
Iterative Methods for Optimization

C.T. Kelley
North Carolina State University

Raleigh, North Carolina

Society for Industrial and Applied Mathematics

Philadelphia

Contents

Preface xiii

How to Get the Software xv

I Optimization of Smooth Functions 1

1 Basic Concepts 3

1.1 The Problem . 3

1.2 Notation . 4

1.3 Necessary Conditions . 5

1.4 Sufficient Conditions . 6

1.5 Quadratic Objective Functions . 6

1.5.1 Positive Definite Hessian . 7

1.5.2 Indefinite Hessian . 9

1.6 Examples . 9

1.6.1 Discrete Optimal Control . 9

1.6.2 Parameter Identification . 11

1.6.3 Convex Quadratics . 12

1.7 Exercises on Basic Concepts . 12

2 Local Convergence of Newton’s Method 13

2.1 Types of Convergence . 13

2.2 The Standard Assumptions . 14

2.3 Newton’s Method . 14

2.3.1 Errors in Functions, Gradients, and Hessians 17

2.3.2 Termination of the Iteration . 21

2.4 Nonlinear Least Squares . 22

2.4.1 Gauss–Newton Iteration . 23

2.4.2 Overdetermined Problems . 24

2.4.3 Underdetermined Problems . 25

2.5 Inexact Newton Methods . 28

2.5.1 Convergence Rates . 29

2.5.2 Implementation of Newton–CG . 30

2.6 Examples . 33

2.6.1 Parameter Identification . 33

2.6.2 Discrete Control Problem . 34

2.7 Exercises on Local Convergence . 35

ix

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

x CONTENTS

3 Global Convergence 39

3.1 The Method of Steepest Descent . 39

3.2 Line Search Methods and the Armijo Rule . 40

3.2.1 Stepsize Control with Polynomial Models 43

3.2.2 Slow Convergence of Steepest Descent 45

3.2.3 Damped Gauss–Newton Iteration . 47

3.2.4 Nonlinear Conjugate Gradient Methods 48

3.3 Trust Region Methods . 50

3.3.1 Changing the Trust Region and the Step 51

3.3.2 Global Convergence of Trust Region Algorithms 52

3.3.3 A Unidirectional Trust Region Algorithm 54

3.3.4 The Exact Solution of the Trust Region Problem 55

3.3.5 The Levenberg–Marquardt Parameter 56

3.3.6 Superlinear Convergence: The Dogleg 58

3.3.7 A Trust Region Method for Newton–CG 63

3.4 Examples . 65

3.4.1 Parameter Identification . 67

3.4.2 Discrete Control Problem . 68

3.5 Exercises on Global Convergence . 68

4 The BFGS Method 71

4.1 Analysis . 72

4.1.1 Local Theory . 72

4.1.2 Global Theory . 77

4.2 Implementation . 78

4.2.1 Storage . 78

4.2.2 A BFGS–Armijo Algorithm . 80

4.3 Other Quasi-Newton Methods . 81

4.4 Examples . 83

4.4.1 Parameter ID Problem . 83

4.4.2 Discrete Control Problem . 83

4.5 Exercises on BFGS . 85

5 Simple Bound Constraints 87

5.1 Problem Statement . 87

5.2 Necessary Conditions for Optimality . 87

5.3 Sufficient Conditions . 89

5.4 The Gradient Projection Algorithm . 91

5.4.1 Termination of the Iteration . 91

5.4.2 Convergence Analysis . 93

5.4.3 Identification of the Active Set . 95

5.4.4 A Proof of Theorem 5.2.4 . 96

5.5 Superlinear Convergence . 96

5.5.1 The Scaled Gradient Projection Algorithm 96

5.5.2 The Projected Newton Method . 100

5.5.3 A Projected BFGS–Armijo Algorithm 102

5.6 Other Approaches . 104

5.6.1 Infinite-Dimensional Problems . 106

5.7 Examples . 106

5.7.1 Parameter ID Problem . 106

5.7.2 Discrete Control Problem . 106

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

CONTENTS xi

5.8 Exercises on Bound Constrained Optimization 108

II Optimization of Noisy Functions 109

6 Basic Concepts and Goals 111

6.1 Problem Statement . 112

6.2 The Simplex Gradient . 112

6.2.1 Forward Difference Simplex Gradient 113

6.2.2 Centered Difference Simplex Gradient 115

6.3 Examples . 118

6.3.1 Weber’s Problem . 118

6.3.2 Perturbed Convex Quadratics . 119

6.3.3 Lennard–Jones Problem . 120

6.4 Exercises on Basic Concepts . 121

7 Implicit Filtering 123

7.1 Description and Analysis of Implicit Filtering 123

7.2 Quasi-Newton Methods and Implicit Filtering 124

7.3 Implementation Considerations . 125

7.4 Implicit Filtering for Bound Constrained Problems 126

7.5 Restarting and Minima at All Scales . 127

7.6 Examples . 127

7.6.1 Weber’s Problem . 127

7.6.2 Parameter ID . 129

7.6.3 Convex Quadratics . 129

7.7 Exercises on Implicit Filtering . 133

8 Direct Search Algorithms 135

8.1 The Nelder–Mead Algorithm . 135

8.1.1 Description and Implementation . 135

8.1.2 Sufficient Decrease and the Simplex Gradient 137

8.1.3 McKinnon’s Examples . 139

8.1.4 Restarting the Nelder–Mead Algorithm 141

8.2 Multidirectional Search . 143

8.2.1 Description and Implementation . 143

8.2.2 Convergence and the Simplex Gradient 144

8.3 The Hooke–Jeeves Algorithm . 145

8.3.1 Description and Implementation . 145

8.3.2 Convergence and the Simplex Gradient 148

8.4 Other Approaches . 148

8.4.1 Surrogate Models . 148

8.4.2 The DIRECT Algorithm . 149

8.5 Examples . 152

8.5.1 Weber’s Problem . 152

8.5.2 Parameter ID . 153

8.5.3 Convex Quadratics . 153

8.6 Exercises on Search Algorithms . 159

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

xii CONTENTS

Bibliography 161

Index 177

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

Preface

This book on unconstrained and bound constrained optimization can be used as a tutorial for

self-study or a reference by those who solve such problems in their work. It can also serve as a

textbook in an introductory optimization course.

As in my earlier book [154] on linear and nonlinear equations, we treat a small number of

methods in depth, giving a less detailed description of only a few (for example, the nonlinear

conjugate gradient method and the DIRECT algorithm). We aim for clarity and brevity rather

than complete generality and confine our scope to algorithms that are easy to implement (by the

reader!) and understand.

One consequence of this approach is that the algorithms in this book are often special cases

of more general ones in the literature. For example, in Chapter 3, we provide details only

for trust region globalizations of Newton’s method for unconstrained problems and line search

globalizations of the BFGS quasi-Newton method for unconstrained and bound constrained

problems. We refer the reader to the literature for more general results. Our intention is that

both our algorithms and proofs, being special cases, are more concise and simple than others in

the literature and illustrate the central issues more clearly than a fully general formulation.

Part II of this book covers some algorithms for noisy or global optimization or both. There

are many interesting algorithms in this class, and this book is limited to those deterministic

algorithms that can be implemented in a more-or-less straightforward way. We do not, for

example, cover simulated annealing, genetic algorithms, response surface methods, or random

search procedures.

The reader of this book should be familiar with the material in an elementary graduate level

course in numerical analysis, in particular direct and iterative methods for the solution of linear

equations and linear least squares problems. The material in texts such as [127] and [264] is

sufficient.

A suite of MATLAB∗ codes has been written to accompany this book. These codes were

used to generate the computational examples in the book, but the algorithms do not depend

on the MATLAB environment and the reader can easily implement the algorithms in another

language, either directly from the algorithmic descriptions or by translating the MATLAB code.

The MATLAB environment is an excellent choice for experimentation, doing the exercises, and

small-to-medium-scale production work. Large-scale work on high-performance computers is

best done in another language. The reader should also be aware that there is a large amount of

high-quality software available for optimization. The book [195], for example, provides pointers

to several useful packages.

Parts of this book are based upon work supported by the National Science Foundation over

several years, most recently under National Science Foundation grants DMS-9321938, DMS-

9700569, and DMS-9714811, and by allocations of computing resources from the North Carolina

Supercomputing Center. Any opinions, findings, and conclusions or recommendations expressed

∗MATLAB is a registered trademark of The MathWorks, Inc., 24 Prime Park Way, Natick, MA 01760, USA, (508)

653-1415, info@mathworks.com, http://www.mathworks.com.

xiii

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

xiv PREFACE

in this material are those of the author and do not necessarily reflect the views of the National

Science Foundation or of the North Carolina Supercomputing Center.

The list of students and colleagues who have helped me with this project, directly, through

collaborations/discussions on issues that I treat in the manuscript, by providing pointers to the

literature, or as a source of inspiration, is long. I am particularly indebted to Tom Banks, Jim

Banoczi, John Betts, David Bortz, Steve Campbell, Tony Choi, Andy Conn, Douglas Cooper, Joe

David, John Dennis, Owen Eslinger, Jörg Gablonsky, Paul Gilmore, Matthias Heinkenschloß,

Laura Helfrich, Lea Jenkins,Vickie Kearn, Carl and Betty Kelley, Debbie Lockhart, Casey Miller,

Jorge Moré, Mary Rose Muccie, John Nelder, Chung-Wei Ng, Deborah Poulson, Ekkehard

Sachs, Dave Shanno, Joseph Skudlarek, Dan Sorensen, John Strikwerda, Mike Tocci, Jon Tolle,

Virginia Torczon, Floria Tosca, Hien Tran, Margaret Wright, Steve Wright, and Kevin Yoemans.

C. T. Kelley

Raleigh, North Carolina

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

How to Get the Software

All computations reported in this book were done in MATLAB (version 5.2 on various SUN

SPARCstations and on an Apple Macintosh Powerbook 2400). The suite of MATLAB codes that

we used for the examples is available by anonymous ftp from ftp.math.ncsu.edu in the directory

FTP/kelley/optimization/matlab

or from SIAM’s World Wide Web server at

http://www.siam.org/books/fr18/

One can obtain MATLAB from

The MathWorks, Inc.

3 Apple Hill Drive

Natick, MA 01760-2098

(508) 647-7000

Fax: (508) 647-7001

E-mail: info@mathworks.com

WWW: http://www.mathworks.com

xv

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

Part I

Optimization of Smooth Functions

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

Chapter 1

Basic Concepts

1.1 The Problem

The unconstrained optimization problem is to minimize a real-valued function f of N variables.

By this we mean to find a local minimizer, that is, a point x∗ such that

f(x∗) ≤ f(x) for all x near x∗.(1.1)

It is standard to express this problem as

min
x

f(x)(1.2)

or to say that we seek to solve the problem min f . The understanding is that (1.1) means that we

seek a local minimizer. We will refer to f as the objective function and to f(x∗) as the minimum

or minimum value. If a local minimizer x∗ exists, we say a minimum is attained at x∗.

We say that problem (1.2) is unconstrained because we impose no conditions on the inde-

pendent variables x and assume that f is defined for all x.

The local minimization problem is different from (and much easier than) the global mini-

mization problem in which a global minimizer, a point x∗ such that

f(x∗) ≤ f(x) for all x,(1.3)

is sought.

The constrained optimization problem is to minimize a function f over a set U ⊂ RN . A

local minimizer, therefore, is an x∗ ∈ U such that

f(x∗) ≤ f(x) for all x ∈ U near x∗.(1.4)

Similar to (1.2) we express this as

min
x∈U

f(x)(1.5)

or say that we seek to solve the problem minU f . A global minimizer is a point x∗ ∈ U such

that

f(x∗) ≤ f(x) for all x ∈ U .(1.6)

We consider only the simplest constrained problems in this book (Chapter 5 and §7.4) and refer

the reader to [104], [117], [195], and [66] for deeper discussions of constrained optimization

and pointers to software.

Having posed an optimization problem one can proceed in the classical way and use methods

that require smoothness of f . That is the approach we take in this first part of the book. These

3

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

4 ITERATIVE METHODS FOR OPTIMIZATION

methods can fail if the objective function has discontinuities or irregularities. Such nonsmooth

effects are common and can be caused, for example, by truncation error in internal calculations

for f , noise in internal probabilistic modeling in f , table lookup within f , or use of experimental

data in f . We address a class of methods for dealing with such problems in Part II.

1.2 Notation

In this book, following the convention in [154], vectors are to be understood as column vectors.

The vector x∗ will denote a solution, x a potential solution, and {xk}k≥0 the sequence of iterates.

We will refer to x0 as the initial iterate. x0 is sometimes timidly called the initial guess. We will

denote the ith component of a vector x by (x)i (note the parentheses) and the ith component

of xk by (xk)i. We will rarely need to refer to individual components of vectors. We will let

∂f/∂xi denote the partial derivative of f with respect to (x)i. As is standard [154], e = x− x∗

will denote the error, en = xn − x∗ the error in the nth iterate, and B(r) the ball of radius r
about x∗

B(r) = {x | ‖e‖ < r}.
For x ∈ RN we let ∇f(x) ∈ RN denote the gradient of f ,

∇f(x) = (∂f/∂x1, . . . , ∂f/∂xN),

when it exists.

We let ∇2f denote the Hessian of f ,

(∇2f)ij = ∂2f/∂xi∂xj ,

when it exists. Note that ∇2f is the Jacobian of ∇f . However, ∇2f has more structure than

a Jacobian for a general nonlinear function. If f is twice continuously differentiable, then the

Hessian is symmetric ((∇2f)ij = (∇2f)ji) by equality of mixed partial derivatives [229].

In this book we will consistently use the Euclidean norm

‖x‖ =

√

√

√

√

N
∑

i=1

(x)2i .

When we refer to a matrix norm we will mean the matrix norm induced by the Euclidean norm

‖A‖ = max
x �=0

‖Ax‖
‖x‖ .

In optimization definiteness or semidefiniteness of the Hessian plays an important role in

the necessary and sufficient conditions for optimality that we discuss in §1.3 and 1.4 and in our

choice of algorithms throughout this book.

Definition 1.2.1. An N×N matrix A is positive semidefinite if xTAx ≥ 0 for all x ∈ RN .

A is positive definite if xTAx > 0 for all x ∈ RN , x �= 0. If A has both positive and negative

eigenvalues, we say A is indefinite. If A is symmetric and positive definite, we will say A is spd.

We will use two forms of the fundamental theorem of calculus, one for the function–gradient

pair and one for the gradient–Hessian.

Theorem 1.2.1. Let f be twice continuously differentiable in a neighborhood of a line

segment between points x∗, x = x∗ + e ∈ RN ; then

f(x) = f(x∗) +

∫ 1

0

∇f(x∗ + te)T e dt

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

BASIC CONCEPTS 5

and

∇f(x) = ∇f(x∗) +

∫ 1

0

∇2f(x∗ + te)e dt.

A direct consequence (see Exercise 1.7.1) of Theorem 1.2.1 is the following form of Taylor’s

theorem we will use throughout this book.

Theorem 1.2.2. Let f be twice continuously differentiable in a neighborhood of a point

x∗ ∈ RN . Then for e ∈ RN and ‖e‖ sufficiently small

f(x∗ + e) = f(x∗) +∇f(x∗)T e + eT∇2f(x∗)e/2 + o(‖e‖2).(1.7)

1.3 Necessary Conditions

Let f be twice continuously differentiable. We will use Taylor’s theorem in a simple way to

show that the gradient of f vanishes at a local minimizer and the Hessian is positive semidefinite.

These are the necessary conditions for optimality.

The necessary conditions relate (1.1) to a nonlinear equation and allow one to use fast al-

gorithms for nonlinear equations [84], [154], [211] to compute minimizers. Therefore, the

necessary conditions for optimality will be used in a critical way in the discussion of local con-

vergence in Chapter 2. A critical first step in the design of an algorithm for a new optimization

problem is the formulation of necessary conditions. Of course, the gradient vanishes at a maxi-

mum, too, and the utility of the nonlinear equations formulation is restricted to a neighborhood

of a minimizer.

Theorem 1.3.1. Let f be twice continuously differentiable and let x∗ be a local minimizer

of f . Then

∇f(x∗) = 0.

Moreover ∇2f(x∗) is positive semidefinite.

Proof. Let u ∈ RN be given. Taylor’s theorem states that for all real t sufficiently small

f(x∗ + tu) = f(x∗) + t∇f(x∗)Tu +
t2

2
uT∇2f(x∗)u + o(t2).

Since x∗ is a local minimizer we must have for t sufficiently small 0 ≤ f(x∗ + tu)− f(x∗) and

hence

∇f(x∗)Tu +
t

2
uT∇2f(x∗)u + o(t) ≥ 0(1.8)

for all t sufficiently small and all u ∈ RN . So if we set t = 0 and u = −∇f(x∗) we obtain

‖∇f(x∗)‖2 = 0.

Setting ∇f(x∗) = 0, dividing by t, and setting t = 0 in (1.8), we obtain

1

2
uT∇2f(x∗)u ≥ 0

for all u ∈ RN . This completes the proof.

The condition that ∇f(x∗) = 0 is called the first-order necessary condition and a point

satisfying that condition is called a stationary point or a critical point.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

6 ITERATIVE METHODS FOR OPTIMIZATION

1.4 Sufficient Conditions

A stationary point need not be a minimizer. For example, the function φ(t) = −t4 satisfies the

necessary conditions at 0, which is a maximizer of φ. To obtain a minimizer we must require that

the second derivative be nonnegative. This alone is not sufficient (think of φ(t) = t3) and only

if the second derivative is strictly positive can we be completely certain. These are the sufficient

conditions for optimality.

Theorem 1.4.1. Let f be twice continuously differentiable in a neighborhood of x∗. Assume

that ∇f(x∗) = 0 and that ∇2f(x∗) is positive definite. Then x∗ is a local minimizer of f .

Proof. Let 0 �= u ∈ RN . For sufficiently small t we have

f(x∗ + tu) = f(x∗) + t∇f(x∗)Tu +
t2

2
uT∇2f(x∗)u + o(t2)

= f(x∗) +
t2

2
uT∇2f(x∗)u + o(t2).

Hence, if λ > 0 is the smallest eigenvalue of ∇2f(x∗) we have

f(x∗ + tu)− f(x∗) ≥ λ

2
‖tu‖2 + o(t2) > 0

for t sufficiently small. Hence x∗ is a local minimizer.

1.5 Quadratic Objective Functions

The simplest optimization problems are those with quadratic objective functions. Here

f(x) = −xT b +
1

2
xTHx.(1.9)

We may, without loss of generality, assume that H is symmetric because

xTHx = xT

(

H + HT

2

)

x.(1.10)

Quadratic functions form the basis for most of the algorithms in Part I, which approximate an

objective function f by a quadratic model and minimize that model. In this section we discuss

some elementary issues in quadratic optimization.

Clearly,

∇2f(x) = H

for all x. The symmetry of H implies that

∇f(x) = −b + Hx.

Definition 1.5.1. The quadratic function f in (1.9) is convex if H is positive semidefinite.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

BASIC CONCEPTS 7

1.5.1 Positive Definite Hessian

The necessary conditions for optimality imply that if a quadratic function f has a local minimum

x∗, then H is positive semidefinite and

Hx∗ = b.(1.11)

In particular, if H is spd (and hence nonsingular), the unique global minimizer is the solution of

the linear system (1.11).

If H is a dense matrix and N is not too large, it is reasonable to solve (1.11) by computing

the Cholesky factorization [249], [127] of H

H = LLT ,

where L is a nonsingular lower triangular matrix with positive diagonal, and then solving (1.11)

by two triangular solves. If H is indefinite the Cholesky factorization will not exist and the

standard implementation [127], [249], [264] will fail because the computation of the diagonal

of L will require a real square root of a negative number or a division by zero.

If N is very large, H is sparse, or a matrix representation of H is not available, a more

efficient approach is the conjugate gradient iteration [154], [141]. This iteration requires only

matrix–vector products, a feature which we will use in a direct way in §§2.5 and 3.3.7. Our

formulation of the algorithm uses x as both an input and output variable. On input x contains

x0, the initial iterate, and on output the approximate solution. We terminate the iteration if the

relative residual is sufficiently small, i.e.,

‖b−Hx‖ ≤ ǫ‖b‖

or if too many iterations have been taken.

Algorithm 1.5.1. cg(x, b, H, ǫ, kmax)

1. r = b−Hx, ρ0 = ‖r‖2, k = 1.

2. Do While
√

ρk−1 > ǫ‖b‖ and k < kmax

(a) if k = 1 then p = r
else
β = ρk−1/ρk−2 and p = r + βp

(b) w = Hp

(c) α = ρk−1/pTw

(d) x = x + αp

(e) r = r − αw

(f) ρk = ‖r‖2

(g) k = k + 1

Note that if H is not spd, the denominator in α = ρk−1/pTw may vanish, resulting in

breakdown of the iteration.

The conjugate gradient iteration minimizes f over an increasing sequence of nested subspaces

of RN [127], [154]. We have that

f(xk) ≤ f(x) for all x ∈ x0 +Kk,

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

8 ITERATIVE METHODS FOR OPTIMIZATION

where Kk is the Krylov subspace

Kk = span(r0, Hr0, . . . , Hk−1r0)

for k ≥ 1.

While in principle the iteration must converge after N iterations and conjugate gradient can

be regarded as a direct solver, N is, in practice, far too many iterations for the large problems to

which conjugate gradient is applied. As an iterative method, the performance of the conjugate

gradient algorithm depends both on b and on the spectrum of H (see [154] and the references

cited therein). A general convergence estimate [68], [60], which will suffice for the discussion

here, is

‖xk − x∗‖H ≤ 2‖x0 − x∗‖H
[

√

κ(H)− 1
√

κ(H) + 1

]k

.(1.12)

In (1.12), the H-norm of a vector is defined by

‖u‖2H = uTHu

for an spd matrix H . κ(H) is the l2 condition number

κ(H) = ‖H‖‖H−1‖.

For spd H

κ(H) = λlλ
−1
s ,

where λl and λs are the largest and smallest eigenvalues of H . Geometrically, κ(H) is large if

the ellipsoidal level surfaces of f are very far from spherical.

The conjugate gradient iteration will perform well if κ(H) is near 1 and may perform very

poorly if κ(H) is large. The performance can be improved by preconditioning, which transforms

(1.11) into one with a coefficient matrix having eigenvalues near 1. Suppose that M is spd and

a sufficiently good approximation to H−1 so that

κ(M1/2HM1/2)

is much smaller that κ(H). In that case, (1.12) would indicate that far fewer conjugate gradient

iterations might be needed to solve

M1/2HM1/2z = M1/2b(1.13)

than to solve (1.11). Moreover, the solution x∗ of (1.11) could be recovered from the solution

z∗ of (1.13) by

x = M1/2z.(1.14)

In practice, the square root of the preconditioning matrix M need not be computed. The algo-

rithm, using the same conventions that we used for cg, is

Algorithm 1.5.2. pcg(x, b, H, M, ǫ, kmax)

1. r = b−Hx, ρ0 = ‖r‖2, k = 1

2. Do While
√

ρk−1 > ǫ‖b‖ and k < kmax

(a) z = Mr

(b) τk−1 = zT r

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

BASIC CONCEPTS 9

(c) if k = 1 then β = 0 and p = z
else
β = τk−1/τk−2, p = z + βp

(d) w = Hp

(e) α = τk−1/pTw

(f) x = x + αp

(g) r = r − αw

(h) ρk = rT r

(i) k = k + 1

Note that only products of M with vectors in RN are needed and that a matrix representation

of M need not be stored. We refer the reader to [11], [15], [127], and [154] for more discussion

of preconditioners and their construction.

1.5.2 Indefinite Hessian

If H is indefinite, the necessary conditions, Theorem 1.3.1, imply that there will be no local

minimum. Even so, it will be important to understand some properties of quadratic problems

with indefinite Hessians when we design algorithms with initial iterates far from local minimizers

and we discuss some of the issues here.

If

uTHu < 0,

we say that u is a direction of negative curvature. If u is a direction of negative curvature, then

f(x + tu) will decrease to −∞ as t→∞.

1.6 Examples

It will be useful to have some example problems to solve as we develop the algorithms. The

examples here are included to encourage the reader to experiment with the algorithms and play

with the MATLAB codes. The codes for the problems themselves are included with the set of

MATLAB codes. The author of this book does not encourage the reader to regard the examples

as anything more than examples. In particular, they are not real-world problems, and should not

be used as an exhaustive test suite for a code. While there are documented collections of test

problems (for example, [10] and [26]), the reader should always evaluate and compare algorithms

in the context of his/her own problems.

Some of the problems are directly related to applications. When that is the case we will cite

some of the relevant literature. Other examples are included because they are small, simple, and

illustrate important effects that can be hidden by the complexity of more serious problems.

1.6.1 Discrete Optimal Control

This is a classic example of a problem in which gradient evaluations cost little more than function

evaluations.

We begin with the continuous optimal control problems and discuss how gradients are com-

puted and then move to the discretizations. We will not dwell on the functional analytic issues

surrounding the rigorous definition of gradients of maps on function spaces, but the reader should

be aware that control problems require careful attention to this. The most important results can

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

10 ITERATIVE METHODS FOR OPTIMIZATION

be found in [151]. The function space setting for the particular control problems of interest in this

section can be found in [170], [158], and [159], as can a discussion of more general problems.

The infinite-dimensional problem is

min
u

f,(1.15)

where

f(u) =

∫ T

0

L(y(t), u(t), t) dt,(1.16)

and we seek an optimal point u ∈ L∞[0, T]. u is called the control variable or simply the

control. The function L is given and y, the state variable, satisfies the initial value problem

(with ẏ = dy/dt)

ẏ(t) = φ(y(t), u(t), t), y(0) = y0.(1.17)

One could view the problem (1.15)–(1.17) as a constrained optimization problem or, as we

do here, think of the evaluation of f as requiring the solution of (1.17) before the integral on the

right side of (1.16) can be evaluated. This means that evaluation of f requires the solution of

(1.17), which is called the state equation.

∇f(u), the gradient of f at u with respect to the L2 inner product, is uniquely determined,

if it exists, by

f(u + w)− f(u)−
∫ T

0

(∇f(u))(t)w(t) dt = o(‖w‖)(1.18)

as ‖w‖ → 0, uniformly in w. If ∇f(u) exists then

∫ T

0

(∇f(u))(t)w(t) dt =
df(u + ξw)

dξ

∣

∣

∣

∣

ξ=0

.

If L and φ are continuously differentiable, then ∇f(u), as a function of t, is given by

∇f(u)(t) = p(t)φu(y(t), u(t), t) + Lu(y(t), u(t), t).(1.19)

In (1.19) p, the adjoint variable, satisfies the final-value problem on [0, T]

−ṗ(t) = p(t)φy(y(t), u(t), t) + Ly(y(t), u(t), t), p(T) = 0.(1.20)

So computing the gradient requires u and y, hence a solution of the state equation, and p, which

requires a solution of (1.20), a final-value problem for the adjoint equation. In the general case,

(1.17) is nonlinear, but (1.20) is a linear problem for p, which should be expected to be easier

to solve. This is the motivation for our claim that a gradient evaluation costs little more than a

function evaluation.

The discrete problems of interest here are constructed by solving (1.17) by numerical in-

tegration. After doing that, one can derive an adjoint variable and compute gradients using a

discrete form of (1.19). However, in [139] the equation for the adjoint variable of the discrete

problem is usually not a discretization of (1.20). For the forward Euler method, however, the

discretization of the adjoint equation is the adjoint equation for the discrete problem and we use

that discretization here for that reason.

The fully discrete problem is minu f , where u ∈ RN and

f(u) =
N
∑

j=1

L((y)j , (u)j , j),

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

BASIC CONCEPTS 11

and the states {xj} are given by the Euler recursion

yj+1 = yj + hφ((y)j , (u)j , j) for j = 0, . . . , N − 1,

where h = T/(N − 1) and x0 is given. Then

(∇f(u))j = (p)jφu((y)j , (u)j , j) + Lu((y)j , (u)j , j),

where (p)N = 0 and

(p)j−1 = (p)j + h

(

(p)jφy((y)j , (u)j , j) + Ly((y)j , (u)j , j)

)

for j = N, . . . , 1.

1.6.2 Parameter Identification

This example, taken from [13], will appear throughout the book. The problem is small with

N = 2. The goal is to identify the damping c and spring constant k of a linear spring by

minimizing the difference of a numerical prediction and measured data. The experimental

scenario is that the spring-mass system will be set into motion by an initial displacement from

equilibrium and measurements of displacements will be taken at equally spaced increments in

time.

The motion of an unforced harmonic oscillator satisfies the initial value problem

u′′ + cu′ + ku = 0;u(0) = u0, u′(0) = 0,(1.21)

on the interval [0, T]. We let x = (c, k)T be the vector of unknown parameters and, when the

dependence on the parameters needs to be explicit, we will write u(t : x) instead of u(t) for the

solution of (1.21). If the displacement is sampled at {tj}Mj=1, where tj = (j − 1)T/(M − 1),

and the observations for u are {uj}Mj=1, then the objective function is

f(x) =
1

2

M
∑

j=1

|u(tj : x)− uj |2.(1.22)

This is an example of a nonlinear least squares problem.

u is differentiable with respect to x when c2 − 4k �= 0. In that case, the gradient of f is

∇f(x) =

(

∑M
j=1

∂u(tj :x)
∂c (u(tj : x)− uj)

∑M
j=1

∂u(tj :x)
∂k (u(tj : x)− uj)

)

.(1.23)

We can compute the derivatives of u(t : x) with respect to the parameters by solving the

sensitivity equations. Differentiating (1.21) with respect to c and k and setting w1 = ∂u/∂c and

w2 = ∂u/∂k we obtain

w′′
1 + u′ + cw′

1 + kw1 = 0;w1(0) = w′
1(0) = 0,

w′′
2 + cw′

2 + u + kw2 = 0;w2(0) = w′
2(0) = 0.

(1.24)

If c is large, the initial value problems (1.21) and (1.24) will be stiff and one should use a good

variable step stiff integrator. We refer the reader to [110], [8], [235] for details on this issue. In

the numerical examples in this book we used the MATLAB code ode15s from [236]. Stiffness

can also arise in the optimal control problem from §1.6.1 but does not in the specific examples

we use in this book. We caution the reader that when one uses an ODE code the results may only

be expected to be accurate to the tolerances input to the code. This limitation on the accuracy

must be taken into account, for example, when approximating the Hessian by differences.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

12 ITERATIVE METHODS FOR OPTIMIZATION

1.6.3 Convex Quadratics

While convex quadratic problems are, in a sense, the easiest of optimization problems, they

present surprising challenges to the sampling algorithms presented in Part II and can illustrate

fundamental problems with classical gradient-based methods like the steepest descent algorithm

from §3.1. Our examples will all take N = 2, b = 0, and

H =

(

λs 0
0 λl

)

,

where 0 < λs ≤ λl. The function to be minimized is

f(x) = xTHx

and the minimizer is x∗ = (0, 0)T .

As λl/λs becomes large, the level curves of f become elongated. When λs = λl = 1,

minx f is the easiest problem in optimization.

1.7 Exercises on Basic Concepts

1.7.1. Prove Theorem 1.2.2.

1.7.2. Consider the parameter identification problem for x = (c, k, ω, φ)T ∈ R4 associated with

the initial value problem

u′′ + cu′ + ku = sin(ωt + φ);u(0) = 10, u′(0) = 0.

For what values of x is u differentiable? Derive the sensitivity equations for those values

of x for which u is differentiable.

1.7.3. Solve the system of sensitivity equations from exercise 1.7.2 numerically for c = 10,

k = 1, ω = π, and φ = 0 using the integrator of your choice. What happens if you use a

nonstiff integrator?

1.7.4. Let N = 2, d = (1, 1)T , and let f(x) = xT d + xTx. Compute, by hand, the minimizer

using conjugate gradient iteration.

1.7.5. For the same f as in exercise 1.7.4 solve the constrained optimization problem

min
x∈U

f(x),

where U is the circle centered at (0, 0)T of radius 1/3. You can solve this by inspection;

no computer and very little mathematics is needed.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

Chapter 2

Local Convergence of Newton’s

Method

By a local convergence method we mean one that requires that the initial iterate x0 is close to a

local minimizer x∗ at which the sufficient conditions hold.

2.1 Types of Convergence

We begin with the standard taxonomy of convergence rates [84], [154], [211].

Definition 2.1.1. Let {xn} ⊂ RN and x∗ ∈ RN . Then

• xn → x∗ q-quadratically if xn → x∗ and there is K > 0 such that

‖xn+1 − x∗‖ ≤ K‖xn − x∗‖2.

• xn → x∗ q-superlinearly with q-order α > 1 if xn → x∗ and there is K > 0 such that

‖xn+1 − x∗‖ ≤ K‖xn − x∗‖α.

• xn → x∗ q-superlinearly if

lim
n→∞

‖xn+1 − x∗‖
‖xn − x∗‖ = 0.

• xn → x∗ q-linearly with q-factor σ ∈ (0, 1) if

‖xn+1 − x∗‖ ≤ σ‖xn − x∗‖

for n sufficiently large.

Definition 2.1.2. An iterative method for computing x∗ is said to be locally (q-quadratically,

q-superlinearly, q-linearly, etc.) convergent if the iterates converge to x∗ (q-quadratically, q-

superlinearly, q-linearly, etc.) given that the initial data for the iteration is sufficiently good.

We remind the reader that a q-superlinearly convergent sequence is also q-linearly conver-

gent with q-factor σ for any σ > 0. A q-quadratically convergent sequence is q-superlinearly

convergent with q-order of 2.

13

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

14 ITERATIVE METHODS FOR OPTIMIZATION

In some cases the accuracy of the iteration can be improved by means that are external

to the algorithm, say, by evaluation of the objective function and its gradient with increasing

accuracy as the iteration progresses. In such cases, one has no guarantee that the accuracy of

the iteration is monotonically increasing but only that the accuracy of the results is improving at

a rate determined by the improving accuracy in the function–gradient evaluations. The concept

of r-type convergence captures this effect.

Definition 2.1.3. Let {xn} ⊂ RN and x∗ ∈ RN . Then {xn} converges to x∗ r-(quadrat-

ically, superlinearly, linearly) if there is a sequence {ξn} ⊂ R converging q-(quadratically,

superlinearly, linearly) to 0 such that

‖xn − x∗‖ ≤ ξn.

We say that {xn} converges r-superlinearly with r-order α > 1 if ξn → 0 q-superlinearly with

q-order α.

2.2 The Standard Assumptions

We will assume that local minimizers satisfy the standard assumptions which, like the standard

assumptions for nonlinear equations in [154], will guarantee that Newton’s method converges

q-quadratically to x∗. We will assume throughout this book that f and x∗ satisfy Assumption

2.2.1.

Assumption 2.2.1.

1. f is twice differentiable and

‖∇2f(x)−∇2f(y)‖ ≤ γ‖x− y‖.(2.1)

2. ∇f(x∗) = 0.

3. ∇2f(x∗) is positive definite.

We sometimes say that f is twice Lipschitz continuously differentiable with Lipschitz constant

γ to mean that part 1 of the standard assumptions holds.

If the standard assumptions hold then Theorem 1.4.1 implies that x∗ is a local minimizer

of f . Moreover, the standard assumptions for nonlinear equations [154] hold for the system

∇f(x) = 0. This means that all of the local convergence results for nonlinear equations can be

applied to unconstrained optimization problems. In this chapter we will quote those results from

nonlinear equations as they apply to unconstrained optimization. However, these statements

must be understood in the context of optimization. We will use, for example, the fact that the

Hessian (the Jacobian of ∇f) is positive definite at x∗ in our solution of the linear equation for

the Newton step. We will also use this in our interpretation of the Newton iteration.

2.3 Newton’s Method

As in [154] we will define iterative methods in terms of the transition from a current iteration xc

to a new one x+. In the case of a system of nonlinear equations, for example, x+ is the root of

the local linear model of F about xc

Mc(x) = F (xc) + F ′(xc)(x− xc).

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

LOCAL CONVERGENCE 15

Solving Mc(x+) = 0 leads to the standard formula for the Newton iteration

x+ = xc − F ′(xc)
−1F (xc).(2.2)

One could say that Newton’s method for unconstrained optimization is simply the method

for nonlinear equations applied to ∇f(x) = 0. While this is technically correct if xc is near a

minimizer, it is utterly wrong if xc is near a maximum. A more precise way of expressing the

idea is to say that x+ is a minimizer of the local quadratic model of f about xc.

mc(x) = f(xc) +∇f(xc)
T (x− xc) +

1

2
(x− xc)

T∇2f(xc)(x− xc).

If∇2f(xc) is positive definite, then the minimizer x+ of mc is the unique solution of∇mc(x) =
0. Hence,

0 = ∇mc(x+) = ∇f(xc) +∇2f(xc)(x+ − xc).

Therefore,

x+ = xc − (∇2f(xc))
−1∇f(xc),(2.3)

which is the same as (2.2) with F replaced by∇f and F ′ by∇2f . Of course, x+ is not computed

by forming an inverse matrix. Rather, given xc, ∇f(xc) is computed and the linear equation

∇2f(xc)s = −∇f(xc)(2.4)

is solved for the step s. Then (2.3) simply says that x+ = xc + s.

However, if uc is far from a minimizer, ∇2f(uc) could have negative eigenvalues and the

quadratic model will not have local minimizers (see exercise 2.7.4), and Mc, the local linear

model of ∇f about uc, could have roots which correspond to local maxima or saddle points

of mc. Hence, we must take care when far from a minimizer in making a correspondence

between Newton’s method for minimization and Newton’s method for nonlinear equations. In

this chapter, however, we will assume that we are sufficiently near a local minimizer for the

standard assumptions for local optimality to imply those for nonlinear equations (as applied to

∇f). Most of the proofs in this chapter are very similar to the corresponding results, [154], for

nonlinear equations. We include them in the interest of completeness.

We begin with a lemma from [154], which we state without proof.

Lemma 2.3.1. Assume that the standard assumptions hold. Then there is δ > 0 so that for

all x ∈ B(δ)
‖∇2f(x)‖ ≤ 2‖∇2f(x∗)‖,(2.5)

‖(∇2f(x))−1‖ ≤ 2‖(∇2f(x∗))−1‖,(2.6)

and

‖(∇2f(x∗))−1‖−1‖e‖/2 ≤ ‖∇f(x)‖ ≤ 2‖∇2f(x∗)‖‖e‖.(2.7)

As a first example, we prove the local convergence for Newton’s method.

Theorem 2.3.2. Let the standard assumptions hold. Then there are K > 0 and δ > 0 such

that if xc ∈ B(δ), the Newton iterate from xc given by (2.3) satisfies

‖e+‖ ≤ K‖ec‖2.(2.8)

Proof. Let δ be small enough so that the conclusions of Lemma 2.3.1 hold. By Theorem 1.2.1

e+ = ec −∇2f(xc)
−1∇f(xc) = (∇2f(xc))

−1

∫ 1

0

(∇2f(xc)−∇2f(x∗ + tec))ec dt.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

16 ITERATIVE METHODS FOR OPTIMIZATION

By Lemma 2.3.1 and the Lipschitz continuity of ∇2f ,

‖e+‖ ≤ (2‖(∇2f(x∗))−1‖)γ‖ec‖2/2.

This completes the proof of (2.8) with K = γ‖(∇2f(x∗))−1‖.
As in the nonlinear equations setting, Theorem 2.3.2 implies that the complete iteration is

locally quadratically convergent.

Theorem 2.3.3. Let the standard assumptions hold. Then there is δ > 0 such that if

x0 ∈ B(δ), the Newton iteration

xn+1 = xn − (∇2f(xn))
−1∇f(xn)

converges q-quadratically to x∗.

Proof. Let δ be small enough so that the conclusions of Theorem 2.3.2 hold. Reduce δ if

needed so that Kδ = η < 1. Then if n ≥ 0 and xn ∈ B(δ), Theorem 2.3.2 implies that

‖en+1‖ ≤ K‖en‖2 ≤ η‖en‖ < ‖en‖(2.9)

and hence xn+1 ∈ B(ηδ) ⊂ B(δ). Therefore, if xn ∈ B(δ)we may continue the iteration. Since

x0 ∈ B(δ) by assumption, the entire sequence {xn} ⊂ B(δ). (2.9) then implies that xn → x∗

q-quadratically.

Newton’s method, from the local convergence point of view, is exactly the same as that

for nonlinear equations applied to the problem of finding a root of ∇f . We exploit the extra

structure of positive definiteness of∇2f with an implementation of Newton’s method based on

the Cholesky factorization [127], [249], [264]

∇2f(u) = LLT ,(2.10)

where L is lower triangular and has a positive diagonal.

We terminate the iteration when ∇f is sufficiently small (see [154]). A natural criterion is

to demand a relative decrease in ‖∇f‖ and terminate when

‖∇f(xn)‖ ≤ τr‖∇f(x0)‖,(2.11)

where τr ∈ (0, 1) is the desired reduction in the gradient norm. However, if ‖∇f(x0)‖ is very

small, it may not be possible to satisfy (2.11) in floating point arithmetic and an algorithm based

entirely on (2.11) might never terminate. A standard remedy is to augment the relative error

criterion and terminate the iteration using a combination of relative and absolute measures of

∇f , i.e., when

‖∇f(xn)‖ ≤ τr‖∇f(x0)‖+ τa.(2.12)

In (2.12) τa is an absolute error tolerance. Hence, the termination criterion input to many of the

algorithms presented in this book will be in the form of a vector τ = (τr, τa) of relative and

absolute residuals.

Algorithm 2.3.1. newton(x, f, τ)

1. r0 = ‖∇f(x)‖

2. Do while ‖∇f(x)‖ > τrr0 + τa

(a) Compute ∇2f(x)

(b) Factor ∇2f(x) = LLT

(c) Solve LLT s = −∇f(x)

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

LOCAL CONVERGENCE 17

(d) x = x + s

(e) Compute ∇f(x).

Algorithm newton, as formulated above, is not completely satisfactory. The value of the

objective function f is never used and step 2b will fail if∇2f is not positive definite. This failure,

in fact, could serve as a signal that one is too far from a minimizer for Newton’s method to be

directly applicable. However, if we are near enough (see Exercise 2.7.8) to a local minimizer,

as we assume in this chapter, all will be well and we may apply all the results from nonlinear

equations.

2.3.1 Errors in Functions, Gradients, and Hessians

In the presence of errors in functions and gradients, however, the problem of unconstrained

optimization becomes more difficult than that of root finding. We discuss this difference only

briefly here and for the remainder of this chapter assume that gradients are computed exactly, or

at least as accurately as f , say, either analytically or with automatic differentiation [129], [130].

However, we must carefully study the effects of errors in the evaluation of the Hessian just as

we did those of errors in the Jacobian in [154].

A significant difference from the nonlinear equations case arises if only functions are available

and gradients and Hessians must be computed with differences. A simple one-dimensional

analysis will suffice to explain this. Assume that we can only compute f approximately. If we

compute f̂ = f + ǫf rather than f , then a forward difference gradient with difference increment

h

Dhf(x) =
f̂(x + h)− f̂(x)

h

differs from f ′ by O(h+ǫf/h) and this error is minimized if h = O(
√

ǫf). In that case the error

in the gradient is ǫg = O(h) = O(
√

ǫf). If a forward difference Hessian is computed using Dh

as an approximation to the gradient, then the error in the Hessian will be

∆ = O(
√

ǫg) = O(ǫ
1/4
f)(2.13)

and the accuracy in ∇2f will be much less than that of a Jacobian in the nonlinear equations

case.

If ǫf is significantly larger than machine roundoff, (2.13) indicates that using numerical

Hessians based on a second numerical differentiation of the objective function will not be very

accurate. Even in the best possible case, where ǫf is the same size as machine roundoff, finite

difference Hessians will not be very accurate and will be very expensive to compute if the Hessian

is dense. If, as on most computers today, machine roundoff is (roughly) 10−16, (2.13) indicates

that a forward difference Hessian will be accurate to roughly four decimal digits.

One can obtain better results with centered differences, but at a cost of twice the number of

function evaluations. A centered difference approximation to ∇f is

Dhf(x) =
f̂(x + h)− f̂(x− h)

2h

and the error is O(h2 + ǫf/h), which is minimized if h = O(ǫ
1/3
f) leading to an error in the

gradient of ǫg = O(ǫ
2/3
f). Therefore, a central difference Hessian will have an error of

∆ = O((ǫg)
2/3) = O(ǫ

4/9
f),

which is substantially better. We will find that accurate gradients are much more important than

accurate Hessians and one option is to compute gradients with central differences and Hessians

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

18 ITERATIVE METHODS FOR OPTIMIZATION

with forward differences. If one does that the centered difference gradient error is O(ǫ
2/3
f) and

therefore the forward difference Hessian error will be

∆ = O
(√

ǫg
)

= O(ǫ
1/3
f).

More elaborate schemes [22] compute a difference gradient and then reuse the function evalua-

tions in the Hessian computation.

In many optimization problems, however, accurate gradients are available. When that is the

case, numerical differentiation to compute Hessians is, like numerical computation of Jacobians

for nonlinear equations [154], a reasonable idea for many problems and the less expensive

forward differences work well.

Clever implementations of difference computation can exploit sparsity in the Hessian [67],

[59] to evaluate a forward difference approximation with far fewer than N evaluations of ∇f .

In the sparse case it is also possible [22], [23] to reuse the points from a centered difference

approximation to the gradient to create a second-order accurate Hessian.

Unless ǫg(xn) → 0 as the iteration progresses, one cannot expect convergence. For this

reason estimates like (2.14) are sometimes called local improvement [88] results. Theorem 2.3.4

is a typical example.

Theorem 2.3.4. Let the standard assumptions hold. Then there are K̄ > 0, δ > 0, and

δ1 > 0 such that if xc ∈ B(δ) and ‖∆(xc)‖ < δ1 then

x+ = xc − (∇2f(xc) + ∆(xc))
−1(∇f(xc) + ǫg(xc))

is defined (i.e., ∇2f(xc) + ∆(xc) is nonsingular) and satisfies

‖e+‖ ≤ K̄(‖ec‖2 + ‖∆(xc)‖‖ec‖+ ‖ǫg(xc)‖).(2.14)

Proof. Let δ be small enough so that the conclusions of Lemma 2.3.1 and Theorem 2.3.2

hold. Let

xN
+ = xc − (∇2f(xc))

−1∇f(xc)

and note that

x+ = xN
+ +((∇2f(xc))

−1− (∇2f(xc)+∆(xc))
−1)∇f(xc)− (∇2f(xc)+∆(xc))

−1ǫg(xc).

Lemma 2.3.1 and Theorem 2.3.2 imply

‖e+‖ ≤ K‖ec‖2 + 2‖(∇2f(xc))
−1 − (∇2f(xc) + ∆(xc))

−1‖‖∇2f(x∗)‖‖ec‖

+‖(∇2f(xc) + ∆(xc))
−1‖‖ǫg(xc)‖.

(2.15)

If

‖∆(xc)‖ ≤ ‖(∇2f(x∗))−1‖−1/4,

then Lemma 2.3.1 implies that

‖∆(xc)‖ ≤ ‖(∇2f(xc))
−1‖−1/2

and the Banach Lemma [12], [154] states that ∇2f(xc) + ∆(xc) is nonsingular and

‖(∇2f(xc) + ∆(xc))
−1‖ ≤ 2‖(∇2f(xc))

−1‖ ≤ 4‖(∇2f(x∗))−1‖.

Hence,

‖(∇2f(xc))
−1 − (∇2f(xc) + ∆(xc))

−1‖ ≤ 8‖(∇2f(x∗))−1‖2‖∆(xc)‖.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

LOCAL CONVERGENCE 19

We use these estimates and (2.15) to obtain

‖e+‖ ≤ K‖ec‖2 +16‖(∇2f(x∗))−1‖2‖∇2f(x∗)‖‖∆(xc)‖‖ec‖+4‖(∇2f(x∗))−1‖‖ǫg(xc)‖.

Setting

K̄ = K + 16‖(∇2f(x∗))−1‖2‖∇2f(x∗)‖+ 4‖(∇2f(x∗))−1‖
completes the proof.

As is the case with equations, (2.14) implies that one cannot hope to find a minimizer with

more accuracy that one can evaluate ∇f . In most cases the iteration will stagnate once ‖e‖ is

(roughly) the same size as ǫg . The speed of convergence will be governed by the accuracy in the

Hessian.

The result for the chord method illustrates this latter point. In the chord method we form

and compute the Cholesky factorization of ∇2f(x0) and use that factorization to compute all

subsequent Newton steps. Hence,

x+ = xc − (∇2f(x0))
−1∇f(xc)

and

‖∆(xc)‖ ≤ γ‖x0 − xc‖ ≤ γ(‖e0‖+ ‖ec‖).(2.16)

Algorithmically the chord iteration differs from the Newton iteration only in that the computation

and factorization of the Hessian is moved outside of the main loop.

Algorithm 2.3.2. chord(x, f, τ)

1. r0 = ‖∇f(x)‖

2. Compute ∇2f(x)

3. Factor ∇2f(x) = LLT

4. Do while ‖∇f(x)‖ > τrr0 + τa

(a) Solve LLT s = −∇f(x)

(b) x = x + s

(c) Compute ∇f(x).

The convergence theory follows from Theorem 2.3.4 with ǫg = 0 and ∆ = O(‖e0‖).
Theorem 2.3.5. Let the standard assumptions hold. Then there are KC > 0 and δ > 0

such that if x0 ∈ B(δ) the chord iterates converge q-linearly to x∗ and

‖en+1‖ ≤ KC‖e0‖‖en‖.(2.17)

Proof. Let δ be small enough so that the conclusions of Theorem 2.3.4 hold. Assume that

en, e0 ∈ B(δ). Combining (2.16) and (2.14) implies

‖en+1‖ ≤ K̄(‖en‖(1 + γ) + γ‖e0‖)‖en‖ ≤ K̄(1 + 2γ)δ‖en‖.

Hence, if δ is small enough so that

K̄(1 + 2γ)δ = η < 1,

then the chord iterates converge q-linearly to x∗. Q-linear convergence implies that ‖en‖ < ‖e0‖
and hence (2.17) holds with KC = K̄(1 + 2γ).

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

20 ITERATIVE METHODS FOR OPTIMIZATION

The Shamanskii method [233], [154], [211] is a generalization of the chord method that

updates Hessians after every m + 1 nonlinear iterations. Newton’s method corresponds to

m = 1 and the chord method to m = ∞. The convergence result is a direct consequence of

Theorems 2.3.3 and 2.3.5.

