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21. IntroductionComputer simulation is an integral part of the analysis of physical phenomena and of the successful designand implementation of many systems and structures. Simulations require realistic mathematical modelsand practical numerical algorithms. Model complexity may be limited by the types of algorithms which areavailable. Many computer simulations require the repeated solution of large systems of linear equations.Ax = b:(1)Often these systems are too large for numerical methods which explicitly modify the problem, and itbecomes necessary to use iterative methods which obtain information about the problem through a sequenceof matrix-vector computations.Much of the current research on iterative methods for solving nonsymmetric equations(1) focuses ontwo sets of Krylov subspace methods and their variants [10]. Each set is based upon recursions whichmap the matrix A into a family of projection matrices which are then used to obtain approximations toa solution of Equation(1). The �rst set is based upon the Arnoldi recursion and includes the generalizedminimal residual method (GMRES), the full orthogonal method (FOM), and their variants such as restartedGMRES(q) [17]. The second set of methods is based upon nonsymmetric Lanczos recursions, and includesthe bi-conjugate gradient method (BiCG), the quasi-minimal residual method (QMR), and their variantssuch as BiCGSTAB(q) [9, 12, 22, 13, 19].In this paper we study the convergence behavior of these methods using the MATLAB [14] templatesdiscussed in [2]. In section 2 we review briey the GMRES/FOM and the QMR/BiCG methods. Insection 3 we obtain a relationship between BiCG and FOM, and a weaker relationship between QMR andGMRES. In section 4 we review unitary equivalences for each of these methods and how these equivalencescan be used to obtain test matrices where certain spectral properties of the matrices can be varied [7].In section 5 we address the question of consistency when testing a given method across changes in thenonnormality of the problem or in the eigenvalue distribution. In section 6 we use these test matrices innumerical experiments designed to provide some insight into the e�ects of nonnormality on the convergenceof QMR/GMRES, on the e�ects of outliers on the convergence of QMR, and on the debate over whichmethod is best.In [8] we considered similar questions for the eigenvalue problem Ax = �x. We use the followingnotation.1.1. Notation.A = (aij) , 1 � i; j � n; n � n real or complex matrixAT = (aji) , 1 � i; j � n; transpose of AAH = (�aji) , 1 � i; j � n; complex conjugate transpose of AD = diag fd1; : : : ; dng ; n � n diagonal matrix�j(A) , 1 � j � n; eigenvalues of Aw(A) = f�j(A); 1 � j � ng�j(A) , 1 � j � n; singular values of A where �1 � : : : � �n� = diag f�1; : : : ; �ngKj(A; b) = span fb; Ab; : : : ; Aj�1bg, jth Krylov subspace generated by A and b�(A) = �max(A)=�min(A); condition number of AkAk2 = �max(A); kxk2 = qPnj=1x2jvj, jth vector in any sequence of vectors, Vj = fv1; : : : ; vjgxGj =, jth iterate for method G�Gj =, xj � xtrue for method Grj = �Axj + b = �A�j + r0, jth residual vector corresponding to xj and �j



3Rm, m�dimensional Euclidean spaceej, jth coordinate vector in Rm for some speci�ed mêj, jth coordinate vector in Rm+1 for some speci�ed mIj, j � j identity matrix2. Krylov Subspace Methods: GMRES/FOM and QMR/BiCGIn this section we review briey the GMRES/FOM and QMR/BiCG methods for solving Equation(1).Without loss of generality we can consider the equivalent systemA� = r0 where r0 = �Ax0 + b and � = xtrue � x0:(2)For simplicity we assume A is a real matrix.2.1. Arnoldi Methods: GMRES/FOM/GMRES(q)The GMRES/FOM/GMRES(q) methods are based upon the Arnoldi recursion [17].Arnoldi Recursion:1. Given a vector v1 with kv1k = 1, for k = 2; 3; : : : ; compute: vk+1 = Avk.2. For each k and for i = 1; : : : ; k compute:hik = vHi vk+1; vk+1 = vk+1 � hikvi:3. For each k compute: hk+1;k = kvk+1k; and vk+1 = vk+1=hk+1;k:Theoretically, Vk = fv1; : : : ; vkg is an orthonormal basis of the Krylov subspace Kk(A; v1) and theHessenberg Arnoldi matrix Hk � (hij) is a matrix representation of A on Kk(A; v1) with respect to theVk. The preceding implementation is a modi�ed Gram-Schmidt orthogonalization. Other implementationsexist [23]. In matrix form these recursions becomeAVk = VkHk + hk+1;kvk+1eTk where Hk = (hij); 1 � i; j � k:(3)2.2. GMRES/FOMIn GMRES/FOM/GMRES(q), v1 � r0=kr0k in (3). Theoretically, GMRES and FOM select their iterates,�Gk ; �Fk ; from the same Krylov subspaces but subject to di�erent constraints on the corresponding residualvectors, rGk and rFk . At the kth iteration in GMRES the iterate is selected so that the norm of thecorresponding residual vector, rGk , is minimized over the kth Krylov subspace corresponding to A and r0[16]. For each k, krGk k = min��Kk(A;r0) kr0 �A�k = kr0 �A�Gk k:(4) Saad [16] proved that Equation(4) is equivalent to the Petrov-Galerkin conditionrGk ? AKk(A; r0):(5) We can rewrite equation (3) asAVk = Vk+1H (e)k where H (e)k =  Hk0 � � �0 hk+1;k !(6)



4is a k + 1 by k matrix.Using equation(6), constraint (4), and the orthonormality of the Arnoldi vectors, it is not di�cult toprove that the kth GMRES iterate�Gk = VkyGk where krGk k = miny k �H (e)k y + kr0kê1k:(7) At the kth iteration in FOM the iterate is selected so that the residual vector, rFk , is orthogonal to thekth Krylov subspace corresponding to A and r0, [18]. For each k,rFk ? Kk(A; r0):(8) Using equation(3), the constraint (8), and the orthonormality of the Arnoldi vectors, it is not di�cultto prove that the kth FOM iterate �Fk = VkyFk where HkyFk = kr0ke1:(9) Therefore, the kth FOM iterate is obtained by solving a system of equations de�ned by the Galerkiniteration matrices Hk, and the kth GMRES iterate is obtained by solving a least squares problem de�nedby Hek . We cannot guarantee that the Galerkin equations are well-conditioned or even nonsingular. If Hkis singular for some k, then the kth FOM iterate does not exist but in this situation the kth GMRES iterateis identical to the (k� 1)st GMRES iterate [4].For any 1 � q � n, GMRES(q) is GMRES restarted with the current residual vector, after each qiterations [17].2.3. Nonsymmetric Lanczos Methods: QMR/BiCG/BiCGSTAB(q)QMR/BiCG and BiCGSTAB(q) are based upon nonsymmetric Lanczos recursions. Nonsymmetric Lanczosrecursions generate two sets of Lanczos vectors, and tridiagonal matrices. We consider a variant used by[12]. Nonsymmetric Lanczos Recursion (Nonsymmetric Variant):1. Given v1 and w1 with kw1k = kv1k = 1, set v0 = w0 = 0, and �1 = 1, �1 = 1, and �1 = 0.For each j = 1; : : : ; k compute:vj+1 = Avj and wj+1 = ATwj2. For each j = 1; : : : ; k compute: �j = wTj vj+1=wTj vj;pj = vj+1 � �jvj � �jvj�1sj = wj+1 � �jwj � (�j�j=�j)wj�1�j+1 = kpjk; vj+1 = pj=�j+1�j+1 = ksjk; wj+1 = sj=�j+1�j+1 = �j+1wTj+1vj+1=wTj vj:The Lanczos vectors are scaled to have unit norm. The coe�cients in the recursions are chosen to makethe Lanczos vectors Vk = fv1; : : : ; vkg and Wk = fw1; : : : ; wkg bi-orthogonal. Theoretically, for each k, Vkis a basis for the Krylov subspace Kk(A; v1), and Wk is a basis for the subspace Kk(AT ; w1).In matrix form the nonsymmetric Lanczos recursions can be written as



