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1. Introduction. In the numerical solution by finite differences of bound-
ary value problems involving elliptic partial differential equations, one is led
to consider linear systems of high order of the form

N

(1.1) X <H.Ï»i + di = 0 (i = 1, 2, • • • , TV),

where «i, u2, • ■ • , ux are unknown and where the real numbers a,-,,- and a",-
are known. The coefficients o<,y satisfy the conditions

(a)   l--i.il £ï XÍ-i,í*í I ai,i\ > ar>d f°r some i the strict inequality holds.
,. „.     (b) Given any two nonempty, disjoint subsets S and P of IF, the set

of the first TV positive integers such that 5WP= IF, there exists
a,-,,-5¿0 such that ¿£S and jGT.

Conditions (1.2) were formulated by Geiringer [4, p. 379](2). Evidently
these conditions imply that a^^O (i=l, 2, • • • , TV). It is easy to show by
methods similar to those used in [4, pp. 379-381] that the determinant of
the matrix A = (a-.-.y) does not vanish. Moreover, if the matrix A*=ia*f) is
symmetric, where aj = flj,%ßi,j/\ a.-.ii| (i, 7=1, 2, • • • , TV), then A * is positive
definite. For if X is a nonpositive real number, then the matrix A*—X7, where
7 is the identity matrix, also satisfies (1.2) and hence its determinant cannot
vanish. Therefore all eigenvalues of A* are positive, and A* is posi-
tive definite. On the other hand if A* is positive definite then ai.,-^0
(¿=1,2, • • -,TV).

We shall be concerned with effective methods for obtaining numerical solu-
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PARTIAL DIFFERENCE EQUATIONS OF ELLIPTIC TYPE 93

tions of (1.1) which are suitable for large automatic computing machines.
When N is large, methods of successive approximation seem to be more ap-
propriate than direct methods such as elimination methods or the use of de-
terminants. Of the methods of successive approximation, the methods of
systematic iteration are better suited for machines than the relaxation meth-
ods of Southwell [13; 14].

For the study of various iterative methods we shall for the most part
consider linear systems such that either the matrix A satisfies conditions (1.2)
or such that the matrix A * is positive definite. In order to define the itera-
tive methods it is necessary that a,,,-5^0 (i = 1, 2, • • • , N). We shall assume
throughout the entire paper without further mention that o,-,¿>0
(*=1, 2, • • • , N). There is no loss in generality by this assumption when-
ever the matrix A* is positive definite or when A satisfies conditions (1.2).
For each of these two conditions implies a.-.i^O, and if a,-,,<0 for some i, the
ith equation can be multiplied by —1 without changing either the solution
or the iterative sequences.

We shall assume in most cases that the matrix A has Property (A) : there
exist two disjoint subsets S and T of IF, the set of the first A^ integers,
such that 5UP= IF and if a.-.y^O then either i=j or iGS and jGT or iGT
and jGS.

In §4 we show that for linear systems derived in the usual way from el-
liptic boundary value problems, the matrix satisfies (1.2) and has Property
(A).

Our main object is to introduce a new method of systematic iteration
and to show that in many cases it converges much more rapidly than the
usual methods. To define this method we assume that the rows and columns
of A are arranged in the ordering a. The iterative sequence is given by

(m+D
Ui

(1.3)
/ '"ST   7. (m+1>     I V*    Í. ("°     L       \

I ;=1 i-i+1 )

where uf1 is arbitrary (*=1, 2, • • • , N), and where

(w - l)w,(m) (« ä 0;.* = 1, 2, • • • , N),

(1.4) >->-{-".
ai.i/ai.i ii^j),

a = j),
and

(1.5) ci=-di/aiii {i = 1, 2, • • • , N).

Equation (1.3) may be written in the form

(1.6) m<"*+1> = ¿„„„[w'""] +/ {m ^ 0)

where «<"•> = «>, uf, ■ ■ ■ , uf), f={fu /2, • • • ,/*), / is fixed, and L„.u
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94 DAVID YOUNG [January

denotes a linear operator. Here a denotes the ordering of the equations and w
denotes the relaxation factor. We shall refer to the method defined by (1.3) as
the successive overrelaxation method.

This method was first presented in [19]. Frankel [3] independently de-
veloped the method as applied to the difference analogue of the Dirichlet
problem, calling it the "extrapolated Liebmann method." He established the
gain in rapidity of convergence for the special case of the Dirichlet prob-
lem for a rectangle. The successive overrelaxation method is included in a
general class of iterative methods considered by Geiringer [4].