Theorem 2.3.6. Let the standard assumptions hold and let m ≥ 1 be given. Then there are

KS > 0 and δ > 0 such that if x0 ∈ B(δ) the Shamanskii iterates converge q-superlinearly to

x∗ with q-order m and

‖en+1‖ ≤ KS‖en‖m+1.(2.18)

As one more application of Theorem 2.3.4, we analyze the effects of a difference approxima-

tion of the Hessian. We follow the notation of [154] where possible. For example, to construct

a Hessian matrix, whose columns are ∇2f(x)ej , where ej is the unit vector with jth compo-

nent 1 and other components 0, we could approximate the matrix–vector products∇2f(x)ej by

forward differences and then symmetrize the resulting matrix. We define

∇2
hf(x) = (Ah + AT

h)/2,(2.19)

where Ah is the matrix whose jth column is D2
hf(x : ej). D2

hf(x : w), the difference approxi-

mation of the action of the Hessian ∇2f(x) on a vector w, is defined to be the quotient

D2
hf(x : w) =















0, w = 0,

∇f(x + hw/‖w‖)−∇f(x)

h/‖w‖ , w �= 0.
(2.20)

Note that we may also write

D2
hf(x : w) = Dh(∇f)(x : w),

where the notation Dh, taken from [154], denotes numerical directional derivative. If ‖x‖ is very

large, then the error in computing the sum x+ hw/‖w‖ will have to be taken into consideration

in the choice of h.

We warn the reader, as we did in [154], that D2f(x : w) is not a linear map and that

D2f(x : w) is not, in general, the same as ∇2
hf(x)w.

If we compute ∇f(x) + ǫg(x) and the gradient errors satisfy an estimate of the form

‖ǫg(x)‖ ≤ ǭ

for all x, then the computed difference Hessian is ∇h(∇f + ǫg) and satisfies

‖∇2f(x)−∇h(∇f + ǫg)(x)‖ = O(h + ǭ/h).(2.21)

So, as in [154], the choice h ≈
√

ǭ is optimal in the sense that it minimizes the quantity in the

O-term in (2.21).

The local convergence theorem in this case is [88], [154], [278], as follows.

Theorem 2.3.7. Let the standard assumptions hold. Then there are δ, ǭ, and KD > 0 such

that if xc ∈ B(δ), ‖ǫg(x)‖ ≤ ǭc for all x ∈ B(δ), and

h ≥M
√

‖ǫg(xc)‖
then

x+ = xc − (∇hc
(∇f(xc) + ǫg(xc)))

−1(∇f(xc) + ǫg(xc))

satisfies

‖e+‖ ≤ KD(ǭc + (ǭc + h)‖ec‖).

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

LOCAL CONVERGENCE 21

2.3.2 Termination of the Iteration

It is not safe to terminate the iteration when f(xc) − f(x+) is small, and no conclusions can

safely be drawn by examination of the differences of the objective function values at successive

iterations. While some of the algorithms for difficult problems in Part II of this book do indeed

terminate when successive function values are close, this is an act of desperation. For example,

if

f(xn) = −
n
∑

j=1

j−1,

then f(xn)→ −∞ but f(xn+1)− f(xn) = −1/(n + 1)→ 0. The reader has been warned.

If the standard assumptions hold, then one may terminate the iteration when the norm of∇f
is sufficiently small relative to ∇f(x0) (see [154]). We will summarize the key points here and

refer the reader to [154] for the details. The idea is that if ∇2f(x∗) is well conditioned, then a

small gradient norm implies a small error norm. Hence, for any gradient-based iterative method,

termination on small gradients is reasonable. In the special case of Newton’s method, the norm

of the step is a very good indicator of the error and if one is willing to incur the added cost of an

extra iteration, a very sharp bound on the error can be obtained, as we will see below.

Lemma 2.3.8. Assume that the standard assumptions hold. Let δ > 0 be small enough so

that the conclusions of Lemma 2.3.1 hold for x ∈ B(δ). Then for all x ∈ B(δ)

‖e‖
4‖e0‖κ(∇2f(x∗))

≤ ‖∇f(x)‖
‖∇f(x0)‖

≤ 4κ(∇2f(x∗))‖e‖
‖e0‖

.(2.22)

The meaning of (2.22) is that, up to a constant multiplier, the norm of the relative gradient

is the same as the norm of the relative error. This partially motivates the termination condition

(2.12).

In the special case of Newton’s method, one can use the steplength as an accurate estimate

of the error because Theorem 2.3.2 implies that

‖ec‖ = ‖s‖+ O(‖ec‖2).(2.23)

Hence, near the solution s and ec are essentially the same size. The cost of using (2.23) is that

all the information needed to compute x+ = xc + s has been computed. If we terminate the

iteration when ‖s‖ is smaller than our desired tolerance and then take x+ as the final result, we

have attained more accuracy than we asked for. One possibility is to terminate the iteration when

‖s‖ = O(
√

τs) for some τs > 0. This, together with (2.23), will imply that ‖ec‖ = O(
√

τs)
and hence, using Theorem 2.3.2, that

‖e+‖ = O(‖ec‖2) = O(τs).(2.24)

For a superlinearly convergent method, termination on small steps is equally valid but one

cannot use (2.24). For a superlinearly convergent method we have

‖ec‖ = ‖s‖+ o(‖ec‖) and ‖e+‖ = o(‖ec‖).(2.25)

Hence, we can conclude that ‖e+‖ < τs if ‖s‖ < τs. This is a weaker, but still very useful,

result.

For a q-linearly convergent method, such as the chord method, making termination decisions

based on the norms of the steps is much riskier. The relative error in estimating ‖ec‖ by ‖s‖ is

|‖ec‖ − ‖s‖|
‖ec‖

≤ ‖ec + s‖
‖ec‖

=
‖e+‖
‖ec‖

.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

22 ITERATIVE METHODS FOR OPTIMIZATION

Hence, estimation of errors by steps is worthwhile only if convergence is fast. One can go further

[156] if one has an estimate ρ of the q-factor that satisfies

‖e+‖ ≤ ρ‖ec‖.

In that case,

(1− ρ)‖ec‖ ≤ ‖ec‖ − ‖e+‖ ≤ ‖ec − e+‖ = ‖s‖.
Hence

‖e+‖ ≤ ρ‖ec‖ ≤
ρ

1− ρ
‖s‖.(2.26)

So, if the q-factor can be estimated from above by ρ and

‖s‖ < (1− ρ)τs/ρ,

then ‖e+‖ < τs. This approach is used in ODE and DAE codes [32], [234], [228], [213],

but requires good estimates of the q-factor and we do not advocate it for q-linearly convergent

methods for optimization. The danger is that if the convergence is slow, the approximate q-factor

can be a gross underestimate and cause premature termination of the iteration.

It is not uncommon for evaluations of f and∇f to be very expensive and optimizations are,

therefore, usually allocated a fixed maximum number of iterations. Some algorithms, such as

the DIRECT, [150], algorithm we discuss in §8.4.2, assign a limit to the number of function

evaluations and terminate the iteration in only this way.

2.4 Nonlinear Least Squares

Nonlinear least squares problems have objective functions of the form

f(x) =
1

2

M
∑

i=1

‖ri(x)‖22 =
1

2
R(x)TR(x).(2.27)

The vector R = (r1, . . . , rM) is called the residual. These problems arise in data fitting, for

example. In that case M is the number of observations and N is the number of parameters;

for these problems M > N and we say the problem is overdetermined. If M = N we have a

nonlinear equation and the theory and methods from [154] are applicable. If M < N the problem

is underdetermined. Overdetermined least squares problems arise most often in data fitting

applications like the parameter identification example in §1.6.2. Underdetermined problems are

less common, but are, for example, important in the solution of high-index differential algebraic

equations [48], [50].

The local convergence theory for underdetermined problems has the additional complexity

that the limit of the Gauss–Newton iteration is not uniquely determined by the distance of the

initial iterate to the set of points where R(x∗) = 0. In §2.4.3 we describe the difficulties and

state a simple convergence result.

If x∗ is a local minimizer of f and f(x∗) = 0, the problem min f is called a zero residual

problem (a remarkable and suspicious event in the data fitting scenario). If f(x∗) is small, the

expected result in data fitting if the model (i.e., R) is good, the problem is called a small residual

problem. Otherwise one has a large residual problem.

Nonlinear least squares problems are an intermediate stage between nonlinear equations and

optimization problems and the methods for their solution reflect this. We define the M × N
Jacobian R′ of R by

(R′(x))ij = ∂ri/∂xj , 1 ≤ i ≤M, 1 ≤ j ≤ N.(2.28)

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

LOCAL CONVERGENCE 23

With this notation it is easy to show that

∇f(x) = R′(x)TR(x) ∈ RN .(2.29)

The necessary conditions for optimality imply that at a minimizer x∗

R′(x∗)TR(x∗) = 0.(2.30)

In the underdetermined case, if R′(x∗) has full row rank, (2.30) implies that R(x∗) = 0; this is

not the case for overdetermined problems.

The cost of a gradient is roughly that of a Jacobian evaluation, which, as is the case with

nonlinear equations, is the most one is willing to accept. Computation of the Hessian (an N×N
matrix)

∇2f(x) = R′(x)TR′(x) +
∑M

j=1
ri(x)

T∇2ri(x)(2.31)

requires computation of the M Hessians {∇2ri} for the second-order term

∑M

j=1
ri(x)

T∇2ri(x)

and is too costly to be practical.

We will also express the second-order term as

∑M

j=1
ri(x)

T∇2ri(x) = R′′(x)TR(x),

where the second derivative R′′ is a tensor. The notation is to be interpreted in the following

way. For v ∈ RM , R′′(x)T v is the N ×N matrix

R′′(x)T v = ∇2(R(x)T v) =
∑M

i=1
(v)i∇2ri(x).

We will use the tensor notation when expanding R about x∗ in some of the analysis to follow.

2.4.1 Gauss–Newton Iteration

The Gauss–Newton algorithm simply discards the second-order term in ∇2f and computes a

step

s = −(R′(xc)
TR′(xc))

−1∇f(xc)

= −(R′(xc)
TR′(xc))

−1R′(xc)
TR(xc).

(2.32)

The Gauss–Newton iterate is x+ = xc+s. One motivation for this approach is that R′′(x)TR(x)
vanishes for zero residual problems and therefore might be negligible for small residual problems.

Implicit in (2.32) is the assumption that R′(xc)
TR′(xc) is nonsingular, which implies that

M ≥ N . Another interpretation, which also covers underdetermined problems, is to say that the

Gauss–Newton iterate is the minimum norm solution of the local linear model of our nonlinear

least squares problem

min
1

2
‖R(xc) + R′(xc)(x− xc)‖2.(2.33)

Using (2.33) and linear least squares methods is a more accurate way to compute the step than

using (2.32), [115], [116], [127]. In the underdetermined case, the Gauss–Newton step can

be computed with the singular value decomposition [49], [127], [249]. (2.33) is an overde-

termined, square, or underdetermined linear least squares problem if the nonlinear problem is

overdetermined, square, or underdetermined.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

24 ITERATIVE METHODS FOR OPTIMIZATION

The standard assumptions for nonlinear least squares problems follow in Assumption 2.4.1.

Assumption 2.4.1. x∗ is a minimizer of ‖R‖22, R is Lipschitz continuously differentiable

near x∗, and R′(x∗)TR′(x∗) has maximal rank. The rank assumption may also be stated as

• R′(x∗) is nonsingular (M = N),

• R′(x∗) has full column rank (M > N),

• R′(x∗) has full row rank (M < N).

2.4.2 Overdetermined Problems

Theorem 2.4.1. Let M > N . Let Assumption 2.4.1 hold. Then there are K > 0 and δ > 0
such that if xc ∈ B(δ) then the error in the Gauss–Newton iteration satisfies

‖e+‖ ≤ K(‖ec‖2 + ‖R(x∗)‖‖ec‖).(2.34)

Proof. Let δ be small enough so that ‖x−x∗‖ < δ implies that R′(x)TR′(x) is nonsingular.

Let γ be the Lipschitz constant for R′.

By (2.32)

e+ = ec − (R′(xc)
TR′(xc))

−1R′(xc)
TR(xc)

= (R′(xc)
TR′(xc))

−1R′(xc)
T (R′(xc)ec −R(xc)).

(2.35)

Note that

R′(xc)ec −R(xc) = R′(xc)ec −R(x∗) + R(x∗)−R(xc)

= −R(x∗) + (R′(xc)ec + R(x∗)−R(xc)).

Now,

‖R′(xc)ec + R(x∗)−R(xc)‖ ≤ γ‖ec‖2/2

and, since R′(x∗)TR(x∗) = 0,

−R′(xc)
TR(x∗) = (R′(x∗)−R′(xc))

TR(x∗).

Hence,

‖e+‖ ≤ ‖(R′(xc)
TR′(xc))

−1‖‖(R′(x∗)−R′(xc))
TR(x∗)‖

+
‖(R′(xc)

TR′(xc))
−1‖‖R′(xc)

T ‖γ‖ec‖2
2

≤ ‖(R′(xc)
TR′(xc))

−1‖γ‖ec‖
(

‖R(x∗)‖+ ‖R′(xc)
T ‖‖ec‖

2

)

.

(2.36)

Setting

K = γ max
x∈B(δ)

(‖(R′(x)TR′(x))−1‖
(

1 + ‖R′(x)T ‖
2

)

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

LOCAL CONVERGENCE 25

completes the proof.

There are several important consequences of Theorem 2.4.1. The first is that for zero residual

problems, the local convergence rate is q-quadratic because the ‖R(x∗)‖‖ec‖ term on the right

side of (2.34) vanishes. For a problem other than a zero residual one, even q-linear convergence

is not guaranteed. In fact, if xc ∈ B(δ) then (2.35) will imply that ‖e+‖ ≤ r‖ec‖ for some

0 < r < 1 if

K(δ + ‖R′(x∗)‖) ≤ r(2.37)

and therefore the q-factor will be K‖R′(x∗)‖. Hence, for small residual problems and accurate

initial data the convergence of Gauss–Newton will be fast. Gauss–Newton may not converge at

all for large residual problems.

Equation (2.36) exposes a more subtle issue when the term

(R′(x∗)−R′(xc))
TR(x∗)

is considered as a whole, rather than estimated by

γ‖ec‖‖R(x∗)‖.

Using Taylor’s theorem and the necessary conditions (R′(x∗)TR(x∗) = 0) we have

R′(xc)
TR(x∗) = [R′(x∗) + R′′(x∗)ec + O(‖ec‖2)]TR(x∗)

= eTc R′′(x∗)TR(x∗) + O(‖ec‖2).

Recall that

R′′(x∗)TR(x∗) = ∇2f(x∗)−R′(x∗)TR′(x∗)

and hence

‖(R′(x∗)−R′(xc))
TR(x∗)‖

≤ ‖∇2f(x∗)−R′(x∗)TR′(x∗)‖‖R(x∗)‖+ O(‖ec‖2).
(2.38)

In a sense (2.38) says that even for a large residual problem, convergence can be fast if the problem

is not very nonlinear (small R′′). In the special case of a linear least squares problem (where

R′′ = 0) Gauss–Newton becomes simply the solution of the normal equations and converges in

one iteration.

So, Gauss–Newton can be expected to work well for overdetermined small residual problems

and good initial iterates. For large residual problems and/or initial data far from the solution,

there is no reason to expect Gauss–Newton to give good results. We address these issues in

§3.2.3.

2.4.3 Underdetermined Problems

We begin with the linear underdetermined least squares problem

min ‖Ax− b‖2.(2.39)

If A is M × N with M < N there will not be a unique minimizer but there will be a unique

minimizer with minimum norm. The minimum norm solution can be expressed in terms of the

singular value decomposition [127], [249] of A,

A = UΣV T .(2.40)

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

26 ITERATIVE METHODS FOR OPTIMIZATION

In (2.40), Σ is an N×N diagonal matrix. The diagonal entries of Σ, {σi} are called the singular

values. σi ≥ 0 and σi = 0 if i > M . The columns of the M × N matrix U and the N × N
matrix V are called the left and right singular vectors. U and V have orthonormal columns and

hence the minimum norm solution of (2.39) is

x = A†b,

where A† = V Σ†UT ,

Σ† = diag(σ†
1, . . . , σ†

N),

and

σ†
i =







σ−1
i , σi �= 0,

0, σi = 0.

A† is called the Moore–Penrose inverse [49], [189], [212]. If A is a square nonsingular matrix,

then A† = A−1; if M > N then the definition of A† using the singular value decomposition is

still valid; and, if A has full column rank, A† = (ATA)−1AT .

Two simple properties of the Moore–Penrose inverse are that A†A is a projection onto the

range of A† and AA† is a projection onto the range of A. This means that

A†AA† = A†, (A†A)T = A†A, AA†A = A, and (AA†)T = AA†.(2.41)

So the minimum norm solution of the local linear model (2.33) of an underdetermined

nonlinear least squares problem can be written as [17], [102]

s = −R′(xc)
†R(xc)(2.42)

and the Gauss–Newton iteration [17] is

x+ = xc −R′(xc)
†R(xc).(2.43)

The challenge in formulating a local convergence result is that there is not a unique optimal point

that attracts the iterates.

In the linear case, where R(x) = Ax− b, one gets

x+ = xc −A†(Axc − b) = (I −A†A)xc −A†b.

Set e = x−A†b and note that

A†AA†b = A†b

by (2.41). Hence

e+ = (I −A†A)ec.

This does not imply that x+ = A†b, the minimum norm solution, only that x+ is a solution of

the problem and the iteration converges in one step. The Gauss–Newton iteration cannot correct

for errors that are not in the range of A†.

Let

Z = {x |R(x) = 0}.
We show in Theorem 2.4.2, a special case of the result in [92], that if the standard assumptions

hold at a point x∗ ∈ Z , then the iteration will converge q-quadratically to a point z∗ ∈ Z.

However, there is no reason to expect that z∗ = x∗. In general z∗ will depend on x0, a very

different situation from the overdetermined case. The hypotheses of Theorem 2.4.2, especially

that of full column rank in R′(x), are less general than those in [24], [17], [25], [92], and [90].

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

LOCAL CONVERGENCE 27

Theorem 2.4.2. Let M ≤ N and let Assumption 2.4.1 hold for some x∗ ∈ Z . Then there is

δ > 0 such that if

‖x0 − x∗‖ ≤ δ,

then the Gauss–Newton iterates

xn+1 = xn −R′(xn)
†R(xn)

exist and converge r-quadratically to a point z∗ ∈ Z .

Proof. Assumption 2.4.1 and results in [49], [126] imply that if δ is sufficiently small then

there is ρ1 such that R′(x)† is Lipschitz continuous in the set

B1 = {x | ‖x− x∗‖ ≤ ρ1}

and the singular values of R′(x) are bounded away from zero in B1. We may, reducing ρ1 if

necessary, apply the Kantorovich theorem [154], [151], [211] to show that if x ∈ B1 and w ∈ Z
is such that

‖x− w‖ = min
z∈Z

‖x− z‖,

then there is ξ = ξ(x) ∈ Z such that

‖w − ξ(x)‖ = O(‖x− w‖2) ≤ ‖x− w‖/2

and ξ is in the range of R′(w)†, i.e.,

R′(w)†R′(w)(x− ξ(x)) = x− ξ(x).

The method of the proof is to adjust δ so that the Gauss–Newton iterates remain in B1 and

R(xn)→ 0 sufficiently rapidly. We begin by requiring that δ < ρ1/2.

Let xc ∈ B1 and let e = x− ξ(xc). Taylor’s theorem, the fundamental theorem of calculus,

and (2.41) imply that

e+ = ec −R′(xc)
†R(xc)

= ec − (R′(xc)
† −R′(ξ(x))†)R(x)−R′(x∗)†R(x)

= e0 −R′(x∗)†R(x) + O(‖ec‖2)

= (I −R′(x∗)†R′(x∗))ec + O(‖ec‖2) = O(‖ec‖2).

If we define d(x) = minz∈Z ‖x− z‖ then there is K1 such that

d(x+) ≤ ‖x+ − ξ(xc)‖ ≤ K1‖xc − ξ(xc)‖2 ≤ K1d(xc)
2.(2.44)

Now let

ρ2 = min(ρ1, (2K1)
−1).

So if

xc ∈ B2 = {x | ‖x− x∗‖ ≤ ρ2}
then

d(x+) ≤ d(xc)/2.(2.45)

Finally, there is K2 such that

‖x+ − x∗‖ ≤ ‖xc − x∗‖+ ‖x+ − xc‖ = ‖xc − x∗‖+ ‖R′(xc)
†R(xc)‖

≤ ‖xc − x∗‖+ K2‖xc − ξ(xc)‖.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

28 ITERATIVE METHODS FOR OPTIMIZATION

We now require that

δ ≤ ρ2

2(1 + K2)
.(2.46)

We complete the proof by induction. If ‖x0−x∗‖ ≤ δ and the Gauss–Newton iterates {xk}nk=0

are in B2, then xn+1 is be defined and, using (2.46) and (2.44),

‖xn+1 − x∗‖ ≤ ‖x0 − x∗‖+ K3

n+1
∑

k=0

d(xk) ≤ δ + 2K3d(x0) ≤ ρ1.

Hence, the Gauss–Newton iterates exist, remain in B0, and dn → 0.

To show that the sequence of Gauss–Newton iterates does in fact converge, we observe that

there is K3 such that

‖x+ − xc‖ = ‖R′(xc)
†R(xc)‖ ≤ K3‖xc − ξ(xc)‖ ≤ K3d(xc).

Therefore (2.45) implies that for any m, n ≥ 0,

‖xn+m − xn‖ ≤∑n+m−1
l=n ‖xl+1 − xl‖

=
∑n+m

l=n d(xl) = d(xn)
1− 2−m

2

≤ 2d(xn) ≤ 2−n+1d(x0).

Hence, {xk} is a Cauchy sequence and therefore converges to a point z∗ ∈ Z . Since

‖xn − z∗‖ ≤ 2d(xn),

(2.44) implies that the convergence is r-quadratic.

2.5 Inexact Newton Methods

An inexact Newton method [74] uses an approximate Newton step s = x+ − xc, requiring only

that

‖∇2f(xc)s +∇f(xc)‖ ≤ ηc‖∇f(xc)‖,(2.47)

i.e., that the linear residual be small. We will refer to any vector s that satisfies (2.47) with

ηc < 1 as an inexact Newton step. We will refer to the parameter ηc on the right-hand side of

(2.47) as the forcing term [99] .

Inexact Newton methods are also called truncated Newton methods [75], [198], [199] in the

context of optimization. In this book, we consider Newton–iterative methods. This is the class of

inexact Newton methods in which the linear equation (2.4) for the Newton step is also solved by

an iterative method and (2.47) is the termination criterion for that linear iteration. It is standard

to refer to the sequence of Newton steps {xn} as the outer iteration and the sequence of iterates

for the linear equation as the inner iteration. The naming convention (see [33], [154], [211])

is that Newton–CG, for example, refers to the Newton–iterative method in which the conjugate

gradient [141] algorithm is used to perform the inner iteration.

Newton–CG is particularly appropriate for optimization, as we expect positive definite Hes-

sians near a local minimizer. The results for inexact Newton methods from [74] and [154]

are sufficient to describe the local convergence behavior of Newton–CG, and we summarize

the relevant results from nonlinear equations in §2.5.1. We will discuss the implementation of

Newton–CG in §2.5.2.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

LOCAL CONVERGENCE 29

2.5.1 Convergence Rates

We will prove the simplest of the convergence results for Newton–CG, Theorem 2.5.1, from

which Theorem 2.5.2 follows directly. We refer the reader to [74] and [154] for the proof of

Theorem 2.5.3.

Theorem 2.5.1. Let the standard assumptions hold. Then there are δ and KI such that if

xc ∈ B(δ), s satisfies (2.47), and x+ = xc + s, then

‖e+‖ ≤ KI(‖ec‖+ ηc)‖ec‖.(2.48)

Proof. Let δ be small enough so that the conclusions of Lemma 2.3.1 and Theorem 2.3.2

hold. To prove the first assertion (2.48) note that if

r = −∇2f(xc)s−∇f(xc)

is the linear residual, then

s + (∇2f(xc))
−1∇f(xc) = −(∇2f(xc))

−1r

and

e+ = ec + s = ec − (∇2f(xc))
−1∇f(xc)− (∇2f(xc))

−1r.(2.49)

Now, (2.47), (2.7), and (2.6) imply that

‖s + (∇2f(xc))
−1∇f(xc)‖ ≤ ‖(∇2f(xc))

−1‖ηc‖∇f(xc)‖

≤ 4κ(∇2f(x∗))ηc‖ec‖.

Hence, using (2.49) and Theorem 2.3.2, we have that

‖e+‖ ≤ ‖ec −∇2f(xc)
−1∇f(xc)‖+ 4κ(F ′(x∗))ηc‖ec‖

≤ K‖ec‖2 + 4κ(∇2f(x∗))ηc‖ec‖,

where K is the constant from (2.8). If we set

KI = K + 4κ(∇2f(x∗)),

the proof is complete.

Theorem 2.5.2. Let the standard assumptions hold. Then there are δ and η̄ such that if

x0 ∈ B(δ), {ηn} ⊂ [0, η̄], then the inexact Newton iteration

xn+1 = xn + sn,

where

‖∇2f(xn)sn +∇f(xn)‖ ≤ ηn‖∇f(xn)‖,
converges q-linearly to x∗. Moreover

• if ηn → 0 the convergence is q-superlinear, and

• if ηn ≤ Kη‖∇f(xn)‖p for some Kη > 0 the convergence is q-superlinear with q-order

1 + p.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

30 ITERATIVE METHODS FOR OPTIMIZATION

The similarity between Theorem 2.5.2 and Theorem 2.3.5, the convergence result for the

chord method, should be clear. Rather than require that the approximate Hessian be accurate,

we demand that the linear iteration produce a sufficiently small relative residual. Theorem 2.5.3

is the remarkable statement that any reduction in the relative linear residual will suffice for linear

convergence in a certain norm. This statement implies [154] that ‖∇f(xn)‖ will converge to

zero q-linearly, or, equivalently, that xn → x∗ q-linearly with respect to ‖ · ‖∗, which is defined

by

‖x‖∗ = ‖∇2f(x∗)x‖.

Theorem 2.5.3. Let the standard assumptions hold. Then there is δ such that if xc ∈ B(δ),
s satisfies (2.47), x+ = xc + s, and ηc ≤ η < η̄ < 1, then

‖e+‖∗ ≤ η̄‖ec‖∗.(2.50)

Theorem 2.5.4. Let the standard assumptions hold. Then there is δ such that if x0 ∈ B(δ),
{ηn} ⊂ [0, η] with η < η̄ < 1, then the inexact Newton iteration

xn+1 = xn + sn,

where

‖∇2f(xn)sn +∇f(xn)‖ ≤ ηn‖∇f(xn)‖
converges q-linearly with respect to ‖ · ‖∗ to x∗. Moreover

• if ηn → 0 the convergence is q-superlinear, and

• if ηn ≤ Kη‖∇f(xn)‖p for some Kη > 0 the convergence is q-superlinear with q-order

1 + p.

Q-linear convergence of {xn} to a local minimizer with respect to ‖ · ‖∗ is equivalent to

q-linear convergence of {∇f(xn)} to zero. We will use the rate of convergence of {∇f(xn)}
in our computational examples to compare various methods.

2.5.2 Implementation of Newton–CG

Our implementation of Newton–CG approximately solves the equation for the Newton step with

CG. We make the implicit assumption that ∇f has been computed sufficiently accurately for

D2
hf(x : w) to be a useful approximate Hessian of the Hessian–vector product ∇2f(x)w.

Forward Difference CG

Algorithm fdcg is an implementation of the solution by CG of the equation for the Newton step

(2.4). In this algorithm we take care to identify failure in CG (i.e., detection of a vector p for

which pTHp ≤ 0). This failure either means that H is singular (pTHp = 0; see exercise 2.7.3)

or that pTHp < 0, i.e., p is a direction of negative curvature. The algorithms we will discuss

in §3.3.7 make good use of directions of negative curvature. The initial iterate for forward

difference CG iteration should be the zero vector. In this way the first iterate will give a steepest

descent step, a fact that is very useful. The inputs to Algorithm fdcg are the current point x,

the objective f , the forcing term η, and a limit on the number of iterations kmax. The output is

the inexact Newton direction d. Note that in step 2b D2
hf(x : p) is used as an approximation to

∇2f(x)p.

Algorithm 2.5.1. fdcg(x, f, η, kmax, d)

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

LOCAL CONVERGENCE 31

1. r = −∇f(x), ρ0 = ‖r‖22, k = 1, d = 0.

2. Do While
√

ρk−1 > η‖∇f(x)‖ and k < kmax

(a) if k = 1 then p = r
else

β = ρk−1/ρk−2 and p = r + βp

(b) w = D2
hf(x : p)

If pTw = 0 signal indefiniteness; stop.

If pTw < 0 signal negative curvature; stop.

(c) α = ρk−1/pTw

(d) d = d + αp

(e) r = r − αw

(f) ρk = ‖r‖2

(g) k = k + 1

Preconditioning can be incorporated into a Newton–CG algorithm by using a forward dif-

ference formulation, too. Here, as in [154], we denote the preconditioner by M . Aside from M ,

the inputs and output of Algorithm fdpcg are the same as that for Algorithm fdcg.

Algorithm 2.5.2. fdpcg(x, f, M, η, kmax, d)

1. r = −∇f(x), ρ0 = ‖r‖22, k = 1, d = 0.

2. Do While
√

ρk−1 > η‖∇f(x)‖ and k < kmax

(a) z = Mr

(b) τk−1 = zT r

(c) if k = 1 then β = 0 and p = z
else
β = τk−1/τk−2, p = z + βp

(d) w = D2
hf(x : p)

If pTw = 0 signal indefiniteness; stop.

If pTw < 0 signal negative curvature; stop.

(e) α = τk−1/pTw

(f) d = d + αp

(g) r = r − αw

(h) ρk = rT r

(i) k = k + 1

In our formulation of Algorithms fdcg and fdpcg, indefiniteness is a signal that we are

not sufficiently near a minimum for the theory in this section to hold. In §3.3.7 we show how

negative curvature can be exploited when far from the solution.

One view of preconditioning is that it is no more than a rescaling of the independent variables.

Suppose, rather than (1.2), we seek to solve

min
y

f̂(y),(2.51)

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

32 ITERATIVE METHODS FOR OPTIMIZATION

where f̂(y) = f(M1/2y) and M is spd. If y∗ is a local minimizer of f̂ , then x∗ = M1/2y∗ is

a local minimizer of f and the two problems are equivalent. Moreover, if x = M1/2y and ∇x

and ∇y denote gradients in the x and y coordinates, then

∇y f̂(y) = M1/2∇xf(x)

and

∇2
y f̂(y) = M1/2(∇2

xf(x))M1/2.

Hence, the scaling matrix plays the role of the square root of the preconditioner for the precon-

ditioned conjugate gradient algorithm.

Newton–CG

The theory guarantees that if x0 is near enough to a local minimizer then ∇2f(xn) will be spd

for the entire iteration and xn will converge rapidly to x∗. Hence, Algorithm newtcg will not

terminate with failure because of an increase in f or an indefinite Hessian. Note that both the

forcing term η and the preconditioner M can change as the iteration progresses.

Algorithm 2.5.3. newtcg(x, f, τ, η)

1. rc = r0 = ‖∇f(x)‖

2. Do while ‖∇f(x)‖ > τrr0 + τa

(a) Select η and a preconditioner M .

(b) fdpcg(x, f, M, η, kmax, d)
If indefiniteness has been detected, terminate with failure.

(c) x = x + d.

(d) Evaluate f and ∇f(x).
If f has not decreased, terminate with failure.

(e) r+ = ‖∇f(x)‖, σ = r+/rc, rc = r+.

The implementation of Newton–CG is simple, but, as presented in Algorithm newtcg,

incomplete. The algorithm requires substantial modification to be able to generate the good

initial data that the local theory requires. We return to this issue in §3.3.7.

There is a subtle problem with Algorithm fdpcg in that the algorithm is equivalent to the

application of the preconditioned conjugate gradient algorithm to the matrix B that is determined

by

Bpi = wi = D2
hf(x : pi), 1 ≤ i ≤ N.

However, since the map p→ D2
hf(x : p) is not linear in p, the quality of B as an approximation

to∇2f(x) may degrade as the linear iteration progresses. Usually this will not cause problems

unless many iterations are needed to satisfy the inexact Newton condition. However, if one does

not see the expected rate of convergence in a Newton–CG iteration, this could be a factor [128].

One partial remedy is to use a centered-difference Hessian–vector product [162], which reduces

the error in B. In exercise 2.7.15 we discuss a more complex and imaginative way to compute

accurate Hessians.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

LOCAL CONVERGENCE 33

2.6 Examples

In this section we used the collection of MATLAB codes but disabled the features (see Chapter 3)

that assist in convergence when far from a minimizer. We took care to make certain that the

initial iterates were near enough to the minimizer so that the observations of local convergence

corresponded to the theory. In practical optimization problems, good initial data is usually not

available and the globally convergent methods discussed in Chapter 3 must be used to start the

iteration.

The plots in this section have the characteristics of local convergence in that both the gradient

norms and function values are decreasing. The reader should contrast this with the examples in

Chapter 3.

2.6.1 Parameter Identification

For this example, M = 100, and the observations are those of the exact solution with c = k = 1,

which we computed analytically. We used T = 10 and u0 = 10. We computed the displacement

and solved the sensitivity equations with the stiff solver ode15s. These results could be

obtained as well in a FORTRAN environment using, for example, the LSODE code [228]. The

relative and absolute error tolerances for the integrator were both set to 10−8. In view of the

expected accuracy of the gradient, we set the forward difference increment for the approximate

Hessian to h = 10−4. We terminated the iterations when ‖∇f‖ < 10−4. Our reasons for this

are that, for the zero residual problem considered here, the standard assumptions imply that

f(x) = O(‖∇f(x)‖) for x near the solution. Hence, since we can only resolve f to an accuracy

of 10−8, iteration beyond the point where ‖∇f‖ < 10−4 cannot be expected to lead to a further

decrease in f . In fact we observed this in our computations.

The iterations are very sensitive to the initial iterate. We used x0 = (1.1, 1.05)T ; initial

iterates much worse than that caused Newton’s method to fail. The more robust methods from

Chapter 3 should be viewed as essential components of even a simple optimization code.

In Table 2.1 we tabulate the history of the iteration for both the Newton and Gauss–Newton

methods. As expected for a small residual problem, Gauss–Newton performs well and, for this

example, even converges in fewer iterations. The real benefit of Gauss–Newton is that com-

putation of the Hessian can be avoided, saving considerable computational work by exploiting

the structure of the problem. In the computation reported here, the MATLAB flops com-

mand indicates that the Newton iteration took roughly 1.9 million floating point operations and

Gauss–Newton roughly 650 thousand. This difference would be much more dramatic if there

were more than two parameters or the cost of an evaluation of f depended on N in a significant

way (which it does not in this example).

Table 2.1: Parameter identification problem, locally convergent iterations.

Newton Gauss–Newton

n ‖∇f(xn)‖ f(xn) ‖∇f(xn)‖ f(xn)
0 2.33e+01 7.88e-01 2.33e+01 7.88e-01

1 6.87e+00 9.90e-02 1.77e+00 6.76e-03

2 4.59e-01 6.58e-04 1.01e-02 4.57e-07

3 2.96e-03 3.06e-08 9.84e-07 2.28e-14

4 2.16e-06 4.15e-14

Figure 2.1 is a graphical representation of the convergence history from Table 2.1. We think

that the plots are a more effective way to understand iteration statistics and will present mostly

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

34 ITERATIVE METHODS FOR OPTIMIZATION

graphs for the remainder of the book. The concavity of the plots of the gradient norms is the

signature of superlinear convergence.

0 2 4
10

−6

10
−4

10
−2

10
0

10
2

Newton’s Method

Iterations

G
ra

d
ie

n
t

N
o

rm

0 2 4
10

−15

10
−10

10
−5

10
0

Newton’s Method

F
u

n
c
ti
o

n
 V

a
lu

e
Iterations

0 1 2 3
10

−8

10
−6

10
−4

10
−2

10
0

10
2

Gauss−Newton Method

Iterations

G
ra

d
ie

n
t

N
o

rm

0 1 2 3
10

−15

10
−10

10
−5

10
0

Gauss−Newton Method

Iterations

F
u

n
c
ti
o

n
 V

a
lu

e

Figure 2.1: Local Optimization for the Parameter ID Problem

We next illustrate the difference between Gauss–Newton and Newton on a nonzero residual

problem. We use the same example as before with the observations randomly perturbed. We

used the MATLAB rand function for this, perturbing the samples of the analytic solution by

.5 × rand(M, 1). The least squares residual is about 3.6 and the plots in Figure 2.2 indicate

that Newton’s method is still converging quadratically, but the rate of Gauss–Newton is linear.

The linear convergence of Gauss–Newton can be seen clearly from the linear semilog plot of the

gradient norms. Even so, the Gauss–Newton iteration was more efficient, in terms of floating

point operation, than Newton’s method. The Gauss–Newton iteration took roughly 1 million

floating point operations while the Newton iteration took 1.4 million.

2.6.2 Discrete Control Problem

We solve the discrete control problem from §1.6.1 with N = 400, T = 1, y0 = 0,

L(y, u, t) = (y − 3)2 + .5u2, and φ(y, u, t) = uy + t2

with Newton–CG and two different choices, η = .1, .0001, of the forcing term. The initial

iterate was u0 = (10, 10, . . . , 10)T and the iteration was terminated when ‖∇f‖ < 10−8. In

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

LOCAL CONVERGENCE 35

0 1 2 3
10

−6

10
−4

10
−2

10
0

10
2

Newton’s Method

Iterations

G
ra

d
ie

n
t

N
o

rm

0 1 2 3
3.6

3.7

3.8

3.9

4
Newton’s Method

F
u

n
c
ti
o

n
 V

a
lu

e

Iterations

0 2 4 6
10

−6

10
−4

10
−2

10
0

10
2

Gauss−Newton Method

Iterations

G
ra

d
ie

n
t

N
o

rm

0 2 4 6
3.6

3.7

3.8

3.9

4
Gauss−Newton Method

Iterations

F
u

n
c
ti
o

n
 V

a
lu

e

Figure 2.2: Local Optimization for the Parameter ID Problem, Nonzero Residual

Figure 2.3 one can see that the small forcing term produces an iteration history with the concavity

of superlinear convergence. The limiting q-linear behavior of an iteration with constant η is not

yet visible. The iteration with the larger value of η is in the q-linearly convergent stage, as the

linear plot of ∇f against the iteration counter shows.

The cost of the computation is not reflected by the number of nonlinear iterations. When

η = .0001, the high accuracy of the linear solve is not rewarded. The computation with η = .0001
required 8 nonlinear iterations, a total of 32 CG iterations, roughly 1.25 million floating point

operations, and 41 gradient evaluations. The optimization with η = .1 needed 10 nonlinear

iterations, a total of 13 CG iterations, roughly 820 thousand floating point operations, and 24

gradient evaluations.

2.7 Exercises on Local Convergence

2.7.1. Apply Newton’s method with (a) analytic first and second derivatives, (b) analytic first

derivatives and forward difference second derivatives, and (c) forward difference first and

second derivatives to find a local minimum of

1. f(x) = sin2(x),

2. f(x) = ex
2

, and

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

36 ITERATIVE METHODS FOR OPTIMIZATION

0 2 4 6 8
10

−15

10
−10

10
−5

10
0

10
5

eta = .0001

Iterations

G
ra

d
ie

n
t

N
o

rm

0 2 4 6 8
10

0

10
1

10
2

10
3

eta = .0001

Iterations

F
u

n
c
ti
o

n
 V

a
lu

e

0 5 10
10

−10

10
−5

10
0

10
5

eta = .1

Iterations

G
ra

d
ie

n
t

N
o

rm

0 5 10
10

0

10
1

10
2

10
3

eta = .1

F
u

n
c
ti
o

n
 V

a
lu

e

Iterations

Figure 2.3: Newton–CG for the Discrete Control Problem: η = .1, .0001

3. f(x) = x4.

Use difference steps of h = 10−1, 10−2, 10−4, and 10−8. Explain your results.

2.7.2. Repeat part (c) of exercise 2.7.1. Experiment with

f(x) = ex
2

+ 10−4
rand(x) and f(x) = x2 + 10−4

rand(x),

where rand denotes the random number generator in your computing environment. Ex-

plain the differences in the results.

2.7.3. Show that if A is symmetric, p �= 0, and pTAp = 0, then A is either singular or indefinite.

2.7.4. Show that if b ∈ RN and the N ×N matrix A is symmetric and has a negative eigenvalue,

then the quadratic functional

m(x) = xTAx + xT b

does not have a minimizer. Show that if u is an eigenvector corresponding to a negative

eigenvalue of the Hessian, then u is a direction of negative curvature.

2.7.5. If N = 1, the local quadratic model could easily be replaced by a local quartic (i.e.,

fourth-degree) model (what would be wrong with a cubic model?). If a method is based

on minimization of the local quartic model, what kind of local convergence would you

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

LOCAL CONVERGENCE 37

expect? How would you extend this method to the case N > 1? Look at [30] for some

results on this.

2.7.6. Show that if the standard assumptions hold, h is sufficiently small, and x is sufficiently

near x∗, the difference Hessian defined by (2.19), ∇2
hf(x), is spd.

2.7.7. Write a locally convergent Newton method code based on accurate function and gradient

information and forward difference Hessians using (2.19). Be sure that your code tests for

positivity of the Hessian so that you can avoid convergence to a local maximum. Is the

test for positivity expensive? Apply your code to the parameter ID problem from §1.6.2.

If you use an ODE solver that lets you control the accuracy of the integration, try values

of the accuracy from 10−8 to 10−2 and see how the iteration performs. Be sure that your

difference Hessian reflects the accuracy in the gradient.

2.7.8. Let the standard assumptions hold and let λs > 0 be the smallest eigenvalue of∇2f(x∗).
Give the best (i.e., largest) bound you can for ρ such that ∇2f(x) is positive definite for

all x ∈ B(ρ).

2.7.9. Use the definition of A† to prove (2.41).

2.7.10. Fill in the missing details in the proof of Theorem 2.4.2 by showing how the Kantorovich

theorem can be used to prove the existence of ξ(x).

2.7.11. Let f(x) = x2 and ǫf (x) = sin(100x)/10. Using an initial iterate of x0 = 1, try to find

a local minimum of f + ǫf using Newton’s method with analytic gradients and Hessians.

Repeat the experiment with difference gradients and Hessians (try forward differences

with a step size of h = .2).

2.7.12. Solve the parameter ID problem from §2.6 with the observations perturbed randomly (for

example, you could use the MATLAB rand function for this). Vary the amplitude of the

perturbation and see how the performance of Newton and Gauss–Newton changes.

2.7.13. Derive sensitivity equations for the entries of the Hessian for the parameter ID objective

function. In general, if there are P parameters, how many sensitivity equations would

need to be solved for the gradient? How many for the Hessian?

2.7.14. Solve the discrete control problem from §2.6.2 using Newton–CG with forcing terms that

depend on n. Consider ηn = .5/n, ηn = min(.1, ‖∇f(un)‖), and some of the choices

from [99]. Vary N and the termination criteria and compare the performance with the

constant η choice in §2.6.2.

2.7.15. Let F : RN → RM (where M and N need not be the same) be sufficiently smooth (how

smooth is that?) and be such that F can also be computed for complex arguments. Show

that [181], [245]

Im(F (x + ihu))/h = F ′(x)u + O(h2),

where Im denotes imaginary part. What happens if there is error in F ? How can you use

this fact to compute better difference gradients and Hessians?

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

Chapter 3

Global Convergence

The locally convergent algorithms discussed in Chapter 2 can and do fail when the initial iterate

is not near the root. The reasons for this failure, as we explain below, are that the Newton

direction may fail to be a direction of descent for f and that even when a search direction is a

direction of decrease of f , as −∇f is, the length of the step can be too long. Hence, taking a

Newton (or Gauss–Newton, or inexact Newton) step can lead to an increase in the function and

divergence of the iteration (see exercise 3.5.14 for two dramatic examples of this). The globally

convergent algorithms developed in this chapter partially address this problem by either finding

a local minimum or failing in one of a small number of easily detectable ways.

These are not algorithms for global optimization. When these algorithms are applied to

problems with many local minima, the results of the iteration may depend in complex ways on

the initial iterate.

3.1 The Method of Steepest Descent

The steepest descent direction from x is d = −∇f(x). The method of steepest descent [52]

updates the current iteration xc by the formula

x+ = xc − λ∇f(xc).(3.1)

If we take the simple choice λ = 1, then x+ is not guaranteed to be nearer a solution than xc,

even if xc is very near a solution that satisfies the standard assumptions. The reason for this is

that, unlike the Newton direction, the steepest descent direction scales with f . The Newton step,

on the other hand, is the same for f as it is for cf for any c �= 0 but need not be a direction of

decrease for f .

To make the method of steepest descent succeed, it is important to choose the steplength λ.

One way to do this, which we analyze in §3.2, is to let λ = βm, where β ∈ (0, 1) and m ≥ 0 is

the smallest nonnegative integer such that there is sufficient decrease in f . In the context of the

steepest descent algorithm, this means that

f(xc − λ∇f(xc))− f(xc) < −αλ‖∇f(xc)‖2.(3.2)

This strategy, introduced in [7] and called the Armijo rule, is an example of a line search in

which one searches on a ray from xc in a direction in which f is locally decreasing. In (3.2),

α ∈ (0, 1) is a parameter, which we discuss after we fully specify the algorithm. This strategy

of repeatedly testing for sufficient decrease and reducing the stepsize if the test is failed is called

backtracking for obvious reasons.

39

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

40 ITERATIVE METHODS FOR OPTIMIZATION

The motivation for (3.2) is that if we approximate f by the linear model

mc = f(xc) +∇f(xc)(x− xc),

then the reduction in the model (i.e., the predicted reduction in f) is

pred = mc(xc)−mc(x+) = λ‖∇f(xc)‖2.

(3.2) says that the actual reduction in f

ared = f(xc)− f(x+)

is at least as much as a fraction of the predicted reduction in the linear model. The parameter α
is typically set to 10−4.

The reason we demand sufficient decrease instead of simple decrease (i.e., f(xc) < f(x+)
or α = 0) is largely theoretical; a nonzero value of α is required within the proof to insure that

the iteration does not stagnate before convergence.

Algorithm 3.1.1. steep(x, f, kmax)

1. For k = 1, . . . , kmax

(a) Compute f and ∇f ; test for termination.

(b) Find the least integer m ≥ 0 such that (3.2) holds for λ = βm.

(c) x = x + λd.

2. If k = kmax and the termination test is failed, signal failure.

The termination criterion could be based on (2.12), for example.

3.2 Line Search Methods and the Armijo Rule

We introduce a few new concepts so that our proof of convergence of Algorithm steep will

also apply to a significantly more general class of algorithms.

Definition 3.2.1. A vector d ∈ RN is a descent direction for f at x if

df(x + td)

dt

∣

∣

∣

∣

t=0

= ∇f(x)T d < 0.

Clearly the steepest descent direction d = −∇f(x) is a descent direction. A line search

algorithm searches for decrease in f in a descent direction, using the Armijo rule for stepsize

control, unless ∇f(x) = 0.

We will consider descent directions based on quadratic models of f of the form

m(x) = f(xc) +∇f(xc)
T (x− xc) +

1

2
(x− xc)

THc(x− xc),

where Hc, which is sometimes called the model Hessian, is spd. We let d = x−xc be such that

m(x) is minimized. Hence,

∇m(x) = ∇f(xc) + Hc(x− xc) = 0

and hence

d = −H−1
c ∇f(xc).(3.3)

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

GLOBAL CONVERGENCE 41

The steepest descent direction satisfies (3.3) with Hc = I . However, the Newton direction

d = −∇2f(x)−1∇f(x) may fail to be a descent direction if x is far from a minimizer because

∇2f may not be spd. Hence, unlike the case for nonlinear equations [154], Newton’s method is

not a generally good global method, even with a line search, and must be modified (see [113],

[117], [231], and [100]) to make sure that the model Hessians are spd.

The algorithm we analyze in this section is an extension of Algorithm steep that allows for

descent directions that satisfy (3.3) for spd H . We modify (3.2) to account for H and the new

descent direction d = −H−1∇f(x). The general sufficient decrease condition is

f(xc + λd)− f(xc) < αλ∇f(xc)
T d.(3.4)

Here, as in (3.2), α ∈ (0, 1) is an algorithmic parameter. Typically α = 10−4.

The stepsize reduction scheme in step 1b of Algorithm steep is crude. If β is too large, too

many stepsize reductions may be needed before a step is accepted. If β is too small, the progress

of the entire iteration may be retarded. We will address this problem in two ways. In §3.2.1 we

will construct polynomial models of f along the descent direction to predict an optimal factor

by which to reduce the step. In §3.3.3 we describe a method which remembers the steplength

from the previous iteration.

Our proofs require only the following general line search strategy. If a steplength λc has

been rejected (i.e., (3.4) fails with λ = λc), construct

λ+ ∈ [βlowλc, βhighλc],(3.5)

where 0 < βlow ≤ βhigh < 1. The choice β = βlow = βhigh is the simple rule in Algo-

rithm steep. An exact line search, in which λ is the exact minimum of f(xc+λd), is not only

not worth the extra expense but can degrade the performance of the algorithm.

Algorithm 3.2.1. optarm(x, f, kmax)

1. For k = 1, . . . , kmax

(a) Compute f and ∇f ; test for termination.

(b) Construct an spd matrix H and solve (3.3) to obtain a descent direction d.

(c) Beginning with λ = 1, repeatedly reduce λ using any strategy that satisfies (3.5)

until (3.4) holds.

(d) x = x + λd.

2. If k = kmax and the termination test is failed, signal failure.

In the remainder of this section we prove that if the sequence of model Hessians remains

uniformly bounded and positive definite and the sequence of function values {f(xk)} is bounded

from below, then any limit point of the sequence {xk} generated by Algorithm optarm con-

verges to a point x∗ that satisfies the necessary conditions for optimality. We follow that analysis

with a local convergence theory that is much less impressive than that for Newton’s method.

We begin our analysis with a simple estimate that follows directly from the spectral theorem

for spd matrices.

Lemma 3.2.1. Let H be spd with smallest and largest eigenvalues 0 < λs < λl. Then for

all z ∈ RN ,

λ−1
l ‖z‖2 ≤ zTH−1z ≤ λ−1

s ‖z‖2.