5AVk = VkTk + k+1vk+1eTkATWk = Wk ~Tk + !k+1wk+1eTk :(10)where ~Tk = ��1k Tk�k, �k = diag(�1; : : : ; �k), �1 = 1, �k = �k�1�k=�k, andTk = 0BBBBBBBBB@ �1 �2�2 �2 �3�3 . . . . . .. . . �k�1 �k�k �k 1CCCCCCCCCA ;(11)Theoretically, Tk is the matrix representation of the bi-orthogonal projection ofA onto the Krylov subspacesKk(A; r0) and Kk(AT ; ~r0) with respect to the bases generated by the nonsymmetric Lanczos recursions.2.4. QMR/BiCG/BiCGSTAB(q)In the QMR, BiCG, and BiCGSTAB(q) in [2], v1 � r0=kr0k = w1 = ~r0=k~r0k. Theoretically, at eachiteration, QMR and BiCG select their iterates, �Qk ; �Bk ; from the same Krylov subspaces , Kk(A; r0), asGMRES and FOM but subject to di�erent constraints on the residual vectors.At the kth iteration in QMR the iterate is chosen so that the norm of an associated quasi-residualvector, which we denote by zQk , is minimized. The construction parallels the construction for GMRES. Wecan rewrite equation (10) as AVk = Vk+1T (e)k : where T ek �  Tk0 : : :0 �k+1 ! :(12)For any k, we de�ne quasi-residual vectors z as any k + 1 vector for which there is a k-vector y withz = �T (e)k y + kr0kê1:(13)The kth QMR iterate �Qk = VkyQk is chosen so that the norm of the associated quasi-residual vector isminimized [12].�Qk = VkyQk ; where kzQk k � k � T (e)k yQk + kr0kê1k = miny k � T (e)k y + kr0kê1k:(14)The kth BiCG iterate �Bk is chosen so that the kth residual vector, rBk , is orthogonal to the kth Krylovsubspace associated with AT and ~r0. Speci�cally,rBk ? Kk(AT ; ~r0):(15)Using equation(12), the constraint equation(15), and the bi-orthogonality of the Lanczos vectors, it isnot di�cult to prove that the kth BiCG iterate�Bk = VkyBk where TkyBk = kr0ke1:(16)Therefore, the kth BiCG iterate is obtained by solving a system of equations de�ned by the Galerkiniteration matrices Tk, and the kth QMR iterate is obtained by solving a least squares problem involvingT ek . We cannot guarantee that the Galerkin equations are well-conditioned or even nonsingular. However,analogous to GMRES/FOM, if Tk is singular for some k, then the kth BiCG iterate does not exist andin this situation the kth QMR iterate is identical to the (k � 1)st QMR iterate [12]. BiCGSTAB(q) arevariants of BiCG which do not require AT and which incorporate GMRES polynomials to accelerate theconvergence. For details on their construction see [22, 19].



62.5. Comments on Both Types of MethodsIn this paper we use superscripts Q;B;G; F to denote respectively, quantities associated with a QMR, aBiCG, a GMRES or a FOM computation.For a given problem, QMR/BiCG and GMRES/FOM select their iterates from the same Krylovsubspaces but subject to di�erent constraints on the residuals of the iterates. The methods also di�erin their storage requirements and the amount of work required at each iteration. QMR and BiCG requirematrix-vector multiplications by A and by AT but have minimal storage requirements, in addition to thestorage required by the A and AT computations. GMRES and FOM require only A but require access toall of the previously-generated Arnoldi vectors at each iteration. BiCGSTAB(q) also requires only A butsince it is based upon BiCG and restarted GMRES, it also has small storage requirements. For details see[22, 19].Theoretically, the recursions underlying GMRES/FOM cannot break down. Theoretically, however,the recursions underlying QMR/BiCG/BiCGSTAB(q) will break down if at some stage in the underlyingnonsymmetric Lanczos recursions, a bi-orthogonality term wTv = 0 for some w 6= 0 and v 6= 0. Withinthese schemes this corresponds to ~rTk rk = 0 for some k but ~rk 6= 0 and rk 6= 0. If this occurs thenthe procedures cannot be continued. Exact breakdown is unlikely, near breakdowns can cause numericalinstabilities. To avoid such problems, various look-ahead strategies have been proposed, see for example,[15, 11]. The discussions in this paper are equally applicable to the look-ahead variants of these methods.We do not include look-ahead capabilities in our tests. In addition the Galerkin methods, BiCG, FOM, andBiCGSTAB(q) can experience problems if the iteration matrices, Tk or Hk are nearly singular or singular.Since the columns of the Lanczos vectors V Bk+1 are not orthonormal, the norms of the true residuals inQMR are not identical to those of the quasi-residuals. However, in exact arithmetic, for each k, [12, 11]krQk k � pk + 1 kzQk k:(17)In practice we observe that krQk k and kzQk k appear to track each other until the limits of convergenceare achieved. See section 5, �gures 1-2 for examples of this behavior. We have the following lemma whichwe will need in section 3. See for example, [6].Lemma 2.1. (Exact Arithmetic). Apply either QMR/BiCG or GMRES/FOM to equation(1). ForQMR/BiCG let zQ;B � �T eky + kr0kê1 for some k-vector y denote a corresponding quasi-residual vector.Similarly, for GMRES/FOM de�ne zG;F using Hek. De�ne x � x0 + �Q;B;G;F where �Q;B;G;F � V Q;B;G:Fk y.Then the corresponding residualsr � �AxQ;B;G;F + b = �A�Q;B;G;F + r0 = V Q;B;G:Fk+1 zQ;B;G;F :(18)Recursions (3,10) can be used to obtain error estimates for the iterates generated. Assuming nobreakdowns at each iteration of QMR/BiCG, we obtain the following estimate of the norm of residuals atiteration k. krQ;Bk k � k � A�Q:Bk + r0k = k�k+1yQ;Bk (k)vBk+1k(19)where y(k) denotes the kth component of the vector y. We have a similar recursion for GMRES/FOMinvolving hk+1;k. By construction for each k, kvBk+1k = 1. Therefore, we can estimate the norms ofthe residuals in GMRES/FOM or QMR/BiCG without computing the true residuals. In �nite precisionarithmetic, this estimate will still be valid as long as the errors in the recursions are su�ciently small [1].Typically, each of these methods is implemented using recursive factorizations of either the Hessenberg orthe tridiagonal matrices, and the preceding estimates of the norm of the residual are obtained recursivelyand used to track convergence.At each iteration in each of the tests we discuss in section 6, we computed these estimates and thetrue residual norms. We used the true residual norms to track the convergence. Each residual norm plotin section 6 is a plot of true residual norms. We make the following assumption.



7Assumption 1.1: In any statement or theorem about the QMR/BiCG/BiCGSTAB(q) methods, wewill always assume that no breakdown has occurred and that all quantities are well-de�ned. Furthermore,in any statement about FOM we will always assume that all quantities are well-de�ned.3. A Relationship Between BiCG and FOMWe obtain a relationship between BiCG and FOM residual norm plots and a weaker relationship betweenQMR quasi-residual and GMRES residual norm plots. In exact arithmetic we prove that given a BiCGresidual norm plot we can construct an identical FOM residual norm plot for a di�erent problem withthe same eigenvalues. Furthermore, given a QMR quasi-residual norm plot, we can construct an identicalGMRES residual norm plot for a di�erent problem with the same eigenvalues. From this we can conclude,at least in exact arithmetic, that any type of residual norm convergence observed using BiCG can also beobserved using FOM on some other problem with the same eigenvalues.In this section we use C and ~C to denote two di�erent matrices. In Theorem 3.1 we assume thatC has n distinct eigenvalues, that the starting vectors have projections on each of the right and the lefteigenvectors of B, and that there is no breakdown in the nonsymmetric Lanczos recursions. If there werefewer than n distinct eigenvalues, and the arithmetic were exact, the methods would terminate for somem < n, and Theorem 3.1 would have to be expressed in terms of m.Theorem 3.1. : (Exact Arithmetic): Let C be a real n � n matrix with distinct eigenvalues. ApplyBiCG/QMR to Cx = c. For k = 1; : : : ; n, CV Bk = V Bk (TBk )e(20)where V Bk and (TBk )e denote respectively the Lanczos vectors and matrices generated with vB1 = r0=kr0k.Then there exists a n�n matrix ~C with the same eigenvalues as C and a vector ~c such that an applicationof the FOM/GMRES methods to ~Cx = ~c , yieldskrFk ( ~C)k = kzFk ( ~C)k = kzBk (C)k = krBk (C)k for 1 � k � n;(21)where zBk (C) and zFk ( ~C) are the corresponding quasi-residual vectors. Furthermore, if zQk (C) and zGk ( ~C)are the corresponding quasi-residual vectors for QMR and GMRES, thenkrGk ( ~C)k = kzGk ( ~C)k = kzQk (C)k:(22)Proof. Let TBn = QnUnQHn(23)be any Schur decomposition of TBn . De�ne V Fn � QHn , thenUnV Fn = V Fn TBn :(24)De�ne ~C = Un and ~c equal to the �rst column of V Fn scaled by kr0k. Then V Fn are FOM vectorscorresponding to ~Cx = ~c; with HFk ( ~C) = TBk (C):(25)Furthermore, from Lemma 2.1, and equation(25),rFk ( ~C) = V Fk+1zFk ( ~C) = V Fk+1zBk (C) = ��k+1yBk (k)vFk+1(26)where yBk is the solution of the associated Galerkin equationsTBk y = kr0ke1 and zBk (C) = zFk ( ~C) = �(TBk )eyBk + kr0kê1(27)are the associated BCG and FOM quasi-residual vectors.