If u=l, the successive overrelaxation method reduces to the classical
Gauss-Seidel method [lO], which is the systematic iterative method ordi-
narily used. When applied to the Dirichlet problem, this method is known as
the "Liebmann method" [11; 6]. Geiringer [4] referred to this method as
the method of "successive displacements." The successive overrelaxation
method combines the use of successive displacements and the use of sys-
tematic overrelaxation proposed by Richardson [9] as early as 1910. In the
notation of (1.3) Richardson's sequence is defined by

(m+D
Ui        = w„

(1.7)

Naiti
N
X  ai.i

L i=l

< X h,i»i  + Ci>

í  r Nai.<
N
X  ai.i

L i=l

(m)
Ui im ^ 0; i = 1, 2, • • • , N),

where u(0) is arbitrary and the constants um must be chosen for each m.
Richardson's method combines overrelaxation and "simultaneous displace-
ments," so-called since new values are not used until after a complete itera-
tion; hence one effectively modifies all the w¡m) simultaneously. We note that
if a,-,i is independent of i, then (1.7) reduces to (1.3) except that in the right
member of (1.7), the superscripts im + 1) are replaced by m, and the single
relaxation factor to is replaced by <_m which may vary with m.

We show that if A has Property (A), then there exist certain orderings
a such that for all o¡ a simple relation holds between the eigenvalues of L0>a
and the eigenvalues of the matrix B = (f>i,f) defined by (1.4). If ß denotes the
spectral norm of B, that is, the maximum of the moduli of the eigenvalues of
B, then 7,„,i converges if and only if ß<l. It is easy to show [4, pp. 379-381 ]
that conditions (1.2) imply ß<l. There exists w such that £„,_ converges if
and only if the real parts of the eigenvalues of B all have magnitude less than
unity.

If A is assumed to be symmetric and have Property (A), then ß<l if
and only if A is positive definite. If A is positive definite, then for suitable
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1954] PARTIAL DIFFERENCE EQUATIONS OF ELLIPTIC TYPE 95

ordering a and relaxation factor co, the rate of convergence of L„,a is asymp-
totically equal to twice the square root of the rate of convergence of 7.„,i
as the latter tends to zero. Since the rate of convergence of an iterative
method is approximately inversely proportional to the number of iterations
required to obtain a given accuracy, it follows that the saving is considerable
for those cases where 7,„,i converges very slowly.

The optimum relaxation factor «¡, is given by

(1.8) wlß2 - 4(co6 - 1) = 0,        co6 < 2

or equivalently

(1.9) coi,= l + r-1.Li + (1 - M2)1/2J

The author has shown in work which is to appear in [21] that the same
order-of-magnitude gain in the convergence rate can be obtained by Richard-
son's method. It is sufficient that the matrix A be symmetric and positive
definite. To obtain the gain in convergence in an actual case one needs
good upper and lower bounds for the eigenvalues of A, while in the succes-
sive overrelaxation method one needs a good estimate of the spectral norm
of B. Although Richardson's method is applicable under more general
conditions, the successive overrelaxation method should be used whenever A
is symmetric, positive definite, and has Property (A). The latter method is
better adapted for large automatic computing machines because:

(i) Since only values of uf^ are used in the calculation of u^+1) with
Richardson's method, both the values of u[m+l) and u\m) must be retained
until all the M^m+1) have been computed. This requires more storage.

(ii) If the diagonal elements of A are equal, then the successive over-
relaxation method converges more than twice as fast as Richardson's method.

(iii) Only one relaxation factor, which is less than two, is used with the
successive overrelaxation method while many different relaxation factors are
used with Richardson's method. Some of these are very large and may cause
a serious buildup of roundoff errors.

The problem of estimating ß is discussed in §3. It is shown that provided
ß is not underestimated the relative decrease in the rate of convergence of
L„,u, if co' is used instead of «&, is approximately (0_1/2— 1) if l—ß' = 6{t—ß)
(0 <6^ 1) and if co' is determined from (1.8) using ß' instead of ß.

The application to elliptic difference equations is considered in §4. For
the Dirichlet problem with mesh size h, the required number of iterations is
of the order of h~2 using 7,„,i and only of the order of A-1 using L,iUb. Com-
parative time estimates for the use of these methods on large automatic
computing machines are given in §5.

2. Rates of convergence. Let Vn denote the /^-dimensional vector space
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96 DAVID YOUNG [January

of TV-tuples of complex numbers, and let the norm of an element v
— fail V2, ■ • • i vn) he defined by

r   if —11/-

(2.1) IMI = |_Xkl2J   •
In order to investigate the convergence of the sequence u(m) defined by

(1.6) we study the behavior as m—>=o of the error

6'm)   _   w(m)   _   u

where u is the unique solution of (1.1). Since u = L,,u[u]+f we have, by
linearity of 7,„,w,

(m+1) I   (mh Tm+1T   (0h
e = T.ff,_[e     J = L„,„ [e    J.