The first step in the analysis is to use Lemma 3.2.1 to obtain a lower bound for the steplength.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

42 ITERATIVE METHODS FOR OPTIMIZATION

Lemma 3.2.2. Assume that ∇f is Lipschitz continuous with Lipschitz constant L. Let

α ∈ (0, 1), x ∈ RN , and H be an spd matrix. Let λs > 0 be the smallest and λl ≥ λs the

largest eigenvalues of H . Let d be given by (3.3). Assume that∇f(x) �= 0. Then (3.4) holds for

any λ such that

0 < λ ≤ 2λs(1− α)

Lκ(H)
.(3.6)

Proof. Let d = −H−1∇f(x). By the fundamental theorem of calculus

f(x + λd)− f(x) =

∫ 1

0

∇f(x + tλd)Tλd dt.

Hence
f(x + λd) = f(x) + λ∇f(x)T d

+λ
∫ 1

0
(∇f(x + tλd)−∇f(x))T d dt.

(3.7)

Therefore,

f(x + λd) = f(x− λH−1∇f(x)) ≤ f(x) + λ∇f(x)T d +
λ2L

2
‖d‖2.

Positivity of H , Lemma 3.2.1, and κ(H) = λlλ
−1
s imply that

‖d‖2 = ‖H−1∇f(x)‖2 ≤ λ−2
s ∇f(x)T∇f(x)

≤ −λlλ
−2
s ∇f(x)T d = −κ(H)λ−1

s ∇f(x)T d.

Hence

f(x + λd) ≤ f(x) + (λ− λ2Lλ−1
s κ(H)/2)∇f(x)T d,

which implies (3.4) if

α ≤ (1− λLλ−1
s κ(H)/2).

This is equivalent to (3.6).

Lemma 3.2.3. Let ∇f be Lipschitz continuous with Lipschitz constant L. Let {xk} be the

iteration given by Algorithm optarm with spd matrices Hk that satisfy

κ(Hk) ≤ κ̄(3.8)

for all k. Then the steps

sk = xk+1 − xk = λkdk = −λkH−1
k ∇f(xk)

satisfy

λk ≥ λ̄ =
2βlowλs(1− α)

Lκ̄
(3.9)

and at most

m = log

(

2λs(1− α)

Lκ̄

)

/ log(βhigh)(3.10)

stepsize reductions will be required.

Proof. In the context of Algorithm optarm, Lemma 3.2.2 implies that the line search will

terminate when

λ ≤ 2λs(1− α)

Lκ(Hk)
,

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

GLOBAL CONVERGENCE 43

if not before. The most that one can overshoot this is by a factor of βlow, which proves (3.9).

The line search will require at most m stepsize reductions, where m is the least nonnegative

integer such that
2λs(1− α)

Lκ(Hk)
> βm

high.

This implies (3.10).

The convergence theorem for Algorithm optarm says that if the condition numbers of the

matrices H and the norms of the iterates remain bounded, then every limit point of the iteration

is a stationary point. Boundedness of the sequence of iterates implies that there will be limit

points, but there is no guarantee that there is a unique limit point.

Theorem 3.2.4. Let ∇f be Lipschitz continuous with Lipschitz constant L. Assume that

the matrices Hk are spd and that there are κ̄ and λl such that κ(Hk) ≤ κ̄, and ‖Hk‖ ≤ λl for

all k. Then either f(xk) is unbounded from below or

lim
k→∞

∇f(xk) = 0(3.11)

and hence any limit point of the sequence of iterates produced by Algorithm optarm is a

stationary point.

In particular, if f(xk) is bounded from below and xkl
→ x∗ is any convergent subsequence

of {xk}, then ∇f(x∗) = 0.

Proof. By construction, f(xk) is a decreasing sequence. Therefore, if f(xk) is bounded

from below, then limk→∞ f(xk) = f∗ exists and

lim
k→∞

f(xk+1)− f(xk) = 0.(3.12)

By (3.4) and Lemma 3.2.3 we have

f(xk+1)− f(xk) < −αλk∇f(xk)
TH−1

k ∇f(xk)

≤ −αλ̄λ−1
l ‖∇f(xk)‖2 ≤ 0.

Hence, by (3.12)

‖∇f(xk)‖2 ≤
λl(f(xk)− f(xk+1))

αλ̄
→ 0

as k →∞. This completes the proof.

The analysis of the Armijo rule is valid for other line search methods [84], [125], [272],

[273]. The key points are that the sufficient decrease condition can be satisfied in finitely many

steps and that the stepsizes are bounded away from zero.

3.2.1 Stepsize Control with Polynomial Models

Having computed a descent direction d from xc, one must decide on a stepsize reduction scheme

for iterations in which (3.4) fails for λ = 1. A common approach [73], [84], [114], [197], [117]

is to model

ξ(λ) = f(xc + λd)

by a cubic polynomial. The data on hand initially are

ξ(0) = f(xc), ξ
′(0) = ∇f(xc)

T d < 0, and ξ(1) = f(x + d),

which is enough to form a quadratic model of ξ. So, if (3.4) does not hold with λ = λ0 = 1,

i.e.,

ξ(1) = f(xc + d) ≥ f(xc) + α∇f(xc)
T d = ξ(0) + αξ′(0),

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

44 ITERATIVE METHODS FOR OPTIMIZATION

we approximate ξ by the quadratic polynomial

q(λ) = ξ(0) + ξ′(0)λ + (ξ(1)− ξ(0)− ξ′(0))λ2

and let λ1 be the minimum of q on the interval [βlow, βhigh] ⊂ (0, 1). This minimum can be

computed directly since α ∈ (0, 1) and failure of (3.4) imply

q′′(λ) = 2(ξ(1)− ξ(0)− ξ′(0)) > 2(α− 1)ξ′(0) > 0.

Therefore, the global minimum of q is

λt =
−ξ′(0)

2(ξ(1)− ξ(0)− ξ′(0))
.

So

λ+ =























βlow, λt ≤ βlow,

λt, βlow < λt < βhigh,

βhigh, λt ≥ βhigh.

(3.13)

If our first reduced value of λ does not satisfy (3.4), we base additional reductions on the

data

ξ(0) = f(xc), ξ
′(0) = ∇f(xc)

T d, ξ(λ−), ξ(λc),

where λc < λ− are the most recent values of λ to fail to satisfy (3.4). This is sufficient data to

approximate ξ with a cubic polynomial

q(λ) = ξ(0) + ξ′(0)λ + c2λ2 + c3λ3,

where c2 and c3 can be determined by the equations

q(λc) = ξ(λc) = f(xc + λcd),

q(λ−) = ξ(λ−) = f(xc + λ−d),

which form the nonsingular linear system for c2 and c3

(

λ2
c λ3

c

λ2
− λ3

−

)(

c2

c3

)

=

(

ξ(λc)− ξ(0)− ξ′(0)λc

ξ(λ−)− ξ(0)− ξ′(0)λ−

)

.(3.14)

As with the quadratic case, q has a local minimum [84] at

λt =
−c2 +

√

c2
2 − 3c3ξ′(0)

3c3
.(3.15)

With λt in hand, we compute λ+ using (3.13). The application of (3.13) is called safeguarding

and is important for the theory, as one can see from the proof of Theorem 3.2.4. Safeguarding

is also important in practice because, if the cubic model is poor, the unsafeguarded model can

make steplength reductions that are so small that the iteration can stagnate or so large (i.e., near

1) that too many reductions are needed before (3.4) holds.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

GLOBAL CONVERGENCE 45

3.2.2 Slow Convergence of Steepest Descent

Unfortunately, methods based on steepest descent do not enjoy good local convergence prop-

erties, even for very simple functions. To illustrate this point we consider the special case of

convex quadratic objective functions

f(x) =
1

2
xTAx− bTx + a,

where A is spd, b ∈ RN , and a is a scalar. We will look at a very simple example, using

the method of steepest descent with Hk = I (so λl = λs = 1) and show how the speed of

convergence depends on conditioning and scaling.

Lemma 3.2.5. Let f be a convex quadratic and let Hk = I for all k. Then the sequence

{xk} generated by Algorithm optarm converges to the unique minimizer of f .

Proof. In exercise 3.5.4 you are asked to show that f is bounded from below and that

∇f(x) = Ax− b. Hence ∇f(x∗) vanishes only at x∗ = A−1b. Since ∇2f(x) = A is spd, the

second-order sufficient conditions hold and x∗ is the unique minimizer of f .

Theorem 3.2.4 implies that

lim
k→∞

∇f(xk) = Axk − b = A(xk − x∗) = 0,

and hence xk → x∗.

Since the steepest descent iteration converges to the unique minimizer of a convex quadratic,

we can investigate the rate of convergence without concern about the initial iterate. We do this

in terms of the A-norm. The problems can be illustrated with the simplest case a = 0 and b = 0.

Proposition 3.2.6. Let f(x) = xTAx/2 and let {xk} be given by Algorithm optarm with

Hk = I for all k. Then the sequence {xk} satisfies

‖xk+1‖A = (1−O(κ(A)−2))‖xk‖A.(3.16)

Proof. The sufficient decrease condition, (3.4), implies that for all k

xT
k+1Axk+1 − xT

k Axk = 2(f(xk+1)− f(xk))

≤ 2α∇f(xk)
T (xk+1 − xk)

= 2αλk∇f(xk)
T d = −2αλk(Axk)

T (Axk).

(3.17)

The Lipschitz constant of ∇f is simply λl = ‖A‖; hence we may write (3.9) as

λk ≥ λ̄ =
2β(1− α)

λlκ(A)
.(3.18)

In terms of the A-norm, (3.17) can be written as

‖xk+1‖2A − ‖xk‖2A ≤ −2αλ̄λs‖xk‖2A,

where we use the fact that

‖Az‖2 = (Az)T (Az) ≥ λsz
TAz = λs‖z‖2A.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

46 ITERATIVE METHODS FOR OPTIMIZATION

Hence,

‖xk+1‖2A ≤ (1− 2αλ̄λs)‖xk‖2A ≤ (1− 4α(1− α)βκ(A)−2)‖xk‖2A.

This completes the proof.

Now we consider two specific examples. Let N = 1 and define

f(x) = ωx2/2,

where

ω < 2(1− α).(3.19)

In this case x∗ = 0. We have ∇f(x) = f ′(x) = ωx and hence for all x ∈ R,

f(x−∇f(x))− f(x) =
ωx2

2
((1− ω)2 − 1)

=
ω2x2

2
(ω − 2)

< −α|f ′(x)|2 = −αω2x2

because (3.19) implies that

ω − 2 < −2α.

Hence (3.4) holds with d = ∇f(x) and λ = 1 for all x ∈ R. The rate of convergence can be

computed directly since

x+ = (1− ω)xc

for all xc. The convergence is q-linear with q-factor 1−ω. So if ω is very small, the convergence

will be extremely slow.

Similarly, if ω is large, we see that

f(x− λ∇f(x))− f(x) =
ω2x2

2
(λω − 2) < −αλω2x2

only if

λ <
2(1− α)

ω
.

So

β
2(1− α)

ω
< βm = λ <

2(1− α)

ω
.

If ω is very large, many steplength reductions will be required with each iteration and the line

search will be very inefficient.

These are examples of poor scaling, where a change in f by a multiplicative factor can

dramatically improve the efficiency of the line search or the convergence speed. In fact, if

ω = 1, steepest descent and Newton’s method are the same and only one iteration is required.

The case for a general convex quadratic is similar. Let λl and λs be the largest and smallest

eigenvalues of the spd matrix A. We assume that b = 0 and a = 0 for this example. We let ul

and us be unit eigenvectors corresponding to the eigenvalues λl and λs. If

λs < 2(1− α)

is small and the initial iterate is in the direction of us, convergence will require a very large

number of iterations (slow). If λl is large and the initial iterate is in the direction of ul, the line

search will be inefficient (many stepsize reductions at each iteration).

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

GLOBAL CONVERGENCE 47

Newton’s method does not suffer from poor scaling of f and converges rapidly with no need

for a line search when the initial iterate is near the solution. However, when far away from the

solution, the Newton direction may not be a descent direction at all and the line search may

fail. Making the transition from steepest descent, which is a good algorithm when far from

the solution, to Newton’s or some other superlinearly convergent method as the iteration moves

toward the solution, is the central problem in the design of line search algorithms. The scaling

problems discussed above must also be addressed, even when far from the solution.

3.2.3 Damped Gauss–Newton Iteration

As we showed in §2.4, the steepest descent direction for the overdetermined least squares objec-

tive

f(x) =
1

2

M
∑

i=1

‖ri(x)‖22 =
1

2
R(x)TR(x)

is

−∇f(x) = −R′(x)TR(x).

The steepest descent algorithm could be applied to nonlinear least squares problems with the

good global performance and poor local convergence that we expect.

The Gauss–Newton direction at x

dGS = −(R′(x)TR′(x))−1R′(x)TR(x)

is not defined if R′ fails to have full column rank. If R′ does have full column rank, then

(dGS)T∇f(x) = −(R′(x)TR(x))T (R′(x)TR′(x))−1R′(x)TR(x) < 0,

and the Gauss–Newton direction is a descent direction. The combination of the Armijo rule with

the Gauss–Newton direction is called damped Gauss–Newton iteration.

A problem with the damped Gauss–Newton algorithm is that, in order for Theorem 3.2.4 to

be applicable, the matrices {R′(xk)
TR′(xk)}must not only have full column rank but also must

be uniformly bounded and well conditioned, which are very strong assumptions (but if they are

satisfied, damped Gauss–Newton is a very effective algorithm).

The Levenberg–Marquardt method [172], [183] addresses these issues by adding a regular-

ization parameter ν > 0 to R′(xc)
TR′(xc) to obtain x+ = xc + s where

s = −(νcI + R′(xc)
TR′(xc))

−1R′(xc)
TR(xc),(3.20)

where I is the N × N identity matrix. The matrix νcI + R′(xc)
TR′(xc) is positive definite.

The parameter ν is called the Levenberg–Marquardt parameter.

It is not necessary to compute R′(xc)
TR′(xc) to compute a Levenberg–Marquardt step [76].

One can also solve the full-rank (M + N)×N linear least squares problem

min
1

2

∥

∥

∥

∥

[

R′(xc)√
νcI

]

s +

[

R(xc)
0

]
∥

∥

∥

∥

2

(3.21)

to compute s (see exercise 3.5.6). Compare this with computing the undamped Gauss–Newton

step by solving (2.33).

If one couples the Levenberg–Marquardt method with the Armijo rule, then Theorem 3.2.4

is applicable far from a minimizer and Theorem 2.4.1 nearby. We ask the reader to provide the

details of the proof in exercise 3.5.7.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

48 ITERATIVE METHODS FOR OPTIMIZATION

Theorem3.2.7. Let R′ be Lipschitz continuous. Let xk be the Levenberg–Marquardt–Armijo

iterates. Assume that ‖R′(xk)‖ is uniformly bounded and that the sequence of Levenberg–

Marquardt parameters {νk} is such that

κ(νkI + R′(xk)
TR′(xk))

is bounded. Then

lim
k→∞

R′(xk)
TR(xk) = 0.

Moreover, if x∗ is any limit point of {xk} at which R(x∗) = 0, Assumption 2.4.1 holds, and

νk → 0, then xk → x∗ q-superlinearly. If, moreover,

νk = O(‖R(xk)‖)

as k →∞ then the convergence is q-quadratic.

For example, if κ(R′(xk)
TR′(xk)) and ‖R′(xk)‖ are bounded then νk = min(1, ‖R(xk)‖)

would satisfy the assumptions of Theorem 3.2.7. For a zero residual problem, this addresses the

potential conditioning problems of the damped Gauss–Newton method and still gives quadratic

convergence in the terminal phase of the iteration. The Levenberg–Marquardt–Armijo iteration

will also converge, albeit slowly, for a large residual problem.

We will not discuss globally convergent methods for underdetermined least squares problems

in this book. We refer the reader to [24], [252], and [253] for discussion of underdetermined

problems.

3.2.4 Nonlinear Conjugate Gradient Methods

Operationally, the conjugate gradient iteration for a quadratic problem updates the current iter-

ation with a linear combination of the current residual r and a search direction p. The search

direction is itself a linear combination of previous residuals. Only r and p need be stored to

continue the iteration. The methods discussed in this section seek to continue this idea to more

nonlinear problems.

Nonlinear conjugate gradient algorithms have the significant advantage of low storage over

most of the other algorithms covered in this book, the method of steepest descent being the

exception. For problems so large that the Newton or quasi–Newton methods cannot be imple-

mented using the available storage, these methods are among the few options (see [177] and [5]

for examples).

Linear conjugate gradient seeks to minimize f(x) = xTHx/2 − xT b. The residual r =
b − Hx is simply −∇f(x), leading to a natural extension to nonlinear problems in which

r0 = p0 = ∇f(x0) and, for k ≥ 1,

rk = ∇f(xk) and pk = rk + βkpk−1.(3.22)

The update of x
xk+1 = xk + αkpk

can be done with a simple analytic minimization in the quadratic case, but a line search will be

needed in the nonlinear case. The missing pieces, therefore, are the choice of βk, the way the

line search will be done, and convergence theory. Theory is needed, for example, to decide if

pk is a descent direction for all k.

The general form of the algorithm is very simple. The inputs are an initial iterate, which

will be overwritten by the solution, the function to be minimized, and a termination vector

τ = (τr, τa) of relative and absolute residuals.

Algorithm 3.2.2. nlcg(x, f, τ)

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

GLOBAL CONVERGENCE 49

1. r0 = ‖∇f(x)‖; k = 0

2. Do while ‖∇f(x)‖ > τrr0 + τa

(a) If k = 0 then p = −∇f(x) else

p = −∇f(x) + βp

(b) x = x + αp

The two most common choices for β, both of which are equivalent to the linear CG formula

in the quadratic case, are the Fletcher–Reeves [106]

βFR
k =

‖∇f(xk)‖2
‖∇f(xk−1)‖2

(3.23)

and Polak–Ribière [215], [216]

βk =
∇f(xk)

T (∇f(xk)−∇f(xk−1))

‖∇f(xk−1)‖2
(3.24)

formulas. The Fletcher–Reeves method has been observed to take long sequences of very small

steps and virtually stagnate [112], [207], [208], [226]. The Polak–Ribière formula performs

much better and is more commonly used but has a less satisfactory convergence theory.

The line search has more stringent requirements, at least for proofs of convergence, than

are satisfied by the Armijo method that we advocate for steepest descent. We require that the

steplength parameter satisfies the Wolfe conditions [272], [273]

f(xk + αkpk) ≤ f(xk) + σααk∇f(xk)
T pk(3.25)

and

∇f(xk + αkpk)
T pk ≥ σβ∇f(xk)

T pk,(3.26)

where 0 < σα < σβ < 1. The first of the Wolfe conditions (3.25) is the sufficient decrease

condition, (3.4), that all line search algorithms must satisfy. The second (3.26) is often, but not

always, implied by the Armijo backtracking scheme of alternating a test for sufficient decrease

and reduction of the steplength. One can design a line search method that will, under modest

assumptions, find a steplength satisfying the Wolfe conditions [104], [171], [193].

The convergence result [3] for the Fletcher–Reeves formula requires a bit more. The proof

that pk is descent direction requires the strong Wolfe conditions, which replace (3.26) by

|∇f(xk + αkpk)
T pk| ≤ −σβ∇f(xk)

T pk(3.27)

and demand that 0 < σα < σβ < 1/2. The algorithm from [193], for example, will find a point

satisfying the strong Wolfe conditions.

Theorem 3.2.8. Assume that the set

N = {x | f(x) ≤ f(x0)}

is bounded and that f is Lipschitz continuously differentiable in a neighborhood of N . Let

Algorithmnlcgbe implemented with the Fletcher–Reeves formula and a line search that satisfies

the strong Wolfe conditions. Then

lim∇f(xk) = 0.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

50 ITERATIVE METHODS FOR OPTIMIZATION

This result has been generalized to allow for any choice of βk such that |βk| ≤ βFR
k [112].

A similar result for the Polak–Ribière method, but with more complex conditions on the line

search, has been proved in [134]. This complexity in the line search is probably necessary, as

there are examples where reasonable line searches lead to failure in the Polak–Ribière method,

[222]. One can also prove convergence if βPR
k is replaced by max(βPR

k , 0) [112].

There is continuing research on these methods and we point to [112], [134], [205], and [202]

as good sources.

3.3 Trust Region Methods

Trust region methods overcome the problems that line search methods encounter with non-spd

approximate Hessians. In particular, a Newton trust region strategy allows the use of complete

Hessian information even in regions where the Hessian has negative curvature. The specific trust

region methods we will present effect a smooth transition from the steepest descent direction to

the Newton direction in a way that gives the global convergence properties of steepest descent

and the fast local convergence of Newton’s method.

The idea is very simple. We let ∆ be the radius of the ball about xc in which the quadratic

model

mc(x) = f(xc) +∇f(xc)
T (x− xc) + (x− xc)

THc(x− xc)/2

can be trusted to accurately represent the function. ∆ is called the trust region radius and the

ball

T (∆) = {x | ‖x− xc‖ ≤ ∆}
is called the trust region.

We compute the new point x+ by (approximately) minimizing mc over T (∆). The trust

region problem for doing that is usually posed in terms of the difference st between xc and the

minimizer of mc in the trust region

min
‖s‖≤∆

mc(xc + s).(3.28)

We will refer to either the trial step st or the trial solution xt = xc + st as the solution to the

trust region problem.

Having solved the trust region problem, one must decide whether to accept the step and/or to

change the trust region radius. The trust region methods that we will discuss in detail approximate

the solution of the trust region problem with the minimizer of the quadratic model along a

piecewise linear path contained in the trust region. Before discussing these specific methods,

we present a special case of a result from [223] on global convergence.

A prototype trust region algorithm, upon which we base the specific instances that follow, is

Algorithm 3.3.1.

Algorithm 3.3.1. trbasic(x, f)

1. Initialize the trust region radius ∆.

2. Do until termination criteria are satisfied

(a) Approximately solve the trust region problem to obtain xt.

(b) Test both the trial point and the trust region radius and decide whether or not to

accept the step, the trust region radius, or both. At least one of x or ∆ will change

in this phase.

Most trust region algorithms differ only in how step 2a in Algorithm trbasic is done.

There are also different ways to implement step 2b, but these differ only in minor details and the

approach we present next in §3.3.1 is very representative.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

GLOBAL CONVERGENCE 51

3.3.1 Changing the Trust Region and the Step

The trust region radius and the new point are usually tested simultaneously. While a notion of

sufficient decrease is important, the test is centered on how well the quadratic model approximates

the function inside the trust region. We measure this by comparing the actual reduction in f

ared = f(xc)− f(xt)

with the predicted reduction, i.e., the decrease in the quadratic model

pred = mc(xc)−mc(xt) = −∇f(xc)
T st − sTt Hcst/2.

pred > 0 for all the trust region algorithms we discuss in this book unless ∇f(xc) = 0. We

will introduce three control parameters

µ0 ≤ µlow < µhigh,

which are used to determine if the trial step should be rejected (ared/pred < µ0) and/or the trust

region radius should be decreased (ared/pred < µlow), increased (ared/pred > µhigh), or left

unchanged. Typical values are .25 for µlow and .75 for µhigh. Both µ0 = 10−4 or µ0 = µlow

are used. One can also use the sufficient decrease condition (3.4) to determine if the trial step

should be accepted [84].

We will contract and expand the trust region radius by simply multiplying ∆ by constants

0 < ωdown < 1 < ωup.

Typical values are ωdown = 1/2 and ωup = 2. There are many other ways to implement a trust

region adjustment algorithm that also give global convergence. For example, the relative error

|pred − ared|/‖∇f‖ can be used [84] rather than the ratio ared/pred. Finally we limit the

number of times the trust region radius can be expanded by requiring

∆ ≤ CT ‖∇f(xc)‖,(3.29)

for some CT > 1, which may depend on xc. This only serves to eliminate the possibility of

infinite expansion and is used in the proofs. Many of the dogleg methods which we consider

later automatically impose (3.29).

The possibility of expansion is important for efficiency in the case of poor scaling of f .

The convergence theory presented here [162] also uses the expansion phase in the proof of

convergence, but that is not essential. We will present the algorithm to test the trust region in a

manner, somewhat different from much of the literature, that only returns once a new iterate has

been accepted.

Algorithm 3.3.2. trtest(xc, xt, x+, f,∆)

1. z = xc

2. Do while z = xc

(a) ared = f(xc)− f(xt), st = xt − xc, pred = −∇f(xc)
T st − sTt Hcst/2

(b) If ared/pred < µ0 then set z = xc, ∆ = ωdown∆, and solve the trust region

problem with the new radius to obtain a new trial point. If the trust region radius

was just expanded, set z = xold
t .

(c) If µ0 ≤ ared/pred < µlow, then set z = xt and ∆ = ωdown∆.

(d) If µlow ≤ ared/pred ≤ µhigh, set z = xt.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

52 ITERATIVE METHODS FOR OPTIMIZATION

(e) If µhigh < ared/pred and ‖st‖ = ∆ ≤ CT ‖∇f(xc)‖, then set z = xc,∆ = ωup∆,

and solve the trust region problem with the new radius to obtain a new trial point.

Store the old trial point as xold
t in case the expansion fails.

3. x+ = z.

The loop inAlgorithmtrtest serves the same purpose as the loop in a line search algorithm

such as Algorithm steep. One must design the solution to the trust region problem in such a

way that that loop will terminate after finitely many iterations and a general way to do that is the

subject of the next section.

We incorporate Algorithm trtest into a general trust region algorithm paradigm that we

will use for the remainder of this section.

Algorithm 3.3.3. trgen(x, f)

1. Initialize ∆

2. Do forever

(a) Let xc = x. Compute ∇f(xc) and an approximate Hessian Hc.

(b) Solve the trust region problem to obtain a trial point xt.

(c) Call trtest(xc, xt, x, f,∆)

Hessians and gradients are computed only in step 2a of Algorithm trgen.

3.3.2 Global Convergence of Trust Region Algorithms

While one can, in principal, solve the trust region problem exactly (see §3.3.4), it is simpler

and more efficient to solve the problem approximately. It is amazing that one need not do a

very good job with the trust region problem in order to get global (and even locally superlinear)

convergence.

Our demands of our solutions of the trust region problem and our local quadratic models

are modest and readily verifiable. The parameter σ in part 1 of Assumption 3.3.1, like the

parameter CT in (3.29), is used in the analysis but plays no role in implementation. In the

specific algorithms that we discuss in this book, σ can be computed. Part 2 follows from well-

conditioned and bounded model Hessians if Algorithm trtest is used to manage the trust

region.

Assumption 3.3.1.

1. There is σ > 0 such that

pred = f(xc)−mc(xt) ≥ σ‖∇f(xc)‖min(‖st‖, ‖∇f(xc)‖).(3.30)

2. There is M > 0 such that either ‖st‖ ≥ ‖∇f(xc)‖/M or ‖st‖ = ∆c.

The global convergence theorem based on this assumption should be compared with the

similar result on line search methods—Theorem 3.2.4.

Theorem 3.3.1. Let ∇f be Lipschitz continuous with Lipschitz constant L. Let {xk}
be generated by Algorithm trgen and let the solutions for the trust region problems satisfy

Assumption 3.3.1. Assume that the matrices {Hk} are bounded. Then either f is unbounded

from below, ∇f(xk) = 0 for some finite k, or

lim
k→∞

∇f(xk) = 0.(3.31)

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

GLOBAL CONVERGENCE 53

Proof. Assume that ∇f(xk) �= 0 for all k and that f is bounded from below. We will show

that there is MT ∈ (0, 1] such that once an iterate is taken (i.e., the step is accepted and the trust

region radius is no longer a candidate for expansion), then

‖sk‖ ≥MT ‖∇f(xk)‖.(3.32)

Assume (3.32) for the present. Since sk is an acceptable step, Algorithm trtest and part 1 of

Assumption 3.3.1 imply that

aredk ≥ µ0predk ≥ µ0‖∇f(xk)‖σ min(‖sk‖, ‖∇f(xk)‖).

We may then use (3.32) to obtain

aredk ≥ µ0σMT ‖∇f(xk)‖2.(3.33)

Now since f(xk) is a decreasing sequence and f is bounded from below, limk→∞ aredk = 0.

Hence (3.33) implies (3.31).

It remains to prove (3.32). To begin note that if ‖sk‖ < ∆k then by part 2 ofAssumption 3.3.1

‖sk‖ ≥ ‖∇f(xk)‖/M.

Hence, we need only consider the case in which

‖sk‖ = ∆k and ‖sk‖ < ‖∇f(xk)‖,(3.34)

since if (3.34) does not hold then (3.32) holds with MT = min(1, 1/M).
We will complete the proof by showing that if (3.34) holds and sk is accepted, then

‖sk‖ = ∆k ≥
2σ min(1− µhigh, (1− µ0)ω

−2
up)

M + L
‖∇f(xk)‖.(3.35)

This will complete the proof with

MT = min

(

1, 1/M,
2σ min(1− µhigh, (1− µ0)ω

−2
up)

M + L

)

.

Now increase the constant M > 0 in part 1 of Assumption 3.3.1 if needed so that

‖Hk‖ ≤M for all k.(3.36)

We prove (3.35) by showing that if (3.34) holds and (3.35) does not hold for a trial step st,
then the trust region radius will be expanded and the step corresponding to the larger radius will

be acceptable. Let st be a trial step such that ‖st‖ < ‖∇f(xk)‖ and

‖st‖ = ∆t <
2σ min(1− µhigh, (1− µ0)ω

−2
up)

M + L
‖∇f(xk)‖.(3.37)

We use the Lipschitz continuity of ∇f and (3.36) to obtain

aredt = −∇f(xk)
T st −

∫ 1

0

(∇f(xk + tst)−∇f(xk))
T st dt

= predt + sTt Hkst/2−
∫ 1

0

(∇f(xk + tst)−∇f(xk))
T st dt

≥ predt − (M + L)‖st‖2/2.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

54 ITERATIVE METHODS FOR OPTIMIZATION

Therefore, using (3.30) from Assumption 3.3.1, we have

aredt

predt
≥ 1− (M + L)‖st‖2

2predt

≥ 1− (M + L)‖st‖2
2σ‖∇f(xk)‖min(‖∇f(xk)‖, ‖st‖)

.

(3.38)

Now since ‖st‖ < ‖∇f(xk)‖ by (3.34) we have

min(‖∇f(xk)‖, ‖st‖) = ‖st‖

and hence
aredk

predk
≥ 1− (M + L)‖st‖

2‖∇f(xk)‖σ
> µhigh(3.39)

by (3.37). Hence, an expansion step will be taken by replacing ∆t by ∆+
t = ωup∆t and st by

s+
t , the minimum of the quadratic model in the new trust region.

Now (3.38) still holds and, after the expansion,

‖s+
t ‖ ≤ ωup‖st‖ < ωup‖∇f(xk)‖.

So

min(‖∇f(xk)‖, ‖s+
t ‖) > ‖s+

t ‖/ωup.

Hence,

ared+
t

pred+
t

≥ 1− (M + L)‖s+
t ‖2

2σ‖∇f(xk)‖min(‖∇f(xk)‖, ‖s+
t ‖)

≥ 1− (M + L)ωup‖s+
t ‖

2‖∇f(xk)‖σ
≥ 1− (M + L)ω2

up‖st‖
2‖∇f(xk)‖σ

≥ µ0

by (3.37). Hence, the expansion will produce an acceptable step. This means that if the final

accepted step satisfies (3.34), it must also satisfy (3.35). This completes the proof.

3.3.3 A Unidirectional Trust Region Algorithm

The most direct way to compute a trial point that satisfies Assumption 3.3.1 is to mimic the line

search and simply minimize the quadratic model in the steepest descent direction subject to the

trust region bound constraints.

In this algorithm, given a current point xc and trust region radius ∆c, our trial point is the

minimizer of

ψc(λ) = mc(xc − λ∇f(xc))

subject to the constraint that

x(λ) = xc − λ∇f(xc) ∈ T (∆c).

Clearly the solution is x(λ̂) where

λ̂ =











∆c

‖∇f(xc)‖
if ∇f(xc)

THc∇f(xc) ≤ 0 ,

min
(

‖∇f(xc)‖
2

∇f(xc)THc∇f(xc)
, ∆c

‖∇f(xc)‖

)

if ∇f(xc)
THc∇f(xc) > 0.

(3.40)

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

GLOBAL CONVERGENCE 55

x(λ̂), the minimizer of the quadratic model in the steepest descent direction, subject to the trust

region bounds, is called the Cauchy point. We will denote the Cauchy point by xCP
c .1

Then with xCP as trial point, one can use Theorem 3.3.1 to derive a global convergence

theorem for the unidirectional trust region.

Theorem 3.3.2. Let ∇f be Lipschitz continuous with Lipschitz constant L. Let {xk} be

generated by Algorithm trgen with xt = xCP and (3.40). Assume that the matrices {Hk} are

bounded. Then either f(xk) is unbounded from below, ∇f(xk) = 0 for some finite k, or

lim
k→∞

∇f(xk) = 0.

Proof. We show that xt satisfies part 2 of Assumption 3.3.1. If ‖st‖ = ∆c then the assertion

holds trivially. If ‖st‖ < ∆c then, by definition of xCP
c ,

st = −
‖∇f(xc)‖2∇f(xc)

∇f(xc)THc∇f(xc)
.

Hence, if ‖Hc‖ ≤M ,

‖st‖ ≥ ‖∇f(xc)‖/M
as asserted.

We leave the proof that xt satisfies part 1 for the reader (exercise 3.5.8).

The assumptions we used are stronger that those in, for example, [104] and [223], where

lim inf ‖∇f(xk)‖ = 0

rather than ∇f(xk)→ 0 is proved.

3.3.4 The Exact Solution of the Trust Region Problem

The theory of constrained optimization [117], [104] leads to a characterization of the solutions

of the trust region problem. In this section we derive that characterization via an elementary

argument (see also [84], [242], and [109]). This book focuses on approximate solutions, but the

reader should be aware that the exact solution can be computed accurately [192], [243].

Theorem 3.3.3. Let g ∈ RN and let A be a symmetric N ×N matrix. Let

m(s) = gT s + sTAs/2.

A vector s is a solution to

min
‖s‖≤∆

m(s)(3.41)

if and only if there is ν ≥ 0 such that

(A + νI)s = −g

and either ν = 0 or ‖s‖ = ∆.

Proof. If ‖s‖ < ∆ then ∇m(s) = g + As = 0, and the conclusion follows with ν = 0. To

consider the case where ‖s‖ = ∆, let λ1 ≤ λ2 ≤ · · ·λN be the eigenvalues of A.

1In some of the literature, [84], for example,Hc is assumed to be positive definite and the Cauchy point is taken to

be the global minimizer of the quadratic model.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

56 ITERATIVE METHODS FOR OPTIMIZATION

Clearly, for any ν,

m(s) = gT s + sTAs/2

= gT s + sT (A + νI)s/2− ν∆2/2.

Consider the function, defined for ν > ν0 = max(0,−λ1),

s(ν) = −(A + νI)−1g.

Since

lim
ν→∞

s(ν) = 0

and ‖s(ν)‖ is a continuous decreasing function of ν ∈ (ν0,∞) we see that if

lim
ν→ν0

‖s(ν)‖ > ∆

then there is a unique ν such that ‖s(ν)‖ = ∆. Since ν ≥ ν0, A + νI is positive semidefinite;

therefore, s(ν) is a global minimizer of

gT s + sT (A + νI)s/2.

Hence, we must have

m(s) ≥ m(s(ν))

for all s such that ‖s‖ = ∆. Hence, s(ν) is a solution of (3.41).

The remaining case is

lim
ν→ν0

‖s(ν)‖ ≤ ∆.

This implies that g is orthogonal to the nontrivial space S0 of eigenfunctions corresponding to

−ν0 (for otherwise the limit would be infinite). If we let s = s1 + s2, where s2 is the projection

of s onto S0, we have

m(s) = sT1 g + sT1 (A + ν0)s1/2 + sT2 (A + ν0)s2/2− ν0∆
2/2

= sT1 g + sT1 (A + λ0)s1/2− ν0∆
2/2.

Hence, m(s) is minimized by setting s1 equal to the minimum norm solution of (A+ν0)x = −g
(which exists by orthogonality of g to S0) and letting s2 be any element of S0 such that

‖s2‖2 = ∆2 − ‖s1‖2.

This completes the proof.

3.3.5 The Levenberg–Marquardt Parameter

The solution of the trust region problem presented in §3.3.4 suggests that, rather than controlling

∆, one could set

st = −(νI + Hc)
−1g,

adjust ν in response to ared/pred instead of ∆, and still maintain global convergence. A natural

application of this idea is control of the Levenberg–Marquardt parameter. This results in a

much simpler algorithm than Levenberg–Marquardt–Armijo in that the stepsize control can be

eliminated. We need only vary the Levenberg–Marquardt parameter as the iteration progresses.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

GLOBAL CONVERGENCE 57

We present the algorithm from [190] to illustrate this point. For an inexact formulation, see

[276].

The Levenberg–Marquardt quadratic model of least squares objective

f(x) =
1

2

M
∑

i=1

‖ri(x)‖22 =
1

2
R(x)TR(x)

with parameter νc at the point xc is

mc(x) = f(xc) + (x− xc)
TR′(xc)

TR(xc)

+ 1
2 (x− xc)

T (R′(xc)
TR′(xc) + νcI)(x− xc).

(3.42)

The minimizer of the quadratic model is the trial point

xt = xc − (R′(xc)
TR′(xc) + νcI)

−1R′(xc)
TR(xc),(3.43)

the step is s = xt − xc, and the predicted reduction is

pred = m(xc)−m(xt) = −sTR′(xc)
TR(xc)− 1

2sT (R′(xc)
TR′(xc) + νcI)s

= −sTR′(xc)
TR(xc) +

1
2sTR′(xc)

TR(xc) = −1
2sT∇f(xc).

The algorithm we present below follows the trust region paradigm and decides on accepting

the trial point and on adjustments in the Levenberg–Marquardt parameter by examinaing the

ratio
ared

pred
=

f(xc)− f(xt)

m(xc)−m(xt)

= −2f(xc)− f(xt)

sT∇f(xc)
.

In addition to the trust region parameters 0 < ωdown < 1 < ωup and µ0 ≤ µlow < µhigh

we require a default value ν0 of the Levenberg–Marquardt parameter.

The algorithm for testing the trial point differs from Algorithm trtest in that we decrease

(increase) ν rather that increasing (decreasing) a trust region radius if ared/pred is large (small).

We also attempt to set the Levenberg–Marquardt parameter to zero when possible in order to

recover the Gauss–Newton iteration’s fast convergence for small residual problems.

Algorithm 3.3.4. trtestlm(xc, xt, x+, f, ν)

1. z = xc

2. Do while z = xc

(a) ared = f(xc)− f(xt), st = xt − xc, pred = −∇f(xc)
T st/2.

(b) If ared/pred < µ0 then set z = xc, ν = max(ωupν, ν0), and recompute the trial

point with the new value of ν.

(c) If µ0 ≤ ared/pred < µlow, then set z = xt and ν = max(ωupν, ν0).

(d) If µlow ≤ ared/pred, then set z = xt.

If µhigh < ared/pred, then set ν = ωdownν.

If ν < ν0, then set ν = 0.

3. x+ = z.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

58 ITERATIVE METHODS FOR OPTIMIZATION

The Levenberg–Marquardt version ofAlgorithmtrgen is simple to describe and implement.

Algorithm 3.3.5. levmar(x, R, kmax)

1. Set ν = ν0.

2. For k = 1, . . . , kmax

(a) Let xc = x.

(b) Compute R, f , R′, and ∇f ; test for termination.

(c) Compute xt using (3.43).

(d) Call trtestlm(xc, xt, x, f, ν)

We state a convergence result [190], [276] without proof.

Theorem 3.3.4. Let R be Lipschitz continuously differentiable. Let {xk} and {νk} be the

sequence of iterates and Levenberg–Marquardt parameters generated by Algorithm levmar

with kmax = ∞. Assume that {νk} is bounded from above. Then either R′(xk)
TR(xk) = 0

for some finite k or

lim
k→∞

R′(xk)
TR(xk) = 0.

Moreover, if x∗ is a limit point of {xk} for which R(x∗) = 0 and R′(x∗) has full rank, then

xk → x∗ q-quadratically and νk = 0 for k sufficiently large.

3.3.6 Superlinear Convergence: The Dogleg

The convergence of the unidirectional trust region iteration can be as slow as that for steepest

descent. To improve the convergence speed in the terminal phase we must allow for approx-

imations to the Newton direction. The power of trust region methods is the ease with which

the transition from steepest descent, with its good global properties, to Newton’s method can be

managed.

We define the Newton point at xc as

xN
c = xc −H−1

c ∇f(xc).

If Hc is spd, the Newton point is the global minimizer of the local quadratic model. On the other

hand, if Hc has directions of negative curvature the local quadratic model will not have a finite

minimizer, but the Newton point is still useful. Note that if H = I the Newton point and the

Cauchy point are the same if the Newton point is inside the trust region.

We will restrict our attention to a special class of algorithms that approximate the solution

of the trust region problem by minimizing mc along a piecewise linear path S ⊂ T (∆). These

paths are sometimes called doglegs because of the shapes of the early examples [84], [80], [218],

[217], [220]. In the case where∇2f(x) is spd, one may think of the dogleg path as a piecewise

linear approximation to the path with parametric representation

{x− (λI +∇2f(x))−1∇f(x) | 0 ≤ λ}.

This is the path on which the exact solution of the trust region problem lies.

The next step up from the unidirectional path, the classical dogleg path [220], has as many

as three nodes, xc, xCP∗
c , and xN

c . Here xCP∗
c is the global minimizer of the quadratic model in

the steepest descent direction, which will exist if and only if∇f(xc)
THc∇f(xc) > 0. If xCP∗

c

exists and

(xN
c − xCP∗

c)T (xCP∗
c − xc) > 0,(3.44)

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

GLOBAL CONVERGENCE 59

we will let xN
c be the terminal node. If (3.44) holds, as it always will if Hc is spd, then the path

can be parameterized by the distance from xc and, moreover, mc decreases along the path. If

(3.44) does not hold, we do not use xN
c as a node and revert to the unidirectional path in the

steepest descent direction.

Note that (3.44) implies

∇f(xc)
T (xN

c − xc) < 0.(3.45)

We can express the conditions for using the three node path rather than the unidirectional path

very simply. If xCP
c is on the boundary of the trust region then we accept xCP

c as the trial point.

If xCP
c = xCP∗

c is in the interior of the trust region, then we test (3.44) to decide what to do.

With this in mind our trial point for the classical dogleg algorithm will be

xD(∆) =







































xCP if ‖xc − xCP
c ‖ = ∆

or xCP∗ exists and (3.44) fails,

xN if ‖xc − xCP
c ‖ < ‖xc − xN

c ‖ ≤ ∆
and (3.44) holds,

yD(∆) otherwise.

(3.46)

Here yD(∆) is the unique point between xCP
c and xN

c such that ‖xD − xc‖ = ∆.

The important properties of dogleg methods are as follows:

• No two points on the path have the same distance from xc; hence the path may be param-

eterized as x(s), where s = ‖x(s)− xc‖.

• mc(x(s)) is a strictly decreasing function of s.

This enables us to show that the dogleg approximate solution of the trust region problem sat-

isfies Assumption 3.3.1 and apply Theorem 3.3.1 to conclude global convergence. Superlinear

convergence will follow if Hk is a sufficiently good approximation to ∇2f(xk).

Lemma 3.3.5. Let xc, Hc, and ∆ be given. Let Hc be nonsingular,

sN = −H−1
c ∇f(xc), and xN = xc + sN .

Assume that ∇f(xc)
THc∇f(xc) > 0 and let

sCP∗ = xCP∗ − xc = −
‖∇f(xc)‖2

∇f(xc)THc∇f(xc)
∇f(xc).

Let S be the piecewise linear path from xc to xCP∗ to xN . Then if

(sN − sCP∗)T sCP∗ > 0,(3.47)

for any δ ≤ ‖sN‖ there is a unique point x(δ) on S such that

‖x(δ)− xc‖ = δ.

Proof. Clearly the statement of the result holds on the segment of the path from x to xCP∗.

To prove the result on the segment from xCP∗ to xN we must show that

φ(λ) =
1

2
‖(1− λ)sCP∗ + λsN‖2

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

60 ITERATIVE METHODS FOR OPTIMIZATION

is strictly monotone increasing for λ ∈ (0, 1).
Since (3.47) implies that

‖sN‖‖sCP∗‖ ≥ (sN)T sCP∗ > ‖sCP∗‖2

and therefore that ‖sN‖ > ‖sCP∗‖, we have

φ′(λ) = (sN − sCP∗)T ((1− λ)sCP∗ + λsN)

= −(1− λ)‖sCP∗‖2 + (1− λ)(sN)T sCP∗ + λ‖sN‖2 − λ(sN)T sCP∗

> λ(‖sN‖2 − (sN)T sCP∗) ≥ λ(‖sN‖ − ‖sCP∗‖)‖sN‖ > 0.

Hence, φ is an increasing function and the proof is complete.

The next stage is to show that the local quadratic model decreases on the dogleg path S .

Lemma 3.3.6. Let the assumptions of Lemma 3.3.5 hold. Then the local quadratic model

mc(x) = f(xc) +∇f(xc)
T (x− xc) +

1

2
(x− xc)

THc(x− xc)

is strictly monotone decreasing on S.

Proof. Since xCP∗
c is the minimum of the local quadratic model in the steepest descent

direction, we need only show that mc is strictly decreasing on the segment of the path between

xCP∗
c and xN . Set

ψ(λ) = mc(xc + (1− λ)sCP∗ + λsN)

= f(xc) +∇f(xc)
T ((1− λ)sCP∗ + λsN)

+1
2 ((1− λ)sCP∗ + λsN)THc((1− λ)sCP∗ + λsN).

Noting that Hcs
N = −∇f(xc) and sCP∗ = −λ̂∇f(xc), we obtain

ψ(λ) = f(xc)− λ̂(1− λ)2‖∇f(xc)‖2

+λ(1− λ/2)∇f(xc)
T sN

+ 1
2 (1− λ)2λ̂2∇f(xc)

THc∇f(xc).

Therefore,

ψ′(λ) = 2λ̂(1− λ)‖∇f(xc)‖2

+(1− λ)∇f(xc)
T sN − (1− λ)λ̂2∇f(xc)

THc∇f(cc).

Since

λ̂∇f(xc)
THc∇f(cc) = ‖∇f(xc)‖2

we have, using (3.44),

ψ′(λ) = (1− λ)(λ̂‖∇f(xc)‖2 −∇f(xc)
TH−1

c ∇f(xc))

= (1− λ)∇f(xc)
T (λ̂∇f(xc)−H−1

c ∇f(xc))

=
1− λ

λ̂
(xc − xCP∗

c)T (xN
c − xc) < 0,

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

GLOBAL CONVERGENCE 61

completing the proof.

At this point we have shown that the approximate trust region problem has a unique solution.

To prove global convergence we need only verify that the approximate solution of the trust region

problem xD satisfies Assumption 3.3.1.

Theorem 3.3.7. Let ∇f be Lipschitz continuous with Lipschitz constant L. Let {xk} be

generated by Algorithm trgen and the solutions for the trust region problem be given by

(3.46). Assume that the matrices {Hk} are bounded. Then either f(xk) is unbounded from

below, ∇f(xk) = 0 for some finite k, or

lim
k→∞

∇f(xk) = 0.(3.48)

Proof. We need to check that the solutions of the trust region problem satisfy Assump-

tion 3.3.1. Part 2 of the assumption follows from the definition, (3.46), of xD and the bounded-

ness of the approximate Hessians. Let

‖Hk‖ ≤M

for all k. If ‖sk‖ < ∆, then (3.46) implies that (3.44) must hold and so xt = xN
k is the Newton

point. Hence,

‖sk‖ = ‖xk − xN
k ‖ = ‖H−1

k ∇f(xk)‖ ≥ ‖∇f(xk)‖/M,

which proves part 2.

Verification of part 1 will complete the proof. There are several cases to consider depending

on how xD is computed.

If xD = xCP then either ‖sCP ‖ = ∆c or (3.44) fails. We first consider the case where

∇f(xc)
THc∇f(xc) ≤ 0. In that case ‖sCP ‖ = ∆c and λ̂ = ∆c/‖∇f(xc)‖. Therefore,

pred = λ̂‖∇f(xc)‖2 − λ̂2

2 ∇f(xc)
THc∇f(xc)

= ∆c‖∇f(xc)‖ −∆2
c

∇f(xc)
THc∇f(xc)

2‖∇f(xc)‖2

≥ ∆c‖∇f(xc)‖ = ‖s‖‖∇f(xc)‖.

Hence (3.30) holds with σ = 1.

Now assume that ∇f(xc)
THc∇f(xc) > 0 and ‖sCP ‖ = ∆c. In this case

‖∇f(xc)‖2
∇f(xc)THc∇f(xc)

≥ ∆c

‖∇f(xc)‖
and so

pred = λ̂‖∇f(xc)‖2 − λ̂2

2 ∇f(xc)
THc∇f(xc)

= ∆c‖∇f(xc)‖ −∆2
c

∇f(xc)
THc∇f(xc)

2‖∇f(xc)‖2

≥ ∆c‖∇f(xc)‖/2,

which is (3.30) with σ = 1/2.

If (3.44) fails, ∇f(xc)
THc∇f(xc) > 0, and ‖sCP ‖ < ∆c, then

λ̂ =
‖∇f(xc)‖2

∇f(xc)THc∇f(xc)
,

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

62 ITERATIVE METHODS FOR OPTIMIZATION

and

pred = λ̂‖∇f(xc)‖2 − λ̂2

2 ∇f(xc)
THc∇f(xc)

=
‖∇f(xc)‖4

2∇f(xc)THc∇f(xc)
=

λ̂‖∇f(xc)‖2
2

=
‖s‖‖∇f(xc)‖

2
,

which is (3.30) with σ = 1/2.

The final case is if (3.44) holds and xD �= xCP . In that case the predicted reduction is more

than Cauchy decrease, i.e., the decrease obtained by taking the Cauchy point, and hence

pred ≥ ‖∇f(xc)‖4
2∇f(xc)THc∇f(xc)

≥ ‖∇f(xc)‖2
2M

,

which is (3.30) with σ = 1/(2M). This completes the proof.

The last part of the proof of this theorem is very important, asserting that any solution of

the trust region problem for which pred is at least a fixed fraction of Cauchy decrease will give

global convergence. We refer the reader to [232] and [104] for a more general and detailed

treatment using this point of view.