8From equations(26,27) and the orthonormality of the columns of V Fk we have thatkrFk ( ~C)k = kzFk ( ~C)k = kzBk (C)k = j�k+1yBk (k)j:(28)Moreover, from recursion(12) and Lemma 2.1 we have thatrBk (C) = V Bk+1zBk (C) = ��k+1vBk+1yBk (k)(29)By construction kvBk+1k = 1. Therefore, from equations(28,29)krBk (C)k = kzBk (C)k = j�k+1yBk (k)j:(30)Combining equations(28,30) we obtain equation(21).A similar argument yields equation(22). For each k we have thatrGk ( ~C) = V Fk+1zGk ( ~C) and zGk ( ~C) = zQk (C)(31)where the associated quasi-residual vectors zGk ( ~C) = zQk (C) is obtained from the solution yGk = yQk of theassociated least squares problemminy k � (TBk )ey + kr0ke1k by setting zQk (C) = zGk ( ~C) = �(TBk )eyQk + kr0kê1:(32)Therefore, from equation(31), krGk ( ~C)k = kzGk ( ~C)k = kzQk (C)k:(33)Theorem 3.1 tells us that any portions of the corresponding BiCG/FOM residual norms plots areidentical. If the errors in the BiCG recursions are su�ciently small, the BiCG residual norms are not toosmall, and the BiCG Galerkin equations are well-behaved, then we can obtain a �nite precision variant ofTheorem 3.1. In �nite precision arithmetic the eigenvalues of ~Cn will not usually equal the eigenvalues ofC.4. Unitary Invariant Properties of QMR/BiCG and of GMRES/FOMWe want to study the convergence behavior of QMR/BiCG and GMRES/FOM as we vary spectralproperties of the test matrices. In practice users typically monitor estimates of the residual norms toidentify convergence and may use true residual norms to verify convergence. Error norms are not availablein practice. We obtain the following theorems in [7] which identify classes of matrices with identical residualand error norms. From this we obtain a set of test matrices. Details are in [7]. In this section we use C todenote a matrix and ~C to denote the matrix UHCU where U is a unitary matrix.Theorem 4.1. (Exact Arithmetic)(GMRES/FOM): Let U be any unitary matrix. Let C be anonsymmetric matrix and de�ne ~C � UHCU . For k = 1; : : : ; K; let HCk , H ~Ck and V Ck , V ~Ck denoterespectively, FOM matrices and vectors obtained by applying GMRES/FOM to Cx = c and to ~Cx = ~cwhere ~c = UHc and r ~C0 = UHrC0 . Then for each k, HCk = H ~Ck , V Ck = UV ~Ck . Furthermore, if all of theiterates are de�ned for each method, corresponding iterates satisfyxF;Gk (C) = UxF;Gk ( ~C) and rF;Gk (C) = UrF;Gk ( ~C):(34)Therefore, for each method, the corresponding computations yield identical residual and error norms,krG;Fk (C)k = krG;Fk ( ~C)k and keG;Fk (C)k = keG;Fk ( ~C)k:(35)



9Theorem 4.2. (Exact Arithmetic) (QMR/BiCG): Let U be any unitary matrix. Let C be anonsymmetric matrix and de�ne ~C � UHCU . For k = 1; : : : ; K; let TCk , T ~Ck and V Ck , WCk , V ~Ck , W ~Ckdenote respectively, BiCG matrices and vectors, obtained by applying QMR/BiCG to Cx = c and to~Cy = ~c with ~c = UHc, r ~C0 = UHrC0 , and ~r ~C0 = UT ~rC0 . Then for each k, TCk , = T ~Ck , V Ck = UV ~Ck , and WCk= �UW ~Ck , where �U is the complex conjugate of U . Furthermore if all of the iterates are well-de�ned foreach method, corresponding iterates satisfyxB;Qk (C) = UxB;Qk ( ~C) and rB;Qk (C) = UrB;Qk ( ~C):(36)Therefore, for each method, the corresponding two computations yield identical residual and error norms,krB;Qk (C)k = krB;Qk ( ~C)k and keB;Qk (C)k = keB;Qk ( ~C)k:(37)Theorems 4.1 and 4.2 demonstrate that as measured by the behavior of both the residual norms and thecorresponding error norms, the GMRES/FOM methods and the QMR/BiCG methods for solving Ax = bare invariant under unitary similarity transformations of A and corresponding unitary transformations ofb, r0, and ~r0. Theorems 4.1 and 4.2 apply to complex or real versions of GMRES/FOM and QMR/BiCG.If A is normal these theorems imply that in exact arithmetic we can study the behavior of any of theseprocedures on normal matrices by studying their behavior on diagonal matrices. For arbitrary A we canuse the preceding unitary equivalences to obtain the following theorem, [7].Theorem 4.3. (Exact Arithmetic). For either GMRES, FOM, QMR or BiCG, all possible residualnorm plots and all possible error norm plots can be generated by considering matrices of the formA = �V HJV ��1(38)where � is a diagonal matrix with positive diagonal entries, V is a unitary matrix and J is the Jordancanonical form of A. If A is diagonalizable, then J is a diagonal matrix � of the eigenvalues of A. If A isreal and diagonalizable, we can replace complex V and � in equation(38) by a real orthogonal matrix anda real block diagonal matrix with 1� 1 and 2� 2 blocks.Therefore, to study the behavior of any of these Krylov subspace methods on diagonalizable matrices itis su�cient to consider matrices with eigenvector matrices of the form �V H where � is a positive diagonalmatrix and V is a unitary matrix. We can use equations(38) to specify various eigenvalue distributionsand eigenvector spaces. For any unitary V and diagonal �, B = V H�V is normal so that we have thefollowing lemma.Lemma 4.1. Let A be diagonalizable and de�ned by equation(38) for some choice of � , unitary V ,and �, then A is a positive diagonal similarity transformation of the normal matrixB = V H�V:(39)If all of the eigenvalues of A are real, then A is a positive diagonal similarity transformation of a Hermitianmatrix.5. Numerical ComparisonsWe are interested in studying the convergence behavior of GMRES/FOM, QMR/BiCG, BiCGSTAB,GMRES(10) and GMRES(20) as we vary the spectral properties of the test matrices. We have constructedMATLAB [14] codes which allow the user to generate and regenerate test matrices of the form given inequation(40). The user can also call any of the MATLAB Template codes [2] for solving equation(1). See[7] for more details. We note that in QMR/BiCG in [2], ~r0 = r0.If all of the iterates are well-de�ned, the lower envelopes of the residual norm plots generated byapplying GMRES and FOM to any problem track each other [6]. Whenever the residual norms in aFOM plot begin to increase the residual norms in the corresponding GMRES plot must atten and neither



