωm , ωm+1, · · · , ωN ]T ∈ RN vector of unknown data.

b =
[
ω1, · · · , ωm, qωm+1 , · · · , qωN

]T ∈ RN vector of known data.
Solving this linear system allows us to find the unknown data on boundary.

Similarly, for the application of the BEM for the Poisson problem:
4u = ω in Ω
u = u0 on Γ0

qu = u1 on Γ1

(4.4)

where qu = ∂u
∂n

is the normale derivative of u.
ω is the solution of the previous Laplace problem.
The only difference between the integral Laplace equation and Poisson one
is that we must add the term ω of the second member, which gives:

• if xP ∈ Ω

u(xP )+

∫
Γ
{u(xQ)

∂G

∂n
(xP , xQ)−qu(xQ)G(xP , xQ)} dΓQ+

∫
Ω
ω(xQ) ·G(xp, xQ)dΩ = 0
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• if xP ∈ Γ

1

2
u(xP )+

∫
Γ
{u(xQ)

∂G

∂n
(xP , xQ)−qu(xQ)G(xP , xQ)} dΓQ+

∫
Ω
ω(xQ) ·G(xp, xQ)dΩ = 0

The term that we add is equal to:∫
Ω
ω(xQ) ·G(xp, xQ)dΩ =

∫
Γ
{ω(xQ)

∂F

∂n
(xp, xQ)− qω(xQ)F (xp, xQ)}dΓQ

where the function F is required in this case of the fundamental solution of
the biharmonic equation, i.e,

F (xp, xQ) = − 1

8π
r2(xp, xQ){ln r(xp, xQ)− 1}

With the same notation and the same discretization of the boundary, we
obtain: ∀ l, k = 1, · · · , N

1

2
u(xl) +

N∑
k=1

uk

∫
Γk

Kd(xl, xQ) dΓQ︸ ︷︷ ︸
Hlk

−
N∑
k=1

quk

∫
Γk

Ks(xl, xQ) dΓQ︸ ︷︷ ︸
Glk

+

N∑
k=1

ωk

∫
Γk

Kb(xl, xQ) dΓQ︸ ︷︷ ︸
Dlk

−
N∑
k=1

qωk

∫
Γk

Ka(xl, xQ) dΓQ︸ ︷︷ ︸
Clk

= 0

⇔ 1

2
u(xl) +

N∑
k=1

ukHlk −
N∑
k=1

qukGlk +

N∑
k=1

ωkDlk −
N∑
k=1

qωk
Clk = 0

⇔ 1

2
u+H u︸ ︷︷ ︸
H̃u

−G qu +D ω − C qω = 0

H̃, G, D et C are square matrices of order N .

u = [u1, u2, · · · , uN ]T ∈ RN data of u on Γ.

qu = [qu1 , qu2 , · · · , quN ]T ∈ RN data of ∂u
∂n

on Γ.

ω = [ω1, ω2, · · · , ωN ]T ∈ RN data of ω on Γ.
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qω = [qω1 , qω2 , · · · , qωN
]T ∈ RN data of ∂ω

∂n
on Γ.

We rearrrange the matrix system, i.e. all the unknowns on the right side
and knowns ones on the left side. We get the following linear system:

Ax′ = G̃b′ −Dω + Cqω︸ ︷︷ ︸
f ′

⇔ Ax′ = f ′

with,
A and G̃ are two square matries of order N .

x′ = [qu1 , · · · , qum , um+1, · · · , uN ]T ∈ RN vector of unknown data.

b′ =
[
u1, · · · , um, qum+1 , · · · , quN

]T ∈ RN vector of known data.

5 Numerical results

The solution domain considered is an example with non-smooth boundary,
which is a square Ω = (0, 1)× (0, 1) with a boundary ∂Ω = Γ1∪Γ0 such that
Γ1 ∩ Γ0 = ∅.
where; Γ1 is the underspecified boundary and Γ0 is the overspecified bound-
ary.

The analytical biharmonic function u and the harmonic function ω which
verified ∆u = ω to be retrieved are given by:

u(x, y) =
x sin(x) cosh(y)− x cos(x) sinh(y)

2
(5.1)

and

w(x, y) = cos(x) cosh(y) + sin(x) sinh(y) (5.2)

The objective is to reconstruct the traces u, ∂u
∂n

, ω and ∂ω
∂n

of the functions
u and ω. Hence, the convergence of the algorithm may be investigated by
evaluating at every iteration the errors defined by:

Erru = ‖unum − uana‖2 ErrQu = ‖Qunum −Quana‖2

Errω = ‖ωnum − ωana‖2 ErrQω = ‖Qω num −Qωana‖2

In addition, we evaluated the following quantities:

Conu = ‖u(k+1)
num − u

(k)
num‖2 ConQu = ‖Qu(k+1)

num −Qu
(k)
num‖2
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Conω = ‖ω(k+1)
num − ω

(k)
num‖2 ConQω = ‖Qω(k+1)

num −Qω
(k)
num‖2

In this study, we distinguish two different cases depending on the measure of
the accessible part of the boundary.