Corollary 3.3.8. Any algorithm for solving the trust region problem that satisfies for some

τ > 0
pred ≥ τ(mc(xc)−mc(x

CP
c))

satisfies (3.30) for σ = τ/2.

The trust region CG algorithm we present in §3.3.7 can be analyzed with this corollary.

If Hk = ∇2f(xk) or a sufficiently good approximation, then the classical dogleg will become

Newton’s method (or a superlinearly convergent method) as the iterations approach a minimizer

that satisfies the standard assumptions. Hence, the algorithm makes a smooth and automatic

transition into the superlinearly convergent stage.

Theorem 3.3.9. Let ∇f be Lipschitz continuous with Lipschitz constant L. Let {xk} be

generated by Algorithmtrgen and the solutions for the trust region problem are given by (3.46).

Assume that Hk = ∇2f(xk) and that the matrices {Hk} are bounded. Let f be bounded from

below. Let x∗ be a minimizer of f at which the standard assumptions hold. Then if x∗ is a limit

point of xk, then xk → x∗ and the convergence is locally q-quadratic.

Proof. Since x∗ is a limit point of {xk}, there is, for any ρ > 0, a k sufficiently large so that

‖ek‖ < ρ, ‖Hk‖ ≤ 2‖∇2f(x∗)‖, ‖H−1
k ‖ ≤ 2‖(∇2f(x∗))−1‖,

and xk is near enough for the assumptions of Theorem 2.3.2 to hold. If Hk is spd, so is H−1
k

and for such k, (3.44) holds. Hence, the dogleg path has the nodes xk, xCP
k , and xN

k . Moreover,

if ρ is sufficiently small, then

‖H−1
k ∇f(xk)‖ ≤ 2‖ek‖ ≤ 2ρ.

We complete the proof by showing that if ρ is sufficiently small, the trust region radius will be

expanded if necessary until the Newton step is in the trust region. Once we do this, the proof is

complete as then the local quadratic convergence of Newton’s method will take over.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

GLOBAL CONVERGENCE 63

Now

predk ≥ ‖sk‖‖∇f(xk)‖/2
by the proof of Theorem 3.3.7. Using Hk = ∇2f(xk) we have

aredk = −∇f(xk)
T stk −

∫ 1

0

(∇f(xk + tstk)−∇f(xk))
T stk dt

= predk + sTtk∇2f(xk)stk/2−
∫ 1

0

(∇f(xk + tstk)−∇f(xk))
T stk dt

= predk + O(‖sk‖‖∇f(xk)‖ρ)

and therefore ared/pred = 1−O(ρ). Hence, for ρ sufficiently small, the trust region radius will

be increased, if necessary, until the Newton point is inside the trust region and then a Newton

step will be taken. This completes the proof.

The classical dogleg algorithm is implemented in Algorithm ntrust, which uses the trust

radius adjustment scheme from Algorithm trtest. It is to be understood that trtest is

implemented so that xt is given by (3.46) and hence trtest only samples points on the

piecewise linear search path determined by the Cauchy point, the Newton point, and (3.44).

Algorithm 3.3.6. ntrust(x, f, τ)

1. Compute f(x) and ∇f(x)

2. τ = τa + τr‖∇f(x)‖

3. Do while ‖∇f(x)‖ > τ

(a) Compute and factor ∇2f(x)

(b) Compute the Cauchy and Newton points and test (3.44)

(c) Call trtest(x, xt, x+, f,∆)

(d) Compute f(x+) and ∇f(x+); x = x+

We implement Algorithm ntrust in the collection of MATLAB codes.

3.3.7 A Trust Region Method for Newton–CG

In this section we present a brief account of an algorithm from [247] (see also [257]) that combines

the trust region paradigm of §3.3.6 with the inexact Newton ideas of §2.5.2. We follow §2.5.2

and denote the preconditioner by M and let C = M−1. We solve the scaled trust region problem

min
‖d‖C≤∆

φ(d),

where the quadratic model is still

φ(d) = ∇f(x)T d +
1

2
dT∇2f(x)d.

Here the C-norm is

‖d‖C = (dTCd)1/2.

The algorithmic description of the trust region problem solver from the TR–CG method

given below is from [162]. In [247] the algorithm is expressed in terms of C rather than M .

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

64 ITERATIVE METHODS FOR OPTIMIZATION

This is a dogleg method in that the approximate solution of the trust region problem lies on a

piecewise linear path with the CG iterations as nodes. As long as CG is performing properly

(i.e., pTw > 0) nodes are added to the path until the path intersects the trust region boundary. If

a direction of indefiniteness is found (pTw ≤ 0), then that direction is followed to the boundary.

In this way a negative curvature direction, if found in the course of the CG iteration, can be

exploited.

The inputs to Algorithm trcg are the current point x, the objective f , the forcing term η,

and the current trust region radius ∆. The output is the approximate solution of the trust region

problem d. This algorithm is not the whole story, as once the trust region problem is solved

approximately, one must use f(xc + d) to compute ared and then make a decision on how the

trust region radius should be changed. Our formulation differs from that in [247] in that the

termination criterion measures relative residuals in the l2-norm rather than in the C-norm. This

change in the norm has no effect on the analysis in [247], and, therefore, we can apply the results

in §2.5 directly to draw conclusions about local convergence.

Algorithm 3.3.7. trcg(d, x, f, M, η,∆, kmax)

1. r = −∇f(x), ρ0 = ‖r‖22, k = 1, d = 0

2. Do While
√

ρk−1 > η‖∇f(x)‖2 and k < kmax

(a) z = Mr

(b) τk−1 = zT r

(c) if k = 1 then β = 0 and p = z
else

β = τk−1/τk−2, p = z + βp

(d) w = ∇2f(x)p
If pTw ≤ 0 then

Find τ such that ‖d + τp‖C = ∆
d = d + τp; return

(e) α = τk−1/pTw

(f) r = r − αw

(g) ρk = rT r

(h) d̂ = d + αp

(i) If ‖d̂‖C > ∆ then

Find τ such that ‖d + τp‖C = ∆
d = d + τp; return

(j) d = d̂; k = k + 1

Algorithm trcg does what we would expect a dogleg algorithm to do in that the piecewise

linear path determined by the iteration moves monotonically away from x (in the ‖ · ‖C-norm!)

and the quadratic model decreases on that path [247]. Algorithm trcg will, therefore, compute

the same Newton step as Algorithm fdpcg. One might think that it may be difficult to compute

the C-norm if one has, for example, a way to compute the action of M on a vector that does

not require computation of the matrix C. However, at the cost of storing two additional vectors

we can update Cp and Cd as the iteration progresses. So, when p is updated to z + βp then

Cp = r + βCp can be updated at the same time without computing the product of C with p.

Then ‖p‖C = pTCp. Similarly d = d + τp implies that Cd = Cd + τCp.

Algorithm cgtrust combines the solution of the trust region problem from trcg, the

trust region radius adjustment scheme from trtest, and (indirectly) the locally convergent

algorithm newtcg. The result fits nicely into our paradigm algorithm trgen.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

GLOBAL CONVERGENCE 65

Algorithm 3.3.8. cgtrust(x, f, τ)

1. Initialize ∆, M , η, kmax.

2. Do forever

(a) Let xc = x. Compute ∇f(xc).

(b) Call trcg(d, x, f, M, η,∆, kmax) to solve the trust region subproblem.

Set xt = x + d.

(c) Call trtest(xc, xt, x, f,∆),
solving the trust region subproblem with Algorithm trcg.

(d) Update η.

Theorem 3.3.10 combines several results from [247].

Theorem 3.3.10. Let f be twice Lipschitz continuously differentiable. Let M be a given

positive definite matrix and let {ηn} satisfy 0 < ηn < 1 for all n. Let {xn} be the sequence

generated by Algorithm cgtrust and assume that {‖∇2f(xn)‖} is bounded. Then

lim
n→∞

∇f(xn) = 0.(3.49)

Moreover, if x∗ is a local minimizer for which the standard assumptions hold and xn → x∗,

then

• if ηn → 0 the convergence is q-superlinear, and

• if ηn ≤ Kη‖∇f(xn)‖p for some Kη > 0 the convergence is q-superlinear with q-order

1 + p.

Finally, there are δ and ∆ such that if ‖x0 − x∗‖ ≤ δ and ∆0 ≤ ∆ then xn → x∗.

One can, as we do in the MATLAB code cgtrust, replace the Hessian–vector product

with a difference Hessian. The accuracy of the difference Hessian and the loss of symmetry

present the potential problem that was mentioned in §2.5. Another, very different, approach is

to approximate the exact solution of the trust region subproblem with an iterative method [243].

3.4 Examples

The results we report here used the MATLAB implementations of steepest descent, steep.m,

damped Gauss–Newton, gaussn.m, the dogleg trust region algorithm for Newton’s method,

ntrust.m, and the PCG–dogleg algorithms, cgtrust.m, from the software collection.

Our MATLAB implementation of Algorithm steep guards against extremely poor scaling

and very long steps by setting λ to

λ0 = min(1, 100/(1 + ‖∇f(x)‖))(3.50)

at the beginning of the line search. We invite the reader in Exercise 3.5.3 to attempt the control

example with λ0 = 1.

We not only present plots, which are an efficient way to understand convergence rates, but we

also report counts of function, gradient, and Hessian evaluations and the results of the MATLAB

flops command.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

66 ITERATIVE METHODS FOR OPTIMIZATION

0 10 20 30
10

10

10
5

10
0

10
5

Dogleg

Iterations

G
ra

d
ie

n
t

N
o

rm

0 10 20 30
10

15

10
10

10
5

10
0

10
5

Dogleg

F
u

n
c
ti
o

n
 V

a
lu

e

Iterations

0 20 40 60
10

4

10
2

10
0

10
2

10
4

Steepest Descent

Iterations

G
ra

d
ie

n
t

N
o

rm

0 20 40 60
10

10

10
5

10
0

10
5

Steepest Descent

Iterations

F
u

n
c
ti
o

n
 V

a
lu

e

Figure 3.1: Steepest Descent and Newton–Dogleg for Parameter ID Problem

0 2 4 6
10

6

10
4

10
2

10
0

10
2

Damped Gauss–Newton

Iterations

G
ra

d
ie

n
t

N
o

rm

0 2 4 6
10

15

10
10

10
5

10
0

10
5

Damped Gauss–Newton

Iterations

F
u

n
c
ti
o

n
 V

a
lu

e

0 5 10 15
10

6

10
4

10
2

10
0

10
2

Levenberg–Marquardt

Iterations

G
ra

d
ie

n
t

N
o

rm

0 5 10 15
10

15

10
10

10
5

10
0

10
5

Levenberg–Marquardt

Iterations

F
u

n
c
ti
o

n
 V

a
lu

e

Figure 3.2: Gauss–Newton and Levenberg–Marquardt for Parameter ID Problem

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

GLOBAL CONVERGENCE 67

0 20 40 60
10

10

10
5

10
0

10
5

Steepest Descent

Iterations

G
ra

d
ie

n
t

N
o

rm

0 20 40 60
10

3

10
4

10
5

10
6

10
7

Steepest Descent

Iterations

F
u

n
c
ti
o

n
 V

a
lu

e

0 2 4 6
10

10

10
5

10
0

10
5

Dogleg–CG

Iterations

G
ra

d
ie

n
t

N
o

rm

0 2 4 6
10

3

10
4

10
5

10
6

10
7

Dogleg–CG

F
u

n
c
ti
o

n
 V

a
lu

e

Iterations

Figure 3.3: Steepest Descent and Dogleg–CG for Discrete Control Problem

3.4.1 Parameter Identification

We consider the problem from §2.6.1 except we use the initial data x0 = (5, 5)T . Both the Gauss–

Newton and Newton methods will fail to converge with this initial data without globalization (see

Exercise 3.5.14). Newton’s method has particular trouble with this problem because the Newton

direction is not a descent direction in the early phases of the iteration. The termination criterion

and difference increment for the finite difference Hessian was the same as for the computation

in §2.6.1.

In Figure 3.1 we compare the performance of the Newton dogleg algorithm with the steepest

descent algorithm. Our implementation of the classical dogleg in ntrust uses the standard

values

ωdown = .5, ωup = 2, µ0 = µlow = .25, and µhigh = .75.(3.51)

The plots clearly show the locally superlinear convergence of Newton’s method and the linear

convergence of steepest descent. However, the graphs do not completely show the difference

in computational costs. In terms of gradient evaluations, steepest descent was marginally better

than the Newton dogleg algorithm, requiring 50 gradients as opposed to 55 (which includes those

needed for the 18 difference Hessian evaluations) for the Newton dogleg algorithm. However, the

steepest descent algorithm required 224 function evaluations, while the Newton dogleg needed

only 79. As a result, the Newton dogleg code was much more efficient, needing roughly 5 million

floating point operations instead of the 10 million needed by the steepest descent code.

In Figure 3.2 we plot the performance of the damped Gauss–Newton and Levenberg–

Marquardt algorithms. These exploit the least squares structure of the problem and are locally

superlinearly convergent because this is a zero residual problem. They also show that algo-

rithms that effectively exploit the structure of the least squares problem are much more efficient.

Gauss–Newton required 6 gradient evaluations, 14 function evaluations, and 750 thousand float-

ing point operations, and Levenberg–Marquardt required 12 gradients, 23 functions, and 1.3

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

68 ITERATIVE METHODS FOR OPTIMIZATION

million floating point operations.

3.4.2 Discrete Control Problem

We consider the discrete control problem from §1.6.1 with N = 400, T = 1, y0 = 0,

L(y, u, t) = (y − 3)2 + .5 ∗ u2, and φ(y, u, t) = uy + t2.

We chose the poor initial iterate

u0(t) = 5 + 300 sin(20πt).

This problem can be solved very efficiently with Algorithm cgtrust. In our implementa-

tion we use the same parameters from (3.51). In Figure 3.3 we compare the dogleg–CG iteration

with steepest descent. We terminated both iterations when ‖∇f‖ < 10−8. For the dogleg–CG

code we used η = .01 throughout the entire iteration and an initial trust region radius of ‖u0‖.
The steepest descent computation required 48 gradient evaluations, 95 function evaluations, and

roughly 1 million floating point operations, and dogleg–CG needed 17 gradient evaluations, 21

function evaluations, and roughly 530 thousand floating point operations. Note that the steepest

descent algorithm performed very well in the terminal phase of the iteration. The reason for this

is that, in this example, the Hessian is near the identity.

3.5 Exercises on Global Convergence

3.5.1. Let F be a nonlinear function from RN → RN . Let

f(x) = ‖F (x)‖2/2.

What is ∇f? When is the Newton step for the nonlinear equation F (x) = 0,

d = −F ′(x)−1F (x),

a descent direction for f at x?

3.5.2. Prove Lemma 3.2.1.

3.5.3. Implement Algorithm steep without the scaling fixup in (3.50). Apply this crippled

algorithm to the control problem example from §3.4.2. What happens and why?

3.5.4. Show that if f is a convex quadratic then f is bounded from below.

3.5.5. Verify (3.40).

3.5.6. Show that the Levenberg–Marquardt steps computed by (3.20) and (3.21) are the same.

3.5.7. Prove Theorem 3.2.7.

3.5.8. Complete the proof of Theorem 3.3.2.

3.5.9. Prove Theorem 3.3.4.

3.5.10. Look at the trust region algorithm for nonlinear equations from [218] or [84]. What are the

costs of that algorithm that are not present in a line search? When might this trust region

approach have advantages for solving nonlinear equations? Could it be implemented

inexactly?

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

GLOBAL CONVERGENCE 69

3.5.11. The double dogleg method [80], [84] puts a new node on the dogleg path in the Newton

direction, thereby trying more aggressively for superlinear convergence. Implement this

method, perhaps by modifying the MATLAB code ntrust.m, and compare the results

with the examples in §3.4. Prove convergence results like Theorems 3.3.7 and 3.3.9 for

this method.

3.5.12. In [51] a trust region algorithm was proposed that permitted inaccurate gradient computa-

tions, with the relative accuracy being tightened as the iteration progresses. Look at [51]

and try to design a similar algorithm based on the line search paradigm. What problems

do you encounter? How do you solve them?

3.5.13. Suppose one modifies Algorithm trtest by not resolving the trust region problem if

the trial point is rejected, but instead performing a line search from xt, and setting ∆ =
‖x+ − xc‖, where x+ is the accepted point from the line search. Discuss the merits of

this modification and any potential problems. See [209] for the development of this idea.

3.5.14. Write programs for optimization that take full Gauss–Newton or Newton steps (you can

cripple the MATLAB codes gaussn.m and ntrust.m for this). Apply these codes to

the parameter identification problem from §3.4.1. What happens?

3.5.15. Write a nonlinear CG code and apply it to the problems in §3.4. Try at least two ways to

manage the line search. How important are the (strong) Wolfe conditions?

3.5.16. Discuss the impact of using a difference Hessian in Algorithm trcg. How will the global

convergence of Algorithm cgtrust be affected? How about the local convergence?

Consider the accuracy in the evaluation of ∇f in your results.

3.5.17. Without looking at [247] describe in general terms how the proof of Theorem 3.3.1 should

be modified to prove Theorem 3.3.10. Then examine the proof in [247] to see if you left

anything out.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

Chapter 4

The BFGS Method

Quasi-Newton methods update an approximation of ∇2f(x∗) as the iteration progresses. In

general the transition from current approximations xc and Hc of x∗ and ∇2f(x∗) to new ap-

proximations x+ and H+ is given (using a line search paradigm) by the following steps:

1. Compute a search direction d = −H−1
c ∇f(xc).

2. Find x+ = xc + λd using a line search to insure sufficient decrease.

3. Use xc, x+, and Hc to update Hc and obtain H+.

The way in which H+ is computed determines the method.

The BFGS (Broyden, Fletcher, Goldfarb, Shanno) [36], [103], [124], [237] method, which

is the focus of this chapter, and the other methods we will mention in §4.3 are also called secant

methods because they satisfy the secant equation

H+s = y.(4.1)

In (4.1)

s = x+ − xc and y = ∇f(x+)−∇f(xc).

If N = 1, all secant methods reduce to the classical secant method for the single nonlinear

equation f ′(x) = 0, i.e.,

x+ = xc −
f ′(xc)(xc − x−)

f ′(xc)− f ′(x−)
,(4.2)

where x− is the iterate previous to xc.

The standard quasi-Newton update for nonlinear equations is Broyden’s [34] method, a

rank-one update,

H+ = Hc +
(y −Hcs)s

T

sT s
.(4.3)

Broyden’s method does not preserve the structural properties needed for line search methods in

optimization, namely, symmetry and positive definiteness, and could, in fact, encourage con-

vergence to a local maximum. For that reason quasi-Newton methods in optimization are more

complex than those used for nonlinear equations. The methods of analysis and implementation

are more complex as well.

In this chapter we will concentrate on the BFGS method [36], [103], [124], [237], which is

the rank-two update

H+ = Hc +
yyT

yT s
− (Hcs)(Hcs)

T

sTHcs
.(4.4)

We will briefly discuss other updates and variations that exploit problem structure in §4.3.

71

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

72 ITERATIVE METHODS FOR OPTIMIZATION

4.1 Analysis

This section begins with some simple observations on nonsingularity and positivity of the update.

It is very useful for both theory and practice to express (4.4) in terms of the inverse matrices.

The formula we use in this book is Lemma 4.1.1.

Lemma 4.1.1. Let Hc be spd, yT s �= 0, and H+ given by (4.4). Then H−1
+ is nonsingular

and

H−1
+ =

(

I − syT

yT s

)

H−1
c

(

I − ysT

yT s

)

+
ssT

yT s
.(4.5)

Proof. See exercise 4.5.2.

Lemma 4.1.2. Let Hc be spd, yT s > 0, and H+ given by (4.4). Then H+ is spd.

Proof. Positivity of Hc and yT s �= 0 imply that for all z �= 0,

zTH+z =
(zT y)2

yT s
+ zTHcz −

(zTHcs)
2

sTHcs
.

Using the symmetry and positivity of Hc, we have

(zTHcs)
2 ≤ (sTHcs)(z

THcz),

with equality only if z = 0 or s = 0, and, therefore, since z, s �= 0 and yT s > 0,

zTH+z >
(zT y)2

yT s
≥ 0,

as asserted.

If yT s ≤ 0 the update is considered a failure.

4.1.1 Local Theory

The local theory [37] requires accurate initial approximations to both x∗ and ∇2f(x∗). The

statement of the convergence result is easy to understand.

Theorem 4.1.3. Let the standard assumptions hold. Then there is δ such that if

‖x0 − x∗‖ ≤ δ and ‖H0 −∇2f(x∗)‖ ≤ δ,

then the BFGS iterates are defined and converge q-superlinearly to x∗.

Technical Details

The proof of Theorem 4.1.3 is technical and we subdivide it into several lemmas. Our proof is

a hybrid of ideas from [37], [135], and [154]. Similar to other treatments of this topic [45] we

begin with the observation (see §2.5.2) that one may assume∇2f(x∗) = I for the convergence

analysis.

Lemma 4.1.4. Let the standard assumptions hold and let

f̂(y) = f(Ay),

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

BFGS METHOD 73

where A = (∇2f(x∗))−1/2. Let xc and Hc be given and let x̂c = A−1xc and Ĥc = AHcA.

Then the BFGS updates (x+, H+) for f and (x̂+, Ĥ+) for f̂ are related by

x̂+ = A−1x+ and Ĥ+ = AH+A.

In particular, the BFGS sequence for f exists (i.e., Hn is spd for all n) if and only if the BFGS

sequence for f̂ does and the convergence of {xn} is q-superlinear if and only if the convergence

of {x̂n} is.

Proof. The proof is a simple calculation and is left for exercise 4.5.3.

Hence we can, with no loss of generality, assume that∇2f(x∗) = I , for if this is not so, we

can replace f by f̂ and obtain an equivalent problem for which it is.

Keeping in mind our assumption that∇2f(x∗) = I , we denote errors in the inverse Hessian

by

E = H−1 −∇2f(x∗)−1 = H−1 − I.

These errors satisfy a simple recursion [37].

Lemma 4.1.5. Let the standard assumptions hold. Let Hc be spd and

x+ = xc −H−1
c ∇f(xc).

Then there is δ0 such that if

0 < ‖xc − x∗‖ ≤ δ0 and ‖Ec‖ ≤ δ0,

then yT s > 0. Moreover, if H+ is the BFGS update of Hc then

E+ = (I − wwT)Ec(I − wwT) + ∆,(4.6)

where w = s/‖s‖ and for some K∆ > 0

‖∆‖ ≤ K∆‖s‖.(4.7)

Proof. Let δ0 be small enough so that ∇f(xc) �= 0 if xc �= x∗. Theorem 1.2.1 implies that

∇f(xc) =

∫ 1

0

∇2f(x∗ + tec)ec dt = ec +∆1ec,

where ∆1 is the matrix given by

∆1 =

∫ 1

0

(∇2f(x∗ + tec)− I) dt.

Clearly

‖∆1‖ ≤ γ‖ec‖/2,

and

s = −H−1
c ∇f(xc) = −(I + Ec)(I +∆1)ec.

Therefore,

‖ec‖(1− δ0)(1− γδ0/2) ≤ ‖s‖ ≤ ‖ec‖(1 + δ0)(1 + γδ0/2)

and hence

0 < ‖ec‖/2 ≤ ‖s‖ ≤ 2‖ec‖(4.8)

if, say,

δ0 ≤ min(1/4, 1/(2γ)).(4.9)

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

74 ITERATIVE METHODS FOR OPTIMIZATION

We will assume that (4.9) holds for the rest of this section.

The standard assumptions, our assumption that∇2f(x∗) = I , and the fundamental theorem

of calculus imply that

y = ∇f(x+)−∇f(xc) =

∫ 1

0

∇2f(xc + ts)s dt

= s +

∫ 1

0

(∇2f(xc + ts)− I)s dt = s +∆2s,

(4.10)

where ∆2 is the matrix given by

∆2 =

∫ 1

0

(∇2f(xc + ts)− I) dt.

The standard assumptions imply that ‖∆2‖ ≤ γ(‖e+‖+ ‖ec‖)/2. Hence, (4.8) implies that

yT s = sT s + (∆2s)T s ≥ ‖s‖2(1− 3γ‖ec‖/2)‖s‖2(1− 3γδ0/2) > 0(4.11)

provided δ0 < 2γ/3. We have that

syT

yT s
=

ssT + s(∆2s)T

sT s + (∆2s)T s
=

ssT

sT s
−∆3 = wwT −∆3,(4.12)

where (see exercise 4.5.4), for some C > 0,

‖∆3‖ ≤ C‖s‖.(4.13)

Subtracting (∇2f(x∗))−1 = I from (4.5) and using (4.12) gives us

E+ = (I − wwT +∆3)H
−1
c (I − wwT +∆T

3) + wwT − I

= (I − wwT)(Ec + I)(I − wwT) + wwT − I +∆

= (I − wwT)Ec(I − wwT) + ∆,

where

∆ = ∆3H−1
c (I − wwT +∆T

3) + (I − wwT)H−1
c ∆T

3 .

Therefore, if (4.9) holds then 1 + δ0 ≤ 3/2 and

‖∆‖ ≤ (1 + δ0)‖∆3‖(2 + ‖∆3‖) ≤ ‖s‖3C(2 + C‖s‖)/2

≤ 3C‖s‖(2 + 2Cδ0)/2.

Reduce δ0 if necessary so that 2Cδ0 ≤ 1 and the proof is complete with K∆ = 9C/2.

Lemma 4.1.5 implies that the approximate Hessians do not drift too far from the exact Hessian

if the initial data are good. This property, called bounded deterioration in [37], will directly

imply local q-linear convergence.

Corollary 4.1.6. Let the assumptions of Lemma 4.1.5 hold and let δ0 be as in the statement

of Lemma 4.1.5. Then

‖E+‖ ≤ ‖Ec‖+ K∆‖s‖ ≤ ‖Ec‖+ K∆(‖ec‖+ ‖e+‖).(4.14)

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

BFGS METHOD 75

Proof. The leftmost inequality follows from Lemma 4.1.5 and the fact that I − wwT is an

orthogonal projection. The final inequality follows from the triangle inequality.

We are now ready to prove local q-linear convergence. This is of interest in its own right and

is a critical step in the superlinear convergence proof. Note that, unlike the statement and proof

of Theorem 2.3.4, we do not express the estimates in terms of ‖H −∇2f(x∗)‖ = ‖H − I‖ but

in terms of E = H−1 − I . The two approaches are equivalent, since if ‖E‖ ≤ δℓ < 1/2, then

‖H−1‖ < 3/2 and the Banach lemma implies that ‖H‖ ≤ 2. Hence

‖Hn − I‖/2 ≤ ‖Hn‖−1‖Hn − I‖

≤ ‖H−1
n − I‖ = ‖H−1

n (Hn − I)‖

≤ ‖H−1
n ‖‖Hn − I‖ ≤ 3‖Hn − I‖/2.

Theorem 4.1.7. Let the standard assumptions hold and let σ ∈ (0, 1). Then there is δℓ such

that if

‖x0 − x∗‖ ≤ δℓ and ‖H−1
0 −∇2f(x∗)−1‖ ≤ δℓ,(4.15)

then the BFGS iterates are defined and converge q-linearly to x∗ with q-factor at most σ.

Proof. For δ̂ sufficiently small and

‖xc − x∗‖ ≤ δ̂ and ‖Ec‖ = ‖H−1
c − I‖ ≤ δ̂,(4.16)

the standard assumptions imply that there is K̄ such that

‖e+‖ ≤ K̄(‖Ec‖‖ec‖+ ‖ec‖2)/2 ≤ K̄δ̂‖ec‖.(4.17)

Reduce δ̂ if necessary so that K̄δ̂ ≤ σ to obtain ‖e+‖ ≤ σ‖ec‖. The method of proof is to select

δℓ so that (4.16) is maintained for the entire iteration if the initial iterates satisfy (4.15).

With this in mind we set

δℓ = δ∗/2

(

1 +
K∆(1 + σ)

1− σ

)−1

< δ∗/2(4.18)

where K∆ is from Lemma 4.1.5. Now if ‖H0 − I‖ < δℓ then

‖E0‖ ≤ δℓ/(1− δℓ) ≤ 2δℓ < δ∗

which is the estimate we need.

Now by Corollary 4.1.6

‖E1‖ ≤ ‖E0‖+ K∆(1 + σ)‖e0‖.

The proof will be complete if we can show that (4.15) and (4.18) imply that ‖En‖ < δ∗ for all

n. We do this inductively. If ‖En‖ < δ∗ and ‖ej+1‖ ≤ σ‖ej‖ for all j ≤ n, then (4.14) implies

that
‖En+1‖ ≤ ‖En‖+ K∆(‖en‖+ ‖en+1‖) ≤ ‖En‖+ K∆(1 + σ)‖en‖

≤ ‖En‖+ K∆(1 + σ)σn‖e0‖ ≤ ‖En‖+ K∆(1 + σ)σnδℓ

≤ ‖E0‖+ δℓK∆(1 + σ)
∑n

j=0
σn

= δℓ

(

1 +
K∆(1 + σ)

1− σ

)

.

We complete the induction and the proof by invoking (4.18) to conclude that ‖En+1‖ ≤ δ∗.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

76 ITERATIVE METHODS FOR OPTIMIZATION

Proof of Theorem 4.1.3

The Dennis–Moré condition [82], [81] is a necessary and sufficient condition for superlinear

convergence of quasi-Newton methods. In terms of the assumptions we make in this section,

the condition is

lim
n→∞

‖Ensn‖
‖sn‖

= 0,(4.19)

where {sn} is the sequence of steps and {En} is the sequence of errors in the inverse Hessian.

We will only state and prove the special case of the necessary condition that we need and refer

the reader to [82], [81], [84], or [154] for more general proofs.

Theorem 4.1.8. Let the standard assumptions hold; let {Hn} be a sequence of nonsingular

N ×N matrices satisfying

‖Hn‖ ≤M(4.20)

for some M > 0. Let x0 ∈ RN be given and let {xn}∞n=1 be given by

xn+1 = xn −H−1
n ∇f(xn)

for some sequence of nonsingular matrices Hn. Then if xn → x∗ q-linearly, xn �= x∗ for any

n, and (4.19) holds then xn → x∗ q-superlinearly.

Proof. We begin by invoking (4.10) to obtain

Ensn = (H−1
n − I)sn = (H−1

n − I)(yn −∆2s) = Enyn + O(‖sn‖2).

Convergence of xn to x∗ implies that sn → 0 and hence (4.19) can be written as

lim
n→∞

‖Enyn‖
‖sn‖

= 0,(4.21)

where yn = ∇f(xn+1)−∇f(xn).
Now let σ be the q-factor for the sequence {xn}. Clearly

(1− σ)‖en‖ ≤ ‖sn‖ ≤ (1 + σ)‖en‖.

Hence (4.21) is equivalent to

lim
n→∞

‖Enyn‖
‖en‖

= 0.(4.22)

Since H−1
n ∇f(xn) = −sn and sn = yn + O(‖sn‖2) we have

Enyn = (H−1
n − I)(∇f(xn+1)−∇f(xn))

= H−1
n ∇f(xn+1) + sn − yn = H−1

n ∇f(xn+1) + O(‖sn‖2)

= H−1
n en+1 + O(‖en‖2 + ‖sn‖2) = H−1

n en+1 + O(‖en‖2).
Therefore, (4.22) implies that

‖Enyn‖
‖en‖

=
‖H−1

n en+1‖
‖en‖

+ O(‖en‖) ≥M−1 ‖en+1‖
‖en‖

+ O(‖en‖)→ 0

as n→∞, proving q-superlinear convergence.

For the remainder of this section we assume that (4.15) holds and that δℓ is small enough so

that the conclusions of Theorem 4.1.7 hold for some σ ∈ (0, 1). An immediate consequence of

this is that
∑∞

n=0
‖sn‖ <∞.(4.23)

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

BFGS METHOD 77

The Frobenius norm of a matrix A is given by

‖A‖2F =

N
∑

i,j=1

(A)2ij .(4.24)

It is easy to show that (see exercise 4.5.5) for any unit vector v ∈ RN ,

‖A(I − vvT)‖2F ≤ ‖A‖2F − ‖Av‖2 and ‖(I − vvT)A‖2F ≤ ‖A‖2F .(4.25)

We have, using (4.6), (4.7), and (4.25), that

‖En+1‖2F ≤ ‖En‖2F − ‖Enwn‖2 + O(‖sn‖) = (1− θ2
n)‖En‖2F + O(‖sn‖),(4.26)

where wn = sn/‖sn‖ and

θn =















‖Enwn‖
‖En‖F

if En �= 0,

1 if En = 0.

Using (4.23) we see that for any k ≥ 0,

∑k

n=0
θ2
n‖En‖2F ≤

∑k

n=0
‖En‖2F − ‖En+1‖2F + O(1)

= ‖E0‖2F − ‖Ek+1‖2F + O(1) <∞.

Hence θn‖En‖F → 0.

However,

θn‖En‖F =







‖Enwn‖ if En �= 0

0 if En = 0

= ‖Enwn‖ =
‖Ensn‖
‖sn‖

.

Hence (4.19) holds. This completes the proof of Theorem 4.1.3.

4.1.2 Global Theory

If one uses the BFGS model Hessian in the context of Algorithm optarm, then Theorem 3.2.4

can be applied if the matrices {Hk} remain bounded and well conditioned. However, even if a

limit point of the iteration is a minimizer x∗ that satisfies the standard assumptions, Theorem 3.2.4

does not guarantee that the iteration will converge to that point. The situation in which x is near

x∗ but H is not near ∇2f(x∗) is, from the point of view of the local theory, no better than that

when x is far from x∗. In practice, however, convergence (often superlinear) is observed. The

result in this section is a partial explanation of this.

Our description of the global theory, using theArmijo line search paradigm from Chapter 3, is

based on [43]. We also refer the reader to [221], [45], and [269] for older results with a different

line search approach. Results of this type require strong assumptions on f and the initial iterate

x0, but the reward is global and locally superlinear convergence for a BFGS–Armijo iteration.

Assumption 4.1.1. The set

D = {x | f(x) ≤ f(x0)}

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

78 ITERATIVE METHODS FOR OPTIMIZATION

is convex and f is Lipschitz twice continuously differentiable in D. Moreover, there are λ+ ≥
λ− > 0 such that

σ(∇2f(x)) ⊂ [λ−, λ+]

for all x ∈ D.

Assumption 4.1.1 implies that f has a unique minimizer x∗ in D and that the standard

assumptions hold near x∗.

Theorem 4.1.9. Let Assumption 4.1.1 hold and let H0 be spd. Then the BFGS–Armijo

iteration converges q-superlinearly to x∗.

The results for local and global convergence do not completely mesh. An implementation

must allow for the fact that Assumption 4.1.1 may fail to hold, even near the root, and that

yT s ≤ 0 is a possibility when far from the root.

4.2 Implementation

The two implementation issues that we must confront are storage of the data needed to maintain

the updates and a strategy for dealing with the possibility that yT s ≤ 0. We address the

storage question in §4.2.1. For the second issue, when yT s is not sufficiently positive, we restart

the BFGS update with the identity. We present the details of this in §4.2.2. Our globalization

approach, also given in §4.2.2, is the simplest possible, the Armijo rule as described in Chapter 3.

We choose to discuss the Armijo rule in the interest of simplicity of exposition. However,

while the Armijo rule is robust and sufficient for most problems, more complex line search

schemes have been reported to be more efficient [42], and one who seeks to write a general

purpose optimization code should give careful thought to the best way to globalize a quasi-

Newton method. In the case of BFGS, for example, one is always seeking to use a positive definite

quadratic model, even in regions of negative curvature, and in such regions the approximate

Hessian could be reinitialized to the identity more often than necessary.

4.2.1 Storage

For the present we assume that yT s > 0. We will develop a storage-efficient way to compute

the BFGS step using the history of the iteration rather than full matrix storage.

The implementation recommended here is one of many that stores the history of the iteration

and uses that information recursively to compute the action of H−1
k on a vector. This idea was

suggested in [16], [186], [206], and other implementations may be found in [44] and [201].

All of these implementations store the iteration history in the pairs {sk, yk} and we present a

concrete example in Algorithm bfgsrec. A better, but somewhat less direct, way is based on

the ideas in [91] and [275] and requires that only a single vector be stored for each iteration. We

assume that we can compute the action of H−1
0 on a vector efficiently, say, by factoring H0 at the

outset of the iteration or by setting H0 = I . We will use the BFGS formula from Lemma 4.1.1.

One way to maintain the update is to store the history of the iteration in the sequences of

vectors {yk} and {sk} where

sk = xk+1 − xk and yk = ∇f(xk+1)−∇f(xk).

If one has done this for k = 0, . . . , n− 1, one can compute the new search direction

dn = −H−1
n ∇f(xn)

by a recursive algorithm which applies (4.5).

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

BFGS METHOD 79

Algorithm bfgsrec overwrites a given vector d with H−1
n d. The storage needed is one

vector for d and 2n vectors for the sequences {sk, yk}n−1
k=0 . A method for computing the product

of H−1
0 and a vector must also be provided.

Algorithm 4.2.1. bfgsrec(n, {sk}, {yk}, H−1
0 , d)

1. If n = 0, d = H−1
0 d; return

2. α = sTn−1d/yT
n−1s; d = d− αyn−1

3. call bfgsrec(n− 1, {sk}, {yk}, H−1
0 , d)

4. d = d + (α− (yT
n−1d/yT

n−1sn−1))sn−1

Algorithm bfgsrec has the great advantage, at least in a language that efficiently supports

recursion, of being very simple. More complex, but nonrecursive versions, have been described

in [16], [201], and [44].

The storage cost of two vectors per iteration can be significant, and when available storage is

exhausted one can simply discard the iteration history and restart with H0. This approach, which

we implement in the remaining algorithms in this section, takes advantage of the fact that if H0

is spd then−H−1
0 ∇f(x) will be a descent direction, and hence useful for a line search. Another

approach, called the limited memory BFGS [44], [207], [176], [201], keeps all but the oldest

(s, y) pair and continues with the update. Neither of these approaches for control of storage,

while essential in practice for large problems, has the superlinear convergence properties that

the full-storage algorithm does.

At a cost of a modest amount of complexity in the formulation, we can reduce the storage

cost to one vector for each iteration. The method for doing this in [275] begins with an expansion

of (4.5) as

H−1
+ = H−1

c + α0scs
T
c + β0((H

−1
c yc)s

T
c + sc(H

−1
c yc)

T),

where

α0 =
yT
c sc + yT

c H−1
c yc

(yT
c sc)2

and β0 =
−1

yT
c sc

.

Now note that

H−1
c yc = H−1

c ∇f(x+)−H−1
c ∇f(xc) = H−1

c ∇f(x+) + sc/λc

and obtain

H−1
+ = H−1

c + α1scs
T
c + β0(sc(H

−1
c ∇f(x+))

T + (H−1
c ∇f(x+))s

T
c),(4.27)

where

α1 = α0 + 2β0/λc.

Also

d+ = −H−1
+ ∇f(x+)

= −
(

I − scy
T
c

yT
c sc

)

H−1
c

(

I − ycs
T
c

yT
c sc

)

∇f(x+)−
scs

T
c ∇f(x+)

yT
c sc

= Acsc + BcH
−1
c ∇f(x+),

(4.28)

where

Ac =
yT
c

yT
c sc

H−1
c

(

I − ycs
T
c

yT
c sc

)

∇f(x+) +
sTc ∇f(x+)

λcyT
c sc

(4.29)

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

80 ITERATIVE METHODS FOR OPTIMIZATION

and

Bc = −1 +
sTc ∇f(x+)

yT
c sc

.(4.30)

At this point we can compute d+, and therefore λ+ and s+ using only H−1
c ∇f(xc). We do not

need H+ at all. We can now form H+ with the new data for the next iterate and will show that

we do not need to store the vectors {yk}.
Since (verify this!) Bc �= 0, we have

H−1
c ∇f(x+) = −

s+

Bcλ+
+

Acsc
Bc

.

Combining this with (4.27) gives

H−1
+ = H−1

c + αcscs
T
c + βc(scs

T
+ + s+sTc),(4.31)

where

αc = α1 + 2β0Ac/Bc and βc = −
β0

Bcλ+
.(4.32)

This leads to the expansion

H−1
n+1 = H−1

0 +

n
∑

k=0

αksksTk + βk(sksTk+1 + sk+1sTk).(4.33)

Upon reflection the reader will see that this is a complete algorithm. We can use (4.28) and Hn

to compute dn+1. Then we can compute λn+1 and sn+1 and use them and (4.32) to compute

αn and βn. This new data can be used to form H−1
n+1 with (4.33), which we can use to compute

dn+2 and continue the iteration.

In this way only the steps {sk} and the expansion coefficients {αk} and {βk} need be stored.

Algorithm bfgsopt is an implementation of these ideas.

Algorithm 4.2.2. bfgsopt(x, f, ǫ)

1. g = −∇f(x), n = 0.

2. While ‖g‖ > ǫ

(a) If n = 0, dn = −H−1
0 g

otherwise compute A, B, and dn using (4.28), (4.29), and (4.30).

(b) Compute λn, sn, and x = xn+1 with the Armijo rule.

(c) If n > 0 compute αn−1 and βn−1 using (4.32).

(d) g = −∇f(x), n = n + 1.

4.2.2 A BFGS–Armijo Algorithm

In this section we present a simple implementation that shows how the theoretical results can

be applied in algorithm design. Let HBFGS
+ be the BFGS update from Hc and define the two

modified BFGS (MBFGS) updates by

H+ =

{

HBFGS
+ if yT s > 0,

I if yT s ≤ 0,
(4.34)

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

BFGS METHOD 81

and

H+ =

{

HBFGS
+ if yT s > 0,

Hc if yT s ≤ 0.
(4.35)

In the MBFGS1 method, (4.34), the model Hessian is reinitialized to I if yT s ≤ 0. In the

early phase of this iteration, where ∇2f may have negative eigenvalues, yT s ≤ 0 is certainly

possible and the search direction could be the steepest descent direction for several iterations.

An MBFGS2 step (4.35) keeps the history of the iteration even if yT s ≤ 0. One view

is that this approach keeps as much information as possible. Another is that once yT s ≤ 0,

the iteration history is suspect and should be thrown away. Both forms are used in practice.

Our MATLAB code bfgswopt uses MFBGS1 and maintains an approximation to H−1 using

Algorithm bfgsopt. We also guard against poor scaling by using (3.50).

4.3 Other Quasi-Newton Methods

The DFP (Davidon, Fletcher, Powell) update [71], [72], [105]

H+ = Hc +
(y −Hcs)y

T + y(y −Hcs)
T

yT s
− [(y −Hcs)

T y]yyT

(yT s)2
(4.36)

has similar local convergence properties to BFGS but does not perform as well in practice [224],

[225].

Two updates that preserve symmetry, but not definiteness, are the PSB (Powell symmetric

Broyden) update [219],

H+ = Hc +
(y −Hcs)s

T + s(y −Hcs)
T

sT s
− [sT (y −Hcs)]ssT

(sT s)2
,(4.37)

and the symmetric rank-one (SR1) [35] update,

H+ = Hc +
(y −Hcs)(y −Hcs)

T

(y −Hcs)T s
.(4.38)

By preserving the symmetry of the approximate Hessians, but not the positive definiteness,

these updates present a problem for a line search globalization but an opportunity for a trust

region approach. The SR1 update has been reported to outperform BFGS algorithms in certain

cases [165], [41], [64], [65], [163], [258], [118], [250], [119], [268], [164], in which either the

approximate Hessians can be expected to be positive definite or a trust region framework is used

[41], [64], [65].

One may update the inverse of the SR1 approximate Hessian using the Sherman–Morrison

formula, (4.39), a simple relation between the inverse of a nonsingular matrix and that of a

rank-one update of that matrix [93], [239], [240], [14].

Proposition 4.3.1. Let H be a nonsingular N×N matrix and let u, v ∈ RN . Then H+uvT

is invertible if and only if 1 + vTH−1u �= 0. In this case

(H + uvT)−1 =

(

I − (H−1u)vT

1 + vTH−1u

)

H−1.(4.39)

The proof is simply a direct verification of (4.39).

The SR1 algorithm terminates in finitely many iterations for convex quadratic optimization

problems [101]. Since the denominator (y−Hcs)
T s could vanish, the update could completely

fail and implementations must examine the denominator and take appropriate action if it is too

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

82 ITERATIVE METHODS FOR OPTIMIZATION

small. This update does not enforce or require positivity of the approximate Hessian and has

been used effectively to exploit negative curvature in a trust region context [165], [41].

For overdetermined nonlinear least squares problems one can try to approximate the second-

order term in ∇2f while computing R′TR′ exactly. Suppose

∇2f(x) ≈ H = C(x) + A,

where the idea is that C, the computed part, is significantly easier to compute than A, the

approximated part. This is certainly the case for nonlinear least squares, where C = R′TR′. A

quasi-Newton method that intends to exploit this structure will update A only; hence

H+ = C(x+) + A+.

Superlinear convergence proofs require, in one way or another, that H+s = y. Therefore, in

terms of A, one might require the update to satisfy

A+s = y# = y − C(x+)s.(4.40)

The definition of y# given in (4.40) is called the default choice in [87]. This is not the only

choice for y#, and one can prove superlinear convergence for this and many other choices [87],

[84]. This idea, using several different updates, has been used in other contexts, such as optimal

control [159], [164].

An algorithm of this type, using SR1 to update A and a different choice for y#, was suggested

in [20] and [21]. The nonlinear least squares update from [77], [78], and [84] uses a DFP update

and yet another y# to compute A+,

A+ = Ac +
(y# −Acs)y

#T
+ y#(y# −Acs)

T

y#T
s

− [(y# −Acs)
T y#]y#y#T

(y#T
s)2

.(4.41)

The application of this idea to large-residual least squares problems is not trivial, and scaling

issues must be considered in a successful implementation.

Our proof of superlinear convergence can be applied to updates like (4.41). We state a special

case of a result from [87] for the BFGS formulation

A+ = Ac +
y#y#T

y#T
s
− (Acs)(Acs)

T

sTAcs
.(4.42)

Theorem 4.3.2. Let the standard assumptions hold and assume that

A∗ = ∇2f(x∗)− C(x∗)

is spd. Then there is δ such that if

‖x0 − x∗‖ ≤ δ and ‖A0 −A∗‖ ≤ δ,

then the quasi-Newton iterates defined by (4.42) exist and converge q-superlinearly to x∗.

This result can be readily proved using the methods in this chapter (see [159]).

Quasi-Newton methods can also be designed to take into account special structure, such as

the sparsity pattern of the Hessian. One can update only those elements that are nonzero in the

initial approximation to the Hessian, requiring that the secant equation Hs = y holds. Such

updates have been proposed and analyzed in varying levels of generality in [83], [87], [185],

[238], [256], and [255].

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

BFGS METHOD 83

Another approach is to use the dependency of f on subsets of the variables, a structure that is

often present in discretizations of infinite-dimensional problems where coefficients of operators

can be updated rather than entire matrix representations of those operators. We refer the reader

to [133], [131], and [132] for an algebraic viewpoint based on finite-dimensional analysis and

to [159], [157], [164], [160], and [163] for an operator theoretic description of these methods.

When applied to discretizations of infinite-dimensional optimization problems, quasi-Newton

methods perform best when they also work well on the infinite-dimensional problem itself. Work

on BFGS in Hilbert space can be found, for example, in [135], [158], and [159].

Quasi-Newton methods have been designed for underdetermined problems [184], and Broy-

den’s method itself has been applied to linear least squares problems [111], [148].

4.4 Examples

The computations in this section were done with the MATLAB code bfgswopt. For the small

parameter ID problem, where evaluation of f is far more expensive than the cost of maintaining

or factoring the (very small!) approximate Hessian, one could also use a brute force approach

in which H is updated and factored anew with each iteration.

4.4.1 Parameter ID Problem

We solve the parameter ID problem with the same data as in §3.4.1 using H0 = I as the initial

Hessian. We compare the BFGS solution with the Gauss–Newton iteration from §3.4.1. From

Figure 4.1 one can see the local superlinear convergence and the good performance of the line

search. However, as one should expect, the Gauss–Newton iteration, being designed for small

residual least squares problems, was more efficient. The Gauss–Newton iteration required 14

function evaluations, 6 gradients, and roughly 1.3 million floating point operations, while the

BFGS–Armijo iteration needed 29 function evaluations, 15 gradients, and 3.8 million floating

point operations.

4.4.2 Discrete Control Problem

We return to the example from §3.4.2. For our first example we use the initial iterate

u0(t) = 10.

BFGS also requires an initial approximation to the Hessian and we consider two such approxi-

mations:

Hp = .25I and Hg = I.(4.43)

The Hessian for the continuous problem is a compact perturbation of the identity and the

theory from [158] and [135] indicates that Hg is a much better approximate Hessian than Hp.

The results in Figure 4.2 support that idea. For the better Hessian, one can see the concavity

of superlinear convergence in the plot of the gradient norm. The computation for the better

Hessian required 12 iterations and roughly 572 thousand floating point operations, while the one

with the poor Hessian took 16 iterations and roughly 880 thousand floating point operations.

Stepsize reductions were not required for the good Hessian and were needed four times during

the iteration for the poor Hessian. However, the guard against poor scaling (3.50) was needed

in both cases.

When we used the same poor initial iterate that we used in §3.4.2

u0(t) = 5 + 300 sin(20πt)

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

84 ITERATIVE METHODS FOR OPTIMIZATION

0 2 4 6
10

6

10
4

10
2

10
0

10
2

Gauss Newton

Iterations

G
ra

d
ie

n
t

N
o

rm

0 2 4 6
10

15

10
10

10
5

10
0

10
5

Gauss Newton

Iterations

F
u

n
c
ti
o

n
 V

a
lu

e

0 5 10 15
10

5

10
0

10
5

BFGS

Iterations

G
ra

d
ie

n
t

N
o

rm

0 5 10 15
10

15

10
10

10
5

10
0

10
5

BFGS

Iterations

F
u

n
c
ti
o

n
 V

a
lu

e

Figure 4.1: BFGS–Armijo and Gauss–Newton for the Parameter ID Problem

0 5 10 15 20
10

10

10
5

10
0

10
5

Poor Hessian

Iterations

G
ra

d
ie

n
t

N
o

rm

0 5 10 15 20
10

3

10
4

10
5

Poor Hessian

Iterations

F
u

n
c
ti
o

n
 V

a
lu

e

0 5 10 15
10

10

10
5

10
0

10
5

Better Hessian

Iterations

G
ra

d
ie

n
t

N
o

rm

0 5 10 15
10

3

10
4

10
5

Better Hessian

F
u

n
c
ti
o

n
 V

a
lu

e

Iterations

Figure 4.2: BFGS–Armijo for Discrete Control Problem

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

BFGS METHOD 85

and allocated 50 vectors to Algorithm bfgsopt, there was no longer a benefit to using the

good Hessian. In fact, as is clear from Figure 4.3 the poor Hessian produced a more rapidly

convergent iteration.