10residual norm can improve until the FOM residual norm plot �nishes its excursion. Furthermore, wheneverthere is a strongly monotone decreasing segment in a GMRES residual norm plot there must be a stronglymonotone decreasing segment in the corresponding FOM plot. Therefore, we do not need to run tests onFOM. A similar relationship exists for the BiCG residual norms and the corresponding QMR quasi-residualnorms [6]. In practice we observe that until the �nite precision errors become dominant, the true QMRresidual norms and the QMR quasi-residual norms track each other. Serious deviations between these twonorms could be used as a heuristic for estimating when the �nite precision limits of convergence have beenexceeded. Figures 1-2 illustrate this behavior on three nonnormal problems. In such situations we wouldnot need to run BiCG tests.In section 6 we examine the behavior of GMRES(10), GMRES(20), QMR, and BiCGSTAB. We restrictour tests to diagonalizable test matrices, only because including general Jordan forms would add to thenumber of cases to consider. Each test matrix is of the formAi = �iV Hi �bVi��1i(40)where �b is real and block diagonal with 1� 1 and 2� 2 blocks and, Vi is a real orthogonal matrix.Many di�erent factors may inuence the convergence rates, the choice of �, of the eigenvaluedistribution, of V , and of b or xtrue. In addition we should consider possible e�ects from reorderingthe eigenvalues in �b or the singular values in �. It is conceivable that if we constructed an examplewhere the most dependent parts of the eigenspace corresponded to very small outlier eigenvalues, thatthe convergence of one or more of these procedures on that example could di�er from its convergence onan example where the outliers corresponded to well-behaved eigenvectors. If we modify b in accordancewith the permutation, then permuting either the singular values or the eigenvalues corresponds to somepermutation of the columns of V [7]. In section 6 we �x V , generating it randomly, using the randomnumber generator RAND and the ORTH routine in MATLAB [14], and we vary � and �b.In each test it is necessary to select either xtrue or b. It is not su�cient to either simply �x b or �xxtrue for all tests. We need to make choices which isolate the property we are varying, and are consistentacross the set of problems being considered. We want to be able to look at each test problem individuallyand be able to compare results of tests across certain subsets of test problems.In particular we want to trace the convergence of a method as we vary the nonnormality of the testproblem while keeping the eigenvalue distribution �xed. We also want to trace the convergence of a methodas we vary the eigenvalue distribution while keeping the eigenvectors �xed.Theorems 4.1 and 4.2 indicate that if the test matrices di�ered by unitary similarity transformations,then we should select b so that the sizes of the projections of these vectors on corresponding righteigenvectors are preserved across the problems. Our test matrices do not di�er by unitary similaritytransformations. However, it still seems appropriate to maintain the sizes of the projections of b on theright eigenvectors across sets of test problems. Moreover, if Amodels some physical system and if the modelis correct, then any xtrue should live comfortably in the eigenspace of A. Therefore, for the nonnormalitytests we �x the eigenvalue distribution and set xitrue = X i where  is generated randomly, X i = �iV Hi Di,and Di is chosen as in Lemma 5.1 below. Lemma 5.1 states that this choice preserves the sizes of theprojections of the right-hand sides on corresponding right eigenvectors, if the eigenvalue matrix is �xed.In tests where we vary the eigenvalue distribution we cannot use equation(41). For those tests we �xthe eigenvector matrix and set b = X where  is generated randomly and X is the speci�ed eigenvectormatrix, scaled as in Lemma 5.1.We order the eigenvalues by algebraically-smallest real part to algebraically-largest real part, construct-ing any 2� 2 blocks in �b in the form  a b�b a !where �j = a+ bi, �j+1 = a� bi, and b > 0.



11Lemma 5.1. Let Ai, 1 � i � q; be real n�n matrices de�ned by equation(40). Let Y i � �iV Hi . De�neDi = diagfdi1; : : : ; ding as follows. If �ij is real, set dij equal to the reciprocal of the norm of the jth columnof Y i. If �ij and �ij+1 are a conjugate pair of eigenvalues, set dij = dij+1 equal to the reciprocal of the squareroot of the sum of the norms of the jth and the (j + 1)th columns of Y i. De�ne X i � Y iDi. Let  begenerated randomly and de�ne xitrue = X i:(41)Then for all Ai, xitrue is the same combination of corresponding unit right eigenvectors, and for any subsetof matrices with �ib = �b, both xitrue and the corresponding right-hand sidesbi = X i�b(42)are the same combinations of corresponding unit right eigenvectors.Proof. For any i, let X ij denote the jth column of X i. If �ij is real, then X ij is a unit right eigenvectorof Ai. If �ij and �ij+1 are a conjugate pair, de�ne zR � X ij and zL � X ij+1. Then zij � zR + izL andzij+1 � zR � izL are unit right eigenvectors for �ij and �ij+1 . Let Zi denote the matrix whose columns arezij , 1 � j � n. It is straightforward to prove that xitrue = X i = Zi� where �j = j if �ij is real, and �j =:5(j� ij+1) and �j+1 = :5(j+ij+1) if �ij and �ij+1 are a conjugate pair. Therefore, bi = X i�ib = Zi�id�where �id is the diagonal matrix of eigenvalues corresponding to �ib.Equation(38) is invariant under a scalar scaling of �. We scale each � so that the diagonal elementsand the inverses of the diagonal elements are in the same subinterval of the real axis. We also order thesingular values from largest to smallest.6. Numerical Experiments and ObservationsWe ran a series of numerical experiments in attempts to gain some insight into the following issues.1. How does nonnormality a�ect the convergence rates of GMRES and QMR as measured by the residualnorms and the error norms?2. How does the convergence rate of QMR vary with changes in the eigenvalue distribution? Inparticular, what role do outliers play in the convergence?3. Which method is best for a given problem? Can we identify a method which is superior to the othermethods in terms of both its residual norm and error norm convergence?Our tests were limited and can only suggest possibly interesting types of behavior to exploretheoretically and numerically. Answers to Question 2 may provide some insight into characterizationsof e�ective preconditioners.In section 6.1 we de�ne the eigenvalue and the singular value distributions used in the test problems.In section 6.2 we compare the observed behavior of QMR and GMRES across several nonnormalproblems with variations in both the eigenvalue distribution and the singular value distribution of theeigenvector matrix in attempts to determine the sensitivity of these methods to nonnormality.In section 6.3 we compare the behavior of QMR across a family of normal matrices and a correspondingfamily of nonnormal matrices where we systematically adjusted the eigenvalue distribution to determinethe e�ects of outliers and of real versus complex eigenvalues on the convergence rate.In section 6.4 we make some comments about the comparative behavior of GMRES(10), GMRES(20),QMR, and BiCGSTAB across a variety of normal and nonnormal test problems.6.1. Test Matrices UsedEach test matrix is de�ned by equation(40) for di�erent choices of � and �b. V is generated randomly and�xed. All test problems are of size n = 48. In [8] we observed that small but nonzero entries in strategicpositions in V can a�ect the convergence of eigenvalue computations based upon either the Arnoldi or