First case: mes(Γ0) = mes(Γ1)
We consider that the underspecified boundary is given by Γ1 = {0}× (0, 1)∪
(0, 1)× {1} and the overspecified boundary Γ0 = (0, 1)× {0} ∪ {1} × (0, 1).

Figure 1: Representative schema of domain for case 1

Figure 2: Comparison of the Dirichlet and Neumann boundary data for u
and ω with N = 80 and k = 100

The figure 2 presents results of the reconstructed data on the boundary
compared with the exact solution with number of boundary elements N =
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80, showing that they are accurate. The same results are obtained with
N = 20, 40 showing that, more the number of elements increases, more the
accuraty obtained is better.

Figure 3 (resp. figure 4) shows the evolution of the errors Erru, Errω,
ErrQu and ErrQω (resp. Conu, Conw, ConQu and ConQw) for each calcu-
lated data during the iterative process, showing that the error decreases in
function of iterations and the error is smaller for Dirichlet conditions as that
calculated for the Neumann conditions.

For the solution in the domain Ω, we have obtained the result presented in
figure 5 which shows that the approximate and the exact solutions are iden-
tical, allowing to conclude the performance of the iterative BEM algorithm
that provides a good approximation for the biharmonic inverse problem.

Figure 3: The errors Erru, Errω, ErrQu and ErrQω with N = 20, 40, 80

Second case: mes(Γ0) > mes(Γ1)
We consider that the underspecified boundary is given by Γ1 = {0} × (0, 1)
and the overspecified boundary Γ0 = (0, 1)×{0}∪ {1}× (0, 1)∪ (0, 1)×{1}.

In this case, we note that the unknown boundary data obtained by the
numerical algorithm are almost equal to the exact data. Comparing with
the results obtained in the previous case, we can say that the results are
more accurate when the unknown part is strictly smaller than the part that
contains the known data.

To assess the accuracy of these results with respect to exact or analytical
results, we calculate at each iteration k the errors for each boundary data
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Figure 4: The Errors Conu, Conw, ConQu and ConQw with N = 20, 40, 80

Figure 5: The exact solution and the approximate one with N = 40
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Figure 6: Representative schema of domain for case 2

Figure 7: Comparison of the Dirichlet and Neumann boundary data for u
and ω with N = 20 and k = 100
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Figure 8: Comparison of the Dirichlet and Neumann boundary data for u
and ω with N = 40 and k = 100

Figure 9: Comparison of the Dirichlet and Neumann boundary data for u
and ω with N = 80 and k = 100.
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u, ∂u
∂n
, ω and ∂ω

∂n
that we have already defined above by Erru, ErrQu, Errω

and ErrQω.
The obtained results of error for each boundary data for different values

of N are presented in figure 10.

Figure 10: The errors Erru, Errω, ErrQu and ErrQω with different choices
of N = 20, 40, 80

During the iteration process, the calculated errors for the reconstructed
data are much smaller when N is greater. The value of the errors in this case
is smaller than the value of the errors obtained in the first case.

According to the reconstructed data on the boundary, the solution inside
the domain Ω with N = 40 is given by figure 11.

To study the stability of the obtained solutions, different perturbations
were introduced in the prescribed data on the accessible part of the boundary
to see their impact on the results. The results obtained are given in figure
12.

6 Conclusion

In this work, a data completion problem for the biharmonic equation with
four specific conditions on the inaccessible part of the boundary of rectangular
domain is presented. In order to solve it, we proposed a factorization of the
problem in two inverse problems for the Poisson and the Laplace equations



Vol. LV (2017) Iterative Method to Solve a Data Completion Problem... 145

Figure 11: Comparison betwem the exact solution and the obtained one in
the domain Ω with N = 40.

Figure 12: The obtained results with perturbations of conditions 1‘%, 3‘%,
5‘%, 10‘% compared to analytical solution and non perturbed solution.
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which are solved by the iterative method developped by Kozlov, Mazya and
Fomin using the BEM. It is shown that the iterative BEM algorithm produces
a convergent and accurate numerical solution with respect to increasing the
number of boundary elements and the number of iterations. Furthermore, the
iterative alternating algorithm has a regularizing character and the stability
of the numerical solution was shown by imposing various amounts of noise
in the input data.
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