0 20 40 60 80
10

10

10
5

10
0

10
5

10
10

Poor Hessian

Iterations

G
ra

d
ie

n
t

N
o

rm

0 20 40 60 80
10

2

10
4

10
6

10
8

Poor Hessian

Iterations

F
u

n
c
ti
o

n
 V

a
lu

e

0 50 100 150
10

10

10
5

10
0

10
5

10
10

Better Hessian

Iterations

G
ra

d
ie

n
t

N
o

rm

0 50 100 150
10

2

10
4

10
6

10
8

Better Hessian

F
u

n
c
ti
o

n
 V

a
lu

e

Iterations

Figure 4.3: BFGS–Armijo for Discrete Control Problem: Poor Initial Iterate

4.5 Exercises on BFGS

4.5.1. Use the secant method (4.2) with initial data x−1 = 1 and x0 = .9 to minimize f(x) = x4.

Explain the convergence of the iteration.

4.5.2. Prove Lemma 4.1.1. It might help to use the secant equation.

4.5.3. Prove Lemma 4.1.4.

4.5.4. Verify (4.13) and compute the constant C.

4.5.5. Prove (4.25).

4.5.6. As an exercise in character building, implement Algorithm bfgsrec nonrecursively.

4.5.7. Show how the Sherman–Morrison formula can be used to implement the SR1 update in

such a way that only one vector need be stored for each iterate.

4.5.8. State and prove a local convergence theorem for DFP and/or PSB.

4.5.9. Implement the DFP and PSB update and compare their performance with BFGS on the

examples from §4.4.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

86 ITERATIVE METHODS FOR OPTIMIZATION

4.5.10. Show that, for positive definite quadratic problems, the BFGS method with an exact line

search (i.e., one that finds the minimum of f in the search direction) is the same as CG

[201], [200].

4.5.11. Prove Theorem 4.3.2.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

Chapter 5

Simple Bound Constraints

5.1 Problem Statement

The goal of this chapter is to show how the techniques of Chapters 2, 3, and 4 can be used to

solve a simple constrained optimization problem. The algorithm we suggest at the end in §5.5.3

is a useful extension of the BFGS–Armijo algorithm from Chapter 4. We will continue this line

of development when we solve noisy problems in Chapter 7.

Let {Li}Ni=1 and {Ui}Ni=1 be sequences of real numbers such that

−∞ < Li < Ui < +∞.(5.1)

The bound constrained optimization problem is to find a local minimizer x∗ of a function f of

N variables subject to the constraint that

x∗ ∈ Ω = {x ∈ RN |Li ≤ (x)i ≤ Ui}.(5.2)

By this we mean that x∗ satisfies

f(x∗) ≤ f(x) for all x ∈ Ω near x∗.(5.3)

It is standard to express this problem as

min
x∈Ω

f(x)(5.4)

or as minΩ f . The set Ω is called the feasible set and a point in Ω is called a feasible point.

Because the set Ω is compact there is always a solution to our minimization problem [229].

The inequalities Li ≤ (x)i ≤ Ui are called inequality constraints or simply constraints.

We will say that the ith constraint is active at x ∈ Ω if either (x)i = Li or (x)i = Ui. If the

ith constraint is not active we will say that it is inactive. The set of indices i such that the ith
constraint is active (inactive) will be called the set of active (inactive) indices at x.

We will write A(x) and I(x) for the active and inactive sets at x.

5.2 Necessary Conditions for Optimality

For a continuously differentiable function of one variable, the necessary conditions for uncon-

strained optimality at x∗ are simply f ′(x∗) = 0 and, if f is twice continuously differentiable,

f ′′(x∗) ≥ 0. A bound constrained problem in one variable restricts the domain of f to an

interval [a, b], and the necessary conditions must be changed to admit the possibility that the

87

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

88 ITERATIVE METHODS FOR OPTIMIZATION

minimizer is one of the endpoints. If x∗ = a is a local minimizer, then it need not be the case

that f ′(a) = 0; however, because a is a local minimizer, f(x) ≥ f(a) for all a ≤ x sufficiently

near a. Hence f ′(a) ≥ 0. Nothing, however, can be said about f ′′. Similarly, if x∗ = b is a

local minimizer, f ′(b) ≤ 0. If f is differentiable on [a, b] (i.e., on an open set containing [a, b]),
then the necessary conditions for all three possibilities, x∗ = a, x∗ = b, and a < x∗ < b can be

neatly expressed by the following theorem.

Theorem 5.2.1. Let f be a continuously differentiable function of one variable on the

interval [a, b]. Let x∗ be a local minimum of f on [a, b]. Then

f ′(x∗)(x− x∗) ≥ 0 for all x ∈ [a, b](5.5)

and, if f is twice continuously differentiable on [a, b],

f ′′(x∗)(x∗ − a)(b− x∗) ≥ 0.(5.6)

The analogue (5.5) is expressed by the idea of stationarity.

Definition 5.2.1. A point x∗ ∈ Ω is stationary for problem (5.4) if

∇f(x∗)T (x− x∗) ≥ 0 for all x ∈ Ω.(5.7)

As in the unconstrained case, stationary points are said to satisfy the first-order necessary

conditions.

The fact that optimality implies stationarity is proved with Taylor’s theorem just as it was in

the unconstrained case.

Theorem 5.2.2. Let f be continuously differentiable onΩ and let x∗ be a solution of problem

(5.4). Then x∗ is a stationary point for problem (5.4).

Proof. Let x∗ be a solution of problem (5.4) and let y ∈ Ω. As Ω is convex, the line segment

joining x∗ and y is entirely in Ω. Hence, the function

φ(t) = f(x∗ + t(y − x∗))

is defined for t ∈ [0, 1] and has a local minimum at t = 0. Therefore, by Theorem 5.2.1

0 ≤ φ′(0) = ∇f(x∗)T (y − x∗)

as asserted.

The case of a function of a single variable is less useful in explaining the role of the second

derivative. However, we can get a complete picture by looking at functions of two variables.

To illustrate the ideas we let N = 2 and let f be a twice Lipschitz continuously differentiable

function on Ω = [0, 1] × [0, 1]. If x∗ is a solution of (5.4) and no constraints are active, then

∇2f(x∗) is positive semidefinite by the same arguments used in the unconstrained case. If one

or more constraints are active, however, then, just as in the one variable case, one cannot draw

conclusions about the positivity of ∇2f(x∗). Suppose the minimizer is at x∗ = (ξ, 0) with

0 < ξ < 1. While nothing can be said about ∂2f(x∗)/∂x2
2, the function φ(t) = f(t, 0), defined

on [0, 1], must satisfy

φ′′(ξ) = ∂2f(x∗)/∂x2
1 ≥ 0.

Hence, second partials in directions corresponding to the inactive constraints must be nonnega-

tive, while nothing can be said about directions corresponding to active constraints.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

BOUND CONSTRAINTS 89

We define the reduced Hessian to help make this idea precise.

Definition 5.2.2. Let f be twice differentiable at x ∈ Ω. The reduced Hessian ∇2
Rf(x) is

the matrix whose entries are

(∇2
Rf(x))ij =







δij if i ∈ A(x) or j ∈ A(x),

(∇2f(x))ij otherwise.

(5.8)

We can now present the second-order necessary conditions.

Theorem 5.2.3. Let f be twice Lipschitz continuously differentiable and let x∗ be the solution

of problem (5.4). Then the reduced Hessian ∇2
Rf(x∗) is positive semidefinite.

Proof. Assume that there are M inactive indices and N −M active indices. We partition

x ∈ Ω, reordering the variables if needed, into x = (ξ, ζ) with ξ corresponding to the inactive

indices and ζ to the active. The map

φ(ξ) = f(ξ, ζ∗)

has an unconstrained local minimizer at ξ∗ ∈ RM and hence∇2φ is positive semidefinite. Since

the reduced Hessian can be written as

∇2
Rf(x∗) =

(

∇2φ(x∗) 0
0 I

)

if the variables are partitioned in this way, the proof is complete.

We let P denote the projection onto Ω, that is, the map that takes x into the nearest point (in

the l2-norm) in Ω to x. We have that

P(x)i =







Li if (x)i ≤ Li,

(x)i if Li < (x)i < Ui,

Ui if (x)i ≥ Ui.

(5.9)

Theorem 5.2.4 states our final necessary condition; we defer the proof to §5.4.4.

Theorem 5.2.4. Let f be continuously differentiable. A point x∗ ∈ Ω is stationary for

problem (5.4) if and only if

x∗ = P(x∗ − λ∇f(x∗))(5.10)

for all λ ≥ 0.

5.3 Sufficient Conditions

With the definition of the reduced Hessian in hand, the sufficient conditions are easy to formulate.

We begin by strengthening the notion of stationarity. If x∗ is stationary, i ∈ I(x∗), and ei is a

unit vector in the ith coordinate direction, then x∗ ± tei ∈ Ω for all t sufficiently small. Since

df(x∗ ± tei)

dt
= ±∇f(x∗)T ei ≥ 0,

therefore

(∇f(x∗))i = 0 for all i ∈ I(x∗).

We will use the concept of nondegenerate stationary point or strict complementarity in our

formulation of the sufficient conditions.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

90 ITERATIVE METHODS FOR OPTIMIZATION

Definition 5.3.1. A point x∗ ∈ Ω is a nondegenerate stationary point for problem (5.4) if

x∗ is a stationary point and

(∇f(x∗))i �= 0 for all i ∈ A(x∗).(5.11)

If x∗ is also a solution of problem (5.4) we say that x∗ is a nondegenerate local minimizer.

Our nondegeneracy condition is also referred to as strict complementarity.

If S is any set of indices define

(PSx)i =







(x)i, i ∈ S,

0, i �∈ S.

Nondegeneracy is important not only in the formulation of sufficient conditions but also in

the design of termination criteria. The first step in the use of nondegeneracy is Lemma 5.3.1.

Lemma 5.3.1. Let x∗ be a nondegenerate stationary point. Assume that A = A(x∗) is not

empty. Then there is σ such that

∇f(x∗)T (x− x∗) = ∇f(x∗)TPA(x− x∗) ≥ σ‖PA(x− x∗)‖

for all x ∈ Ω.

Proof. If i ∈ A then nondegeneracy and stationarity imply that there is σ > 0 such that

either

(x∗
i) = Li and (∇f(x∗))i ≥ σ or (x∗

i) = Ui and (∇f(x∗))i ≤ −σ.

If x ∈ Ω then for all i ∈ A,

(∇f(x∗))i(x− x∗)i ≥ σ|(x− x∗)i|.

Therefore, since ‖x‖1 ≥ ‖x‖2,

∇f(x∗)TPA(x− x∗) ≥ σ‖PA(x− x∗)‖,

as asserted.

For a nondegenerate stationary point the sufficiency conditions are very similar to the un-

constrained case.

Theorem 5.3.2. Let x∗ ∈ Ω be a nondegenerate stationary point for problem (5.4). Let

f be twice differentiable in a neighborhood of x∗ and assume that the reduced Hessian at x∗

is positive definite. Then x∗ is a solution of problem (5.4) (and hence a nondegenerate local

minimizer).

Proof. Let x ∈ Ω and define φ(t) = f(x∗ + t(x− x∗)). We complete the proof by showing

that either (i) φ′(0) > 0 or (ii) φ′(0) = 0, φ′′(0) > 0. Let e = x− x∗ and note that

φ′(0) = ∇f(x∗)T e = ∇f(x∗)T (PAe + PIe).

Stationarity implies that ∇f(x∗)TPIe = 0. If PAe �= 0 then nondegeneracy implies that

∇f(x∗)TPAe > 0

and hence (i) holds. If PAe = 0 then

φ′′(0) = (x− x∗)TPI∇2f(x∗)PI(x− x∗) = (x− x∗)T∇2
Rf(x∗)(x− x∗) > 0,

proving (ii).

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

BOUND CONSTRAINTS 91

5.4 The Gradient Projection Algorithm

The gradient projection algorithm is the natural extension of the steepest descent algorithm to

bound constrained problems. It shares all the advantages and disadvantages of that algorithm.

Our approach follows that of [18]. Given a current iterate xc the new iterate is

x+ = P(xc − λ∇f(xc)),

where λ is a steplength parameter given by the Armijo rule or some other line search scheme.

In this section we will restrict our attention to the simplest form of the Armijo rule. In order to

implement any line search scheme, we must specify what we mean by sufficient decrease. For

λ > 0 define

x(λ) = P(x− λ∇f(x)).(5.12)

For bound constrained problems we will express the sufficient decrease condition for line searches

(compare with (3.4)) as

f(x(λ))− f(x) ≤ −α

λ
‖x− x(λ)‖2.(5.13)

As with (3.4), α is a parameter and is typically set to 10−4 [84].

The general algorithmic description follows in Algorithm 5.4.1.

Algorithm 5.4.1. gradproj(x, f, nmax)

1. For n = 1, . . . , nmax

(a) Compute f and ∇f ; test for termination.

(b) Find the least integer m such that (5.13) holds for λ = βm.

(c) x = x(λ).

2. If n = nmax and the termination test is failed, signal failure.

The next step is to elaborate on the termination criterion.

5.4.1 Termination of the Iteration

The termination criterion for unconstrained optimization that we have used previously must be

modified if we are to properly take the constraints into account. ∇f need not be zero at the

solution, but a natural substitute is to terminate the iteration if the difference between x and x(1)
is small. As in the case of unconstrained optimization or nonlinear equations, we must invoke

the sufficient conditions to show that such a termination criterion will accurately measure the

error.

As usual, we let e = x− x∗.

We begin with a lemma that connects the active and inactive sets at a nondegenerate local

minimizer with nearby points.

Lemma 5.4.1. Let f be twice continuously differentiable on Ω and let x∗ be a nondegenerate

stationary point for problem (5.4). Let λ ∈ (0, 1]. Then for x sufficiently near x∗,

1. A(x) ⊂ A(x∗) and (x)i = (x∗)i for all i ∈ A(x).

2. A(x(λ)) = A(x∗) and (x(λ))i = (x∗)i for all i ∈ A(x∗).

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

92 ITERATIVE METHODS FOR OPTIMIZATION

Proof. Let

A∗ = A(x∗), I∗ = I(x∗),A = A(x), and I = I(x).
Let

δ1 = min
i∈I∗

{(Ui − (x∗)i), ((x
∗)i − Li), (Ui − Li)/2}.

If i ∈ I∗ and ‖e‖ < δ1 then Li < (x)i < Ui. Hence,

I∗ ⊂ I

proving the first assertion that A ⊂ A∗. Moreover, since

‖e‖ < δ1 ≤ min {(Ui − Li)/2} ,

then (x)i = (x∗)i for all i ∈ A.

Now letAλ and Iλ be the active and inactive sets for x(λ) = P(x− λ∇f(x)). Let i ∈ A∗.

By Lemma 5.3.1 and continuity of ∇f there is δ2 such that if ‖e‖ < δ2 then

(∇f(x∗ + e))i(x− x∗)i > σ|x− x∗|i/2.

Therefore, if

‖e‖ < δ3 < min(σ/2, δ2),

then i ∈ Aλ and (x(λ))i = (x∗)i. Hence A∗ ⊂ Aλ.

It remains to prove that Aλ ⊂ A∗. By definition of P we have

‖P(x)− P(y)‖ ≤ ‖x− y‖

for all x, y ∈ RN . Continuity of∇2f implies that∇f is Lipschitz continuous. We let L denote

the Lipschitz constant of ∇f in Ω. By stationarity and Theorem 5.2.4,

x∗ = x∗(λ) = P(x∗ − λ∇f(x∗)),

and, therefore,

‖x∗ − x(λ)‖ = ‖P(x∗ − λ∇f(x∗))− P(x− λ∇f(x))‖

≤ ‖e‖+ λ‖∇f(x∗)−∇f(x)‖ ≤ (1 + Lλ)‖e‖.
(5.14)

If there is i ∈ Aλ ∩ I∗ then we must have

‖x∗ − x(λ)‖ ≥ δ1 = min
i∈I∗

{(Ui − x∗), (x∗ − Li)}.(5.15)

However, if

‖e‖ < δ4 = min(δ3, δ1/(1 + L))

then (5.14) implies that (5.15) cannot hold. This completes the proof.

Theorem5.4.2. Let f be twice continuously differentiable onΩand let x∗ be a nondegenerate

stationary point for problem (5.4). Assume that sufficient conditions hold at x∗. Then there are

δ and M such that if ‖e‖ < δ and A(x) = A(x∗) then

‖e‖/M ≤ ‖x− x(1)‖ ≤M‖e‖.(5.16)

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

BOUND CONSTRAINTS 93

Proof. Again we let L denote the Lipschitz constant of ∇f in Ω and

A∗ = A(x∗), I∗ = I(x∗),A = A(x), and I = I(x).

Using stationarity we obtain

‖x− x(1)‖ = ‖e− (x(1)− x∗(1))‖

≤ ‖e‖+ ‖P(x−∇f(x))− P(x∗ −∇f(x∗))‖

≤ 2‖e‖+ ‖∇f(x)−∇f(x∗)‖ ≤ (2 + L)‖e‖.

Hence, the right inequality in (5.16) holds.

To verify the left inequality in (5.16) we apply Lemma 5.4.1. Let δ1 be such that ‖e‖ < δ1

implies that the conclusions of Lemma 5.4.1 hold for λ = 1. The lemma implies that

(x− x(1))i =







(∇f(x))i, i ∈ I∗,

(e)i = 0, i ∈ A∗.
(5.17)

The remaining case is if i ∈ I = I∗. The sufficiency conditions imply that there is µ > 0
such that

uTPI∗∇2f(x∗)PI∗u ≥ µ‖PI∗u‖2

for all u ∈ RN . Hence, there is δ2 so that if ‖e‖ < δ2 then

uTPI∗∇2f(x)PI∗u ≥ µ‖PI∗u‖2/2

for all u ∈ RN .

Therefore, since e = PI∗e,

‖PI∗(x− x(1))‖2 =

∫ 1

0

eTPI∗∇2f(x∗ + te)e dt

=

∫ 1

0

eTPI∗∇2f(x∗ + te)PI∗e dt

≥ µ‖P∗
Ie‖2/2.

Therefore, ‖x−x(1)‖ ≥ min(1,
√

µ/2)‖e‖ and setting M = max{2+L, 1,
√

2/µ} completes

the proof.

Following the unconstrained case, we formulate a termination criterion based on relative and

absolute reductions in the measure of stationarity ‖x − x(1)‖. Given r0 = ‖x0 − x0(1)‖ and

relative and absolute tolerances τr and τa the termination criterion for Algorithm gradproj is

‖x− x(1)‖ ≤ τa + τrr0.(5.18)

5.4.2 Convergence Analysis

The convergence analysis is more complicated than that for the steepest descent algorithm be-

cause of the care that must be taken with the constraints. Our analysis begins with several

preliminary lemmas.

Lemma 5.4.3. For all x, y ∈ Ω,

(y − x(λ))T (x(λ)− x + λ∇f(x)) ≥ 0.(5.19)

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

94 ITERATIVE METHODS FOR OPTIMIZATION

Proof. By definition of P

‖x(λ)− x + λ∇f(x)‖ ≤ ‖y − x + λ∇f(x)‖

for all y ∈ Ω. Hence t = 0 is a local minimum for

φ(t) = ‖(1− t)x(λ) + ty − x + λ∇f(x)‖2/2

and, therefore,

0 ≤ φ′(0) = (y − x(λ))T (x(λ)− x + λ∇f(x))

as asserted.

We will most often use the equivalent form of (5.19)

(x− x(λ))T (y − x(λ)) ≤ λ∇f(x)T (y − x(λ)).(5.20)

Setting y = x in (5.20), we state Corollary 5.4.4.

Corollary 5.4.4. For all x ∈ Ω and λ ≥ 0,

‖x− x(λ)‖2 ≤ λ∇f(x)T (x− x(λ)).(5.21)

An important result in any line search analysis is that the steplengths remain bounded away

from 0.

Theorem 5.4.5. Assume that ∇f is Lipschitz continuous with Lipschitz constant L. Let

x ∈ Ω. Then the sufficient decrease condition (5.13) holds for all λ such that

0 < λ ≤ 2(1− α)

L
.(5.22)

Proof. We begin with the fundamental theorem of calculus. Setting y = x− x(λ) we have

f(x− y)− f(x) = f(x(λ))− f(x) = −
∫ 1

0

∇f(x− ty)T y dt.

Hence,
f(x(λ)) = f(x) +∇f(x)T (x(λ)− x)

−
∫ 1

0

(∇f(x− ty)−∇f(x))T y dt.

(5.23)

Rearranging terms in (5.23) gives

λ(f(x)− f(x(λ))) = λ∇f(x)T (x− x(λ)) + λE,(5.24)

where

E =

∫ 1

0

(∇f(x− ty)−∇f(x))T y dt

and hence

‖E‖ ≤ L‖x− x(λ)‖2/2.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

BOUND CONSTRAINTS 95

So

λ(f(x)− f(x(λ))) ≥ λ∇f(x)T (x− x(λ))− λL‖x− x(λ)‖2/2.(5.25)

Therefore, using Corollary 5.4.4 we obtain

λ(f(x)− f(x(λ))) ≥ (1− λL/2)‖x− x(λ)‖2

which completes the proof.

The consequence for the Armijo rule is that the line search will terminate when

βm ≤ 2(1− α)

L
≤ βm−1

if not before. Hence, a lower bound for the steplengths is

λ̄ =
2β(1− α)

L
.(5.26)

Theorem 5.4.6. Assume that ∇f is Lipschitz continuous with Lipschitz constant L. Let

{xn} be the sequence generated by the gradient projection method. Then every limit point of

the sequence is a stationary point.

Proof. Since the sequence {f(xn)} is decreasing and f is bounded from below on Ω, f(xn)
has a limit f∗. The sufficient decrease condition, as in the proof of Theorem 3.2.4, and (5.26)

imply that

‖xn − xn+1‖2 ≤ λ(f(xn)− f(xn+1))/α ≤ (f(xn)− f(xn+1))/α→ 0

as n→∞.

Now let y ∈ Ω and n ≥ 0. By (5.20) we have

∇f(xn)
T (xn − y) = ∇f(xn)

T (xn+1 − y) +∇f(xn)
T (xn − xn+1)

≤ λ−1
n (xn − xn+1)

T (xn+1 − y) +∇f(xn)
T (xn − xn+1).

Therefore, by (5.26),

∇f(xn)
T (xn − y) ≤ ‖xn − xn+1‖(λ−1

n ‖xn+1 − y‖+ ‖∇f(xn)‖),

∇f(xn)
T (xn − y) ≤ ‖xn − xn+1‖(λ̄−1‖xn+1 − y‖+ ‖∇f(xn)‖).

(5.27)

If xnl
→ x∗ is a convergence subsequence of {xn}, then we may take limits in (5.27) as

l →∞ and complete the proof.

5.4.3 Identification of the Active Set

The gradient projection iteration has the remarkable property that if it converges to a nondegen-

erate local minimizer, then the active set An of xn is the same as A∗ after only finitely many

iterations.

Theorem 5.4.7. Assume that f is Lipschitz continuously differentiable and that the gradient

projection iterates {xn} converge to a nondegenerate local minimizer x∗. Then there is n0 such

that A(xn) = A(x∗) for all n ≥ n0.

Proof. Let λ̄ be the lower bound for the steplength. Let δ be such that the conclusions of

Lemma 5.4.1 hold for λ = λ̄ (and hence for all λ ≥ λ̄). Let n0 be such that ‖en‖ < δ for all

n ≥ n0 − 1 and the proof is complete.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

96 ITERATIVE METHODS FOR OPTIMIZATION

5.4.4 A Proof of Theorem 5.2.4

We close this section with a proof of Theorem 5.2.4. We define a nonsmooth function

F (x) = x− P(x−∇f(x)).(5.28)

Using (5.12),

F (x) = x− x(1).

We now prove Theorem 5.2.4.

Proof. Corollary 5.4.4 states that

‖x∗ − x∗(λ)‖2 ≤ λ∇f(x∗)T (x∗ − x∗(λ)).

If we set x = x∗(λ) in the definition of stationarity (5.7) we have

∇f(x∗)T (x∗ − x∗(λ)) ≤ 0

and hence x∗ = x∗(λ).
Conversely assume that x∗ = x∗(λ) for all λ > 0. This implies that x∗ is left invariant by

the gradient projection iteration and is therefore a stationary point.

By setting λ = 1 we obtain a simple consequence of Theorem 5.2.4.

Corollary 5.4.8. Let f be a Lipschitz continuously differentiable function on Ω. Then if

x∗ is stationary then F (x∗) = 0.

5.5 Superlinear Convergence

Once the gradient projection iteration has identified the active constraints, PA(x∗)x
∗ is known.

At that point the minimization problem for PIx∗ is unconstrained and, in principal, any super-

linearly convergent method for unconstrained optimization could then be used.

The problem with this idea is, of course, that determining when the active set has been

identified is possible only after the problem has been solved and an error in estimating the active

set can have devastating effects on convergence. In this section we discuss two approaches: one,

based on Newton’s method, is presented only as a local method; the other is a BFGS–Armijo

method similar to Algorithm bfgsopt.

We will begin with the development of the local theory for the projected Newton method

[19]. This analysis illustrates the important problem of estimation of the active set. As with the

unconstrained minimization problem, the possibility of negative curvature makes this method

difficult to globalize (but see §5.6 for pointers to the literature on trust region methods). Following

the approach in §4.2 we describe a projected BFGS–Armijo scheme in §5.5.3.

5.5.1 The Scaled Gradient Projection Algorithm

One might think that the theory developed in §5.4 applies equally well to iterations of the form

x+ = P(xc − λH−1
c ∇f(xc))

where Hc is spd. This is not the case as the following simple example illustrates. Let N = 2,

Li = 0, and Ui = 1 for all i. Let

f(x) = ‖x− (−1, 1/2)T ‖2/2;

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

BOUND CONSTRAINTS 97

then the only local minimizer for (5.3) is x∗ = (0, 1/2)T . Let xc = (0, 0) (not a local mini-

mizer!); then ∇f(xc) = (1,−1/2)T . If

H−1
c =

(

2 1
1 2

)

then H−1
c (and hence Hc) is spd, and

H−1
c ∇f(xc) =

(

2 1
1 2

)(

1
−1/2

)

=

(

3/2
0

)

.

Therefore, for all λ > 0,

xc(λ) = P
((

0
0

)

− λH−1
c

(

1
−1/2

))

= P
(

−3λ/2
0

)

=

(

0
0

)

= xc.

The reason that xc(λ) = xc for all λ > 0 is that the search direction for the unconstrained

problem has been rotated by H−1
c to be orthogonal to the direction of decrease in the inactive

directions for the constrained problem. Hence, unlike the constrained case, positivity of the

model Hessian is not sufficient and we must be able to estimate the active set and model the

reduced Hessian (rather than the Hessian) if we expect to improve convergence.

The solution proposed in [19] is to underestimate the inactive set in a careful way and

therefore maintain a useful spd approximate reduced Hessian. For x ∈ Ω and

0 ≤ ǫ < min(Ui − Li)/2,

we define Aǫ(x), the ǫ-active set at x, by

Aǫ(x) = {i |Ui − (x)i ≤ ǫ or (x)i − Li ≤ ǫ}.(5.29)

And let Iǫ(x), the ǫ-inactive set, be the complement of Aǫ(x).
Given 0 ≤ ǫc < min(Ui −Li)/2, xc, and an spd matrix Hc, we model the reduced Hessian

withRc, the matrix with entries

Rc = PAǫc (xc) + PIǫc (xc)HcPIǫc (xc) =







δij if i ∈ Aǫc(xc) or j ∈ Aǫc(xc),

(Hc)ij otherwise.

(5.30)

When the explicit dependence on xc, ǫc, and Hc is important we will write

R(xc, ǫc, Hc).

So, for example,

∇2
Rf(xc) = R(xc, 0,∇2f(xc)).

Given 0 < ǫ < min(Ui − Li)/2 and an spd H , define

xH,ǫ(λ) = P(x− λR(x, ǫ, H)−1∇f(x)).

It requires proof that

f(xH,ǫ(λ)) < f(x)

for λ sufficiently small. We prove more and show that the sufficient decrease condition

f(xH,ǫ(λ))− f(x) ≤ −α∇f(x)T (x− xH,ǫ(λ))(5.31)

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

98 ITERATIVE METHODS FOR OPTIMIZATION

holds for sufficiently small λ.

Lemma 5.5.1. Let x ∈ Ω, 0 < ǫ < min(Ui−Li)/2, and H be spd with smallest and largest

eigenvalues 0 < λs ≤ λl. Let∇f be Lipschitz continuous on Ω with Lipschitz constant L. Then

there is λ̄(ǫ, H) such that (5.31) holds for all

λ ≤ λ̄(ǫ, H).(5.32)

Proof. The proof will show that

∇f(x)T (x− xH,ǫ(λ)) ≥ λ−1
l ∇f(x)T (x− x(λ))

and then use the method of proof from Theorem 5.4.5. We do this by writing

∇f(x)T (x− xH,ǫ(λ)) = (PAǫ(x)∇f(x))T (x− xH,ǫ(λ)) + (PIǫ(x)∇f(x))T (x− xH,ǫ(λ))

and considering the two terms on the right side separately.

We begin by looking at (PAǫ(x)∇f(x))T (x− xH,ǫ(λ)). Note that

(xH,ǫ(λ))i = (x(λ))i for i ∈ Aǫ(x)

and, therefore,

(PAǫ(x)∇f(x))T (x− xH,ǫ(λ)) = (PAǫ(x)∇f(x))T (x− x(λ)).(5.33)

We will need to show that

(PAǫ(x)∇f(x))T (x− x(λ)) ≥ 0.(5.34)

Now assume that

λ < λ̄1 =
min(Ui − Li)

2maxx∈Ω ‖∇f(x)‖∞
.(5.35)

SinceA(x) ⊂ Aǫ(x) we can investigate the contributions ofA(x) andAǫ(x)∩I(x) separately.

If i ∈ A(x) then (5.35) implies that either (x−x(λ))i = λ(∇f(x))i or (x−x(λ))i = 0. In

either case (x−x(λ))i(∇f(x))i ≥ 0. If i ∈ Aǫ(x)∩I(x) and (x−x(λ))i �= λ(∇f(x))i, then

it must be the case that i ∈ A(x(λ)) and therefore we must still have (x−x(λ))i(∇f(x))i ≥ 0.

Hence (5.34) holds.

Now if i ∈ Iǫ(x) then, by definition,

Li + ǫ ≤ (x)i ≤ Ui − ǫ

and, hence, if

λ ≤ λ̄2 =
ǫ

maxx∈Ω ‖R(x, ǫ, H)−1∇f(x)‖∞
(5.36)

then i is in the inactive set for both xH,ǫ(λ) and x(λ). Therefore, if (5.36) holds then

(PIǫ(x)∇f(x))T (x− xH,ǫ(λ)) = λ(PIǫ(x)∇f(x))TH−1PIǫ(x)∇f(x)

≥ λ−1
l λ−1‖PIǫ(x)(x− x(λ))‖2

= λ−1
l (PIǫ(x)∇f(x))T (x− x(λ)).

(5.37)

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

BOUND CONSTRAINTS 99

Hence, using Corollary 5.4.4, (5.33), (5.34), and (5.37), we obtain

∇f(x)T (x− xH,ǫ(λ)) = (PAǫ(x)∇f(x))T (x− xH,ǫ(λ))

+(PIǫ(x)∇f(x))T (x− xH,ǫ(λ))

≥ (PAǫ(x)∇f(x))T (x− x(λ)) + λ−1
l (PIǫ(x)∇f(x))T (x− x(λ))

≥ min(1, λ−1
l)∇f(x)T (x− x(λ)) ≥ min(1,λ−1

l
)

λ ‖x− x(λ)‖2.
(5.38)

The remainder of the proof is almost identical to that for Theorem 5.4.5. The fundamental

theorem of calculus and the Lipschitz continuity assumption imply that

f(xH,ǫ(λ))− f(x) ≤ −∇f(x)T (x− xH,ǫ(λ)) + L‖x− xH,ǫ(λ)‖2.

We apply (5.38) and obtain

f(xH,ǫ(λ))− f(x) ≤ −(1− Lλmax(1, λl))∇f(x)T (x− xH,ǫ(λ)),

which implies (5.31) if 1− Lλmax(1, λl) ≥ α which will follow from

λ ≤ λ̄3 =
(1− α)

max(1, λl)L
.(5.39)

This completes the proof with λ̄ = min(λ̄1, λ̄2, λ̄3).
An algorithm based on these ideas is the scaled gradient projection algorithm. The name

comes from the scaling matrix H that is used to computed the direction. The inputs are the initial

iterate, the vectors of upper and lower bounds u and l, the relative-absolute residual tolerance

vector τ = (τr, τa), and a limit on the number of iterations. Left unstated in the algorithmic

description are the manner in which the parameter ǫ is computed and the way in which the

approximate Hessians are constructed.

Algorithm 5.5.1. sgradproj(x, f, τ, nmax)

1. For n = 1, . . . , nmax

(a) Compute f and ∇f ; test for termination using (5.18).

(b) Compute ǫ and an spd H .

(c) Solve

R(x, ǫ, Hc)d = −∇f(xc).

(d) Find the least integer m such that (5.13) holds for λ = βm.

(e) x = x(λ).

2. If n = nmax and the termination test is failed, signal failure.

If our model reduced Hessians remain uniformly positive definite, a global convergence

result completely analogous to Theorem 3.2.4 holds.

Theorem 5.5.2. Let∇f be Lipschitz continuous with Lipschitz constant L. Assume that the

matrices Hn are symmetric positive definite and that there are κ̄ and λl such that κ(Hn) ≤ κ̄,

and ‖Hn‖ ≤ λl for all n. Assume that there is ǭ > 0 such that ǭ ≤ ǫn < min(Ui − Li)/2 for

all n.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

100 ITERATIVE METHODS FOR OPTIMIZATION

Then

lim
n→∞

‖xn − xn(1)‖ = 0,(5.40)

and hence any limit point of the sequence of iterates produced by Algorithm sgradproj is a

stationary point.

In particular, if xnl
→ x∗ is any convergent subsequence of {xn}, then x∗ = x∗(1). If xn

converges to a nondegenerate local minimizer x∗, then the active set of xn is the same as that of

x∗ after finitely many iterations.

Proof. With Lemma 5.5.1 and its proof in hand, the proof follows the outline of the proof of

Theorem 5.4.6. We invite the reader to work through it in exercise 5.8.3.

5.5.2 The Projected Newton Method

The requirement in the hypothesis of Theorem 5.5.2 that the sequence {ǫn} be bounded away

from zero is used to guarantee that the steplengths λn are bounded away from zero. This is

needed because ǫ appears in the numerator in (5.36). However, once the active set has been

identified and one is near enough to a nondegenerate local minimizer for the reduced Hessians to

be spd, one is solving an unconstrained problem. Moreover, once near enough to that minimizer,

the convergence theory for Newton’s method will hold. Then one can, in principle, set ǫn = 0
and the iteration will be q-quadratically convergent. In this section we discuss an approach from

[19] for making a transition from the globally convergent regime described in Theorem 5.5.2 to

the locally convergent setting where Newton’s method converges rapidly.

If the initial iterate x0 is sufficiently near a nondegenerate local minimizer x∗ and we take

Hn = ∇2
Rf(xn)

in Algorithm sgradproj, then the resulting projected Newton method will take full steps (i.e.,

λ = 1) and, if ǫn is chosen with care, converge q-quadratically to x∗.

A specific form of the recommendation from [19], which we use here, is

ǫn = min(‖xn − xn(1)‖,min(Ui − Li)/2).(5.41)

Note that while xn is far from a stationary point and the reduced Hessian is spd, then ǫn will be

bounded away from zero and Theorem 5.5.2 will be applicable. The convergence result is like

Theorem 2.3.3 for local convergence but makes the strong assumption that Hn is spd (valid near

x∗, of course) in order to get a global result.

Algorithm projnewt is the formal description of the projected Newton algorithm. It is a

bit more than just a specific instance of Algorithm gradproj. Keep in mind that if the initial

iterate is far from x∗ and the reduced Hessian is not spd, then the line search (and hence the

entire iteration) may fail. The algorithm tests for this. This possibility of indefiniteness is the

weakness in any line search method that uses ∇2f when far from the minimizer. The inputs to

Algorithm projnewt are the same as those for Algorithm gradproj. The algorithm exploits

the fact that

R(x, ǫ,∇2
Rf(x)) = R(x, ǫ,∇2f(x))(5.42)

which follows from A(x) ⊂ Aǫ(x).

Algorithm 5.5.2. projnewt(x, f, τ, nmax)

1. For n = 1, . . . , nmax

(a) Compute f and ∇f ; test for termination using (5.18).

(b) Set ǫ = ‖x− x(1)‖.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

BOUND CONSTRAINTS 101

(c) Compute and factorR = R(x, ǫ,∇2
Rf(x)). IfR is not spd, terminate with a failure

message.

(d) SolveRd = −∇f(xc).

(e) Find the least integer m such that (5.13) holds for λ = βm.

(f) x = x(λ).

2. If n = nmax and the termination test is failed, signal failure.

Theorem 5.5.3. Let x∗ be a nondegenerate local minimizer. Then if x0 is sufficiently near

to x∗ and A(x0) = A(x∗) then the projected Newton iteration, with ǫn = ‖xn − xn(1)‖, will

converge q-quadratically to x∗.

Proof. Our assumption that the active set has been identified, i.e.,

A(xc) = A(x+) = A(x∗),

implies that

PA(xc)ec = PA(xc)e+ = 0.

Hence, we need only estimate PI(xc)e+ to prove the result.

Let

δ∗ = min
i∈I(x∗)

(|(x)i − Ui|, |(x)i − Li|) > 0.

We reduce ‖e‖ if necessary so that

‖e‖ ≤ δ∗/M,

where M is the constant in Theorem 5.4.2. We may then apply Theorem 5.4.2 to conclude that

both ǫc < δ∗ and ‖ec‖ < δ∗. Then any index i ∈ Aǫc(xc) must also be in A(xc) = A(x∗).
Hence

Aǫc(xc) = A(xc) = A(x∗).(5.43)

From this we have

R(xc, ǫc,∇2
Rf(xc)) = ∇2

Rf(xc).(5.44)

Hence, for ‖ec‖ sufficiently small the projected Newton iteration is

x+ = P(xc − (∇2
Rf(xc))

−1∇f(xc)).

By the fundamental theorem of calculus,

∇f(xc) = ∇f(x∗) +∇2f(xc)ec + E1,(5.45)

where

E1 =

∫ 1

0

(∇2f(x∗ + tec)−∇2f(xc))ec dt

and hence ‖E1‖ ≤ K1‖ec‖2 for some K1 > 0.

By the necessary conditions,

PI(x)∇f(x∗) = PI(x∗)∇f(x∗) = 0.(5.46)

By the fact that I(xc) = I(x∗), we have the equivalent statements

ec = PI(xc)ec and PA(xc)ec = 0.(5.47)

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

102 ITERATIVE METHODS FOR OPTIMIZATION

Therefore, combining (5.45), (5.46), (5.47),

PI(xc)∇f(xc) = PI(xc)∇2f(xc)PI(xc)ec + PI(xc)E1

= PA(xc)ec + PI(xc)∇2f(xc)PI(xc)ec + PI(xc)E1

= ∇2
Rf(xc)ec + PI(xc)E1.

(5.48)

So, by definition of ∇2
R,

PI(xc)(∇2
Rf(xc))

−1∇f(xc) = (∇2
Rf(xc))

−1PI(xc)∇f(xc) = ec + E2,

where ‖E2‖ ≤ K2‖ec‖2 for some K2 > 0.

Since PI(xc)Pw = PPI(xc)w for all w ∈ RN ,

PI(xc)x+ = PI(xc)P(xc − (∇2
Rf(xc))

−1∇f(xc))

= PPI(xc)(xc − (∇2
Rf(xc))

−1∇f(xc)) = P(x∗ − E2).

Therefore, ‖e+‖ ≤ K2‖ec‖2 as asserted.

5.5.3 A Projected BFGS–Armijo Algorithm

We can apply the structured quasi-Newton updating scheme from §4.3 with

C(x) = PAǫ(x)(5.49)

and update an approximation to the part of the model Hessian that acts on the ǫ inactive set. In

this way we can hope to maintain a positive definite model reduced Hessian with, say, a BFGS

update. So if our model reduced Hessian is

R = C(x) + A,

we can use (4.42) to update A (with A0 = PIǫ0 (x0), for example), as long as the ǫ active set does

not change. If one begins the iteration near a nondegenerate local minimizer with an accurate

approximation to the Hessian, then one would expect, based on Theorem 5.5.3, that the active

set would remain constant and that the iteration would converge q-superlinearly.

However, if the initial data is far from a local minimizer, the active set can change with each

iteration and the update must be designed to account for this. One way to do this is to use a

projected form of the BFGS update of A from (4.42),

A+ = PI+AcPI+ +
y#y#T

y#T
s
− PI+

(Acs)(Acs)
T

sTAcs
PI+ ,(5.50)

with

y# = PI+(∇f(x+)−∇f(xc)).

Here I+ = Iǫ+(x+). This update carries as much information as possible from the previous

model reduced Hessian while taking care about proper approximation of the active set. As in

the unconstrained case, if y#T
s ≤ 0 we can either skip the update or reinitialize A to PI .

A is not spd if any constraints are active. However, we can demand that A be symmetric

indefinite, and a generalized inverse A† exists. We have

(PA + A)−1 = PA + A†.(5.51)

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

BOUND CONSTRAINTS 103

If A(xc) = A(x+) any of the low-storage methods from Chapter 4 can be used to update A†.

In this case we have

A†
+ =

(

I − sy#T

y#T
s

)

A†
c

(

I − y#sT

y#T
s

)

+
ssT

y#T
s
.(5.52)

Since s = PI+s if A(x+) = A(xc), we could replace s by s# = PI+s in (5.52).

If the set of active constraints changes, then (5.52) is no longer true and we cannot replace

s by s#. One approach is to store A, update it as a full matrix, and refactor with each nonlinear

iteration. This is very costly for even moderately large problems. Another approach, used in

[250], is to reinitialize A = PI whenever the active set changes. The problem with this is that

in the terminal phase of the iteration, when most of the active set has been identified, too much

information is lost when A is reinitialized.

In this book we suggest an approach based on the recursive BFGS update that does not

discard information corresponding to that part of the inactive set that is not changed. The idea is

that even if the active set has changed, we can still maintain an approximate generalized inverse

with

A†
+ =

(

I − s#y#T

y#T
s#

)

PI+A†
cPI+

(

I − y#s#T

y#T
s#

)

+
s#s#T

y#T
s#

.(5.53)

The formulation we use in the MATLAB code bfgsbound is based on (5.52) and Al-

gorithm bfgsrec. Algorithm bfgsrecb stores the sequences {y#
k } and {s#

k } and uses

Algorithm bfgsrec and the projection PI+ to update A† as the iteration progresses. The data

are the same as for Algorithm bfgsrec with the addition of

PIn
= PIǫn (xn).

Note that the sequences {y#
k } and {s#

k } are changed early in the call and then the unconstrained

algorithm bfgsrec is used to do most of the work.

Algorithm 5.5.3. bfgsrecb(n, {s#
k }, {y

#
k }, A

†
0, d,PIn

)

1. d = PIn
d.

2. If n = 0, d = A†
0d; return

3. α = s#T
n−1d/y#

n−1

T
s#; d = d− αy#

n−1

4. call bfgsrec(n− 1, {s#
k}, {y#

k }, A
†
0, d)

5. d = d + (α− (y#
n−1

T
d/y#

n−1

T
s#

n−1))s
#
n−1

6. d = PIn
d.

The projected BFGS–Armijo algorithm that we used in the example problems in §5.7 is

based on Algorithm bfgsrecb. Note that we reinitialize ns to zero (i.e., reinitialize A to PI)

when y#
ns

T
s ≤ 0. We found experimentally that this was better than skipping the update.

Algorithm 5.5.4. bfgsoptb(x, f, τ, u, l)

1. ns = n = 0; pg0 = pg = x− P(x−∇f(x))

2. ǫ = min(min(Ui − Li)/2, ‖pg‖); A = Aǫ(x); I = Iǫ(x); A0 = PI

3. While ‖pg‖ ≤ τa + τr‖pg0‖

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

104 ITERATIVE METHODS FOR OPTIMIZATION

(a) d = −∇f(x); Call bfgsrecb(ns, {s#
k }, {y

#
k }, A

†
0, d,PI)

(b) d = −PA∇f(x) + d

(c) Find the least integer m such that (5.13) holds for λ = βm. Set s#
ns = PI(x(λ)−x)

(d) xp = x(λ); y = ∇f(xp)−∇f(x); x=xp; y#
ns = PI(∇f(xp)−∇f(x))

(e) If y#
ns

T
s#
n s > 0 then ns = ns + 1, else ns = 0

(f) x = xp; pg = x− P(x−∇f(x))

(g) ǫ = min(min(Ui − Li)/2, ‖pg‖); A = Aǫ(x); I = Iǫ(x)
(h) n = n + 1

Theorem 4.1.3 can be applied directly once the active set has been identified and a good

initial approximation to the reduced Hessian is available. The reader is invited to construct the

(easy!) proof in exercise 5.8.6.

Theorem 5.5.4. Let x∗ be a nondegenerate local minimizer. Then if x0 is sufficiently near

to x∗, A(x0) = A(x∗), and A0 sufficiently near to PI(x∗)∇2f(x∗)PI(x∗), then the projected

BFGS iteration, with ǫn = ‖xn − xn(1)‖, will converge q-superlinearly to x∗.

A global convergence result for this projected BFGS algorithm can be derived by combining

Theorems 5.5.2 and 4.1.9.

Theorem 5.5.5. Let ∇f be Lipschitz continuous on Ω. Assume that the matrices Hn are

constructed with the projected BFGS method (5.50) and satisfy the assumptions of Theorem 5.5.2.

Then (5.40) and the conclusions of Theorem 5.5.2 hold.

Moreover, if x∗ is a nondegenerate local minimizer such that there is n0 such thatA(xn) =
A(x∗) for all n ≥ n0, Hn0 is spd, and the set

D = {x | f(x) ≤ f(xn0) and A(x) = A(x∗)}

is convex, then the projected BFGS–Armijo algorithm converges q-superlinearly to x∗.

5.6 Other Approaches

Our simple projected-BFGS method is effective for small to medium sized problems and for very

large problems that are discretizations of infinite-dimensional problems that have the appropriate

compactness properties. The example in §4.4.2 nicely illustrates this point. For other kinds of

large problems, however, more elaborate methods are needed, and we present some pointers to

the literature in this section.

The limited memory BFGS method for unconstrained problems described in [44] and [176]

has also been extended to bound constrained problems [42], [280]. More general work on line

search methods for bound constrained problems can be found in [47], [194], and [42].

Very general theories have been developed for convergence of trust region methods for

bound constrained problems. The notion of Cauchy decrease can, for example, be replaced by

the decrease from a gradient projection step for the quadratic model [191], [259], [66]. One

could look for minima of the quadratic model along the projection path [63], [64], or attempt to

project the solution of an unconstrained model using the reduced Hessian [162].

A completely different approach can be based on interior point methods. This is an active

research area and the algorithms are not, at least at this moment, easy to implement or analyze.

This line of research began with [57] and [58]. We refer the reader to [86] and [266] for more

recent accounts of this aspect of the field and to [140] and [79] for some applications to control

problems and an account of the difficulties in infinite dimensions.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

BOUND CONSTRAINTS 105

0 10 20 30 40
10

10

10
5

10
0

10
5

Projected BFGS

Iterations

P
ro

je
c
te

d
 G

ra
d

ie
n

t
N

o
rm

0 500 1000 1500 2000
10

1

10
2

Gradient Projection

Iterations

F
u

n
c
ti
o

n
 V

a
lu

e

0 10 20 30 40
10

1

10
2

Projected BFGS

Iterations

F
u

n
c
ti
o

n
 V

a
lu

e

0 500 1000 1500 2000
10

1

10
0

10
1

Gradient Projection

Iterations

P
ro

je
c
te

d
 G

ra
d

ie
n

t
N

o
rm

Figure 5.1: Solution to Constrained Parameter ID Problem

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
Solution to bound constrained control problem

Figure 5.2: Solution to Discrete Control Problem: First Example

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

106 ITERATIVE METHODS FOR OPTIMIZATION

5.6.1 Infinite-Dimensional Problems

The results in this part of this book do not extend in a direct way to infinite-dimensional problems.

One reason for this is that often infinite-dimensional problems have countably infinitely many

constraints or even a continuum of constraints; hence Ω is not compact in the norm topology of

the Banach space in which the problem is posed and appeals to various types of weak continuity

must be made (see [122] for an example of such arguments and [122] and [10] for applications).

Moreover, identification of an active set in finitely many iterations is not always possible. A

more complete account of this issue may be found in [254], [162], [161].

These are not the only complications that can arise in infinite dimension. Even the projected

gradient method presents challenges, especially if the minima fail to be nondegenerate in the

sense of this book [94], [95]. Convergence behavior for discretized problems can be different

from that for the continuous problem [97]. Nonequivalence of norms makes convergence results

difficult to formulate and analyze for both line search [96], [254], [98] and trust region [140],

[162] methods.

The functional analytic structure of many control problems can be exploited with fast mul-

tilevel methods. Both second kind multigrid methods from [138] and variants of the Atkinson–

Brakhage method [9], [31] have been applied to fixed point formulations of parabolic boundary

control problems in one space dimension [136], [137], [153], [162], [161].

5.7 Examples

The computations in this section were done with the MATLAB code bfgsbound. In this code

the storage is limited to five pairs of vectors, and β = .1 was used in the line search.

5.7.1 Parameter ID Problem

We consider the parameter problem from §3.4.1 with bounds L = (2, 0)T and U = (20, 5)T .

The initial iterate x0 = (5, 5)T is feasible, but the global minimum of (1, 1)T is not. As one

might expect, the lower bound constraint on (x)1 is active at the optimal point x∗ ≈ (2, 1.72)T .

The termination criterion for both the gradient projection and projected BFGS algorithms was

‖u− u(1)‖ ≤ 10−6.