12nonsymmetric Lanczos recursions. In section 6.3 we observe, as others have observed, that the convergencerate of QMR appears to be correlated with the ability of the procedure to recognize small outliers [21]. IfV has a nefarious structure which correlates with small outliers, we might expect similar e�ects upon theconvergence of the QMR/GMRES procedures for Ax = b. We do not, however, consider such e�ects inthis paper. Also we do not use any form of preconditioning.In each test case all of the eigenvalues have positive real parts. The eigenvalue distributions consideredwere as follows. In each test, the corresponding real block diagonal form was used.1. �gr48: All of the eigenvalues are complex. There are no outliers. �gr48 is the eigenvalue distributionof the Gcrar matrix, n = 48 [20]. For a picture of this distribution see [8].2. �asb2: The eigenvalues are real and complex. There are both small and large complex pairs ofoutliers, two pairs with magnitude 10�4 and 10�2, and three pairs with magnitudes 25, 55, and 100.The real parts of the other eigenvalues are in [1; 10] and the imaginary parts are in [�10; 10], allgenerated randomly in several boxes in the plane.3. �bsb2: The eigenvalues are real and complex. There is a small complex pair of outliers of magnitude10�2. There are 3 complex pairs of large outliers. This distribution is obtained from �asb2 by replacingthe small complex pairs of eigenvalues of magnitude 10�4 and 10�2 by almost purely imaginary pairsof magnitude 10�2 and :96.4. �dsb2: The eigenvalues are real and complex. There are no small outliers. There are 3 large complexpairs of outliers. This distribution is obtained from �asb2 by replacing the small complex pairs ofeigenvalues of magnitude 10�4 and 10�2 by almost purely imaginary pairs of magnitude :99 and :96.5. �esb2: The eigenvalues are real and complex. There are two complex pairs of small outliers ofmagnitude 10�4 and 10�2. There are no large outliers. This distribution is obtained from �asb2 byreplacing the large complex pairs by complex pairs of the same size as the rest of the eigenvalues inthe distribution.6. �fsb2: The eigenvalues are real and complex. There are no small or large outliers. This distributionis obtained from �asb2 by replacing the small complex pairs of eigenvalues of magnitude 10�4 and10�2 by almost purely imaginary pairs of magnitude :99 and :96, and replacing the large complexpairs by complex pairs of the same size as the rest of the eigenvalues in the distribution.7. �msb2: The eigenvalues are real and complex. The small outliers are nearly real, the big outliersare complex pairs. This distribution is obtained from �asb2 by replacing the small complex pairs ofmagnitude 10�4 and 10�2 by nearly real complex pairs with the same magnitudes.8. �nsb2: The eigenvalues are real and complex. Both the small and the large outliers are nearly real.This distribution is obtained from �asb2 by replacing the small complex pairs of magnitude 10�4 and10�2 by nearly real complex pairs with the same magnitudes, and replacing the large complex pairsby nearly real complex pairs.9. �osb2: The eigenvalues are all nearly real. There are small outliers of magnitude 10�4 and 10�2, andlarge outliers of magnitudes 21; 23 and 28. This distribution is obtained from �asb2 by replacing all ofthe complex pairs by nearly real complex pairs obtained by multiplying all of the nonzero imaginaryparts by 10�12.10. �psb2: The eigenvalues are all nearly real. There are no small outliers. There are large outliers withmagnitudes 21; 23 and 28. This distribution is obtained from �asb2 by replacing all of the complexpairs by nearly real complex pairs obtained by multiplying all of the nonzero imaginary parts by10�12, and replacing the small eigenvalues of magnitude 10�4 and 10�2 by eigenvalues of magnitude:26 and :265.



1311. �qsb2: The eigenvalues are all nearly real. There are no small or large outliers. This distribution isobtained from �asb2 by replacing all of the complex pairs by nearly real complex pairs obtained bymultiplying all nonzero imaginary parts by 10�12, replacing the small eigenvalues of magnitude 10�4and 10�2 by eigenvalues of magnitude :26 and :265. and reducing the large nearly real outliers to2:1; 2:3; and 2:8.The three singular value distributions considered were as follows.1. �In: The identity matrix. Used to generate normal problems.2. �a2r2b0: Obtained by computing the equally spaced points ti , i = 1; : : : ; 48, in the interval [�2; 0]and setting the singular values �i = 10�ti2 .3. �gr48: Obtained from the Gcrar matrix of size 48 by applying the MATLAB function EIG to thismatrix and then applying the MATLAB function SVD to the eigenvector matrix obtained from EIG.In each test we track the true residual norms, the estimates of the residual norms, and the trueerror norms. True residual norms are used to determine convergence, and unless speci�cally indicatedotherwise, each residual norm plot contains the true residual norms. Each procedure is terminated whenkrkk=kr0k � 10�12.6.2. E�ects of Nonnormality on ConvergenceWe compare the convergence of QMR and GMRES residual and error norms for �In ;�a2r2b0, and �gr48;and �b corresponding to �gr48;�asb2;�fsb2;�msb2;�osb2; and �qsb2:(43)In each �gure in this section we plot at most the �rst 150 iterations of each test.In Figures 3� 14 we plot the residual norms and the corresponding error norms obtained by applyingGMRES and QMR to each of the 18 problems obtained by combining each of the above eigenvaluedistributions with each of the three singular value distributions. In each of these �gures the eigenvaluedistribution is �xed and we have applied GMRES and QMR to the test problems de�ned by that eigenvaluedistribution, the prespeci�ed V and , and each of the three � distributions, �In , �a2r2b0, and �gr48. Ineach of these tests we de�ne xtrue according to Equations(41). Other tests using a di�erent distributionfor generating V and  yielded similar results.We make several observations. First, the residual norm plots in �gures (2j� 1) for 2 � j � 7, indicatethat for each of the two nonnormal problems corresponding to each eigenvalue distribution, GMRES isconverging signi�cantly more rapidly than QMR. These indications, however, are incorrect, as is clearlyillustrated in the corresponding error norm plots, �gures 2j, 2 � j � 7. The initial portions of the errorcurves for corresponding GMRES and QMR plots do not exhibit any large deviations which might beexpected from the large deviations between the corresponding residual norm plots.Second, in each of these �gures the GMRES residual norm plot for the normal problem is essentiallyan upper envelope to the GMRES plots for the two nonnormal problems whereas the QMR residual normplot for the normal problem is either a lower envelope to the QMR plots for the two nonnormal problems orintersects with those curves. Theoretically, GMRES and QMR are identical when A is real and symmetric,and we observe that in the tests on normal problems with nearly real eigenvalues, the correspondingGMRES and QMR residual norm curves track each other, at least initially.Third, in these tests, as we increase the nonnormality, the GMRES residual norm curves decrease morerapidly. These misleading decreases in the GMRES residual norm plots for the nonnormal problems causedpremature termination of the GMRES procedure on several nonnormal test problems. See for example,�gures 9-12.Fourth, for problems without outliers, see �gures 3-4,7-8,13-14, the di�erences in the number ofiterations required for QMR residual norm convergence as we vary the nonnormality, are small. In theproblems with outliers, �gures 5-6,9-10,11-12, these di�erences are larger but the corresponding di�erences



14in the QMR error norm plots are still reasonably small for most but not all iterations. The e�ects ofoutliers on GMRES can be seen most clearly in the error norm plots. Whenever small outliers are present,all of the signi�cant error reductions in the GMRES error norms occur on the last few iterations.In these tests we also observe signi�cant changes in the number of iterations required by QMR aswe vary both the outliers and whether or not the eigenvalues and the outliers are real or complex. Thenumber of QMR iterations required appears to be more sensitive to changes in outliers than to the changesin nonnormality which we use. For additional discussions of the e�ects of nonnormality on iterative methodsfor equation(1), see for example [3, 5, 20].6.3. Outliers and Their E�ect on the Convergence of QMRWe want to study the e�ect of di�erent eigenvalue distributions upon the convergence rate of QMR. Weconsider both normal and nonnormal test matrices. For each set of tests in this section we �x the eigenvectormatrix X as de�ned in Lemma 5.1. Beginning with a general eigenvalue distribution with both realand complex eigenvalues and both small and large complex pairs of outlier eigenvalues, we systematicallymodify the eigenvalue distribution to attempt to identify properties of the distribution which have the mostsigni�cant e�ects upon the observed convergence rate. Since we are varying the eigenvalue distribution,setting xitrue = X i does not preserve the sizes of the projections of bi on corresponding right eigenvectors.In fact that choice of xitrue yields bi with small projections on any right eigenvectors corresponding to smalleigenvalues, and this might cause QMR to take longer to converge.Therefore, for each set of test problems in this section, we set bi � X for all i. This choice �xes thesize of the projection of bi on each unit right eigenvector of Ai but can yield distorted xitrue. However, thischoice avoids any arti�cial e�ects due to changes in the starting residual as we go from one problem toanother.We consider two sets of eigenvalue distributions. The �rst set�asb2;�bsb2;�dsb2;�esb2; and �fsb2;(44)consists of eigenvalue distributions which contain both real and complex pairs of eigenvalues, and areobtained from �asb2 by modifying the outliers. �asb2 contains two small complex pairs of outliers withmagnitudes 10�4 and 10�2 and three large complex pairs of outliers with magnitudes 25; 55; and 100. �fsb2has no outliers. In �gures 15-16 we consider normal problems with these eigenvalue distributions. In �gures19-20 we consider nonnormal problems with these eigenvalue distributions.The second set �asb2;�msb2;�nsb2;�osb2;�psb2; and �qsb2;(45)consists of eigenvalue distributions which contain complex, real or nearly real pairs of eigenvalues, andare obtained from �asb2 by modifying the outliers and the imaginary parts of the other complex pairs ofeigenvalues. In �gures 17-18 we consider normal problems with these eigenvalue distributions. In �gures21-22 we consider nonnormal problems with these eigenvalue distributions.Figures 15-22 clearly illustrate the signi�cant decreases in numbers of iterations achieved by systemat-ically simplifying the eigenvalue distribution, independent of the nonnormality. We observe that for boththe normal and the nonnormal problems and for both sets of eigenvalues, QMR takes much longer toconverge when the problem has outliers . In particular note the reductions achieved by modifying �asb2which is a mixed real and complex distribution with both small and large complex pairs of outliers to �bsb2where the magnitudes of the two smallest complex pairs of outliers of �asb2 have been increased or to �esb2where the magnitudes of the large complex outliers have been reduced. Also note the signi�cant reductionsobtained by modifying �asb2 to �dsb2 which has the large complex pairs of outliers but no small outliersand then to �fsb2 with no large or small outliers.The tests on the second sequence of eigenvalue distributions, indicate continuous signi�cant reductionsin the numbers of iterations required as we simplify the mixed complex and real distribution �asb2 to the



15nearly real distribution with no outliers �qsb2. Comparing �gures 15-16 and 19-20 with �gures 17-18 and21-22 we also observe signi�cant improvements in the convergence for each of the nearly real distributionsover the corresponding mixed real and complex distributions.In particular note the reductions obtained by systematically changing the distribution for �asb2 to�msb2 where the small complex outliers have been made nearly real and then to �nsb2 where both the smalland the large outliers in �asb2 have been made nearly real. Also note the additional signi�cant reductionsachieved by further modifying �nsb2 to �osb2, by making all of the eigenvalues nearly real, to �psb2, whereall of the eigenvalues are nearly real and there are no small outliers, and then to �qsb2, where all of theeigenvalues are nearly and there are no outliers.For a preconditioning to be successful it should modify the problem to elminate signi�cant outliers,large or small, and make the modi�ed eigenvalue distribution as nearly real as possible.In several cases the QMR iterations continued beyond the �nite precision limits of convergence. Wecould have avoided that problem if we had incorporated the heuristic check on the relative magnitudes ofthe quasi-residuals and true residuals which we mentioned in section 5.6.4. Comparisons of MethodsWe want to compare the performance of these methods. For large problems it is not feasible to use GMRES,so in this section we consider restarted GMRES. Moreover, in almost all cases, the lower envelopes of theQMR and BiCG residual norms are very close together [6]. Because of these similarities we do not includeBiCG norms in any of the plots in this section. In this section we consider only GMRES(10), GMRES(20),QMR, and BiCGSTAB.We applied each of these methods to the test problems obtained using the eigenvalue distributionslisted in section 5 and the two singular value distributions �In and �gr48. In �gures 23-32 we use the testson the following eigenvalue distributions�bsb2;�dsb2;�fsb2;�osb2;�psb2; and �qsb2;(46)to summarize these tests. In �gures 23-26 we consider GMRES(10) and GMRES(20) in the normal cases,� = �In . In �gures 27-28 we consider GMRES(20) in the nonnormal cases, � = �gr48.Number of Iterations to Convergence, krkk=kr0k � 10�12Method GMRES (10) GMRES (20) QMR BICGSTABProblempsb2id2 91 70 35 33psb2gr2 87 59 35 43qsb2id2 56 48 31 23qsb2gr2 56 47 31 28True Error Norm at ConvergenceMethod GMRES (10) GMRES (20) QMR BICGSTABProblempsb2id2 2� 10�12 5� 10�13 1� 10�13 8� 10�14psb2gr2 2� 10�11 3� 10�10 3� 10�13 6� 10�13qsb2id2 4� 10�12 9� 10�13 1� 10�13 9� 10�12qsb2gr2 4� 10�12 2� 10�10 2� 10�13 3� 10�12Table 6.1. Comparison Across Methods: Residual and Error Norm Convergence. EigenvalueDistributions: �psb2 and �qsb2. Singular Value Distributions: �In = id and �fgr48g = gr.In the tests run, GMRES(10) converged only when � = �psb2 or �qsb2. In both of these distributions theeigenvalues are real or nearly real and there are no small outliers. Convergence occurs in both the normal



16and the nonnormal cases. See �gures 23-24 where we have plotted the results of applying GMRES(10) tothe normal problems corresponding to the six eigenvalue distributions in equation(46). In the correspondingplots for the nonnormal cases, the residual and error norm curves for the four nonconvergent eigenvaluedistributions are atter and closer together.GMRES(20) achieves some measure of convergence for all of the distributions in equation(46) exceptfor �bsb2, the only distribution with small outliers which are complex pairs. For �osb2,,which contains twopairs of nearly real outliers of magnitude 10�4 and 10�2, convergence occurs only in the normal case. See�gures 25-26, 27-28.For the two nearly real eigenvalue distributions with no small outliers, �psb2 and �qsb2 the di�erences inthe convergence rates of the GMRES(20) residual and error norm plots between the normal and nonnormalcases are not large. For the other distributions there are signi�cant di�erences, and the error reductionsin the nonnormal cases are less than in the normal cases.In �gures 29-32 we consider similar tests on BiCGSTAB. We observe that the convergence is lesspredictable for this method. BiCGSTAB converges well for the two eigenvalue distributions which are nearlyreal and have no small outliers, �psb2 and �qsb2. See Table 6.1. However, it has trouble with �dsb2;�fsb2,and �osb2 in the normal case, and with �dsb2 and �osb2 in the nonnormal case. The di�culties with �dsb2and �fsb2 may occur because in real arithmetic BiCGSTAB cannot handle complex eigenvalues very well.It �ts linear GMRES polynomials at each iteration. These tests should be rerun using BiCGSTAB(2) which�ts second order GMRES polynomials which can model pairs of complex eigenvalues in real arithmetic[13]. BiCGSTAB(2) was not available in the MATLAB Templates [2].Finally we consider QMR on each of these test problems. See �gures 33-36. On these tests, to withinerror norms of size 10�9 there were no signi�cant di�erences between the convergence in the normal andthe nonnormal cases. The decrease in the number of iterations required as we simplify the eigenvaluedistribution is depicted clearly in these �gures.If we compare the number of iterations required by GMRES(20), BiCGSTAB, and QMR oncorresponding test problems, we see that with the exception of the nearly real distributions. �psb2 and�qsb2 with no small outliers, that QMR converged more quickly and more reliably than the other twoprocedures. For �qsb2, BiCGSTAB converged signi�cantly more quickly than QMR in the normal case andwas 10% faster in the nonnormal case. For �psb2, BiCGSTAB converged slightly more quickly than QMRin the normal case. See Table 6.1.In these tests as well as in the tests in section 6.3, the number of iterations required for convergence ofthe QMR residual norms seems to be more strongly inuenced by the choice of the eigenvalue distributionthan by the choice of singular value distribution. We note however that changing � is only one way to alterthe nonnormality of a test problem. In these tests we have not considered general variations in V . We onlygenerated V randomly, using either a uniform or a normal distribution. It may be possible to constructother unitary V such that � and V interact to make the problem more di�cult than the � matrix alonemight indicate. Moreover, we note again that these tests should be rerun using BiCGSTAB(2) which wasnot available in the MATLAB Templates [2].7. SummaryWe derived a relationship between residual norms generated by the BiCG method and residual normsgenerated by the FOM method. This relationship states that any residual norm plots seen in a BiCGcomputation can also be seen in a FOM computation on a di�erent problem but with the same eigenvalues.Using unitary equivalences for each of the methods GMRES/FOM/QMR/BiCG, we de�ned sets of testproblems where we can easily vary certain spectral properties of the test matrices. Within the context ofthese test matrices, we discussed the question of consistency across test problems. We used test problemsof this type to explore three questions. First, we considered the e�ect of nonnormality on the convergenceof GMRES and QMR for di�erent eigenvalue distributions. Second, we traced the behavior of QMR as wevaried the eigenvalue distribution in test problems with the eigenvector matrix �xed. Finally, we compared