The gradient projection algorithm failed. While the value of the objective function was

correct, the projected gradient norm failed to converge and the active set was not identified.

The projected BFGS iteration converged in 35 iterations. One can see the local superlinear

convergence in Figure 5.1 from the plot of the projected gradient norms. The cost of the BFGS

iteration was 121 function evaluations, 36 gradients, and roughly 5.3 million floating point

operations.

5.7.2 Discrete Control Problem

We base the two control problem examples on the example from §1.6.1.

Our first example takes N = 2000, T = 1, y0 = 0,

L(y, u, t) = (y − 3)2 + .1 ∗ u2, and φ(y, u, t) = uy + t2,

with the bound constraints

.5 ≤ u ≤ 2,

and the initial iterate u0 = 2. We terminated the iteration when ‖u − u(1)‖ ≤ 10−5. In

Figure 5.2 we plot the solution of this problem. Clearly the active set is not empty for the

constrained problem.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

BOUND CONSTRAINTS 107

0 50 100
10

6

10
4

10
2

10
0

10
2

Gradient Projection

Iterations

P
ro

je
c
te

d
 G

ra
d

ie
n

t
N

o
rm

0 50 100
1.69

1.7

1.71

1.72

1.73

1.74
x 10

4 Gradient Projection

Iterations

F
u

n
c
ti
o

n
 V

a
lu

e

0 10 20 30 40
10

6

10
4

10
2

10
0

10
2

Projected BFGS

Iterations

P
ro

je
c
te

d
 G

ra
d

ie
n

t
N

o
rm

0 10 20 30 40
1.69

1.7

1.71

1.72

1.73

1.74
x 10

4 Projected BFGS

F
u

n
c
ti
o

n
 V

a
lu

e

Iterations

Figure 5.3: Constrained Discrete Control Problem I

0 2 4 6 8
10

10

10
5

10
0

10
5

Gradient Projection

Iterations

P
ro

je
c
te

d
 G

ra
d

ie
n

t
N

o
rm

0 2 4 6 8
10

2

10
4

10
6

10
8

Gradient Projection

Iterations

F
u

n
c
ti
o

n
 V

a
lu

e

0 2 4 6
10

10

10
5

10
0

10
5

Projected BFGS

Iterations

P
ro

je
c
te

d
 G

ra
d

ie
n

t
N

o
rm

0 2 4 6
10

2

10
4

10
6

10
8

Projected BFGS

F
u

n
c
ti
o

n
 V

a
lu

e

Iterations

Figure 5.4: Constrained Discrete Control Problem II

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

108 ITERATIVE METHODS FOR OPTIMIZATION

We solve the constrained problem with Algorithm gradproj and Algorithm bfgsoptb.

In Figure 5.3 we plot the function value and the norm of the projected gradient u − u(1).
The projected BFGS iteration required 71 function evaluations, 36 gradient evaluations, and

roughly 5.6 million floating point operations, while the gradient projection needed 183 function

evaluations, 92 gradient evaluations, and roughly 10.4 million floating point operations.

Our second control problem example solves the same problem as in §3.4.2 using the con-

straints

−206 ≤ u ≤ 206.

We terminate the iteration when ‖u − u(1)‖ ≤ 10−6, which is exactly the condition used in

§3.4.2 when the active set is empty. The solution to the unconstrained problem is feasible,

the active set is empty, and the initial iterate is feasible. Both the gradient projection iteration

and the projected BFGS iteration converge to the solution of the unconstrained problem. The

constraints are not active at either the initial iterate or the final solution but are active inside

the line search for the first iterate and for the second iterate. As is clear from a comparison

of Figures 5.4 and 3.3, this small change has a dramatic effect on the cost of the optimization,

eliminating the need for the scaling fixup (3.50). The gradient projection method, requiring 15

function evaluations, 8 gradient evaluations, and roughly 167 thousand floating point operations,

is far more efficient that the steepest descent iteration reported in §3.4.2. The projected BFGS

iteration was somewhat worse, needing 223 thousand operations, but only 13 function evaluations

and 7 gradient evaluations. In this example the cost of maintaining the BFGS update was not

compensated by a significantly reduced iteration count.

5.8 Exercises on Bound Constrained Optimization

5.8.1. Suppose that f is continuously differentiable, that x∗ is a nondegenerate local minimizer

for problem (5.4), and all constraints are active. Show that there is δ such that

1. if x ∈ B(δ) then x∗ = P(x−∇f(x)), and

2. the gradient projection algorithm converges in one iteration if x0 ∈ B(δ).

5.8.2. Show that if H = I then (5.31) and (5.13) are equivalent.

5.8.3. Prove Theorem 5.5.2.

5.8.4. Verify (5.42).

5.8.5. Suppose the unconstrained problem (1.2) has a solution x∗ at which the standard assump-

tions for unconstrained optimization hold. Consider the bound constrained problem (5.3)

for u and l such that x∗ ∈ Ω and A(x∗) is not empty. Is x∗ a nondegenerate local mini-

mizer? If not, how are the results in this chapter changed? You might try a computational

example to see what’s going on.

5.8.6. Prove Theorem 5.5.4.

5.8.7. Verify (5.51).

5.8.8. Verify (5.52).

5.8.9. Formulate a generalization of (4.33) for updating A†.

5.8.10. What would happen in the examples if we increased the number of (y, s) pairs that were

stored? By how much would the BFGS cost be increased?

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

Part II

Optimization of Noisy Functions

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

Chapter 6

Basic Concepts and Goals

The algorithms in Part I cannot be implemented at all if the gradient of f is not available,

either analytically or via a difference. Even if gradients are available, these algorithms are

not satisfactory if f has many local minima that are not of interest. We limit our coverage to

deterministic sampling algorithms which are generally applicable and are more or less easy to

implement. Of these algorithms, only the DIRECT algorithm [150] covered in §8.4.2 is truly

intended to be a global optimizer.

The study of optimization methods that do not require gradients is an active research area (see

[227] for a survey of some of this activity), even for smooth problems [61], [62]. Even though

some of the methods, such as the Nelder–Mead [204] and Hooke–Jeeves [145] algorithms are

classic, most of the convergence analysis in this part of the book was done after 1990.

The algorithms and theoretical results that we present in this part of the book are for objective

functions that are perturbations of simple, smooth functions. The surfaces in Figure 6.1 illustrate

this problem. The optimization landscape on the left of Figure 6.1, taken from [271], arose in

a problem in semiconductor design. The landscape on the right is a simple perturbation of a

convex quadratic.

0
5

10
15

20
25 0

5

10

15

20

25

-80

-60

-40

-20

0

20

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 6.1: Optimization Landscapes

We do not discuss algorithms that explicitly smooth the objective function or apply a filter,

such as the ones in [168] and [187]. For general problems, these must sample the variable

space in some way, for example by performing high-dimensional integration, and are too costly.

However, in some special cases these integrals can be performed analytically and impressive

results for special-purpose filtering algorithms for computational chemistry have been reported

in, for example, [196] and [277]. Nor do we discuss analog methods (see [149] for a well-known

111

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

112 ITERATIVE METHODS FOR OPTIMIZATION

example).

We also omit stochastic methods like the special-purpose methods discussed in [38] and [39],

or more radical general-purpose global optimization algorithms, such as simulated annealing

[166] (see [1] and [265] for surveys of recent work), interval methods [152], or genetic algorithms

[143], [144] (see [246] or [123] for a survey), which are random to some extent or random

search algorithms. These probabilistic methods, however, should be considered when the more

conservative algorithms such as the ones in this part of the book fail.

6.1 Problem Statement

Consider an objective function f that is a perturbation of a smooth function fs by a small function

φ
f(x) = fs(x) + φ(x).(6.1)

Small oscillations in φ could cause f to have several local minima that would trap any conven-

tional gradient-based algorithms. The perturbation φ can, in general, be random or based on the

output of an experiment, [250], and may not return the same value when called twice with the

same argument. Hence φ need not even be a function. We assume that φ is everywhere defined

and bounded to make the statement of the results simpler.

6.2 The Simplex Gradient

Most of the the algorithms in this part of the book examine a simplex of points in RN at each

iteration and then change the simplex in response. In this section we develop the tools needed to

describe and analyze these algorithms. The fundamental idea is that many sampling algorithms

require enough information to approximate the gradient by differences and that the accuracy in

that difference approximation can be used to analyze the convergence. However, for problems

of the form (6.1), one must take care not to make the difference increments so small as to attempt

to differentiate the noise.

The ideas in this section were originally used in [155] to analyze the Nelder–Mead [204]

algorithm, which we discuss in §8.1. However, the ideas can be applied to several classes of

algorithms, and we follow the development in [29] in this section.

Definition 6.2.1. A simplex S in RN is the convex hull of N + 1 points, {xj}N+1
j=1 . xj is

the jth vertex of S. We let V (or V (S)) denote the N ×N matrix of simplex directions

V (S) = (x2 − x1, x3 − x1, . . . , xN+1 − x1) = (v1, . . . , vN).

We say S is nonsingular if V is nonsingular. The simplex diameter diam(S) is

diam(S) = max
1≤i,j≤N+1

‖xi − xj‖.

We will refer to the l2 condition number κ(V) of V as the simplex condition.

We let δ(f : S) denote the vector of objective function differences

δ(f : S) = (f(x2)− f(x1), f(x3)− f(x1), . . . , f(xN+1)− f(x1))
T .

We will not use the simplex diameter directly in our estimates or algorithms. Rather we will use

two oriented lengths

σ+(S) = max
2≤j≤N+1

‖x1 − xj‖ and σ−(S) = min
2≤j≤N+1

‖x1 − xj‖.

Clearly,

σ+(S) ≤ diam(S) ≤ 2σ+(S).

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

BASIC CONCEPTS AND GOALS 113

6.2.1 Forward Difference Simplex Gradient

Definition 6.2.2. Let S be a nonsingular simplex with vertices {xj}N+1
j=1 . The simplex gradient

D(f : S) is

D(f : S) = V −T δ(f : S).

Note that the matrix of simplex directions and the vector of objective function differences

depend on which of the vertices is labeled x1. Most of the algorithms we consider in this part

of the book use a vertex ordering or sample on a regular stencil. In this way the algorithms, in

one way or another, use a simplex gradient.

This definition of simplex gradient is motivated by the first-order estimate in Lemma 6.2.1.

Lemma 6.2.1. Let S be a simplex. Let ∇f be Lipschitz continuous in a neighborhood of S
with Lipschitz constant 2Kf . Then there is K > 0, depending only on Kf such that

‖∇f(x1)−D(f : S)‖ ≤ Kκ(V)σ+(S).(6.2)

Proof. Our smoothness assumptions on f and Taylor’s theorem imply that for all 2 ≤ j ≤
N + 1,

|f(x1)− f(xj) + vT
j ∇f(x1)| ≤ Kf‖vj‖2 ≤ Kfσ+(S)

2.

Hence

‖δ(f : S)− V T∇f(x1)‖ ≤ N1/2Kfσ+(S)
2

and hence, setting K = N1/2Kf ,

‖∇f(x1)−D(f : S)‖ ≤ K‖V −T ‖σ+(S)
2.

The conclusion follows from the fact that σ+(S) ≤ ‖V ‖.
Search algorithms are not intended, of course, for smooth problems. Minimization of ob-

jective functions of the form in (6.1) is one of the applications of these methods. A first-order

estimate that takes perturbations into account is our next result.

We will need to measure the perturbations on each simplex. To that end we define for any

set T

‖φ‖T = sup
x∈T

‖φ(x)‖.

A first-order estimate also holds for the simplex gradient of an objective function that satisfies

(6.1).

Lemma 6.2.2. Let S be a nonsingular simplex. Let f satisfy (6.1) and let ∇fs be Lipschitz

continuous in a neighborhood of S with Lipschitz constant 2Ks. Then there is K > 0, depending

only on Ks, such that

‖∇fs(x1)−D(f : S)‖ ≤ Kκ(V)

(

σ+(S) +
‖φ‖S
σ+(S)

)

.(6.3)

Proof. Lemma 6.2.1 (applied to fs) implies

‖∇fs(x1)−D(fs : S)‖ ≤ KsN
1/2κ(V)σ+(S).

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

114 ITERATIVE METHODS FOR OPTIMIZATION

Now, since ‖δ(φ : S)‖ ≤ 2
√

N‖φ‖S , and σ+(S) ≤ ‖V ‖,

‖D(f : S)−D(fs : S)‖ ≤ ‖V −T ‖‖δ(f : S)− δ(fs : S)‖ = ‖V −T ‖‖δ(φ : S)‖

≤ 2N1/2‖V −T ‖‖φ‖S ≤ 2N1/2κ(V)
‖φ‖S
σ+(S)

.

This completes the proof with K = N1/2Ks + 2N1/2.

The constants K in (6.2) and (6.3) depend on S only through the Lipschitz constants of fs
and∇fs in a neighborhood of S. We will express that dependence as K = K(S) when needed.

The algorithms in this section are most profitably applied to problems of the form (6.1), and

the goal is to extract as much information as possible from the smooth part fs of f without

wasting effort in a futile attempt to minimize the noise. In order to formulate our goal for

convergence clearly, we explore the consequences of a small simplex gradient in the special (and

not uncommon) case that the amplitude of the noise is small in Lemma 6.2.3.

Lemma 6.2.3. Let f satisfy (6.1) and let∇fs be continuously differentiable in a compact set

Ω ⊂ RN . Assume that fs has a unique critical point x∗in Ω. Then there is KΩ > 0 such that

for any simplex S ⊂ Ω with vertices {xj}N+1
j=1 ,

‖x1 − x∗‖ ≤ KΩ

(

‖D(f : S)‖+ κ(V)

(

σ+(S) +
‖φ‖S
σ+(S)

))

.

Proof. The compactness of Ω and our smoothness assumptions on fs imply that there is β0

such that

‖∇fs(x)‖ ≥ β0‖x− x∗‖
for all x ∈ Ω. We apply (6.3) to obtain

‖x1 − x∗‖ ≤ β−1
0 ‖∇fs(x1)‖

≤ β−1
0

(

‖D(f : S)‖+ Kκ(V)

(

σ+(S) +
‖φ‖S
σ+(S)

))

.

This completes the proof with KΩ = β−1
0 max(1, K).

By sampling in an organized way simplex-based algorithms, some directly and some implic-

itly, attempt to drive the simplex gradient to a small value by changing the size of the simplices

over which f is sampled. The motion of the simplices and the scheme for changing the size

(especially the reduction in size) accounts for the differences in the algorithms. Theorem 6.2.4,

a direct consequence of Lemma 6.2.3, quantifies this. We will consider a sequence of uniformly

well-conditioned simplices. Such simplices are generated by several of the algorithms we will

study later.

Theorem 6.2.4. Let f satisfy (6.1) and let∇fs be continuously differentiable in a compact

set Ω ⊂ RN . Assume that fs has a unique critical point x∗ in Ω. Let Sk be a sequence of

simplices having vertices {xk
j }N+1

j=1 . Assume that there is M such that

Sk ⊂ Ω and κ(V (Sk)) ≤M for all k.

Then,

1. if

lim
k→∞

σ+(S
k) = 0, lim

k→∞

‖φ‖Sk

σ+(Sk)
= 0,

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

BASIC CONCEPTS AND GOALS 115

and lim supk→∞ ‖D(f : Sk)‖ = ǫ, for some ǫ > 0, then there is KS > 0 such that

lim sup
k→∞

‖x∗ − xk
1‖ ≤ KSǫ;

2. if, for some ǫ > 0,

lim sup
k→∞

‖φ‖Sk ≤ ǫ2, lim inf
k→∞

σ+(S
k) ≥ ǫ, and lim inf

k→∞
‖D(f : Sk)‖ ≤ ǫ,

then there is KS > 0 such that

lim sup
k→∞

‖x∗ − xk
1‖ ≤ KS(ǫ + lim sup

k→∞
σ+(S

k)).

6.2.2 Centered Difference Simplex Gradient

In this section we define the centered difference simplex gradient and prove a second-order

estimate. We will then prove two variants of Theorem 6.2.4, one to show how the role of the

noise φ differs from that in the one-sided derivative case and a second to quantify how the values

of f on the stencil can be used to terminate an iteration.

Definition 6.2.3. Let S be a nonsingular simplex in RN with vertices {xj}N+1
j=1 and simplex

directions vj = xj+1−x1. The reflected simplex R = R(S) is the simplex with vertices x1 and

rj = x1 − vj for j = 1, . . . , N.

The central simplex gradient DC(f : S) is

DC(f : S) =
D(f : S) + D(f : R)

2
=

V −T (δ(f : S)− δ(f : R))

2
.

For example, if N = 1 and x2 = x1 + h, then r2 = x1 − h. Hence

D(f : S) =
f(x1 + h)− f(x1)

h
and D(f : R) =

f(x1 − h)− f(x1)

−h
.

Therefore,

DC(f : S) = DC(f : R) =
f(x1 + h)− f(x1 − h)

2h

is the usual central difference.

Lemmas 6.2.5 and 6.2.6 are the second-order analogues of Lemmas 6.2.1 and 6.2.2.

Lemma 6.2.5. Let S be a nonsingular simplex and let ∇2f be Lipschitz continuous in a

neighborhood of S ∪R(S) with Lipschitz constant 3KC . Then there is K > 0 such that

‖∇f(x1)−DC(f : S)‖ ≤ Kκ(V)σ+(S)
2.(6.4)

Proof. The Lipschitz continuity assumption implies that for all 2 ≤ j ≤ N + 1,

∣

∣f(xj)− f(rj) + 2∇f(x1)
T vj

∣

∣ ≤ KC‖vj‖3 ≤ Kcσ+(S)
3.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

116 ITERATIVE METHODS FOR OPTIMIZATION

As in the proof of Lemma 6.2.1 we have

‖V T (δ(f : S)− δ(f : R))− V T∇f(x1)‖ ≤ N1/2KCσ+(S)
3,

and hence the result follows with K = N1/2KC .

Lemma 6.2.6. Let S be a nonsingular simplex. Let f satisfy (6.1) and let∇2fs be Lipschitz

continuous in a neighborhood of S ∪R(S) with Lipschitz constant 3KCs. Then there is K > 0,

depending only on KCs, such that

‖∇fs(x1)−DC(f : S)‖ ≤ Kκ(V)

(

σ+(S)
2 +

‖φ‖S
σ+(S)

)

.(6.5)

Proof. This proof is very similar to that of Lemma 6.2.2 and is left to the reader.

The quality of the information that can be obtained from the central simplex gradient is

higher than that of the forward. The difference in practice can be dramatic, as the examples

in §7.6 illustrate. The consequences of a small central simplex gradient follow directly from

Lemma 6.2.6.

Lemma 6.2.7. Let f satisfy (6.1) and let ∇2fs be continuously differentiable in a compact

set Ω ⊂ RN . Assume that fs has a unique critical point x∗in Ω. Then there is KΩ > 0 such

that if a simplex S and its reflection R(S) are both contained in Ω then

‖x1 − x∗‖ ≤ KΩ

(

‖DC(f : S)‖+ κ(V)

(

σ+(S)
2 +

‖φ‖S
σ+(S)

))

.

Lemma 6.2.7 is all one needs to conclude convergence from a sequence of small central

simplex gradients.

Theorem 6.2.8. Let f satisfy (6.1) and let∇2fs be continuously differentiable in a compact

set Ω ⊂ RN . Assume that fs has a unique critical point x∗ in Ω. Let Sk be a sequence of

simplices having vertices {xk
j }N+1

j=1 . Assume that there is M such that

Sk, R(Sk) ⊂ Ω and κ(V (Sk)) ≤M for all k.

Then,

1. if

lim
k→∞

σ+(S
k) = 0, lim

k→∞

‖φ‖Sk

σ+(Sk)
= 0,

and lim supk→∞ ‖DC(f : Sk)‖ = ǫ, for some ǫ > 0, then there is KS > 0 such that

lim sup
k→∞

‖x∗ − xk
1‖ ≤ KSǫ;

2. if, for some ǫ > 0,

lim sup
k→∞

‖φ‖Sk ≤ ǫ3, lim inf
k→∞

σ+(S
k) ≥ ǫ2, and lim inf

k→∞
‖DC(f : Sk)‖ ≤ ǫ2,

then there is KS > 0 such that

lim sup
k→∞

‖x∗ − xk
1‖ ≤ KS(ǫ + lim sup

k→∞
σ+(S

k))2.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

BASIC CONCEPTS AND GOALS 117

Theorem 6.2.8, like Theorem 6.2.4, motivates using a small simplex gradient as a test for

convergence. Suppose ‖φ‖∞ ≤ ǫ and an algorithm generates sequences of simplices whose

vertices are intended to approximate a minimizer of fs. We can use the results in §2.3.1 to con-

clude that simplices with σ+(S) << ǫ1/2 will result in inaccurate forward difference gradients

and those with σ+(S) << ǫ2/3 in inaccurate central difference gradients. This indicates that

the central simplex gradient will be less sensitive to noise than the forward. While this is not

usually critical in computing a difference Hessian, where the loss of accuracy may cause slow

convergence, it can cause failure of the iteration if one is computing a difference gradient.

If one wants to terminate the algorithm when the simplex gradient is small, say,≤ τ , a rough

estimate of the minimal possible value of τ is τ = O(ǫ1/2) for a forward difference simplex

gradient and τ = O(ǫ2/3) for a central simplex gradient.

Moreover, if one is using a centered difference, one has information on the values of f at

enough points to make an important qualitative judgment. In order to evaluate a central simplex

gradient f must be sampled at x1 and x1 ± vj for 1 ≤ j ≤ N . If f(x1) ≤ f(x1 ± vj) for

all 1 ≤ j ≤ N , then one can question the validity of using the simplex gradient as a descent

direction or as a measure of stationarity. We call this stencil failure. We will use stencil failure

as a termination criterion in most of the algorithms we discuss in this part of the book. Our basis

for that is a result from [29], which only requires differentiability of fs.

Theorem 6.2.9. Let S be a nonsingular simplex such that for some µ− ∈ (0, 1) and κ+ > 0,

κ(V) ≤ κ+ and xTV V Tx ≥ µ−σ+(S)
2‖x‖2 for all x.(6.6)

Let f satisfy (6.1) and let ∇fs be Lipschitz continuously differentiable in a ball B of radius

2σ+(S) about x1. Assume that

f(x1) < min
j
{f(x1 ± vj)}.(6.7)

Then, if K is the constant from Lemma 6.2.2,

‖∇fs(x1)‖ ≤ 8µ−1
− Kκ+

(

σ+(S) +
‖φ‖B
σ+(S)

)

.(6.8)

Proof. Let R(S), the reflected simplex, have vertices x1 and {rj}Nj=1. (6.7) implies that

each component of δ(f : S) and δ(f : R) is positive. Now since

V = V (S) = −V (R),

we must have
0 < δ(f : S)T δ(f : R)

= (V TV −T δ(f : S))T (V (R)TV (R)−T δ(f : R))

= −D(f : S)TV V TD(f : R).

(6.9)

We apply Lemma 6.2.2 to both D(f : S) and D(f : R) to obtain

D(f : S) = ∇fs(x1) + E1 and D(f : R) = ∇fs(x1) + E2,

where, since κ(V) = κ(V (R)) ≤ κ+,

‖Ek‖ ≤ Kκ+

(

σ+(S) +
‖φ‖B
σ+(S)

)

.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

118 ITERATIVE METHODS FOR OPTIMIZATION

Since ‖V ‖ ≤ 2σ+(S) we have by (6.9)

∇fs(x1)
TV V T∇fs(x1) ≤ 4σ+(S)

2‖∇fs(x1)‖(‖E1‖+ ‖E2‖)

+4σ+(S)
2‖E1‖‖E2‖.

(6.10)

The assumptions of the lemma give a lower estimate of the left side of (6.10),

wTV V Tw ≥ µ−σ+(S)
2‖w‖2.

Hence,

‖∇2f(x1)‖ ≤ b‖∇2f(x1)‖+ c,

where, using (6.10),

b = 8µ−1
1 Ksκ+

(

σ+(S) +
‖φ‖B
σ+(S)

)

and

c = 4µ−1
− (Ksκ+)

2

(

σ+(S) +
‖φ‖B
σ+(S)

)2

=
µ−

16
B2.

So b2 − 4c = b2(1− µ−/4) and the quadratic formula then implies that

‖∇2f(x1)‖ ≤
b +
√

b2 − 4c

2
= b

1 +
√

1− µ−/4

2
≤ b

as asserted.

6.3 Examples

Our examples are selected to represent a variety of problems that can be attacked by the methods

in this part of the book and, at the same time, are easy for the reader to implement. Many of the

problems to which these methods have been applied have complex objective functions and have

been solved as team efforts [107], [250], [121], [70], [69]. In many such cases the objective

function is not even available as a single subroutine as the optimizer, simulator, and design tool

are one package. Hence, the examples we present in this part of the book are even more artificial

than the ones in the first part. The cost of an evaluation of f is much less in these examples than

it is in practice.

6.3.1 Weber’s Problem

Our discussion of this problem is based on [182]. Weber’s problem is to locate a central facility

(a warehouse or factory, for example) so that the total cost associated with distribution to several

demand centers is minimized. The model is that the cost is proportional to the distance from the

facility. The proportionality constant may be positive reflecting transportation costs or negative

reflecting environmental concerns.

If the locations of the demand centers are {zi} ⊂ R2 and the corresponding weights are

{wi}, then the objective function is

f(x) =
∑

i

wi‖x− zi‖ =
∑

i

wi

√

[(x)1 − (zi)1]2 + [(x)2 − (zi)2]2.(6.11)

We will assume that
∑

i

wi > 0,

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

BASIC CONCEPTS AND GOALS 119

so that a global optimum exists. If
∑

i wi < 0 then inf f = −∞ and there is no global optimum.

Weber’s problem is not differentiable at x = zi because the square root function is not

differentiable at 0. A gradient-based algorithm, applied in a naive way, will have difficulty with

this problem. There are special-purpose algorithms (see [182] for a survey) for Weber’s problem,

especially if all the weights are positive. Our main interest is in the case where at least one weight

is negative. In that case there may be multiple local minima.

We will consider two examples. The first, and simplest, is from [182]. This example has

three demand centers with

w = (2, 4,−5)T and (z1, z2, z3) =

(

2 90 43
42 11 88

)

.

The global minimum is at x∗ = (90, 11)T , at which the gradient is not defined. The complex

contours near the minimizer in Figure 6.2 illustrate the difficulty of the problem.

−200 −150 −100 −50 0 50 100 150 200
−200

−150

−100

−50

0

50

100

150

200

Figure 6.2: Contour/Surface for Weber’s Function: First Example

Our second example has two local minimizers, at (−10,−10) and (25, 30) with the global

minimizer at (25, 30). There are four demand centers with

w = (2,−4, 2, 1)T and (z1, z2, z3, z4) =

(

−10 0 5 25
−10 0 8 30

)

.

See Figure 6.3.

Our third example adds the oscillatory function

φ(x) = sin(.0035xTx) + 5 sin(.003(x− y)T (x− y))

to the second example, where y = (−20, 0)T . This complicates the optimization landscape

significantly, as the surface and contour plots in Figure 6.4 show.

6.3.2 Perturbed Convex Quadratics

The sum of a simple convex quadratic and low-amplitude high-frequency perturbation will serve

as a model problem for all the algorithms in this section. For example, the function graphed on

the right in Figure 6.1,

f(x) = 2x2(1 + .75 cos(80x)/12) + cos(100x)2/24

is one of the examples in [120]. Our general form will be

f(x) = (x− ξ0)
TH(x− ξ0)(1 + a1 cos(b

T
1 (x− ξ1) + c1(x− ξ1)

T (x− ξ1)))

+a2(1 + cos(bT2 (x− ξ2)
T + c2(x− ξ2)

T (x− ξ2))) + a3|rand|,
(6.12)

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

120 ITERATIVE METHODS FOR OPTIMIZATION

−60 −40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

Figure 6.3: Contour/Surface for Weber’s Function: Second Example

−60 −40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

Figure 6.4: Contour/Surface plots for Weber’s Function: Third Example

where {ξj}, {aj}, {bj}, {cj} are given and rand is a random number generator. f has been

designed so that the minimum value is O(a1+a2+a3). The unperturbed case a1 = a2 = a3 = 0
is also of interest for many of the algorithms in this part of the book.

6.3.3 Lennard–Jones Problem

The objective function is a simple model of the potential energy in a molecule of identical atoms.

Assume that there are M atoms and that ξi ∈ R3 is the position of the ith atom. Letting

dij = ‖ξi − ξj‖

and

x = (ξT1 , . . . , ξTM)T ∈ RN

where N = 3M , we have that the Lennard–Jones energy function is

f(x) =
∑M

i=1

∑i−1

j=1

(

d−12
ij − 2d−6

ij

)

.(6.13)

f has many local minimizers (O(eM
2

) is one conjecture [142]) and the values at the mini-

mizers are close. Hence, the Lennard–Jones function does not conform to the noisy perturbation

of a smooth function paradigm. The reader is asked in some of the exercises to see how the

methods perform.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

BASIC CONCEPTS AND GOALS 121

6.4 Exercises on Basic Concepts

6.4.1. Show that if wi > 0 for all i then Weber’s problem has a unique local minimum.

6.4.2. Prove Lemma 6.2.6.

6.4.3. Try to minimize the Lennard–Jones functional using some of the algorithms from the first

part of the book. Vary the initial iterate and M . Compare your best results with those in

[142], [40], and [210].

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

122 ITERATIVE METHODS FOR OPTIMIZATION

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

Chapter 7

Implicit Filtering

7.1 Description and Analysis of Implicit Filtering

The implicit filtering algorithm was originally formulated in [270], [251], and [271], as a

difference-gradient implementation of the gradient projection algorithm [18] in which the dif-

ference increment is reduced in size as the iteration progresses. A different formulation for

unconstrained problems with certain convexity properties was introduced at about the same time

in [279]. From the point of view of this book, the simplex gradient is used in a direct way. The

algorithmic description and analysis in this chapter uses the results from §6.2 directly. We will

focus on unconstrained problems and derive the convergence results that implicit filtering shares

with the search algorithms in Chapter 8.

Implicit filtering, by using an approximate gradient directly, offers the possibility of im-

proved performance with quasi-Newton methods and can be easily applied to bound constrained

problems. We explore these two possibilities in §§7.2 and 7.4.

In its simplest unconstrained form, implicit filtering is the steepest descent algorithm with

difference gradients, where the difference increment varies as the iteration progresses. Because

the gradient is only an approximation, the computed steepest descent direction may fail to be a

descent direction and the line search may fail. In this event, the difference increment is reduced.

For a given x ∈ RN and h > 0 we let the simplex S(x, h) be the right simplex from x with

edges having length h. Hence the vertices are x and x + hvi for 1 ≤ i ≤ N with V = I . So

κ(V) = 1. The performance of implicit filtering with a central difference gradient is far superior

to that with the forward difference gradient [120], [187], [250]. We will, therefore, use centered

differences in the discussion. We illustrate the performance of forward difference gradients in

§7.6.

We set

∇hf(x) = DC(f : S(x, h)).

We use a simple Armijo [7] line search and demand that the sufficient decrease condition

f(x− λ∇hf(x))− f(x) < −αλ‖∇hf(x)‖2(7.1)

holds (compare with (3.4)) for some α > 0.

Our central difference steepest descent algorithm fdsteep terminates when

‖∇hf(x)‖ ≤ τh(7.2)

for some τ > 0, when more than pmax iterations have been taken, after a stencil failure, or

when the line search fails by taking more than amax backtracks. Even the failures of fdsteep

123

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

124 ITERATIVE METHODS FOR OPTIMIZATION

can be used to advantage by triggering a reduction in h. The line search parameters α, β and

the parameter τ in the termination criterion (7.2) do not affect the convergence analysis that we

present here but can affect performance.

Algorithm 7.1.1. fdsteep(x, f, pmax, τ, h, amax)

1. For p = 1, . . . , pmax

(a) Compute f and ∇hf ; terminate if (6.7) or (7.2) hold.

(b) Find the least integer 0 ≤ m ≤ amax such that (7.1) holds for λ = βm. If no such

m exists, terminate.

(c) x = x− λ∇hf(x).

Algorithm fdsteep will terminate after finitely many iterations because of the limits on

the number of iterations and the number of backtracks. If the set {x | f(x) ≤ f(x0)} is bounded

then the iterations will remain in that set. Implicit filtering calls fdsteep repeatedly, reducing

h after each termination of fdsteep. Aside from the data needed by fdsteep, one must

provide a sequence of difference increments, called scales in [120].

Algorithm 7.1.2. imfilter1(x, f, pmax, τ, {hk}, amax)

1. For k = 0, . . .
Call fdsteep(x, f, pmax, τ, hk, amax)

The convergence result follows from the second-order estimate, (6.5), the consequences of a

stencil failure, Theorem 6.2.9, and the equalities hk = σ+(S
k) and κ(V k) = 1. A similar result

for forward differences would follow from (6.3).

Theorem 7.1.1. Let f satisfy (6.1) and let ∇fs be Lipschitz continuous. Let hk → 0, {xk}
be the implicit filtering sequence, and Sk = S(x, hk). Assume that (7.1) holds (i.e., there is no

line search failure) for all but finitely many k. Then if

lim
k→∞

(hk + h−1
k ‖φ‖Sk) = 0(7.3)

then any limit point of the sequence {xk} is a critical point of fs.

Proof. If either (7.1) or (6.7) hold for all but finitely many k then, as is standard,

∇hk
f(xk) = DC(f : Sk)→ 0.

Hence, using (7.3) and Lemma 6.2.2,

∇fs(xk)→ 0,

as asserted.

7.2 Quasi-Newton Methods and Implicit Filtering

The unique feature of implicit filtering is the possibility, for problems that are sufficiently smooth

near a minimizer, to obtain faster convergence in the terminal phase of the iteration by using a

quasi-Newton update of a model Hessian. This idea was first proposed in [250] and [120].

We begin with a quasi-Newton form of Algorithm fdsteep. In this algorithm a quasi-

Newton approximation to the Hessian is maintained and the line search is based on the quasi-

Newton direction

d = −H−1∇hf(x)

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

IMPLICIT FILTERING 125

terminating when either

f(x + λd)− f(x) < αλ∇hf(x)T d(7.4)

or too many stepsize reductions have been taken. With the application to implicit filtering in

mind, Algorithm fdquasi replaces the quasi-Newton H with the identity matrix when the line

search fails.

Algorithm 7.2.1. fdquasi(x, f, H, pmax, τ, h, amax)

1. For p = 1, . . . , pmax

(a) Compute f , ∇hf and d = −H−1∇hf ; terminate if (7.2) holds.

(b) Find the least integer 0 ≤ m ≤ amax such that (7.4) holds for λ = βm.

(c) x = x + λd.

(d) Update H with a quasi-Newton formula.

In the context of implicit filtering, where N is small, the full quasi-Newton Hessian or its

inverse is maintained throughout the iteration. Our MATLAB codes store the model Hessian.

Algorithm 7.2.2. imfilter2(x, f, pmax, τ, {hk}, amax)

1. H = I .

2. For k = 0, . . .
Call fdquasi(x, f, H, pmax, τ, hk, amax).

In [250] and [120] the SR1 method was used because it performed somewhat better than the

BFGS method in the context of a particular application. The examples in §7.6 show the opposite

effect, and both methods have been successfully used in practice.

7.3 Implementation Considerations

Implicit filtering has several iterative parameters and requires some algorithmic decisions in its

implementation. The parameters pmax, amax, and β play the same role that they do in any line

search algorithm. In our MATLAB code imfil.m, which we used for all the computations

reported in this book, we set pmax = 200 ∗ n, amax = 10, and β = 1/2.

The performance of implicit filtering can be sensitive to the value of τ [250], with small values

of τ leading to stagnation and values of τ that are too large leading to premature termination of

fdquasi. Using stencil failure as a termination criterion reduces the sensitivity to small values

of τ and we use τ = .01 in the computations.

The sequence of scales is at best a guess at the level of the noise in the problem. If several of

the scales are smaller than the level of the noise, the line search will fail immediately and work

at these scales will be wasted. Our implementation attempts to detect this by terminating the

optimization if the x is unchanged for three consecutive scales.

The simplex gradient may be a very poor approximation to the gradient. In some such cases

the function evaluation at a trial point may fail to return a value [250] and one must either trap

this failure and return an artificially large value, impose bound constraints, or impose a limit on

the size of the step. In our computations we take the latter approach and limit the stepsize to

10h by setting

d =















−H−1∇hf(x) if ‖H−1∇hf(x)‖ ≤ 10h,

−10hH−1∇hf(x)

‖H−1∇hf(x)‖ otherwise.
(7.5)

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

126 ITERATIVE METHODS FOR OPTIMIZATION

The choice of a quasi-Newton method to use with implicit filtering is an area of active research

[56], [55]. Both SR1 and BFGS have been used, with SR1 performing modestly better in some

applications with bound constraints [270], [251], [271], [250], [55]. The implementation of

implicit filtering in the collection of MATLAB codes imfil.m uses BFGS as the default but

has SR1 as an option. We found BFGS with central differences to be consistently better in the

preparation of the (unconstrained!) computational examples in this book.

7.4 Implicit Filtering for Bound Constrained Problems

Implicit filtering was initially designed as an algorithm for bound constrained problems [250],

[120]. The bound constrained version we present here is simply a projected quasi-Newton

algorithm like the one presented in §5.5.3. There are other approaches to the implementation

and no best approach has emerged. We refer the reader to [120] and [55] for discussions of the

options.

We begin with scaling and the difference gradient. Central differences perform better, but

we do not evaluate f outside of the feasible region. Hence, if a point on the centered difference

stencil is outside of the feasible region, we use a one-sided difference in that direction. In order

to guarantee that at least one point in each direction is feasible, we scale the variables so that

Li = 0, Ui = 1, and h0 ≤ 1/2.

The sufficient decrease condition is (compare with (5.31))

f(x(λ))− f(x) ≤ α∇hf(x)T (x(λ)− x),(7.6)

where

x(λ) = P(x− λ∇hf(x)).

One could terminate the iteration at a given scale when the analogue to (7.2)

‖x− x(1)‖ ≤ τh(7.7)

holds or when

f(xc) < f(x± rj) for all x± rj feasible,(7.8)

which is the analogue to (6.7) for bound constrained problems.

Quasi-Newton methods for bound constraints can be constructed more simply for small

problems, like the ones to which implicit filtering is applied, where it is practical to store the

model of the inverse of the reduced Hessian as a full matrix. By using full matrix storage, the

complexity of bfgsrecb is avoided. One such alternative [53], [54], [55] to the updates in

§5.5.3 is to update the complete reduced Hessian and then correct it with information from the

new active set. This results in a two-stage update in which a model for the inverse of reduced

Hessian is updated with (4.5) to obtain

R−1
1/2 =

(

I − syT

yT s

)

R−1
c

(

I − ysT

yT s

)

+
ssT

yT s
.(7.9)

Then the new reduced Hessian is computed using the active set information at the new point

R−1
+ = PA+ + PI+R−1

1/2PI+ .(7.10)

It is easy to show that Theorems 5.5.4 and 5.5.5 hold for this form of the update.

A FORTRAN implementation [119] of implicit filtering for bound constrained problems is

in the software collection. In the original version of that implementation a projected SR1 update

was used and a Cholesky factorization of the matrix R+ was performed to verify positivity. The

model Hessian was reinitialized to the identity whenever the scale or the active set changed.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

IMPLICIT FILTERING 127

7.5 Restarting and Minima at All Scales

No algorithm in this part of the book is guaranteed to find even a local minimum, much less

a global one. One approach to improving the robustness of these algorithms is to restart the

iteration after one sweep through the scales. A point x that is not changed after a call to

Algorithm imfilter1 (or imfilter2 or the bound constrained form of either) is called a

minimum at all scales.

If f satisfies (6.1), fs has a unique critical point that is also a local minimum that satisfies the

standard assumptions (and hence is a global minimum for fs), and certain (strong!) technical

assumptions on the decay of φ near the minimum hold, then [120] a minimum at all scales is near

that global minimum of fs. In the unconstrained case this statement follows from the termination

criteria ((7.2) and (6.7)) for implicit filtering, Lemma 6.2.3 (or 6.2.7) and, if central differences

are used, Theorem 6.2.9. The analysis in [120] of the bound constrained case is more technical.

In practice, restarts are expensive and need not be done for most problems. However, restarts

have been reported to make a difference in some cases [178]. It is also comforting to know that

one has a minimum at all scales, and the author of this book recommends testing potential optima

with restarts before one uses the results in practice but not at the state where one is tuning the

optimizer or doing preliminary evaluation of the results.

7.6 Examples

Many of these examples are from [56]. For all the examples we report results with and without a

quasi-Newton Hessian. We report results for both forward and central differences. In the figures

the solid line corresponds to the BFGS Hessian, the dashed-dotted line to the SR1 Hessian, and

the dashed line to H = I , the steepest descent form of implicit filtering.

Unlike the smooth problems considered earlier, where convergence of the gradient to zero

was supported by theory, convergence of the simplex gradient to zero is limited by the noise in

the objective. We illustrate performance by plotting both the objective function value and the

norm of the simplex gradient. From these examples it is clear that the the graphs of function

value against the count of function evaluations is a better indicator of the performance of the

optimizer.

In all cases we terminated the iteration when either fdquasi had been called for each scale

or a budget of function evaluations had been exhausted. Once the code completes an iteration

and the number of function evaluations is greater than or equal to the budget, the iteration is

terminated.

The examples include both smooth and nonsmooth problems, with and without noise. A

serious problem for some algorithms of this type is their failure on very easy problems. For

most of the algorithms covered in this part of the book, we will present examples that illustrate

performance on this collection of problems.

7.6.1 Weber’s Problem

The three Weber’s function examples all have minimizers at points at which the objective is

nondifferentiable. For the computations we used an initial iterate of (10,−10)T , a budget of

200 function evaluations, and {10× 2−n}8n=−2 as the sequence of scales.

In each of the examples the performance of the two quasi-Newton methods was virtually

identical and far better than that without a quasi-Newton model Hessian. Forward and central

differences for the first two problems (Figures 7.1 and 7.2) perform almost equally well, with

forward having a slight edge. In Figure 7.3, however, the forward difference version of implicit

filtering finds a local minimum different from the global minimum that is located by central

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

128 ITERATIVE METHODS FOR OPTIMIZATION

0 50 100 150 200 250
10

1

10
0

10
1

s
im

p
le

x
 g

ra
d
ie

n
t
n
o
rm

function evaluations

Central Differences

0 50 100 150 200 250
300

250

200

150

100

50
Central Differences

fu
n
c
ti
o
n
 v

a
lu

e

function evaluations

0 50 100 150 200 250
10

3

10
2

10
1

10
0

10
1

s
im

p
le

x
 g

ra
d
ie

n
t
n
o
rm

function evaluations

Forward Differences

0 50 100 150 200 250
300

250

200

150

100

50
Forward Differences

fu
n
c
ti
o
n
 v

a
lu

e

function evaluations

Figure 7.1: First Weber Example

0 50 100 150 200 250
10

2

10
1

10
0

10
1

s
im

p
le

x
 g

ra
d
ie

n
t
n
o
rm

function evaluations

Central Differences

0 50 100 150 200 250
0

10

20

30

40

50

60

70
Central Differences

fu
n
c
ti
o
n
 v

a
lu

e

function evaluations

0 50 100 150 200 250
10

2

10
1

10
0

10
1

s
im

p
le

x
 g

ra
d
ie

n
t
n
o
rm

function evaluations

Forward Differences

0 50 100 150 200 250
0

10

20

30

40

50

60

70
Forward Differences

fu
n
c
ti
o
n
 v

a
lu

e

function evaluations

Figure 7.2: Second Weber Example

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

IMPLICIT FILTERING 129

0 50 100 150 200
10

3

10
2

10
1

10
0

10
1

s
im

p
le

x
 g

ra
d
ie

n
t
n
o
rm

function evaluations

Central Differences

0 50 100 150 200
10

20

30

40

50

60

70
Central Differences

fu
n
c
ti
o
n
 v

a
lu

e

function evaluations

0 50 100 150 200 250
10

6

10
4

10
2

10
0

10
2

s
im

p
le

x
 g

ra
d
ie

n
t
n
o
rm

function evaluations

Forward Differences

0 50 100 150 200 250
10

20

30

40

50

60

70
Forward Differences

fu
n
c
ti
o
n
 v

a
lu

e

function evaluations

Figure 7.3: Third Weber Example

differencing. This, of course, is consistent with the theory, which does not claim that implicit

filtering is a global optimizer.

7.6.2 Parameter ID

We consider the parameter ID example from §1.6.2 using the data from §2.6.1. Recall that in this

example we use as data the values of the exact solution for c = k = 1 at the points ti = i/100
for 1 ≤ i ≤ 100. The initial iterate was (5, 5)T ; the sequence of scales was {2−k}12k=1. Implicit

filtering, like the globally convergent algorithms in the first part of the book, is fairly insensitive

to the choice of initial iterate, as we will see when we revisit this example in §8.5.2.

We report on both low (rtol = atol = 10−3, Figure 7.4) and high (rtol = atol = 10−6,

Figure 7.5) accuracy computations. Note that after 200 function evaluations the function re-

duction from the central difference BFGS form of implicit filtering flattens out in both plots at

roughly the expected level of O(tol) while the other methods have not. This effect, which is

not uncommon, is one reason for our preference for the BFGS central difference form of the

algorithm.

7.6.3 Convex Quadratics

The performance of the central difference BFGS form of implicit filtering should be very good,

since (see exercises 7.7.1 and 7.7.2) the difference approximation of the gradient is exact. We

would expect that good performance to persist in the perturbed case. We illustrate this with results

on two problems, both given by (6.12). One is an unperturbed problem (aj = bj = cj = 0
for all j) where H is a diagonal matrix with (H)ii = 1/(2i) for 1 ≤ i ≤ N . The other is a

perturbed problem with

ξ0 = (sin(1), sin(2), . . . , sin(N))T , ξ1 = 0, ξ2 = (1, . . . , 1)T ,

a1 = a2 = .01, a3 = 0, b1 = (1, . . . , 1)T , b2 = 0, and c1 = c2 = 10π.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

130 ITERATIVE METHODS FOR OPTIMIZATION

0 50 100 150 200 250
10

4

10
2

10
0

10
2

10
4

s
im

p
le

x
 g

ra
d
ie

n
t
n
o
rm

function evaluations

Central Differences

0 50 100 150 200 250
10

4

10
2

10
0

10
2

Central Differences

fu
n
c
ti
o
n
 v

a
lu

e

function evaluations

0 50 100 150 200 250
10

10

10
5

10
0

10
5

s
im

p
le

x
 g

ra
d
ie

n
t
n
o
rm

function evaluations

Forward Differences

0 50 100 150 200 250
10

4

10
2

10
0

10
2

Forward Differences

fu
n
c
ti
o
n
 v

a
lu

e

function evaluations

Figure 7.4: Parameter ID, tol = 10−3

0 50 100 150 200 250
10

2

10
0

10
2

10
4

s
im

p
le

x
 g

ra
d
ie

n
t
n
o
rm

function evaluations

Central Differences

0 50 100 150 200 250
10

6

10
4

10
2

10
0

10
2

Central Differences

fu
n
c
ti
o
n
 v

a
lu

e

function evaluations

0 50 100 150 200 250
10

10

10
5

10
0

10
5

s
im

p
le

x
 g

ra
d
ie

n
t
n
o
rm

function evaluations

Forward Differences

0 50 100 150 200 250
10

4

10
2

10
0

10
2

Forward Differences

fu
n
c
ti
o
n
 v

a
lu

e

function evaluations

Figure 7.5: Parameter ID, tol = 10−6

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

IMPLICIT FILTERING 131

0 100 200 300 400
10

20

10
10

10
0

10
10

s
im

p
le

x
 g

ra
d
ie

n
t
n
o
rm

function evaluations

Central Differences

0 100 200 300 400
10

40

10
20

10
0

10
20

Central Differences

fu
n
c
ti
o
n
 v

a
lu

e

function evaluations

0 200 400 600
10

20

10
10

10
0

10
10

s
im

p
le

x
 g

ra
d
ie

n
t
n
o
rm

function evaluations

Forward Differences

0 200 400 600
10

10

10
5

10
0

10
5

Forward Differences
fu

n
c
ti
o
n
 v

a
lu

e

function evaluations

Figure 7.6: Unperturbed Quadratic, N = 4

0 1000 2000 3000 4000
10

6

10
4

10
2

10
0

10
2

s
im

p
le

x
 g

ra
d
ie

n
t
n
o
rm

function evaluations

Central Differences

0 1000 2000 3000 4000
10

10

10
5

10
0

10
5

Central Differences

fu
n
c
ti
o
n
 v

a
lu

e

function evaluations

0 1000 2000 3000 4000
10

10

10
5

10
0

10
5

s
im

p
le

x
 g

ra
d
ie

n
t
n
o
rm

function evaluations

Forward Differences

0 1000 2000 3000 4000
10

10

10
5

10
0

10
5

Forward Differences

fu
n
c
ti
o
n
 v

a
lu

e

function evaluations

Figure 7.7: Unperturbed Quadratic, N = 32

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

132 ITERATIVE METHODS FOR OPTIMIZATION

0 1000 2000 3000 4000
10

4

10
2

10
0

10
2

s
im

p
le

x
 g

ra
d
ie

n
t
n
o
rm

function evaluations

Central Differences

0 1000 2000 3000 4000
10

4

10
2

10
0

10
2

Central Differences

fu
n
c
ti
o
n
 v

a
lu

e

function evaluations

0 100 200 300 400
10

6

10
4

10
2

10
0

10
2

s
im

p
le

x
 g

ra
d
ie

n
t
n
o
rm

function evaluations

Forward Differences

0 100 200 300 400
10

4

10
2

10
0

10
2

Forward Differences

fu
n
c
ti
o
n
 v

a
lu

e

function evaluations

Figure 7.8: Perturbed Quadratic, N = 4

0 1000 2000 3000 4000
10

2

10
1

10
0

10
1

10
2

s
im

p
le

x
 g

ra
d
ie

n
t
n
o
rm

function evaluations

Central Differences

0 1000 2000 3000 4000
10

4

10
2

10
0

10
2

10
4

Central Differences

fu
n
c
ti
o
n
 v

a
lu

e

function evaluations

0 1000 2000 3000 4000
10

1

10
0

10
1

10
2

s
im

p
le

x
 g

ra
d
ie

n
t
n
o
rm

function evaluations

Forward Differences

0 1000 2000 3000 4000
10

1

10
0

10
1

10
2

10
3

Forward Differences

fu
n
c
ti
o
n
 v

a
lu

e

function evaluations

Figure 7.9: Perturbed Quadratic, N = 32

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

IMPLICIT FILTERING 133

If a3 �= 0 then f may not return the same value when called with the same argument twice.