17the convergence of QMR, GMRES(10), GMRES(20), and BiCGSTAB over a set of normal and nonnormaltest problems with di�erent eigenvalue distributions.Our GMRES tests on nonnormal test matrices indicate that nonnormality can have unexpected e�ectsupon the residual norm convergence, giving misleading indications of superior convergence over QMR whenthe error norms for GMRES are not signi�cantly di�erent from those for QMR. This behavior can lead topremature termination of the GMRES procedure.Our tests on QMR indicate that the convergence of the QMR residual and error norms is stronglycontrolled by both small and large eigenvalue outliers and by the character, real, complex or nearly real, ofthe outliers and the other eigenvalues. This behavior is not evident in our GMRES residual norm plots butis exhibited clearly in the corresponding GMRES error norm plots. In our comparison tests, we consideredcomplex, mixed, and nearly real eigenvalue distributions with and without small and large outliers. OverallQMR was more robust and reliable and outperformed GMRES(10) and GMRES(20) on both the normaland nonnormal test matrices. Comparisons with BiCGSTAB should be made only after similar tests aremade using BiCGSTAB(2).References[1] Z. Bai, Error analysis of the Lanczos algorithm for nonsymmetric eigenvalue problem, Math. Comp., 62(205)(1994), pp. 209{226.[2] Richard Barrett et al. Templates for the Solution of Linear Systems: Building Blocks for IterativeMethodsSIAM Publications, 1994.[3] T. Braconnier, F. Chatelin and V. Fraysse, The inuence of large nonnormality on the quality ofconvergence of iterative methods in linear algebra, CERFACS Technical Report TR-PA-94-07 (1994). CERFACS,Toulouse, France.[4] P. N. Brown, A theoretical comparison of the Arnoldi and GMRES algorithms, SIAM Jour. Sci. Stat. Comput.,20 (1991), pp. 58{78.[5] F. Chaitin-Chatelin, Is nonnormality a serious di�culty? , CERFACS Technical Report TR-PA-94-18, 1994.CERFACS, Toulouse, France.[6] J. Cullum and Anne Greenbaum, Residual relationships within three pairs of iterative algorithms for solvingAx = b, IBM Research Report RC 18672, January 1993, IBM T.J. Watson Research Center, Yorktown Heights,New York. SIAM J. Matrix Anal. Appl. (1996).[7] J. Cullum, Testing iterative methods for nonsymmetric matrices, IBM Research Report, RC , January 1996,IBM Research, T.J.Watson Research Center, Yorktown Heights, NY 10598.[8] J. Cullum, Arnoldi versus nonsymmetric Lanczos algorithms for solving matrix eigenvalue problems, IBMResearch Report, RC 20303, December 4, 1995, IBM Research, T.J.Watson Research Center, Yorktown Heights,NY 10598. Submitted to BIT.[9] R. Fletcher, Conjugate gradient methods for inde�nite systems, in Numerical Analysis Dundee 1975, G. A.Watson, ed., Lecture Notes in Mathematics 506, Springer, Berlin, 1976, pp. 73{89..[10] R. W. Freund, G. H. Golub, Noel Nachtigal, Iterative solution of linear systems, Acta Numerica., 1(1992), pp.57{100.[11] R. W. Freund, M. H. Gutknecht, and N. M. Nachtigal, An implementation of the look-ahead Lanczosalgorithm for non-Hermitian matrices, SIAM J on Scienti�c and Statistical Computing, 14,(1993) pp. 137{58.[12] R. W. Freund and N. M. Nachtigal, QMR: a quasi-minimal residual method for non-Hermitian linearsystems, Numer. Math., 60 (1991), pp. 315{339.[13] M. H. Gutknecht. Variants of BiCGSTAB for matrices with complex spectrum, SIAM J on Scienti�c andStatistical Computing, 14,(1993) pp. 1020{1033.[14] C. Moler et al., MATLAB User's Guide, MathWorks, Inc., 24 Prime Park Way, Natick, MA (1992).[15] B. N. Parlett, D. R. Taylor, and Z.A. Liu, A look-ahead Lanczos algorithm for unsymmetric matrices,Math. Comp., 44 (1985), pp. 105{124.[16] Y. Saad and M. H. Schultz, GMRES: A generalized minimum residual algorithm for solving nonsymmetriclinear systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856{869.[17] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishers, Cambridge, Mass., 1996.[18] Y. Saad, Krylov subspace methods for solving unsymmetric linear systems, Math. Comp., 37 (1981), pp. 105{126.
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Fig. 1. QMR: Residual Norms and Estimates of Residual Norms versus Iteration Number. EigenvalueDistributions: �msb2, �nsb2, �osb2. Singular Value Distribution: �gr48. Residual Norms = solid, big dots, dash-dots.Estimates of Residual Norms = dash, little dots, +.[19] G.L.G. Sleijpen, H. A. van der Vorst, D.R. Fokkema, BiCGSTAB(l) and other hybrid Bi-CG methods, Numerical Algorithms, 7 (1994), pp. 75{109.[20] L. N. Trefethen, Pseudospectra of matrices, in D. F. Gri�ths and G. A. Watson, eds., Numerical Analysis1991, Longman Scienti�c and Technical, Harlow, UK, 1992, pp. 234{266.[21] H. A. van der Vorst and C. Vuik, The superlinear convergence behavior of GMRES, J. Comp. Appl. Math.,48 (1993), pp. 327{341.[22] H. A. van der Vorst, A fast and smoothly converging variant of BiCG for the solutions of nonsymmetriclinear systems, SIAM J. Sci. Stat. Comp., 13 (1992), pp. 631-644.[23] H. F. Walker, Implementations of the GMRES method using Householder transformations, SIAM J. Sci. Stat.Comput. 9(1) (1988), pp. 152{163.
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Fig. 2. QMR: Error Norms versus Iteration Number. Eigenvalue Distributions: �msb2, �nsb2, �osb2. SingularValue Distribution: �gr48.
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Fig. 3. GMRES vs. QMR: Residual Norms versus Iteration Number. Eigenvalue Distribution: �gr48. SingularValues Distributions: �gr48 = gr, �a2r2b0 = a2, �In = id, Residual Norms: GMRES: solid, dot-dash, small dots.QMR: big dots, dashes, +.
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Fig. 4. GMRES vs. QMR: Error Norms versus Iteration Number. Eigenvalue Distribution: �gr48. SingularValues Distributions: �gr48 = gr, �a2r2b0 = a2, �In = id, Error Norms: GMRES: solid, dot-dash, small dots. QMR:big dots, dashes, +.
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Fig. 5. GMRES vs. QMR: Residual Norms versus Iteration Number. Eigenvalue Distribution: �asb2. SingularValues Distributions: �gr48 = gr, �a2r2b0 = a2, �In = id, Residual Norms: GMRES: solid, dot-dash, small dots.QMR: big dots, dashes, +.
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Fig. 6. GMRES vs. QMR: Error Norms versus Iteration Number. Eigenvalue Distribution: �asb2. SingularValues Distributions: �gr48 = gr, �a2r2b0 = a2, �In = id, Error Norms: GMRES: solid, dot-dash, small dots. QMR:big dots, dashes, +.
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Fig. 7. GMRES vs. QMR: Residual Norms versus Iteration Number. Eigenvalue Distribution: �fsb2. SingularValues Distributions: �gr48 = gr, �a2r2b0 = a2, �In = id, Residual Norms: GMRES: solid, dot-dash, small dots.QMR: big dots, dashes, +.
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Fig. 8. GMRES vs. QMR: Error Norms versus Iteration Number. Eigenvalue Distribution: �fsb2. SingularValues Distributions: �gr48 = gr, �a2r2b0 = a2, �In = id, Error Norms: GMRES: solid, dot-dash, small dots. QMR:big dots, dashes, +.
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Fig. 9. GMRES vs. QMR: Residual Norms versus Iteration Number. Eigenvalue Distribution: �msb2. SingularValues Distributions: �gr48 = gr, �a2r2b0 = a2, �In = id, Residual Norms: GMRES: solid, dot-dash, small dots.QMR: big dots, dashes, +.
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Fig. 10. GMRES vs. QMR: Error Norms versus Iteration Number. Eigenvalue Distribution: �msb2. SingularValues Distributions: �gr48 = gr, �a2r2b0 = a2, �In = id, Error Norms: GMRES: solid, dot-dash, small dots. QMR:big dots, dashes, +.
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Fig. 11. GMRES vs. QMR: Residual Norms versus Iteration Number. Eigenvalue Distribution: �osb2. SingularValues Distributions: �gr48 = gr, �a2r2b0 = a2, �In = id, Residual Norms: GMRES: solid, dot-dash, small dots.QMR: big dots, dashes, +.
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Fig. 12. GMRES vs. QMR: Error Norms versus Iteration Number. Eigenvalue Distribution: �osb2. SingularValues Distributions: �gr48 = gr, �a2r2b0 = a2, �In = id, Error Norms: GMRES: solid, dot-dash, small dots. QMR:big dots, dashes, +.
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Fig. 13. GMRES vs. QMR: Residual Norms versus Iteration Number. Eigenvalue Distribution: �qsb2. SingularValues Distributions: �gr48 = gr, �a2r2b0 = a2, �In = id, Residual Norms: GMRES: solid, dot-dash, small dots.QMR: big dots, dashes, +.
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Fig. 14. GMRES vs. QMR: Error Norms versus Iteration Number. Eigenvalue Distribution: �qsb2. SingularValues Distributions: �gr48 = gr, �a2r2b0 = a2, �In = id, Error Norms: GMRES: solid, dot-dash, small dots. QMR:big dots, dashes, +.
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Fig. 15. QMR: Residual Norms versus Iteration Number: Normal Case: Mixed Real and Complex EigenvalueDistributions: �asb2, �bsb2, �dsb2, �esb2, �fsb2. Singular Value Distribution: �In .