The reader is invited to explore the consequences of this in exercise 7.7.3.

The performance of the algorithms in this part of the book sometimes depends on the size of

the problem much more strongly than the Newton-based methods in Part I. In the case of implicit

filtering, that dependence is mostly a result of the cost of evaluation of the simplex gradient. To

illustrate this we consider our quadratic problems for N = 4 (Figures 7.6 and 7.8) and N = 32
(Figures 7.7 and 7.9).

For all the quadratic examples the initial iterate was

x0 =
(1, 2, . . . , N)T

10N

and the sequence of scales was {2−k}10k=0.

7.7 Exercises on Implicit Filtering

7.7.1. Let S be a nonsingular simplex. Show that DC(f : S) = f(x1) if f is a quadratic

function.

7.7.2. How would you expect forward and centered difference implicit filtering to perform when

applied to f(x) = xTx? Would the performance be independent of dimension? Test your

expectation with numerical experimentation.

7.7.3. Use implicit filtering to minimize the perturbed quadratic function with nonzero values of

a3.

7.7.4. Try to solve the Lennard–Jones problem with implicit filtering for various values of M
and various initial iterates. Compare your best results with those in [142], [40], and [210].

Are you doing any better than you did in exercise 6.4.3?

7.7.5. Show that Theorems 5.5.4 and 5.5.5 hold if the projected BFGS update is implemented us-

ing (7.9) and (7.10). How would these formulas affect an implementation likebfgsrecb,

which is designed for problems in which full matrices cannot be stored?

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

134 ITERATIVE METHODS FOR OPTIMIZATION

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

Chapter 8

Direct Search Algorithms

In this chapter we discuss the class of direct search algorithms. These methods use values of

f taken from a set of sample points and use that information to continue the sampling. Unlike

implicit filtering, these methods do not explicitly use approximate gradient information. We will

focus on three such methods: the Nelder–Mead simplex algorithm [204], the multidirectional

search method [85], [261], [262], and the Hooke–Jeeves algorithm [145]. Each of these can be

analyzed using the simplex gradient techniques from Chapter 6. We will not discuss the very

general results based on the taxonomies of direct search methods from [263], [174], and [179] or

the recent research on the application of these methods to bound [173] or linear [175] constraints.

We include at the end of this chapter a short discussion of methods based on surrogate models

and a brief account of a very different search method, the DIRECT algorithm [150]. These two

final topics do not lead to algorithms that are easy to implement, and our discussions will be

very general with pointers to the literature.

8.1 The Nelder–Mead Algorithm

8.1.1 Description and Implementation

The Nelder–Mead [204] simplex algorithm maintains a simplex S of approximations to an

optimal point. In this algorithm the vertices {xj}N+1
j=1 are sorted according to the objective

function values

f(x1) ≤ f(x2) ≤ · · · ≤ f(xN+1).(8.1)

x1 is called the best vertex and xN+1 the worst. If several vertices have the same objective

value as x1, the best vertex is not uniquely defined, but this ambiguity has little effect on the

performance of the algorithm.

The algorithm attempts to replace the worst vertex xN+1 with a new point of the form

x(µ) = (1 + µ)x− µxN+1,(8.2)

where x is the centroid of the convex hull of {xi}Ni=1

x =
1

N

∑N

i=1
xi.(8.3)

The value of µ is selected from a sequence

−1 < µic < 0 < µoc < µr < µe

135

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

136 ITERATIVE METHODS FOR OPTIMIZATION

by rules that we formally describe in Algorithm nelder. Our formulation of the algorithm

allows for termination if either f(xN+1)−f(x1) is sufficiently small or a user-specified number

of function evaluations has been expended.

Algorithm 8.1.1. nelder(S, f, τ, kmax)

1. Evaluate f at the vertices of S and sort the vertices of S so that (8.1) holds.

2. Set fcount = N + 1.

3. While f(xN+1)− f(x1) > τ

(a) Compute x, (8.3), x(µr), (8.2), and fr = f(x(µr)). fcount = fcount + 1.

(b) Reflect: If fcount = kmax then exit. If f(x1) ≤ fr < f(xN), replace xN+1 with

x(µr) and go to step 3g.

(c) Expand: If fcount = kmax then exit. If fr < f(x1) then compute fe = f(x(µe)).
fcount = fcount + 1. If fe < fr, replace xN+1 with x(µe); otherwise replace

xN+1 with x(µr). Go to to step 3g.

(d) Outside Contraction: If fcount = kmax then exit. If f(xN) ≤ fr < f(xN+1),
compute fc = f(x(µoc)). fcount = fcount + 1. If fc ≤ fr replace xN+1 with

x(µoc) and go to step 3g; otherwise go to step 3f.

(e) Inside Contraction: If fcount = kmax then exit. If fr ≥ f(xN+1) compute

fc = f(x(µic)). fcount = fcount + 1. If fc < f(xN+1), replace xN+1 with

x(µic) and go to step 3g; otherwise go to step 3f.

(f) Shrink: If fcount ≥ kmax −N , exit. For 2 ≤ i ≤ N + 1: set xi = x1 − (xi −
x1)/2; compute f(xi).

(g) Sort: Sort the vertices of S so that (8.1) holds.

A typical sequence [169] of candidate values for µ is

{µr, µe, µoc, µic} = {1, 2, 1/2,−1/2}.

Figure 8.1 is an illustration of the options in two dimensions. The vertices labeled 1, 2, and

3 are those of the original simplex.

The Nelder–Mead algorithm is not guaranteed to converge, even for smooth problems [89],

[188]. The failure mode is stagnation at a nonoptimal point. In §8.1.3 we will present some

examples from [188] that illustrate this failure. However, the performance of the Nelder–Mead

algorithm in practice is generally good [169], [274]. The shrink step is rare in practice and we

will assume in the analysis in §8.1.2 that shrinks do not occur. In that case, while a Nelder–Mead

iterate may not result in a reduction in the best function value, the average value

f =
1

N + 1

∑N+1

j=1
f(xj)

will be reduced.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

SEARCH ALGORITHMS 137

e

1

3

ic

r

oc

2

Figure 8.1: Nelder–Mead Simplex and New Points

8.1.2 Sufficient Decrease and the Simplex Gradient

Our study of the Nelder–Mead algorithm is based on the simple ideas in §3.1. We will denote

the vertices of the simplex Sk at the kth iteration by {xk
j }N+1

j=1 . We will simplify notation by

suppressing explicit mention of Sk in what follows by denoting

V k = V (Sk), δk = δ(f : Sk), Kk = K(Sk), and Dk(f) = D(f : Sk).

If V 0 is nonsingular then V k is nonsingular for all k > 0 [169]. Hence if S0 is nonsingular so

is Sk for all k and hence Dk(f) is defined for all k.

We formalize this by assuming that our sequence of simplices satisfies the following assump-

tion.

Assumption 8.1.1. For all k,

• Sk is nonsingular.

• The vertices satisfy (8.1).

• fk+1 < fk
.

Assumption 8.1.1 is satisfied by the Nelder–Mead sequence if no shrink steps are taken

and the initial simplex directions are linearly independent [169]. The Nelder–Mead algorithm

demands that the average function value improve, but no control is possible on which value is

improved, and the simplex condition number can become unbounded.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

138 ITERATIVE METHODS FOR OPTIMIZATION

We can define a sufficient decrease condition for search algorithms that is analogous to the

sufficient decrease condition for steepest descent and related algorithms (3.2). We will ask that

the k + 1st iteration satisfy

fk+1 − fk < −α‖Dkf‖2.(8.4)

Here α > 0 is a small parameter. Our choice of sufficient decrease condition is motivated by the

smooth case and steepest descent, where (3.2) and the lower bound−λ̄ on λ from Lemma 3.2.3

lead to

f(xk+1)− f(xk) ≤ −λ̄α‖∇f(xk)‖2,

which is a smooth form of (8.4). Unlike the smooth case, however, we have no descent direction

and must incorporate λ̄ into α. This leads to the possibility that if the simplex diameter is much

smaller than ‖Dkf‖, (8.4) could fail on the first iterate. We address this problem with the scaling

α = α0
σ+(S

0)

‖D0f‖ .

A typical choice in line search methods, which we use in our numerical results, is α0 = 10−4.

The convergence result for smooth functions follows easily from Lemma 6.2.1.

Theorem 8.1.1. Let a sequence of simplices satisfy Assumption 8.1.1 and let the assumptions

of Lemma 6.2.1 hold, with the Lipschitz constants Kk uniformly bounded. Assume that {fk} is

bounded from below. Then if (8.4) holds for all but finitely many k and

lim
k→∞

σ+(S
k)κ(V k) = 0,

then any accumulation point of the simplices is a critical point of f .

Proof. The boundedness from below of {fk} and (8.4) imply that fk → 0. Assumption 8.1.1

and (8.4) imply that limk→∞ Dkf = 0. Hence (6.2) implies

lim
k→∞

‖∇f(xk
1)‖ ≤ lim

k→∞

(

Kκ(V k)σ+(S
k) + ‖Dkf‖

)

= 0.

Hence, if x∗ is any accumulation point of the sequence {xk
1} then∇f(x∗) = 0. This completes

the proof since κ(V k) ≥ 1 and therefore σ+(V
k)→ 0.

The result for the noisy functions that satisfy (6.1) with fs smooth reflects the fact that

the resolution is limited by the size of φ. In fact, if σ+(S
k) is much smaller than ‖φ‖Sk , no

information on fs can be obtained by evaluating f at the vertices of Sk and once σ+(S
k) is

smaller than ‖φ‖1/2
Sk no conclusions on∇fs can be drawn. If, however, the noise decays to zero

sufficiently rapidly near the optimal point, the conclusions of Theorem 8.1.1 still hold.

Theorem 8.1.2. Let a sequence of simplices satisfy Assumption 8.1.1 and let the assumptions

of Lemma 6.2.2 hold with the Lipschitz constants Kk
s uniformly bounded. Assume that {fk} is

bounded from below. Then if (8.4) holds for all but finitely many k and if

lim
k→∞

κ(V k)

(

σ+(S
k) +

‖φ‖Sk

σ+(Sk)

)

= 0,(8.5)

then any accumulation point of the simplices is a critical point of fs.

Proof. Our assumptions, as in the proof of Theorem 8.1.1, imply that Dkf → 0. Recall that

Lemma 6.2.2 implies that

‖Dkfs‖ ≤ ‖Dkf‖+ Kkκ(V k)

(

σ+(S
k) +

‖φ‖Sk

σ+(Sk)

)

,(8.6)

and the sequence {Kk} is bounded because {Kk
s } is. Hence, by (8.5), Dkfs → 0 as k →∞.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

SEARCH ALGORITHMS 139

0 50 100 150
10

8

10
6

10
4

10
2

10
0

10
2

Function Differences

0 50 100 150
10

10

10
8

10
6

10
4

10
2

10
0

10
2

Max Oriented Length

0 50 100 150
10

1

10
2

10
3

10
4

Simplex Gradient Norm

0 50 100 150
10

0

10
5

10
10

10
15

10
20

Simplex Condition

Figure 8.2: Unmodified Nelder–Mead, (τ, θ, φ) = (1, 15, 10)

8.1.3 McKinnon’s Examples

In this set of three examples from [188], N = 2, and

f(x) =







θφ|(x)1|τ + (x)2 + (x)22, (x)1 ≤ 0,

θ(x)τ1 + (x)2 + (x)22, (x)1 > 0.

The examples in [188] consider the parameter sets

(τ, θ, φ) =







(3, 6, 400),
(2, 6, 60),
(1, 15, 10).

The initial simplex was

x1 = (1, 1)T , x2 = (λ+, λ−)
T , x3 = (0, 0)T , where λ± = (1±

√
33)/8.

With this data, the Nelder–Mead iteration will stagnate at the origin, which is not a critical point

for f . The stagnation mode is repeated inside contractions that leave the best point (which is not

a minimizer) unchanged.

We terminated the iteration when the difference between the best and worst function values

was < 10−8.

We illustrate the behavior of the Nelder–Mead algorithm in Figures 8.2, 8.3, and 8.4. In all

the figures we plot, as functions of the iteration index, the difference between the best and worst

function values, σ+, the maximum oriented length, the norm of the simplex gradient, and the l2

condition number of the matrix of simplex directions. In all three problems stagnation is evident

from the behavior of the simplex gradients. Note also how the simplex condition number is

growing rapidly.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

140 ITERATIVE METHODS FOR OPTIMIZATION

0 20 40 60
10

8

10
6

10
4

10
2

10
0

10
2

Function Differences

0 20 40 60
10

5

10
4

10
3

10
2

10
1

10
0

10
1

Max Oriented Length

0 20 40 60
10

0

10
1

10
2

10
3

10
4

10
5

Simplex Gradient Norm

0 20 40 60
10

0

10
2

10
4

10
6

10
8

10
10

Simplex Condition

Figure 8.3: Unmodified Nelder–Mead, (τ, θ, φ) = (2, 6, 60)

0 10 20 30 40
10

8

10
6

10
4

10
2

10
0

10
2

Function Differences

0 10 20 30 40
10

3

10
2

10
1

10
0

10
1

Simplex Diameter

0 10 20 30 40
10

1

10
0

10
1

Simplex Gradient Norm

0 10 20 30 40
10

0

10
2

10
4

10
6

10
8

Simplex Condition

Figure 8.4: Unmodified Nelder–Mead, (τ, θ, φ) = (3, 6, 400)

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

SEARCH ALGORITHMS 141

8.1.4 Restarting the Nelder–Mead Algorithm

When the Nelder–Mead iteration stagnates, a restart with the same best point and a different set

of directions can help sometimes. In order to formulate a restart scheme, one must first develop

a strategy for detecting stagnation. One might think that a large simplex condition would suffice

for this. However [204], the ability of the Nelder–Mead simplices to drastically vary their shape

is an important feature of the algorithm and looking at the simplex condition alone would lead

to poor results. Failure of (8.4), however, seems to indicate that something is wrong, and we

will use that as our stagnation detector.

Having detected stagnation, one must modify the simplex. Simply performing a shrink

step is not effective. The method we advocate here, from [155], is the oriented restart. The

motivation is that if the simplex gradient can be trusted to be in the correct orthant in RN , a new,

smaller simplex with orthogonal edges oriented with that quadrant should direct the iteration in

a productive direction.

We propose performing an oriented restart when (8.4) fails but fk+1− fk < 0. This means

replacing the current simplex with vertices {xj}N+1
j=1 , ordered so that (8.1) holds, with a new

smaller simplex having vertices (before ordering!) {yj}N+1
j=1 with y1 = x1 and

yj = y1 − βj−1ej−1 for 2 ≤ j ≤ N + 1,(8.7)

where, for 1 ≤ l ≤ N , el is the lth coordinate vector,

βl =
1

2







σ−(S
k)sign((Dkf)l), (Dkf)l �= 0,

σ−(S
k), (Dkf)l = 0,

and (Dkf)l is the lth component of Dkf . If Dkf = 0we assume that the Nelder–Mead iteration

would have been terminated at iteration k because there is no difference between best and worst

values.

So, before ordering, the new simplex has the same first point as the old. The diameter of the

new simplex has not been increased since the diameter of the new simplex is at most σ+(S
k).

Moreover all edge lengths have been reduced. So after reordering σ+(S
k+1) ≤ σ−(S

k). As for

κ, after the oriented shrink, but before reordering, κ(V) = 1. After reordering, of course, the

best point may no longer be x1. In any case the worst-case bound on κ is

κ(V k+1) = ‖V k+1‖2 ≤ (1 +
√

N)2.(8.8)

In any case, the new simplex is well conditioned.

Returning to the McKinnon examples, we find that an oriented restart did remedy stagnation

for the smooth examples. The graphs in Figures 8.5, 8.6, and 8.7 report the same data as for the

unmodified algorithm, with stars on the plots denoting oriented restarts.

For the smoothest example, (τ, θ, φ) = (3, 6, 400), the modified form of Nelder–Mead took a

single oriented restart at the 21st iteration. For the less smooth of these two, (τ, θ, φ) = (2, 6, 60),
a single restart was taken on the 19th iteration. As one can see from Figures 8.6 and 8.7 the

restart had an immediate effect on the simplex gradient norm and overcame the stagnation.

For the nonsmooth example, (τ, θ, φ) = (1, 15, 10), in Figure 8.5, the modified algorithm

terminated with failure after restarting on the 44th, 45th, and 46th iterations. Since the objective

is not smooth at the stagnation point, this is the best we can expect and is far better than the

behavior of the unmodified algorithm, which stagnates with no warning of the failure.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

142 ITERATIVE METHODS FOR OPTIMIZATION

0 10 20 30 40 50
10

4

10
2

10
0

10
2

Function Differences

0 10 20 30 40 50
10

4

10
2

10
0

10
2

Max Oriented Length

0 10 20 30 40 50
10

1

10
2

10
3

Simplex Gradient Norm

0 10 20 30 40 50
10

0

10
2

10
4

10
6

10
8

Simplex Condition

Figure 8.5: Modified Nelder–Mead, (τ, θ, φ) = (1, 15, 10)

0 20 40 60
10

10

10
5

10
0

10
5

Function Differences

0 20 40 60
10

4

10
2

10
0

10
2

Max Oriented Length

0 20 40 60
10

4

10
2

10
0

10
2

Simplex Gradient Norm

0 20 40 60
10

0

10
1

10
2

10
3

Simplex Condition

Figure 8.6: Modified Nelder–Mead, (τ, θ, φ) = (2, 6, 60)

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

SEARCH ALGORITHMS 143

0 20 40 60
10

10

10
5

10
0

10
5

Function Differences

0 20 40 60
10

4

10
2

10
0

10
2

Max Oriented Length

0 20 40 60
10

6

10
4

10
2

10
0

10
2

Simplex Gradient Norm

0 20 40 60
10

0

10
1

10
2

10
3

10
4

Simplex Condition

Figure 8.7: Modified Nelder–Mead, (τ, θ, φ) = (3, 6, 400)

8.2 Multidirectional Search

8.2.1 Description and Implementation

One way to address the possible ill-conditioning in the Nelder–Mead algorithm is to require that

the condition numbers of the simplices be bounded. The multidirectional search (MDS) method

[85], [261], [262] does this by making each new simplex congruent to the previous one. The

results in this section, mostly taken from [29], show that MDS has convergence properties like

those of implicit filtering.

In the special case of equilateral simplices, V k is a constant multiple of V 0 and the simplex

condition number is constant. If the simplices are not equilateral, then κ(V)may vary depending

on which vertex is called x1, but (6.6) will hold in any case.

Figure 8.8 illustrates the two-dimensional case for two types of simplices. Beginning with

the ordered simplex Sc with vertices x1, x2, x3 one first attempts a reflection step, leading to a

simplex Sr with vertices x1, r2, r3.

If the best function value of the vertices of Sr is better than the best f(x1) in S0, Sr is

(provisionally) accepted and expansion is attempted. The expansion step differs from that in

the Nelder–Mead algorithm because N new points are needed to make the new, larger simplex

similar to the old one. The expansion simplex Se has vertices x1, e2, e3 and is accepted over Sr

if the best function value of the vertices of Se is better than the best in Sr. If the best function

value of the vertices of Sr is not better than the best in Sc, then the simplex is contracted and

the new simplex has vertices x1, c2, c3. After the new simplex is identified, the vertices are

reordered to create the new ordered simplex S+.

Similar to the Nelder–Mead algorithm, there are expansion and contraction parameters µe

and µc. Typical values for these are 2 and 1/2.

Algorithm 8.2.1. mds(S, f, τ, kmax)

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

144 ITERATIVE METHODS FOR OPTIMIZATION

x1

x2

x3

e3

e2

c3
c2

r3

r2

Right Simplex

x1 c2 x2

x3

c3

e2 r2

r3

e3

Equilateral Simplex

Figure 8.8: MDS Simplices and New Points

1. Evaluate f at the vertices of S and sort the vertices of S so that (8.1) holds.

2. Set fcount = N + 1.

3. While f(xN+1)− f(x1) > τ

(a) Reflect: If fcount = kmax then exit.

For j = 2, . . . , N+1: rj = x1−(xj−x1); Compute f(rj); fcount = fcount+1.

If f(x1) > minj{f(rj)} then goto step 3b else goto step 3c.

(b) Expand:

i. For j = 2, . . . , N + 1: ej = x1 − µe(xj − x1); Compute f(ej); fcount =
fcount + 1.

ii. If minj{f(rj)} > minj{f(ej)} then

for j = 2, . . . N + 1: xj = ej
else

for j = 2, . . . N + 1: xj = rj

iii. Goto step 3d

(c) Contract: For j = 2, . . . , N + 1: xj = x1 + µc(xj − x1), Compute f(xj)

(d) Sort: Sort the vertices of S so that (8.1) holds.

If the function values at the vertices of Sc are known, then the cost of computing S+ is 2N
additional evaluations. Just as with the Nelder–Mead algorithm, the expansion step is optional

but has been observed to improve performance.

The extension of MDS to bound constrained and linearly constrained problems is not trivial.

We refer the reader to [173] and [175] for details.

8.2.2 Convergence and the Simplex Gradient

Assume that the simplices are either equilateral or right simplices (having one vertex from which

all N edges are at right angles). In those cases, as pointed out in [262], the possible vertices

created by expansion and reflection steps form a regular lattice of points. If the MDS simplices

remain bounded, only finitely many reflections and expansions are possible before every point

on that lattice has been visited and a contraction to a new maximal simplex size must take place.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

SEARCH ALGORITHMS 145

This exhaustion of a lattice takes place under more general conditions [262] but is most clear for

the equilateral and right simplex cases.

Theorem 6.2.9 implies that infinitely many contractions and convergence of the simplex

diameters to zero imply convergence of the simplex gradient to zero. The similarity of The-

orem 6.2.9 to Lemma 6.2.2 and of Theorem 8.2.1, the convergence result for multidirectional

search, to Theorem 8.1.2 is no accident. The Nelder–Mead iteration, which is more aggressive

than the multidirectional search iteration, requires far stronger assumptions (well conditioning

and sufficient decrease) for convergence, but the ideas are the same. Theorems 6.2.9 and 8.2.1

can be used to extend the results in [262] to the noisy case. The observation in [85] that one

can apply any heuristic or machine-dependent idea to improve performance, say, by exploring

far away points on spare processors (the “speculative function evaluations” of [46]) without

affecting the analysis is still valid here.

Theorem 8.2.1. Let f satisfy (6.1) and assume that the set

{x | f(x) ≤ f(x0
1)}

is bounded. Assume that the simplex shape is such that

lim
k→∞

σ+(S
k)→ 0.(8.9)

Let Bk be a ball of radius 2σ+(S
k) about xk

1 . Then if

lim
k→∞

‖φ‖Bk

σ+(Sk)
= 0

then every limit point of the vertices is a critical point of fs.

Recall that if the simplices are equilateral or right simplices, then (8.9) holds (see exer-

cise 8.6.2).

8.3 The Hooke–Jeeves Algorithm

8.3.1 Description and Implementation

The Hooke–Jeeves algorithm is like implicit filtering in that the objective is evaluated on a stencil

and the function values are used to compute a search direction. However, unlike implicit filtering,

there are only finitely many possible search directions and only qualitative information about

the function values is used.

The algorithm begins with a base point x and pattern size h, which is like the scale in implicit

filtering. In the next phase of the algorithm, called the exploratory move in [145], the function is

sampled at successive perturbations of the base point in the search directions {vj}, where vj is

the jth column of a direction matrix V . In [145] and our MATLAB implementation V = I . The

current best value fcb = f(xcb) and best point xcb are recorded and returned. xcb is initialized

to x. The sampling is managed by first evaluating f at xcb + vj and only testing xcb − vj
if f(xcb + vj) ≥ f(xcb). The exploratory phase will either produce a new base point or fail

(meaning that xcb = x). Note that this phase depends on the ordering of the coordinates of x.

Applying a permutation to x could change the output of the exploration.

If the exploratory phase has succeeded, the search direction is

dHJ = xcb − x(8.10)

and the new base point is xcb. The subtle part of the algorithm begins here. Rather than center

the next exploration at xcb, which would use some of the same points that were examined in

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

146 ITERATIVE METHODS FOR OPTIMIZATION

the previous exploration, the Hooke–Jeeves pattern move step is aggressive and tries to move

further. The algorithm centers the next exploratory move at

xC = x + 2dHJ = xcb + dHJ .

If this second exploratory move fails to improve upon f(xcb), then an exploratory move with

xcb as the center is tried. If that fails h is reduced, x is set to xcb, and the process is started over.

Note that when h has just been set, the base point and the center of the stencil for the exploratory

moves are the same, but afterward they are not.

If, after the first exploratory move, xcb = x (i.e., as it will be if x is the best point in the

pattern), then x is left unchanged and h is reduced.

Therefore, whenever h is reduced, the stencil centered at x has x itself as the best point.

This is exactly the situation that led to a shrink in the MDS algorithm and, as you might expect,

will enable us to prove a convergence result like those in the previous sections. In [145] h was

simply multiplied by a constant factor. Our description in Algorithm hooke follows the model

of implicit filtering and uses a sequence of scales. Choice of perturbation directions could be

generalized to any simplex shape, not just the right simplices used in [145].

Figure 8.9 illustrates the idea for N = 2. The base point x lies at the center of the stencil. If

f(x+
1) < f(x), f(x+

2) < f(x), f(x−
1) ≥ f(x), and f(x−

2) ≥ f(x),

then the new base point xb will be located above and to the right of x. The next exploratory

move will be centered at xC , which is the center of the stencil in the upper right corner of the

figure.

The reader, especially one who plans to implement this method, must be mindful that points

may be sampled more than once. For example, in the figure, if the exploratory move centered

at xC fails, f will be evaluated for the second time at the four points in the stencil centered

at xb unless the algorithm is implemented to avoid this. The MDS method is also at risk of

sampling points more than once. The implementations of Hooke–Jeeves and MDS in our suite

of MATLAB codes keep the most recent 4N iterations in memory to guard against this. This

reevaluation is much less likely for the Nelder–Mead and implicit filtering methods. One should

also be aware that the Hooke–Jeeves algorithm, like Nelder–Mead, does not have the natural

parallelism that implicit filtering and MDS do.

One could implement a variant of the Hooke–Jeeves iteration by using xC = x + dHJ

instead of xC = x + 2dHJ and shrinking the size of the simplex on stencil failure. This is the

discrete form of the classical coordinate descent algorithm [180] and can also be analyzed by

the methods of this section (see [279] for a different view).

Our implementation follows the model of implicit filtering as well as the description in

[145]. We begin with the exploratory phase, which uses a base point xb, base function value

fb = f(xb), and stencil center xC . Note that in the algorithm xb = xC for the first exploration

and xC = xb+dHJ thereafter. Algorithmhjexplore takes a base point and a scale and returns

a direction and the value at the trial point x + d. We let V = I be the matrix of coordinate

directions, but any nonsingular matrix of search directions could be used. The status flag sf is

used to signal failure and trigger a shrink step.

Algorithm 8.3.1. hjexplore(xb, xC , f, h, sf)

1. fb = f(xb); d = 0; sf = 0; xcb = xb; fcb = f(xb); xt = xC

2. for j = 1, . . . , N : p = xt + hvj; if f(p) ≥ fb then p = xt − hvj;

if f(p) < fb then xt = xcb = p; fb = f(xcb)

3. if xcb �= xb; sf = 1; xb = xcb

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

SEARCH ALGORITHMS 147

x

x2+

x1+x1-

x2-

s1+s1-

s2-

xC

xC1+xC1-

xC2+

xC2-xb

 s1+

Figure 8.9: Hooke–Jeeves Pattern and New Points

The exploration is coupled to the pattern move to complete the algorithm for a single value

of the scale. The inputs for Algorithm hjsearch are an initial iterate x, the function, and the

scale. On output, a point x is returned for which the exploration has failed. There are other

considerations, such as the budget for function evaluations, that should trigger a return from the

exploratory phase in a good implementation. In our MATLAB code hooke.mwe pay attention

to the number of function evaluations and change in the function value as part of the decision to

return from the exploratory phase.

Algorithm 8.3.2. hjsearch(x, f, h)

1. xb = x; xC = x; sf = 1

2. Call hjexplore(x, xC , f, h, sf)

3. While sf = 1

(a) d = x− xb; xb = x; xC = x + d

(b) Call hjexplore(x, xC , f, h, sf);
If sf = 0; xC = x; Call hjexplore(x, xC , f, h, sf)

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

148 ITERATIVE METHODS FOR OPTIMIZATION

Step 3b requires care in implementation. If sf = 0 on exit from the first call to hjexplore,

one should only test f at those points on the stencil centered at x that have not been evaluated

before.

The Hooke–Jeeves algorithm simply calls hjsearch repeatedly as h varies over a sequence

{hk} of scales.

Algorithm 8.3.3. hooke(x, f, {hk})

1. For k = 1, . . .
Call hjsearch(x, f, hk)

As is the case with implicit filtering, the Hooke–Jeeves algorithm can be applied to bound

constrained problems in a completely natural way [145], [227] by simply restricting the stencil

points to those that satisfy the bounds and avoiding pattern moves that leave the feasible region.

The Hooke–Jeeves algorithm shares with implicit filtering the property that extension to

bound constrained problems is trivial [145]. One simply restricts the exploratory and pattern

moves to the feasible set.

8.3.2 Convergence and the Simplex Gradient

As with MDS, if the set of sampling points remains bounded, only finitely many explorations

can take place before hjsearch returns and the scale must be reduced. The conditions for

reduction in the scale include failure of an exploratory move centered at the current best point x.

This means that we can apply Theorem 6.2.9 with κ+ = 1 to prove the same result we obtained

for MDS.

Theorem 8.3.1. Let f satisfy (6.1). Let {xk} be the sequence of Hooke–Jeeves best points.

Assume that the set

{x | f(x) ≤ f(x0)}
is bounded. Then let hk → 0 and if

lim
k→∞

‖φ‖Bk

σ+(Sk)
= 0,

where Bk is the ball of radius 2hk about xk, then every limit point of {xk} is a critical point of

fs.

8.4 Other Approaches

In this section we briefly discuss two methods that have been used successfully for noisy prob-

lems. These methods are substantially more difficult to implement than the ones that we have

discussed so far and we will give few details. The pointers to the literature are a good starting

place for the interested and energetic reader.

8.4.1 Surrogate Models

As any sampling method progresses, the function values can be used to build a (possibly)

quadratic model based, for example, on interpolation or least squares fit-to-data. Such mod-

els are called surrogates or response surfaces. Even for smooth f there are risks in doing this.

Points from early in the iteration may corrupt an accurate model that could be built from the

more recent points; however, the most recent points alone may not provide a rich enough set of

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

SEARCH ALGORITHMS 149

interpolatory data. The function being modeled could be too complex to be modeled in a sim-

ple way (think of the Lennard–Jones function), and very misleading results could be obtained.

However, this approach is often very productive even for smooth problems in which evaluation

of f is very expensive (see [28] for a high-flying example).

Initialization of the model requires an initial set of points at which to sample f . Selection of

this point set is not a trivial issue, and the regular stencils used in implicit filtering and the direct

search algorithms are very poor choices. The study of this issue alone is a field in itself, called

design and analysis of computer experiments (DACE) [27], [167], [230].

Having built such a model, one then finds one or more local minima of the model. One can

use either a conventional gradient-based method, a sampling algorithm of the type discussed in

Chapters 7 or 8, or an algorithm that is itself based on building models like the one described in

[62], the nongradient-based approaches being used when the model is expected to be multimodal

or nonconvex. Upon minimizing the model, one then evaluates f again at one or more new points.

The implementation of such a scheme requires careful coordination between the sampling

of the function, the optimization of the model, and the changing of the set of sample points. We

refer the reader to [28] and [4] for more information on recent progress in this area.

8.4.2 The DIRECT Algorithm

Suppose f is a Lipschitz continuous function on [a, b] with Lipschitz constant L. If one has a

priori knowledge of L, one can use this in a direct search algorithm to eliminate intervals of

possible optimal points based on the function values at the endpoints of these intervals. The

Shubert algorithm [146], [214], [241] is the simplest way to use this idea. The method begins

with the fact that

f(x) ≥ flow(x, a, b) = max(f(a)− L(x− a), f(b)− L(b− x))(8.11)

for all x ∈ [a, b]. If one samples f repeatedly, one can use (8.11) on a succession of intervals

and obtain a piecewise linear approximation to f . If In = [an, bn] ⊂ [a, b] then f(x) ≥
flow(x, an, bn) on In, the minimum value of flow(x, an, bn) is

Vn = (f(an) + f(bn)− L(bn − an))/2,

and the minimizer is

Mn = (f(an)− f(bn) + L(bn + an))/(2L).

The algorithm begins with I0 = [a, b], selects the interval for which Vn is least, and divides at

Mn. This means that if K intervals have been stored we have, replacing In and adding IK+1 to

the list,

In = [an, Mn] and IK+1 = [Mn, bn].

The sequence of intervals is only ordered by the iteration counter, not by location. In this way

the data structure for the intervals is easy to manage.

If there are p and k such that p �= k and Vp ≥ max(f(ak), f(bk)), then Ip need not be

searched any longer, since the best value from Ip is worse than the best value in Ik. The

algorithm’s rule for division automatically incorporates this information and will never sample

from Ip.

There are two problems with this algorithm. One cannot expect to know the Lipschitz

constant L, so it must be estimated. An estimated Lipschitz constant that is too low can lead to

erroneous rejection of an interval. An estimate that is too large will lead to slow convergence,

since intervals that should have been discarded will be repeatedly divided. The second problem

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

150 ITERATIVE METHODS FOR OPTIMIZATION

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

9

10

Figure 8.10: Selection of Intervals in DIRECT

is far more serious. The obvious generalization of the Shubert algorithm to more than one

dimension would replace intervals by N -dimensional hyperrectangles and require sampling at

each of the 2N vertices of the rectangle to be divided. This exponential complexity makes this

trivial generalization of the Shubert algorithm completely impractical.

The DIRECT algorithm [150] attempts to address these problems by sampling at the midpoint

of the hyperrectangle rather than the vertices and indirectly estimating the Lipschitz constant as

the optimization progresses. The scheme is not completely successful in that the mesh of sample

points becomes everywhere dense as the optimization progresses. Hence the algorithm becomes

an exhaustive search, a fact that is used in [150] to assert global convergence. In spite of the

exponential complexity of exhaustive search, even one with a fixed-size mesh (a problem with

any deterministic algorithm that is truly global [248]), DIRECT has been reported to perform well

in the early phases of the iteration [150], [108] and for suites of small test problems. DIRECT is

worth consideration as an intermediate algorithmic level between methods like implicit filtering,

Nelder–Mead, Hooke–Jeeves, or MDS on the conservative side and nondeterministic methods

like simulated annealing or genetic algorithms on the radical side.

We will describe DIRECT completely only for the case N = 1. This will make clear how

the algorithm implicitly estimates the Lipschitz constant. The extension to larger values of N
requires careful management of the history of subdivision of the hyperrectangles, and we will give

a simple pictorial account of that. For more details we refer to [150], [147], or the documentation

[108] of the FORTRAN implementation of DIRECT from the software collection.

As with the Shubert algorithm we begin with an interval [a, b] but base our lower bound and

our subdivision strategy on the midpoint c = (a + b)/2. If the Lipschitz constant L is known

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

SEARCH ALGORITHMS 151

then

f(x) ≥ f(c)− L(b− a)/2.

If we are to divide an interval and also retain the current value c as the midpoint of an interval

in the set of intervals, we must divide an interval into three parts. If there are K intervals on

the list and an interval In = [an, bn] with midpoint cn has been selected for division, the new

intervals are

IK+1 = [an, an + (bn − an)/3], In = [an + (bn − an)/3, bn − (bn − an)/3], and

IK+2 = [bn − (bn − an)/3, bn].

So cn is still the midpoint of In and two new midpoints have been added.

The remaining part of the algorithm is the estimation of the Lipschitz constant and the

simultaneous selection of the intervals to be divided. If the Lipschitz constant were known, an

interval would be selected for division if f(c) − L(b − a)/2 were smallest. This is similar to

the Shubert algorithm. In order for there to even exist a Lipschitz constant that would force

an interval to be selected for division in this way, that interval must have the smallest midpoint

value of all intervals having the same length. Moreover, there should be no interval of a different

length for which f(c)− L(b− a)/2 was smaller.

The DIRECT algorithm applies this rule to all possible combinations of possible Lipschitz

constants and interval sizes. If one plots the values of f at the midpoints against the lengths of

the intervals in the list to obtain a plot like the one in Figure 8.10, one can visually eliminate

all but one interval for each interval length. By taking the convex hull of the lowest points, one

can eliminate interval lengths for which all function values are so high that f(c)− L(b− a)/2
would be smaller for the best point at a different length no matter what L was. For example, the

three points that intersect the line in Figure 8.10 would correspond to intervals that would be

subdivided at this step. The slopes of the line segments through the three points are estimates

of the Lipschitz constant. These estimates are not used explicitly, as they would be in the

Shubert algorithm, but implicitly in the process of selection of intervals to be divided. Unlike

the Shubert algorithm, where the Lipschitz constant is assumed known, the DIRECT algorithm

will eventually subdivide every interval.

The resulting algorithm may divide more than a single interval at each stage and the number

of intervals to be divided may vary. This is easy to implement for a single variable. However,

for more than one variable there are several ways to divide a hyperrectangle into parts and one

must keep track of how an interval has previously been divided in order not to cluster sample

points prematurely by repeatedly dividing an interval in the same way. Figures 8.11 and 8.12,

taken from [108], illustrate this issue for N = 2. In Figure 8.11 the entire rectangle will be

divided. Shading indicates that the rectangle has been selected for division. Four new midpoints

are sampled. The subdivision into new rectangles could be done in two ways: the figure shows

an initial horizontal subdivision followed by a vertical division of the rectangle that contains the

original center. The second division is shown in Figure 8.12. The two shaded rectangles are

selected for division. Note that four new centers are added to the small square and two to the

larger, nonsquare, rectangle. In this way the minimum number of new centers is added.

DIRECT parallelizes in a natural way. All hyperrectangles that are candidates for division

may be divided simultaneously, and for each hyperrectangle the function evaluations at each of

the new midpoints can also be done in parallel. We refer the reader to [150] and [108] for details

on the data structures and to [108] for a FORTRAN implementation and additional discussion

on the exploitation of parallelism.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

152 ITERATIVE METHODS FOR OPTIMIZATION

6

85

2

6

8 5 95

2

6

8

2

9 9

Figure 8.11: Initial Division of Rectangles with DIRECT

8

6

2

9 95

2

6

8

3 6

57

9

6

4

9

2

6

8

3 6

7

9

6

4

5

Figure 8.12: Second Division of Rectangles with DIRECT

8.5 Examples

In each of the examples we compare the central difference BFGS form of implicit filtering from

§7.6 (solid line) with the Nelder–Mead (dashed line), Hooke–Jeeves (solid line with circles), and

MDS (dashed-dotted line) algorithms.

For each example we specified both an initial iterate and choice of scales. This is sufficient

to initialize both implicit filtering and Hooke–Jeeves. We used the implicit filtering forward

difference stencil as the initial simplex for both Nelder–Mead and MDS.

The plots reflect the differences in the startup procedures for the varying algorithms. In

particular, Nelder–Mead and MDS sort the simplex and hence, if the initial iterate is not the best

point, report the lower value as the first iterate.

The relative performance of the various methods on these example problems should not be

taken as a definitive evaluation, nor should these examples be thought of as a complete suite of test

problems. One very significant factor that is not reflected in the results in this section is that both

implicit filtering [69], [55] and multidirectional search [85] are easy to implement in parallel,

while Nelder–Mead and Hooke–Jeeves are inherently sequential. The natural parallelism of

implicit filtering and multidirectional search can be further exploited by using idle processors to

explore other points on the line search direction or the pattern.

8.5.1 Weber’s Problem

The initial data were the same as that in §7.6.1. Implicit filtering does relatively poorly for this

problem because of the nonsmoothness at optimality. The resluts for these problems are plotted

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

SEARCH ALGORITHMS 153

0 50 100 150 200 250
−280

−260

−240

−220

−200

−180

−160

−140

−120

−100

−80

fu
n
c
ti
o
n
 v

a
lu

e

function evaluations

Figure 8.13: First Weber Example

in Figures 8.13, 8.14, and 8.15. The other three algorithms perform equally well. Note in the

third example that MDS finds a local minimum that is not the global minimum.

8.5.2 Parameter ID

In the computations reported in this section each algorithm was allowed 500 evaluations of f
and the sequence of scales was {2−j}12j=1.

We begin with the two examples from §7.6.2. With the initial iterate of (5, 5)T , the exact

solution to the continuous problem lies on the grid that the Hooke–Jeeves algorithm uses to search

for the solution. This explains the unusually good performance of the Hooke–Jeeves optimization

shown in both Figures 8.16 and 8.17. When the initial iterate is changed to (5.1, 5.3)T , the

performance of Hooke–Jeeves is very different as one can see from Figures 8.18 and 8.19. The

other algorithms do not have such a sensitivity to the initial iterate for this example. We have no

explanation for the good performance turned in by the Nelder–Mead algorithm on this problem.

8.5.3 Convex Quadratics

The problems and initial data are the same as those in §7.6.3. This is an example of how sampling

algorithms can perform poorly for very simple problems and how this poor performance is made

worse by increasing the problem size. Exercise 7.7.4 illustrates this point very directly. One

would expect implicit filtering to do well since a central difference gradient has no error for

quadratic problems. For the larger problem (N = 32, Figures 8.21 and 8.23), both the Nelder–

Mead and MDS algorithms perform poorly while the Hooke–Jeeves algorithm does surprisingly

well. The difference in performance of the algorithms is much smaller for the low-dimensional

problem (N = 4, Figures 8.20 and 8.22).

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

154 ITERATIVE METHODS FOR OPTIMIZATION

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70
fu

n
c
ti
o

n
 v

a
lu

e

function evaluations

Figure 8.14: Second Weber Example

0 20 40 60 80 100 120
10

20

30

40

50

60

70

fu
n

c
ti
o

n
 v

a
lu

e

function evaluations

Figure 8.15: Third Weber Example

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

SEARCH ALGORITHMS 155

0 100 200 300 400 500 600
10

−3

10
−2

10
−1

10
0

10
1

10
2

fu
n

c
ti
o

n
 v

a
lu

e

function evaluations

Figure 8.16: Parameter ID, tol = 10−3, x0 = (5, 5)T

0 100 200 300 400 500 600
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

fu
n
c
ti
o
n
 v

a
lu

e

function evaluations

Figure 8.17: Parameter ID, tol = 10−6, x0 = (5, 5)T

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

156 ITERATIVE METHODS FOR OPTIMIZATION

0 100 200 300 400 500 600
10

−3

10
−2

10
−1

10
0

10
1

10
2

fu
n

c
ti
o

n
 v

a
lu

e

function evaluations

Figure 8.18: Parameter ID, tol = 10−3, x0 = (5.1, 5.3)T

0 100 200 300 400 500 600
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

fu
n

c
ti
o

n
 v

a
lu

e

function evaluations

Figure 8.19: Parameter ID, tol = 10−6, x0 = (5.1, 5.3)T

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

SEARCH ALGORITHMS 157

0 50 100 150 200 250 300 350 400
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

fu
n

c
ti
o

n
 v

a
lu

e

function evaluations

Figure 8.20: Unperturbed Quadratic, N = 4

0 500 1000 1500 2000 2500 3000 3500
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

fu
n
c
ti
o
n
 v

a
lu

e

function evaluations

Figure 8.21: Unperturbed Quadratic, N = 32

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

158 ITERATIVE METHODS FOR OPTIMIZATION

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

fu
n
c
ti
o
n
 v

a
lu

e

function evaluations

Figure 8.22: Perturbed Quadratic, N = 4

0 500 1000 1500 2000 2500 3000 3500
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

fu
n
c
ti
o
n
 v

a
lu

e

function evaluations

Figure 8.23: Perturbed Quadratic, N = 32

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

SEARCH ALGORITHMS 159

8.6 Exercises on Search Algorithms

8.6.1. Let Sl for 1 ≤ l ≤ 3 be the simplices having one vertex at (xl)1 = (10, 10, 10, 10) and

direction vectors V l given by

V 1 = diag(1, 2, 3, 4),V2 = diag(4, 3, 2, 1),V3 = diag(2, 2, 2, 2).

For each l = 1, 2, 3, apply the Nelder–Mead algorithm to the function f defined for x ∈ R4

by

(x1 − x2x3x4)
2 + (x2 − x3x4)

2 + (x3 − x4)
2 + x2

4

with the initial simplex V l. What happened? This example is one of Nelder’s favorites

[203].

8.6.2. Show that if the set {x | f(x) ≤ f(x0
1)} is bounded and S0 is either an equilateral or a

right simplex, then (8.9) holds.

8.6.3. One can modify MDS [260] by eliminating the expansion step and only computing re-

flected points until one is found that is better than x1. If no reflected points are better,

then perform a contraction step. Prove that Theorem 8.2.1 holds for this implementation.

Implement MDS in this way and compare it with Algorithm mds. Are the savings in calls

to f for each iterate realized in a savings for the entire optimization?

8.6.4. The easiest problem in optimization is to minimize xTx. Give the algorithms in this

section a chance to show what they can do by using them to solve this problem. Try several

initial iterates (or initial simplices/patterns) and several problem dimensions (especially

N = 8, 16, 32).

8.6.5. The search methods in this section impose a structure on the sampling and thereby hope

to find a useful optimal point far more efficiently than using an unstructured deterministic

or random search. Implement an unstructured search and use your algorithm to minimize

xTx when N = 2. For an example of such a method, take the one from [6], please.

8.6.6. The Spendley, Hext, and Himsworth algorithm [244] manages the simplices in a very

different way from those we’ve discussed in the text. Use the information in [244] and

[267] to implement this algorithm. Use Theorem 6.2.9 to prove convergence for N = 2.

What happens to both your implementation and analysis when you try N = 3 or arbitrary

N? Explain Table 5 in [244].

8.6.7. Use any means necessary to solve the Lennard–Jones problem. Have your results improved

since you tried exercises 6.4.3 and 7.7.4?

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

Bibliography

[1] E. Aarts and J. Korst, Simulated Annealing and Boltzmann Machines, Wiley, New

York, 1989.

[2] L. Adams and J. L. Nazareth, eds., Linear and Nonlinear Conjugate Gradient-Related

Methods, SIAM, Philadelphia, 1996.

[3] M. Al-Baali, Descent property and global convergence of the Fletcher-Reeves method

with inexact line searches, IMA J. Numer. Anal., 5 (1985), pp. 121–124.

[4] N. Alexandrov, J. E. Dennis, R. M. Lewis, and V. Torczon, A Trust Region Frame-

work for Managing the Use of Approximation Models in Optimization, Tech. Rep. 97-50,

Institute for Computer Applications in Science and Engineering, Hampton, VA, October

1997.

[5] E. L. Allgower and K. Georg, Numerical path following, in Handbook of Numerical

Analysis, P. G. Ciarlet and J. L. Lions, eds., vol. 5, North–Holland, Amsterdam, 1997,

pp. 3–207.

[6] Anonymous, A new algorithm for optimization, Math. Programming, 3 (1972), pp. 124–

128.

[7] L.Armijo, Minimization of functions having Lipschitz-continuous first partial derivatives,

Pacific J. Math., 16 (1966), pp. 1–3.

[8] U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differential Equa-

tions and Differential-Algebraic Equations, SIAM, Philadelphia, 1998.

[9] K. E. Atkinson, Iterative variants of the Nyström method for the numerical solution of

integral equations, Numer. Math., 22 (1973), pp. 17–31.

[10] B.M. Averick and J. J. Moré, User Guide for the MINPACK-2 Test Problem Collection,

Tech. Rep. ANL/MCS-TM-157, Math. and Comp. Science Div. Report, Argonne National

Laboratory, Argone, IL, October 1991.

[11] O.Axelsson, Iterative Solution Methods, Cambridge University Press, Cambridge, 1994.

[12] S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux

équations intégrales, Fund. Math., 3 (1922), pp. 133–181.

[13] H. T. Banks and H. T. Tran, Mathematical and Experimental Modeling of Physical

Processes, unpublished notes for MA 573-4, 1997, Department of Mathematics, North

Carolina State University, Raleigh, NC.

[14] M.S. Barlett, An inverse matrix adjustment arising in discriminant analysis,Ann. Math.

Stat., 22 (1951), pp. 107–111.

161

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

162 BIBLIOGRAPHY

[15] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,

R. Pozo, C. Romine, and H. van der Vorst, Templates for the Solution of Linear

Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

[16] K. J. Bathe and A. P. Cimento, Some practical procedures for the solution of nonlinear

finite element equations, Comput. Methods. Appl. Mech. Engrg., 22 (1980), pp. 59–85.

[17] A. Ben-Israel, A Newton-Raphson method for the solution of systems of equations, J.

Math. Anal. Appl., 15 (1966), pp. 243–252.

[18] D. P. Bertsekas, On the Goldstein-Levitin-Polyak gradient projection method, IEEE

Trans. Automat. Control, 21 (1976), pp. 174–184.

[19] , Projected Newton methods for optimization problems with simple constraints,

SIAM J. Control Optim., 20 (1982), pp. 221–246.

[20] J. T. Betts, An improved penalty function method for solving constrained parameter

optimization problems, J. Optim. Theory Appl., 16 (1975), pp. 1–24.

[21] , Solving the nonlinear least square problem: Application of a general method, J.

Optim. Theory Appl., 18 (1976), pp. 469–483.

[22] J. T. Betts, M. J. Carter, and W. P. Huffman, Software for Nonlinear Optimization,

Tech. Rep. MEA-LR-083 R1, Mathematics and Engineering Analysis Library Report,

Boeing Information and Support Services, Seattle, WA, June 6, 1997.

[23] J. T. Betts andP.D. Frank, A sparse nonlinear optimization algorithm, J. Optim. Theory

Appl., 82 (1994), pp. 519–541.

[24] P. T. Boggs, The convergence of the Ben-Israel iteration for nonlinear least squares

problems, Math. Comp., 30 (1976), pp. 512–522.

[25] P. T. Boggs and J. E. Dennis, A stability analysis for perturbed nonlinear iterative

methods, Math. Comp., 30 (1976), pp. 1–17.

[26] I. Bongatz, A. R. Conn, and P. L. Toint, CUTE: Constrained and unconstrained testing

environment, ACM Trans. Math. Software, 21 (1995), pp. 123–160.