33

0 50 100 150
10

-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Iteration Number

Lo
g 

N
or

m
 o

f S
ca

le
d 

T
ru

e 
E

rr
or

s

size=48asb2id2:-,bsb2id2:.,dsb2id2:-.,esb2id2:--,fsb2id2::

Fig. 16. QMR: Error Norms versus Iteration Number: Normal Case: Mixed Real and Complex EigenvalueDistributions: �asb2, �bsb2, �dsb2, �esb2, �fsb2. Singular Value Distribution: �In .
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Fig. 17. QMR: Residual Norms versus Iteration Number: Normal Case: Mixed to Nearly Real EigenvalueDistributions: �asb2, �msb2, �nsb2, �osb2, �psb2, �qsb2. Singular Value Distribution: �In .
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Fig. 18. QMR: Error Norms versus Iteration Number: Normal Case: Mixed to Nearly Real EigenvalueDistributions: �asb2, �msb2, �nsb2, �osb2, �psb2, �qsb2. Singular Value Distribution: �In .
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Fig. 19. QMR: Residual Norms versus Iteration Number: Nonnormal Case: Mixed Real and ComplexEigenvalue Distributions: �asb2, �bsb2, �dsb2, �esb2, �fsb2. Singular Value Distribution: �gr48.
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Fig. 20. QMR: Error Norms versus Iteration Number: Nonnormal Case: Mixed Real and Complex EigenvalueDistributions: �asb2, �bsb2, �dsb2, �esb2, �fsb2. Singular Value Distribution: �gr48.
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Fig. 21. QMR: Residual Norms versus Iteration Number: Nonnormal Case: Mixed to Nearly Real EigenvalueDistributions: �asb2, �msb2, �nsb2, �osb2, �psb2, �qsb2.. Singular Value Distribution: �gr48.
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Fig. 22. QMR: Error Norms versus Iteration Number: Nonnormal Case: Mixed to Nearly Real EigenvalueDistributions: �asb2, �msb2, �nsb2, �osb2, �psb2, �qsb2.. Singular Value Distribution: �gr48.
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Fig. 23. GMRES(10): Residual Norms versus Iteration Number: Normal Case: Mixed Real and Complex toNearly Real Eigenvalue Distributions: �bsb2, �dsb2, �fsb2, �osb2, �psb2, �qsb2. Singular Value Distribution: �In .
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Fig. 24. GMRES(10): Error Norms versus Iteration Number: Normal Case: Mixed Real and Complex toNearly Real Eigenvalues Distributions: �bsb2, �dsb2, �fsb2, �osb2, �psb2, �qsb2. Singular Value Distribution: �In .
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Fig. 25. GMRES(20): Residual Norms versus Iteration Number: Normal Case: Mixed Real and Complex toNearly Real Eigenvalue Distributions: �bsb2, �dsb2, �fsb2, �osb2, �psb2, �qsb2. Singular Value Distribution: �In .
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Fig. 26. GMRES(20): Error Norms versus Iteration Number: Normal Case: Mixed Real and Complex toNearly Real Eigenvalue Distributions: �bsb2, �dsb2, �fsb2, �osb2, �psb2, �qsb2. Singular Value Distribution: �In .
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Fig. 27. GMRES(20): Residual Norms versus Iteration Number: Nonnormal Case: Mixed Real and Complexto Nearly Real Eigenvalue Distributions: �bsb2, �dsb2, �fsb2, �osb2, �psb2, �qsb2. Singular Value Distribution: �gr48.
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Fig. 28. GMRES(20): Error Norms versus Iteration Number: Nonnormal Case: Mixed Real and Complex toNearly Real Eigenvalue Distributions: �bsb2, �dsb2, �fsb2, �osb2, �psb2, �qsb2. Singular Value Distribution: �gr48.
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Fig. 29. BiCGSTAB: Residual Norms versus Iteration Number: Normal Case: Mixed Real and Complex toNearly Real Eigenvalue Distributions: �bsb2, �dsb2, �fsb2, �osb2, �psb2, �qsb2. Singular Value Distribution: �In .
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Fig. 30. BiCGSTAB: Error Norms versus Iteration Number: Normal Case: Mixed Real and Complex to NearlyReal Eigenvalue Distributions: �bsb2, �dsb2, �fsb2, �osb2, �psb2, �qsb2. Singular Value Distribution: �In .
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Fig. 31. BiCGSTAB: Residual Norms versus Iteration Number: Nonnormal Case: Mixed Real and Complex toNearly Real Eigenvalue Distributions: �bsb2, �dsb2, �fsb2, �osb2, �psb2, �qsb2. Singular Value Distribution: �gr48.
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Fig. 32. BiCGSTAB: Error Norms versus Iteration Number: Nonnormal Case: Mixed Real and Complex toNearly Real Eigenvalue Distributions: �bsb2, �dsb2, �fsb2, �osb2, �psb2, �qsb2. Singular Value Distribution: �gr48.
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Fig. 33. QMR: Residual Norms versus Iteration Number: Normal Case: Mixed Real and Complex to NearlyReal Eigenvalue Distributions: �bsb2, �dsb2, �fsb2, �osb2, �psb2, �qsb2. Singular Value Distribution: �In .
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Fig. 34. QMR: Error Norms versus Iteration Number: Normal Case: Mixed Real and Complex to Nearly RealEigenvalue Distributions: �bsb2, �dsb2, �fsb2, �osb2, �psb2, �qsb2. Singular Value Distribution: �In .
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Fig. 35. QMR: Residual Norms versus Iteration Number: Nonnormal Case: Mixed Real and Complex to NearlyReal Eigenvalue Distributions: �bsb2, �dsb2, �fsb2, �osb2, �psb2, �qsb2. Singular Value Distribution: �gr48.
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Fig. 36. QMR: Error Norms versus Iteration Number: Nonnormal Case: Mixed Real and Complex to NearlyReal Eigenvalue Distributions: �bsb2, �dsb2, �fsb2, �osb2, �psb2, �qsb2. Singular Value Distribution: �gr48.