[27] A. J. Booker, DOE for Computer Output, Tech. Rep. BCSTECH-94-052, Boeing Com-

puter Services, Seattle, WA, 1994.

[28] A. J. Booker, J. E. Dennis, P. D. Frank, D. B. Serafini, V. Torczon, and M. W.

Trosset, A rigorous framework for optimization of expensive function by surrogates,

Structural Optimization, 17 (1999), pp. 1–13.

[29] D. M. Bortz and C. T. Kelley, The simplex gradient and noisy optimization problems,

in Computational Methods in Optimal Design and Control, J.T. Borggaard, J. Burns,

E. Cliff, S. Schrenk, eds., Birkhauser, Boston, 1998, pp. 77–90.

[30] A. Bouaricha, Tensor methods for large, sparse, unconstrained optimization, SIAM J.

Optim., 7 (1997), pp. 732–756.

[31] H. Brakhage, Über die numerische Behandlung von Integralgleichungen nach der

Quadraturformelmethode, Numer. Math., 2 (1960), pp. 183–196.

[32] K. E. Brenan, S. L. Campbell, and L. R. Petzold, The Numerical Solution of Initial

Value Problems in Differential-Algebraic Equations, SIAM, Philadelphia, 1996.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

BIBLIOGRAPHY 163

[33] P. N. Brown and Y. Saad, Convergence theory of nonlinear Newton–Krylov algorithms,

SIAM J. Optim., 4 (1994), pp. 297–330.

[34] C. G. Broyden, A class of methods for solving nonlinear simultaneous equations, Math.

Comp., 19 (1965), pp. 577–593.

[35] , Quasi-Newton methods and their application to function minimization, Math.

Comp., 21 (1967), pp. 368–381.

[36] , A new double-rank minimization algorithm, AMS Notices, 16 (1969), p. 670.

[37] C. G. Broyden, J. E. Dennis, and J. J. Moré, On the local and superlinear convergence

of quasi-Newton methods, J. Inst. Math. Appl., 12 (1973), pp. 223–246.

[38] R. H. Byrd, T. Derby, E. Eskow, K. P. B. Oldenkamp, and R. B. Schnabel, A new

stochastic/perturbation method for large-scale global optimization and its application to

water cluster problems, in Large Scale Optimization: State of the Art, W. W. Hager, D. W.

Hearn, and P. Pardalos, eds., Kluwer Academic Publishers B.V., Boston, 1994, pp. 68–81.

[39] R. H. Byrd, C. L. Dert, A. H. G. R. Kan, and R. B. Schnabel, Concurrent stochastic

methods for global optimization, Math. Programminng., 46 (1990), pp. 1–30.

[40] R. H. Byrd, E. Eskow, and R. B. Schnabel, A New Large-Scale Global Optimiza-

tion Method and Its Application to Lennard-Jones Problems, Tech. Rep. CU-CS-630-92,

University of Colorado at Boulder, November 1992.

[41] R. H. Byrd, H. F. Khalfan, and R. B. Schnabel, Analysis of a symmetric rank-one

trust region method, SIAM J. Optim., 6 (1996), pp. 1025–1039.

[42] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, A limited memory algorithm for bound

constrained optimization, SIAM J. Sci. Comput., 16 (1995), pp. 1190–1208.

[43] R. H. Byrd and J. Nocedal, A tool for the analysis of quasi-Newton methods with

application to unconstrained minimization, SIAM J. Numer. Anal., 26 (1989), pp. 727–

739.

[44] R. H. Byrd, J. Nocedal, andR. B. Schnabel, Representation of quasi-Newton matrices

and their use in limited memory methods, Math. Programming, 63 (1994), pp. 129–156.

[45] R. H. Byrd, J. Nocedal, and Y. Yuan, Global convergence of a class of quasi-Newton

methods on convex problems, SIAM J. Numer. Anal., 24 (1987), pp. 1171–1190.

[46] R. H. Byrd, R. B. Schnabel, and G. A. Schultz, Parallel quasi-Newton methods for

unconstrained optimization, Math. Programming, 42 (1988), pp. 273–306.

[47] P. H. Calamai and J. Moré, Projected gradient methods for linearly constrained prob-

lems, Math. Programming, 39 (1987), pp. 93–116.

[48] S. L. Campbell, C. T. Kelley, and K. D. Yeomans, Consistent initial conditions for

unstructured higher index DAEs: A computational study, in Proc. Conference on Compu-

tational Engineering in Systems Applications (CESA’96), Lille, France, 1996, pp. 416–

421.

[49] S. L. Campbell and C. D. Meyer, Generalized Inverses of Linear Transformations,

Dover Press, New York, 1991.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

164 BIBLIOGRAPHY

[50] S. L. Campbell and K. D. Yeomans, Behavior of the nonunique terms in general DAE

integrators, Appl. Numer. Math., (1998), to appear.

[51] R.G.Carter, On the global convergence of trust region algorithms using inexact gradient

information, SIAM J. Numer. Anal., 28 (1991), pp. 251–265.

[52] A. Cauchy, Methode generale pour la resolution des systemes d’equations simultanees,

Comp. Rend. Acad. Sci. Paris, (1847), pp. 536–538.

[53] T. D. Choi. Private Communication, 1998.

[54] , Bound Constrained Optimization, PhD thesis, North Carolina State University,

Raleigh, North Carolina, 1999.

[55] T. D. Choi, O. J. Eslinger, C. T. Kelley, J.W. David, andM. Etheridge, Optimization

of automotive valve train components with implict filtering, Optim. Engrg., 1 (2000),

pp. 9–28.

[56] T. D. Choi and C. T. Kelley, Superlinear convergence and implicit filtering, SIAM J.

Optim., 10 (2000), pp. 1149–1162.

[57] T. F. Coleman and Y. Li, On the convergence of interior-reflective Newton methods for

nonlinear minimization subject to bounds, Math. Programming, 67 (1994), pp. 189–224.

[58] , An interior trust region approach for nonlinear minimization subject to bounds,

SIAM J. Optim., 6 (1996), pp. 418–445.

[59] T. F. Coleman and J. J. Moré, Estimation of sparse Jacobian matrices and graph

coloring problems, SIAM J. Numer. Anal., 20 (1983), pp. 187–209.

[60] P. Concus, G. H. Golub, and D. P. O’Leary, A generalized conjugate gradient method

for the numerical solution of elliptic partial differential equations, in Sparse Matrix Com-

putations, J. R. Bunch and D. J. Rose, eds.,Academic Press, NewYork, 1976, pp. 309–332.

[61] A. R. Conn, , K. Scheinberg, and P. L. Toint, On the convergence of derivative-free

methods for unconstrained optimization, in Approximation Theory and Optimization:

Tributes to M. J. D. Powell, A. Iserles and M. Buhmann, eds., Cambridge University

Press, 1997, pp. 83–108.

[62] , Recent progress in unconstrained optimization without derivatives, Math. Pro-

gramming Ser. B, 79 (1997), pp. 397–414.

[63] A. R. Conn, N. I. M. Gould, and P. L. Toint, Global convergence of a class of trust

region algorithms for optimization problems with simple bounds, SIAM J. Numer. Anal.,

25 (1988), pp. 433–460.

[64] , Testing a class of methods for solving minimization problems with simple bounds

on the variables, Math. Comp., 50 (1988), pp. 399–430.

[65] , Convergence of quasi-Newton matrices generated by the symmetric rank one up-

date, Math. Programming Ser. A, 50 (1991), pp. 177–195.

[66] , LANCELOT: A Fortran Package for Large-Scale Nonlinear Optimization (Release

A), Springer Series in Computational Mathematics, Springer-Verlag, Heidelberg, Berlin,

New York, 1992.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

BIBLIOGRAPHY 165

[67] A. R. Curtis, M. J. D. Powell, and J. K. Reid, On the estimation of sparse Jacobian

matrices, J. Inst. Math. Appl., 13 (1974), pp. 117–119.

[68] J.W.Daniel, The conjugate gradient method for linear and nonlinear operator equations,

SIAM J. Numer. Anal., 4 (1967), pp. 10–26.

[69] J.W.David, C. Y. Cheng, T. D. Choi, C. T. Kelley, and J. Gablonsky, Optimal Design

of High Speed Mechanical Systems, Tech. Rep. CRSC-TR97-18, Center for Research in

Scientific Computation, North Carolina State University, Raleigh, July 1997; Math.

Modelling Sci. Comput., to appear.

[70] J. W. David, C. T. Kelley, and C. Y. Cheng, Use of an Implicit Filtering Algorithm

for Mechanical System Parameter Identification. SAE Paper 960358, 1996 SAE Interna-

tional Congress and Exposition Conference Proceedings, Modeling of CI and SI Engines,

Society of Automotive Engineers, pp. 189–194.

[71] W. C. Davidon, Variable Metric Methods for Minimization, Tech. Rep. ANL-5990, Ar-

gonne National Laboratory, Argone, IL, 1959.

[72] , Variable metric method for minimization, SIAM J. Optim., 1 (1991), pp. 1–17.

[73] T. J. Dekker, Finding a zero by means of successive linear interpolation, in Constructive

Aspects of the Fundamental Theorem of Algebra, B. Dejon and P. Henrici, eds., Wiley-

Interscience, New York, 1969, pp. 37–48.

[74] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, Inexact Newton methods, SIAM J.

Numer. Anal., 19 (1982), pp. 400–408.

[75] R. Dembo and T. Steihaug, Truncated Newton algorithms for large-scale optimization,

Math. Programming, 26 (1983), pp. 190–212.

[76] J. E. Dennis, Nonlinear least squares and equations, in The State of the Art in Numerical

Analysis, D. Jacobs, ed., Academic Press, London, 1977, pp. 269–312.

[77] J. E. Dennis, D. M. Gay, and R. E.Welsch, An adaptive nonlinear least-squares algo-

rithm, ACM Trans. Math. Software, 7 (1981), pp. 348–368.

[78] , Algorithm 573: NL2SOL – An adaptive nonlinear least-squares algorithm, ACM

Trans. Math. Software, 7 (1981), pp. 369–383.

[79] J. E. Dennis, M. Heinkenschloss, and L. N. Vicente, Trust-region interior-point SQP

algorithms for a class of nonlinear programming problems, SIAM J. Control Optim., 36

(1998), pp. 1750–1794.

[80] J. E. Dennis and H. H. W. Mei, Two unconstrained optimization algorithms which use

function and gradient values, J. Optim. Theory Appl., 28 (1979), pp. 453–482.

[81] J. E. Dennis and J. J. Moré, A characterization of superlinear convergence and its

application to quasi-Newton methods, Math. Comp., 28 (1974), pp. 549–560.

[82] , Quasi-Newton methods, methods, motivation and theory, SIAM Rev., 19 (1977),

pp. 46–89.

[83] J. E. Dennis and R. B. Schnabel, Least change secant updates for quasi-Newton meth-

ods, SIAM Rev., 21 (1979), pp. 443–459.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

166 BIBLIOGRAPHY

[84] , Numerical Methods for Unconstrained Optimization and Nonlinear Equations,

SIAM, Philadelphia, 1996.

[85] J. E. Dennis and V. Torczon, Direct search methods on parallel machines, SIAM J.

Optim., 1 (1991), pp. 448–474.

[86] J. E. Dennis and L. N. Vicente, Trust-region interior-point algorithms for minimization

problems with simple bounds, inApplied Mathematics and Parallel Computing, H. Fischer,

B. Riedmiller, and S. Schaffler, eds., Hidelberg, 1997, Springer, pp. 97–109.

[87] J. E. Dennis and H. F. Walker, Convergence theorems for least-change secant update

methods, SIAM J. Numer. Anal., 18 (1981), pp. 949–987.

[88] , Inaccuracy in quasi-Newton methods: Local improvement theorems, in Mathe-

matical Programming Study 22: Mathematical Programming at Oberwolfach II, North–

Holland, Amsterdam, 1984, pp. 70–85.

[89] J. E. Dennis and D. J. Woods, Optimization on microcomputers: The Nelder-Mead

simplex algorithm, in New Computing Environments: Microcomputers in Large-Scale

Scientific Computing, A. Wouk, ed., SIAM, Philadelphia, 1987, pp. 116–122.

[90] P. Deuflhard and V. Apostolescu, A Study of the Gauss-Newton Algorithm for the

Solution of Nonlinear Least Squares Problems, Tech. Rep. 51, Univ. Heidelberg, 1980,

preprint.

[91] P. Deuflhard, R. W. Freund, and A. Walter, Fast secant methods for the iterative

solution of large nonsymmetric linear systems, Impact Comput. Sci. Engrg., 2 (1990),

pp. 244–276.

[92] P. Deuflhard and G. Heindl, Affine invariant convergence theorems for Newton’s

method and extensions to related methods, SIAM J. Numer. Anal., 16 (1979), pp. 1–10.

[93] W. J.Duncan, Some devices for the solution of large sets of simultaneous linear equations

(with an appendix on the reciprocation of partitioned matrices), The London, Edinburgh,

and Dublin Philosophical Magazine and Journal of Science, Seventh Series, 35 (1944),

pp. 660–670.

[94] J. C. Dunn, Global and asymptotic convergence rate estimates for a class of projected

gradient processes, SIAM J. Control Optim., 19 (1981), pp. 368–400.

[95] , On the convergence of projected gradient processes to singular critical points, J.

Optim. Theory Appl., 55 (1987), pp. 203–215.

[96] , A projected Newton method for minimization problems with nonlinear inequality

constraints, Numer. Math., 53 (1988), pp. 377–409.

[97] J. C. Dunn and E. W. Sachs, The effect of perturbations on the convergence rates of

optimization algorithms, Appl. Math. Optim., 10 (1983), pp. 143–147.

[98] J. C. Dunn and T. Tian, Variants of the Kuhn–Tucker sufficient conditions in cones of

nonnegative functions, SIAM J. Control Optim., 30 (1992), pp. 1361–1384.

[99] S. C. Eisenstat and H. F. Walker, Choosing the forcing terms in an inexact Newton

method, SIAM J. Sci. Comput., 17 (1996), pp. 16–32.

[100] E. Eskow and R. B. Schnabel, Algorithm 695: Software for a new modified Cholesky

factorization, ACM Trans. Math. Software, 17 (1991), pp. 306–312.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

BIBLIOGRAPHY 167

[101] A.V. FiaccoandG. P.McCormick, Nonlinear Programming: Sequential Unconstrained

Minimization Techniques, SIAM, Philadelphia, 1990.

[102] R. Fletcher, Generalized inverse methods for the best least squares solution of systems

of nonlinear equations, Comput. J., 10 (1968), pp. 392–399.

[103] , A new approach to variable metric methods, Comput. J., 13 (1970), pp. 317–322.

[104] , Practical Methods of Optimization, John Wiley and Sons, New York, 1987.

[105] R. Fletcher and M. J. D. Powell, A rapidly convergent descent method for minimiza-

tion, Comput. J., 6 (1963), pp. 163–168.

[106] R. Fletcher andC.M.Reeves, Function minimization by conjugate gradients, Comput.

J., 7 (1964), pp. 149–154.

[107] S. J. Fortune, D. M. Gay, B. W. Kernighan, O. Landron, R. A. Valenzuela, and

M. H. Wright, WISE design of indoor wireless systems, IEEE Computational Science

and Engineering, Spring (1995), pp. 58–68.

[108] J. Gablonsky, An Implemention of the Direct Algorithm, Tech. Rep. CRSC-TR98-29,

Center for Research in Scientific Computation, North Carolina State University, Raleigh,

August 1998.

[109] D. M. Gay, Computing optimal locally constrained steps, SIAM J. Sci. Statist. Comput.,

2 (1981), pp. 186–197.

[110] C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations,

Prentice–Hall, Englewood Cliffs, NJ, 1971.

[111] R. R. Gerber and F. T. Luk, A generalized Broyden’s method for solving simultaneous

linear equations, SIAM J. Numer. Anal., 18 (1981), pp. 882–890.

[112] J. C. Gilbert and J. Nocedal, Global convergence properties of conjugate gradient

methods for optimization, SIAM J. Optim., 2 (1992), pp. 21–42.

[113] P. E. Gill and W. Murray, Newton-type methods for unconstrained and linearly con-

strained optimization, Math. Programming, 28 (1974), pp. 311–350.

[114] , Safeguarded Steplength Algorithms for Optimization Using Descent Methods,

Tech. Rep. NAC 37, National Physical Laboratory Report, Teddington, England, 1974.

[115] , Non-linear least squares and nonlinearly constrained optimization, in Numerical

Analysis, Lecture Notes in Mathematics 506, Springer-Verlag, Berlin, 1976.

[116] , Algorithms for the solution of the nonlinear least-squares problem, SIAM J. Numer.

Anal., 15 (1978), pp. 977–992.

[117] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press,

London, 1981.

[118] P. Gilmore, An Algorithm for Optimizing Functions with Multiple Minima, Ph.D. thesis,

North Carolina State University, Raleigh, 1993.

[119] , IFFCO: Implicit Filtering for Constrained Optimization, Tech. Rep. CRSC-TR93-

7, Center for Research in Scientific Computation, North Carolina State University, May

1993. Available by anonymous ftp from math.ncsu.edu in pub/kelley/iffco/ug.ps.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

168 BIBLIOGRAPHY

[120] P.GilmoreandC.T.Kelley, An implicit filtering algorithm for optimization of functions

with many local minima, SIAM J. Optim., 5 (1995), pp. 269–285.

[121] P. A. Gilmore, S. S. Berger, R. F. Burr, and J. A. Burns, Automated optimization

techniques for phase change piezoelectric ink jet performance enhancement. in Proc.

IS&T’s NIP 13: 1997 International Conference on Digital Printing Technologies, Society

for Imaging Science and Technology, 1997, pp. 716–721.

[122] R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag,

New York, 1984.

[123] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning,

Addison–Wesley, Reading, MA., 1989.

[124] D. Goldfarb, A family of variable metric methods derived by variational means, Math.

Comp., 24 (1970), pp. 23–26.

[125] A. A. Goldstein, Constructive Real Analysis, Harper and Row, New York, 1967.

[126] G. H. Golub and V. Pereyra, The differentiation of pseudo-inverses and nonlinear least

squares problems whose variables separate, SIAM J. Numer. Anal., 10 (1973), pp. 413–

432.

[127] G. H. Golub and C. G. Van Loan, Matrix Computations, Johns Hopkins University

Press, Baltimore, MD, 1983.

[128] A.Greenbaum, Iterative Methods for Solving Linear Systems, SIAM, Philadelphia, 1997.

[129] A. Griewank, On automatic differentiation, in Mathematical Programming: Recent De-

velopments and Applications, M. Iri and K. Tanabe, eds., Kluwer, Dordrecht, the Nether-

lands, 1989, pp. 83–108.

[130] A. Griewank and G. F. Corliss, eds., Automatic Differentiation of Algorithms: Theory,

Implementation, and Application, SIAM, Philadelphia, 1991.

[131] A. Griewank and P. L. Toint, Local convergence analysis for partitioned quasi-Newton

updates, Numer. Math., 39 (1982), pp. 429–448.

[132] , On the unconstrained optimization of partially separable functions, in Nonlinear

Optimization, M. J. D. Powell, ed., Academic Press, London, 1982.

[133] , Partitioned variable metric methods for large sparse optimization problems, Nu-

mer. Math., 39 (1982), pp. 119–137.

[134] L. Grippo and S. Lucidi, A globally convergent version of the Polak-Ribière conjugate

gradient method, Math. Programming, 78 (1997), pp. 375–392.

[135] W.A. Gruver and E. Sachs, Algorithmic Methods in Optimal Control, Pitman, London,

1980.

[136] W. Hackbusch, On the fast solving of parabolic boundary control problems, SIAM J.

Control Optim., 17 (1979), pp. 231–244.

[137] , Optimal Hp,p/2 error estimates for a parabolic Galerkin method, SIAM J. Numer.

Anal., 18 (1981), pp. 681–692.

[138] , Multi-Grid Methods and Applications, Springer Ser. Comput. Math. 4, Springer-

Verlag, New York, 1985.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

BIBLIOGRAPHY 169

[139] W.W.Hager, Rates of convergence for discrete approximations to unconstrained optimal

control problems, SIAM J. Numer. Anal., 13 (1976), pp. 449–472.

[140] M.Heinkenschloss, M. Ulbrich, and S. Ulbrich, Superlinear and Quadratic Conver-

gence of Affine Scaling Interior-Point Newton Methods for Problems with Simple Bounds

and Without Strict Complementarity Assumption, Tech. Rep. TR97-30, Department of

Computational andApplied Mathematics, Rice University, Houston, TX, December 1997.

[141] M. R. Hestenes and E. Steifel, Methods of conjugate gradient for solving linear sys-

tems, J. Res. Nat. Bureau Standards, 49 (1952), pp. 409–436.

[142] M. R. Hoare and P. Pal, Physical cluster mechanics: Statics and energy surfaces for

monoatomic systems, Adv. Phys., 20 (1971), pp. 161–196.

[143] J. H.Holland, Genetic algorithms and the optimal allocation of trials, SIAM J. Comput.,

2 (1973), pp. 88–105.

[144] , Adaption in Natural and Artificial Systems, University of Michigan Press, Ann

Arbor, MI, 1975.

[145] R. Hooke and T. A. Jeeves, “Direct search" solution of numerical and statistical prob-

lems, J. Assoc. Comput. Mach., 8 (1961), pp. 212–229.

[146] R. Horst, P. M. Pardolos, and N. V. Thoai, Introduction to Global Optimization,

Kluwer Academic Publishers, Dordrecht, the Netherlands, 1995.

[147] W. Huyer and A. Neumaier, Global Optimization by Multilevel Coordinate Search,

Institut für Mathematik, Universität Wien, 1997, preprint.

[148] D. M. Hwang and C. T. Kelley, Convergence of Broyden’s method in Banach spaces,

SIAM J. Optim., 2 (1992), pp. 505–532.

[149] G. Jasen, Investment dartboard: Pros and dart throwers both lose money, Your Money

Matters, Wall Street Journal, May 7, 1997.

[150] D. R. Jones, C. C. Perttunen, and B. E. Stuckman, Lipschitzian optimization without

the Lipschitz constant, J. Optim. Theory Appl., 79 (1993), pp. 157–181.

[151] L. Kantorovich and G. Akilov, Functional Analysis, 2nd ed., Pergamon Press, New

York, 1982.

[152] R. B. Kearfott, Rigorous Global Search: Continuous Problems, Kluwer, Dordrecht,

the Netherlands, 1966.

[153] C. T. Kelley, Identification of the support of nonsmoothness, in Large Scale Optimiza-

tion: State of the Art, W. W. Hager, D. W. Hearn, and P. Pardalos, eds., Kluwer Academic

Publishers B.V., Boston, 1994, pp. 192–205.

[154] , Iterative Methods for Linear and Nonlinear Equations, SIAM, Philadelphia, 1995.

[155] , Detection and remediation of stagnation in the Nelder-Mead algorithm using a

sufficient decrease condition, SIAM J. Optim., 10 (1999), pp. 43–55.

[156] C. T. Kelley, C. T. Miller, and M. D. Tocci, Termination of Newton/chord iterations

and the method of lines, SIAM J. Sci. Comput., 19 (1998), pp. 280–290.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

170 BIBLIOGRAPHY

[157] C. T. Kelley and E. W. Sachs, Applications of quasi-Newton methods to pseu-

doparabolic control problems, in Optimal Control of Partial Differential Equations II—

Theory and Applications, Birkhäuser, Basel, 1987.

[158] , Quasi-Newton methods and unconstrained optimal control problems, SIAM J.

Control Optim., 25 (1987), pp. 1503–1516.

[159] , A pointwise quasi-Newton method for unconstrained optimal control problems,

Numer. Math., 55 (1989), pp. 159–176.

[160] , Pointwise Broyden methods, SIAM J. Optim., 3 (1993), pp. 423–441.

[161] , Multilevel algorithms for constrained compact fixed point problems, SIAM J. Sci.

Comput., 15 (1994), pp. 645–667.

[162] , Local convergence of the symmetric rank-one iteration, Computational Optimiza-

tion and Applications, 9 (1998), pp. 43–63.

[163] , A trust region method for parabolic boundary control problems, SIAM J. Optim.,

9 (1999), pp. 1064–1081.

[164] C. T. Kelley, E. W. Sachs, and B. Watson, A pointwise quasi-Newton method for

unconstrained optimal control problems, II, J. Optim. Theory Appl., 71 (1991), pp. 535–

547.

[165] H. F. Khalfan, R. H. Byrd, and R. B. Schnabel, A theoretical and experimental study

of the symmetric rank-one update, SIAM J. Optim., 3 (1993), pp. 1–24.

[166] S. Kirkpatrick, C. D. Geddat, andM. P. Vecchi, Optimization by simulated annealing,

Science, 220 (1983), pp. 671–680.

[167] J. R. Koehler and A. B. Owen, Computer experiments, in Handbook of Statistics, vol.

13, S. Shosh and C. R. Rao, eds., Elsevier, New York, 1996, pp. 261–308.

[168] J. Kostrowicki and L. Piela, Diffusion equation method of global minimization: Per-

formance for standard test functions, J. Optim. Theory Appl., 71 (1991), pp. 269–284.

[169] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, Convergence Properties

of the Nelder-Mead Simplex Algorithm in Low Dimensions, SIAM J. Optim., 9 (1998),

pp. 112–147.

[170] E. B. Lee and L. Markus, Foundations of Optimal Control Theory, John Wiley, New

York, London, Sydney, 1967.

[171] C.Lemaréchal, A view of line searches, in Optimization and Optimal Control,Auslander,

Oettli, and Stoer, eds., Lecture Notes in Control and Information Sciences 30, Springer-

Verlag, Berlin, 1981, pp. 59–78.

[172] K. Levenberg, A method for the solution of certain nonlinear problems in least squares,

Quart. Appl. Math., 4 (1944), pp. 164–168.

[173] R. M. Lewis and V. Torczon, Rank ordering and positive bases in pattern search algo-

rithms, Tech. Rep. 96-71, Institute for ComputerApplications in Science and Engineering,

December, 1996.

[174] , Pattern search algorithms for linearly constrained minimization, SIAM J. Optim.,

9 (1999), pp. 1082–1099.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

BIBLIOGRAPHY 171

[175] , Pattern search algorithms for linearly constrained minimization, SIAM J. Optim.,

10 (2000), pp. 917–941.

[176] D. C. Liu and J. Nocedal, On the limited memory BFGS method for large-scale opti-

mization, Math. Programming., 43 (1989), pp. 503–528.

[177] R. B. Long and W. C. Thacker, Data assimilation into a numerical equatorial ocean

model, part 2: Assimilation experiments, Dyn. Atmos. Oceans, 13 (1989), pp. 465–477.

[178] E. M. Lowndes, Vehicle Dynamics and Optimal Design, Ph.D. thesis, North Carolina

State University, Raleigh, 1998.

[179] S. Lucidi and M. Sciandrone, On the global convergence of derivative free methods

for unconstrained optimization, Università di Roma “La Sapienza”, Dipartimento di

Informatica e Sistemistica, 1997, reprint.

[180] D. G. Luenberger, Linear and Nonlinear Programming, Addison–Wesley, London,

1984.

[181] J. N. Lyness and C. B. Moler, Numerical differentiation of analytic functions, SIAM J.

Numer. Anal., 4 (1967), pp. 202–210.

[182] C. D. Maranas and C. A. Floudas, A global optimization method for Weber’s problem,

in Large Scale Optimization: State of the Art, W. W. Hager, D. W. Hearn, and P. Pardalos,

eds., Kluwer Academic Publishers B.V., Boston, 1994, pp. 259–293.

[183] D. W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters,

J. Soc. Indust. Appl. Math., 11 (1963), pp. 431–441.

[184] J. M. Martinez, Quasi-Newton methods for solving underdetermined nonlinear simul-

taneous equations, J. Comput. Appl. Math., 34 (1991), pp. 171–190.

[185] E. S. Marwil, Exploiting Sparsity in Newton-Type Methods, Ph.D. thesis, Cornell Uni-

versity, Ithaca, NY, 1978.

[186] H.Matthies andG. Strang, The solution of nonlinear finite element equations, Internat.

J. Numer. Methods Engrg., 14 (1979), pp. 1613–1626.

[187] D. Q. Mayne and E. Polak, Nondifferential optimization via adaptive smoothing, J.

Optim. Theory Appl., 43 (1984), pp. 601–613.

[188] K. I. M. McKinnon, Convergence of the Nelder-Mead Simplex Method to a Non-

Stationary Point, SIAM J. Optim., 9 (1998), pp. 148–158.

[189] E. H. Moore, General Analysis, Memoirs of the American Philosophy Society, 1935. I.

[190] J. J. Moré, The Levenberg-Marquardt algorithm: Implementation and theory, in Numer-

ical Analysis, G. A. Watson, ed., Lecture Notes in Mathematics 630, Springer-Verlag,

Berlin, 1977, pp. 105–116.

[191] , Trust regions and projected gradients, in System Modelling and Optimization,

Lecture Notes in Control and Information Sciences 113, Springer-Verlag, Berlin, 1988,

pp. 1–13.

[192] J. J. Moré and D. C. Sorensen, Computing a trust region step, SIAM J. Sci. Statist.

Comput., 4 (1983), pp. 553–572.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

172 BIBLIOGRAPHY

[193] J. J. Moré and D. J. Thuente, Line search algorithms with guaranteed sufficient de-

crease, ACM Trans. Math. Software, 20 (1994), pp. 286–307.

[194] J. J. Moré and G. Toraldo, On the solution of large quadratic programming problems

with bound constraints, SIAM J. Optim., 1 (1991), pp. 93–113.

[195] J. J. Moré and S. J. Wright, Optimization Software Guide, SIAM, Philadelphia, 1993.

[196] J. J. Moré and Z. Wu, Global continuation for distance geometry problems, SIAM J.

Optim., 7 (1997), pp. 814–836.

[197] W. Murray and M. L. Overton, Steplength algorithms for minimizing a class of non-

differentiable functions, Computing, 23 (1979), pp. 309–331.

[198] S. G. Nash, Newton-type minimization via the Lanczos method, SIAM J. Numer. Anal.,

21 (1984), pp. 770–788.

[199] , Preconditioning of truncated-Newton methods, SIAM J. Sci. Statist. Comput., 6

(1985), pp. 599–616.

[200] L. Nazareth, A relationship between the BFGS and conjugate gradient algorithm and

its implications for new algorithms, SIAM J. Numer. Anal., 16 (1979), pp. 794–800.

[201] , Conjugate gradient methods less dependent on conjugacy, SIAM Rev., 28 (1986),

pp. 501–511.

[202] , A view of conjugate gradient-related algorithms for nonlinear optimization, in

Linear and Nonlinear Conjugate Gradient Methods, L. M. Adams and J. L. Nazareth,

eds., SIAM, Philadelphia, 1996, pp. 149–164.

[203] J. A. Nelder. Private Communication, 1998.

[204] J. A. Nelder and R. Mead, A simplex method for function minimization, Comput. J., 7

(1965), pp. 308–313.

[205] A. Neumaier, On convergence and restart conditions for a nonlinear conjugate gradient

method. Institut für Mathematik, Universität Wien, 1997, preprint.

[206] J. Nocedal, Updating quasi-Newton matrices with limited storage, Math. Comp., 35

(1980), pp. 773–782.

[207] , Theory of algorithms for unconstrained optimization, Acta Numerica, 1 (1991),

pp. 199–242.

[208] , Conjugate gradient methods and nonlinear optimization, in Linear and Nonlinear

Conjugate Gradient Methods, L. M. Adams and J. L. Nazareth, eds., SIAM, Philadelphia,

pp. 9–23.

[209] J. Nocedal and Y. Yuan, Combining Trust Region and Line Search Techniques, Tech.

Rep. OTC 98/04, Optimization Technology Center, Northwestern University, Chicago,

IL, 1998.

[210] J. A. Northby, Structure and binding of Lennard-Jones clusters: 13 ≤ n ≤ 147, J.

Chem. Phys., 87 (1987), pp. 6166–6177.

[211] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in

Several Variables, Academic Press, New York, 1970.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

BIBLIOGRAPHY 173

[212] R. Penrose, A generalized inverse for matrices, Proc. Cambridge Phil. Soc., 51 (1955),

pp. 406–413.

[213] L. R. Petzold, A description of DASSL: A differential/algebraic system solver, in Scien-

tific Computing, R. S. Stepleman et al., ed., North–Holland, Amsterdam, 1983, pp. 65–68.

[214] S. A. Piyawskii, An algorithm for finding the absolute extremum of a function, USSR

Comp. Math. and Math. Phys., 12 (1972), pp. 57–67.

[215] E. Polak and G. Ribière, Note sur la convergence de methodes de directions conjugées,

Rev Française Informat Recherche Operationelle, 3e Année, 16 (1969), pp. 35–43.

[216] B. T. Polyak, The conjugate gradient method in extremal problems, USSR Comp. Math.

and Math. Phys., 9 (1969), pp. 94–112.

[217] M. J. D. Powell, A FORTRAN Subroutine for Unconstrained Minimization, Requiring

First Derivatives of the Objective Function, Tech. Rep. AERE-R, 6469, Mathematics

Brance, A. E. R. E. Harwell, Berkshire, England, 1970.

[218] , A hybrid method for nonlinear equations, in Numerical Methods for Nonlinear

Algebraic Equations, P. Rabinowitz, ed., Gordon and Breach, New York, 1970, pp. 87–

114.

[219] , A new algorithm for unconstrained optimization, in Nonlinear Programming, J. B.

Rosen, O. L. Mangasarian, and K. Ritter, eds., Academic Press, New York, 1970, pp. 31–

65.

[220] , Convergence properties of a class of minimization algorithms, in Nonlinear Pro-

gramming 2, O. L. Mangasarian, R. R. Meyer, and S. M. Robinson, eds., Academic Press,

New York, 1975, pp. 1–27.

[221] , Some global convergence properties of a variable metric algorithm without ex-

act line searches, in Nonlinear Programming, R. Cottle and C. Lemke, eds., American

Mathematical Society, Providence, RI, 1976, pp. 53–72.

[222] , Nonconvex minimization calculations and the conjugate gradient method, Lecture

Notes in Mathematics 1066, Springer-Verlag, Berlin, (1984), pp. 122–141.

[223] , On the global convergence of trust region algorithms for unconstrained minimiza-

tion, Math. Programming., 29 (1984), pp. 297–303.

[224] , Convergence properties of algorithms for nonlinear optimization, SIAM Rev., 28

(1986), pp. 487–500.

[225] , How bad are the BFGS and DFP methods when the objective function is quadratic,

Math. Programming., 34 (1986), pp. 34–47.

[226] , Update conjugate directions by the BFGS formula, Math. Programming, 38 (1987),

pp. 29–46.

[227] , Direct search algorithms for optimization calculations, Acta Numerica, 7 (1998),

pp. 287–336.

[228] K. Radhakrishnan and A. C. Hindmarsh, Description and Use of LSODE, the Liver-

more Solver for Ordinary Differential Equations, Tech. Rep. URCL-ID-113855, Lawrence

Livermore National Laboratory, Livermore, CA, December 1993.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

174 BIBLIOGRAPHY

[229] W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, New York, 1953.

[230] J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn, Designs and analysis of

computer experiments, Statist. Sci., 4 (1989), pp. 409–435.

[231] R. B. Schnabel and E. Eskow, A new modified Cholesky factorization, SIAM J. Sci.

Statist. Comput., 11 (1990), pp. 1136–1158.

[232] G. A. Schultz, R. B. Schnabel, and R. H. Byrd, A family of trust-region-based algo-

rithms for unconstrained minimization with strong global convergence properties, SIAM

J. Numer. Anal., 22 (1985), pp. 47–67.

[233] V. E. Shamanskii, A modification of Newton’s method, Ukrain. Mat. Zh., 19 (1967),

pp. 133–138 (in Russian).

[234] L. F. Shampine, Implementation of implicit formulas for the solution of ODEs, SIAM J.

Sci. Statist. Comput., 1 (1980), pp. 103–118.

[235] , Numerical Solution of Ordinary Differential Equations, Chapman and Hall, New

York, 1994.

[236] L. F. Shampine and M. W. Reichelt, The MATLAB ODE suite, SIAM J. Sci. Comput.,

18 (1997), pp. 1–22.

[237] D. F. Shanno, Conditioning of quasi-Newton methods for function minimization, Math.

Comp., 24 (1970), pp. 647–657.

[238] , On the variable metric methods for sparse Hessians, Math. Comp., 34 (1980),

pp. 499–514.

[239] J. Sherman and W. J. Morrison, Adjustment of an inverse matrix corresponding to

changes in the elements of a given column or a given row of the original matrix (abstract),

Ann. Math. Statist., 20 (1949), p. 621.

[240] , Adjustment of an inverse matrix corresponding to a change in one element of a

given matrix, Ann. Math. Statist., 21 (1950), pp. 124–127.

[241] B. O. Shubert, A sequential method seeking the global maximum of a function, SIAM

J. Numer. Anal., 9 (1972), pp. 379–388.

[242] D. C. Sorensen, Newton’s method with a model trust region modification, SIAM J.

Numer. Anal., 19 (1982), pp. 409–426.

[243] , Minimization of a large-scale quadratic function subject to a spherical constraint,

SIAM J. Optim., 7 (1997), pp. 141–161.

[244] W. Spendley, G. R. Hext, and F. R. Himsworth, Sequential application of simplex

designs in optimisation and evolutionary operation, Technometrics, 4 (1962), pp. 441–

461.

[245] W. Squire and G. Trapp, Using complex variables to estimate derivatives of real func-

tions, SIAM Rev., 40 (1998), pp. 110–112.

[246] M. Srinivas and L. M. Patnaik, Genetic algorithms: A survey, Computer, 27 (1994),

pp. 17–27.

[247] T. Steihaug, The conjugate gradient method and trust regions in large scale optimization,

SIAM J. Numer. Anal., 20 (1983), pp. 626–637.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

BIBLIOGRAPHY 175

[248] C. P. Stephens and W. Baritompa, Global optimization requires global information, J.

Optim. Theory Appl., 96 (1998), pp. 575–588.

[249] G.W. Stewart, Introduction to Matrix Computations, Academic Press, NewYork, 1973.

[250] D. Stoneking, G. Bilbro, R. Trew, P. Gilmore, and C. T. Kelley, Yield optimiza-

tion using a GaAs process simulator coupled to a physical device model, IEEE Trans.

Microwave Theory and Techniques, 40 (1992), pp. 1353–1363.

[251] D. E. Stoneking, G. L. Bilbro, R. J. Trew, P. Gilmore, and C. T. Kelley, Yield

optimization using a GaAs process simulator coupled to a physical device model, in Proc.

IEEE/Cornell Conference on Advanced Concepts in High Speed Devices and Circuits,

IEEE, Piscataway, NJ, 1991, pp. 374–383.

[252] K. Tababe, Continuous Newton-Raphson method for solving an underdetermined system

of nonlinear equations, J. Nonlinear Anal., Theory Methods Appl., 3 (1979), pp. 495–503.

[253] , Global analysis of continuous analogs of the Levenberg-Marquardt and Newton-

Raphson methods for solving nonlinear equations, Ann. Inst. Statist. Math., B, 37 (1985),

pp. 189–203.

[254] T. Tian and J. C. Dunn, On the gradient projection method for optimal control problems

with nonnegative L2 inputs, SIAM J. Control Optim., 32 (1994), pp. 516–537.

[255] P. L. Toint, On sparse and symmetric matrix updating subject to a linear equation, Math.

Comp., 31 (1977), pp. 954–961.

[256] , On the superlinear convergence of an algorithm for solving a sparse minimization

problem, SIAM J. Numer. Anal., 16 (1979), pp. 1036–1045.

[257] , Towards an efficient sparsity exploiting Newton method for minimization, in Sparse

Matrices and Their Uses, I. S. Duff, ed., Academic Press, New York, 1981, pp. 57–88.

[258] , On large scale nonlinear least squares calculations, SIAM J. Sci. Statist. Comput.,

8 (1987), pp. 416–435.

[259] , Global convergence of a class of trust–region methods for nonconvex minimization

in Hilbert space, IMA J. Numer. Anal., 8 (1988), pp. 231–252.

[260] V. Torczon. Private communication, 1997.

[261] , Multidirectional Search, Ph.D. thesis, Rice University, Houston, TX, 1989.

[262] , On the convergence of the multidimensional search algorithm, SIAM J. Optim., 1

(1991), pp. 123–145.

[263] , On the convergence of pattern search algorithms, SIAM J. Optim., 7 (1997),

pp. 1–25.

[264] L. N. Trefethen and D. Bau, Numerical Linear Algebra, SIAM, Philadelphia, 1996.

[265] P. van Laarhoven and E. Aarts, Simulated Annealing, Theory and Practice, Kluwer,

Dordrecht, the Netherlands, 1987.

[266] L. N. Vicente, Trust-Region Interior-Point Algorithms for a Class of Nonlinear Program-

ming Problems, Ph.D. thesis, Rice University, Houston, TX, 1996.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

176 BIBLIOGRAPHY

[267] F. H. Walters, L. R. Parker, S. L. Morgan, and S. N. Demming, Sequential Simplex

Optimization, CRC Press, Boca Raton, FL, 1991.

[268] B. Watson, Quasi-Newton Methoden für Minimierungsprobleme mit strukturierter

Hesse-Matrix, Diploma Thesis, Universität Trier, 1990.

[269] J. Werner, Über die globale konvergenz von Variable-Metric Verfahren mit nichtexakter

Schrittweitenbestimmung, Numer. Math., 31 (1978), pp. 321–334.

[270] T. A.Winslow, R. J. Trew, P. Gilmore, and C. T. Kelley, Doping profiles for optimum

class B performance of GaAs mesfet amplifiers, in Proc. IEEE/Cornell Conference on

Advanced Concepts in High Speed Devices and Circuits, IEEE, Piscataway, NJ, 1991,

pp. 188–197.

[271] , Simulated performance optimization of GaAs MESFET amplifiers, in Proc.

IEEE/Cornell Conference on Advanced Concepts in High Speed Devices and Circuits,

IEEE, Piscataway, NJ, 1991, pp. 393–402.

[272] P. Wolfe, Convergence conditions for ascent methods, SIAM Rev., 11 (1969), pp. 226–

235.

[273] , Convergence conditions for ascent methods II: Some corrections, SIAM Rev., 13

(1971), pp. 185–188.

[274] M. H. Wright, Direct search methods: Once scorned, now respectable, in Numerical

Analysis 1995, Proc. 1995 Dundee Bienneal Conference in Numerical Analysis, D. F.

Griffiths and G.A.Watson, eds., 1996,Addison–Wesley Longman, Harlow, U.K., pp. 191–

208.

[275] S. J. Wright, Compact storage of Broyden-class quasi-Newton matrices, Argonne Na-

tional Laboratory, Argone, IL, 1994, preprint.

[276] S. J. Wright and J. N. Holt, An inexact Levenbert-Marquardt method for large sparse

nonlinear least squares, J. Austral. Math. Soc. Ser. B, 26 (1985), pp. 387–403.

[277] Z. Wu, The effective energy transformation scheme as a special continuation approach

to global optimization with application to molecular conformation, SIAM J. Optim., 6

(1996), pp. 748–768.

[278] T. J. Ypma, The effect of rounding errors on Newton-like methods, IMA J. Numer. Anal.,

3 (1983), pp. 109–118.

[279] S. K. Zavriev, On the global optimization properties of finite-difference local descent

algorithms, J. Global Optim., 3 (1993), pp. 67–78.

[280] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, L-BFGS-B—FORTRAN subroutines for

large-scale bound constrained optimization, ACM Trans. Math. Software, 23 (1997),

pp. 550–560.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

Index

ǫ-active set, 97

ǫ-inactive set, 97

Actual reduction, 40

trust region, 51

Adjoint equation, 10

Adjoint variable, 10

Armijo rule, 39, 78

Backtracking, 39

BFGS

algorithm, 80

global convergence, 78

implementation, 78

limited memory, 79

local convergence, 72

modified update, 80

restarted, 79

update, 71

Bounded deterioration, 74

Breakdown

conjugate gradient, 7

Cauchy decrease, 62

Cauchy point, 55

CG-Trust region optimizer, 65

CGTRUST

algorithm, 65

Cholesky factorization, 7, 16

Chord method, 19

algorithm, 19

Classical dogleg

algorithm, 63

Conjugate gradient, 7, 28

algorithm, 7

Constrained optimization problem, 3

Constraints, 87

active, 87

inactive, 87

Control variable, 10

Convergence

r-type, 14

Convergence theorem

chord method, 19

Newton’s method, 15

Convex quadratic, 6, 45

Coordinate descent algorithm, 146

Critical point, 5

DACE, 149

Default choice, 82

Dennis–Moré condition, 76

Descent direction, 40

DFP update, 81

Difference approximation

Hessian, 20

Hessian–vector product, 20

DIRECT

method, 135

Direct search algorithms, 135

Direction of negative curvature, 9, 30

Dogleg, 58

classical, 58

Feasible

point, 87

set, 87

Fletcher–Reeves formula, 49

Forcing term, 28

Forward difference CG

algorithm, 30

Forward difference PCG

algorithm, 31

Frobenius norm, 77

Fundamental theorem of calculus, 4

Gauss–Newton

damped, 47

Gauss–Newton method, 23

Genetic algorithms, 112

Global convergence

Armijo rule, 43

BFGS–Armijo, 78

dogleg trust region, 52

gradient projection method, 95

projected BFGS method, 104

177

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

178 INDEX

scaled srojected gradient, 99

Global minimization problem, 3

Global minimizer, 3

Globally convergent algorithm, 39

Gradient of f , 4

Gradient Projection

algorithm, 91

Gradient projection, 91

Hessian of f , 4

Hooke–Jeeves

algorithm, 135, 145

convergence, 148

exploratory move, 145

pattern move, 146

Implicit filtering

restart, 127

scales, 124

Indefinite matrix, 4

Indices

active, 87

inactive, 87

Inexact Newton

method, 28

step, 28

Initial

guess, 4

iterate, 4

Inner iteration, 28

Interval methods, 112

Krylov subspace, 8

Large residual problem, 22

Lennard–Jones function, 120

Levenberg–Marquardt

method, 47

parameter, 47, 56

Line search, 39

actual reduction, 40

exact, 41, 86

predicted reduction, 40

Line search algorithm, 40

Linear model, 14, 40

Lipschitz

constant, 14

continuity, 14

Local convergence

BFGS, 72

chord method, 19

implicit filtering, 124

inexact Newton method, 29, 30

Newton’s method, 16

Projected BFGS method, 104

Projected Newton method, 101

q-type, 13

Local improvement, 18

Local linear model

for equations, 14

Local minimizer, 3

nondegenerate, 90

Local quadratic model

exact Hessians, 15

MDS, 135, 143

convergence, 145

Measure of stationarity, 93

Minimizer

global, 3

local, 3

Minimum, 3

Minimum at all scales, 127

Minimum norm solution, 23, 25

Model Hessian, 40

Moore–Penrose inverse, 26

Multidirectional search, 135, 143

convergence, 145

Necessary condition

first-order, 5

Necessary conditions

bound constraints

one variable, 88

first-order

bound constraints, 88

for optimality, 5

Negative curvature, 9, 30, 36

Nelder–Mead

oriented restart, 141

simplex method, 135

stagnation

detection, 141

Newtcg

algorithm, 32

Newton step, 15

Newton’s method, 14

algorithm, 16

Newton-iterative methods, 28

Nondegenerate local minimizer, 90

Nonlinear conjugate gradient

algorithm, 48

convergence, 49

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

INDEX 179

Fletcher–Reeves, 49

Polak–Ribière, 49

Nonlinear least squares, 11, 22

Jacobian, 22

overdetermined, 22

residual, 22

underdetermined, 22

Ntrust

algorithm, 63

Objective function, 3

Optimality

necessary conditions, 5

sufficient conditions, 6

Optimization problem

constrained, 3

easiest, 12

unconstrained, 3

Oriented lengths, 112

Outer iteration, 28

Parameter identification, 11

Polak–Ribière formula, 49

Positive definite matrix, 4

Positive semidefinite matrix, 4

Preconditioned CG

algorithm, 8

Preconditioning

conjugate gradient, 8

Predicted reduction

line search, 40

trust region, 51

Projected BFGS method, 104

Projected Newton method, 100

algorithm, 100

Projection

onto Ω, 89

PSB update, 81

Quadratic model, 6, 40

Quadratic objective functions, 6

Quasi-Newton methods, 71

Reduced Hessian

definition, 89

Response surfaces, 148

Safeguarding, 44

Scaled gradient projection, 99

Scaling, 46

Scaling matrix, 99

Secant equation, 71

Secant method

classical, 71

Sensitivity equations, 11, 12

Shamanskii method, 20

Sherman–Morrison

formula, 81

Shubert algorithm, 149

Simple decrease, 40

Simplex

condition, 112

convex hull, 112

definition, 112

diameter, 112

directions, 112

gradient

forward, 113

nonsingular, 112

reflected, 115

vertex, 112

Simplex gradient

central, 115

Simulated annealing, 112

Singular value decomposition, 25

Singular values, 26

Singular vectors, 26

Small residual problem, 22

spd, 4

Spendley–Hext–Himsworth algorithm, 159

SR1 update, 81

Stagnation, 19

Nelder–Mead

example, 139

Standard assumptions, 14

State equation, 10

State variable, 10

Stationary point, 5, 43, 100

bound constraints, 88

nondegenerate, 90

Steepest descent

direction, 39

method, 39

Stencil failure, 117, 123

Steplength, 39

Stiff initial value problems, 11

Strict complementarity, 90

Sufficient conditions

for optimality, 6

Sufficient decrease, 39, 41

gradient projection, 91

projected Newton, 97

simplex form, 138

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

180 INDEX

Surrogate models, 148

Taylor’s theorem, 5

Termination

bound constrained problems, 91

small function differences, 21

small gradients, 21

small steps, 21

unconstrained problems, 21

Tosca, Floria, xiv

TR-CG

algorithm, 64

Truncated Newton methods, 28

Trust region, 50

actual reduction, 51

algorithm

adjustment, 51

paradigm, 52

dogleg, 58

classical, 58

convergence theorem, 52

Levenberg–Marquardt

algorithm, 58

parameter, 57

methods, 50

Newton point, 58

predicted reduction, 51

problem, 50

radius, 50

trial solution, 50

trial step, 50

unidirectional, 54

Trust region CG

algorithm, 64

Unconstrained optimization problem, 3

Weber’s problem, 118, 127, 152

Wolfe conditions, 49

strong, 49

Youngman

Henny, 159

Zero residual problem, 22

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