Evidently, in order for M(m> to converge to u for all um, it is necessary and suffi-
cient that for all vG Vn, we have

Lim \\l7,M\\ = 0.
m—»m

A linear transformation T of Vn into itself is said to be convergent if for all
vGVn

Lim ||7"*[î)]|| = 0(0-
ire—»»

The ra/e 0/ convergence of a convergent transformation T is defined by

(2.2) 31(7) = - log X

where X is the spectral norm of the matrix of T. It is well known that T is a
convergent transformation if and only if X < 1 [8 ]. The following is also essen-
tially known: If p denotes the largest degree of the elementary divisors(0
of the matrix of T associated with those eigenvalues of T having modulus
X, then as m—> co we have

l|r*[»]||
(2.3) LUB " ^C^iX""-"*1).

Thus the rate of convergence gives a measure of the number of times T must
be applied in order to reduce |p|| by a specified amount. For a fixed X, the
larger p, the slower the convergence. Hence we are interested not only in
X but also, to a lesser degree, in p.

In this section we shall derive a relation between the eigenvalues of T,„ia,

(3) By Dresden's definition [2], it is sufficient that LimOT,„ H^MH should exist for all
vGVn.

(4) See Wedderburn [l8, Chap. Ill], for terminology.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1954] PARTIAL DIFFERENCE EQUATIONS OF ELLIPTIC TYPE 97

and the eigenvalues of B which is valid for all co and for consistent orderings a.
Before defining consistent orderings we prove

Theorem 2.1. A matrix A has Property (A) if and only if there exists a
vector 7= (71,72, • • ■ , 7n) with integral components such that if a,-,,• ̂ 0 and i j¿ j,
then |y<—7j| = 1.

Proof. Assume A has Property (A). Referring to the definition of Prop-
erty (A) we let 7, = 1 if iGS and 7, = 0 if ¿67. If a.-.y^O and iw*j, then iGS
and jGT and hence 7,= 1, 7y = 0, or else iGT, jGS and hence 7i = 0, 7y = 1.
In either case | *y* — T/| "*!•

On the other hand if 7 exists, let S and T denote respectively sets of
integers i such that y¿ is odd and even. If afií5¿0 and Í9*j, then |7¿—7y| = 1.
If iGS then j(£S since the difference of two odd numbers is even. Hence
jGT. Similarly if iGT, then jGS, and the theorem follows.

We shall refer to a vector 7 with the above properties as an ordering
vector. An ordering of the rows and corresponding columns of a matrix A is
consistent if, whenever Oij^O and 7»>7y, the ith row follows the/th row
under the ordering; and, whenever ai,,¿¿0 and 7y>7,-, the jth row follows
the ith row under the ordering. Given an ordering vector, one can easily con-
struct a consistent ordering by arranging the rows and columns with increas-
ing 7<. As we shall see in §4 the determination of ordering vectors and con-
sistent orderings is very simple for linear systems derived in the usual way
from elliptic difference equations.

It is easy to prove that if the rows and columns of A are arranged in a
consistent ordering, then aij^O and i<j implies 7,— 7,= 1 ; and o,-fyj^0 and
i>j implies 7¿ —7y= 1. We now prove

Theorem 2.2. Let A be an NXN matrix with Property (A) and with a
consistent ordering of rows and columns. If the elements of A'= {a[f) and A"
= {a"}) are defined by

, (Vi.j      {i ^ j), ,,        («i.j (* = j),
ai,i   =     \ ai.i   =     \

\\aij     (»*>/), !\i'2a,.,y     {i*f),

then for all X we have
det {A') = det {A").

Proof. Each term of det {A') is of the form

iim - ± n <H.i
¿=1

where j=j{i) is a permutation of the first N positive integers. Since A has
Property (A) so does A', and since the ordering is consistent, then if a.-.y^O,
i<j{i) implies 7y—7<=1 and i>j implies 7< —7y = l, where 7 is an ordering
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98 DAVID YOUNG [January

vector associated with the consistent ordering. Therefore we have
N N N

tijii)) = ± n ai.i n Mí,i n «<.¿
t=l, i=j t=l,j'<i i=l,i</

N N If

= ± n «..j n Xa<.i n ai.i-
i=l, i=j i—i,fi>tf i=l,Ti<Ty

Now let ßu ß2 denote respectively the number of factors of tijii)) such
that y i is greater than and less than y,. Since

N N

/3i =     X     hi - Ty],       ßi =     X     [tj - 7<]
i=l,1i>T, i-l,Ti<Yi

we have
N

ßi-ßt"    X    h - Ty] = 0

since jii) is a permutation. Hence ßi=ß2 and

*CK9) = ±   IT   (*.i  IT   x1'2«.-.,
i=l,i=i i=l,iy£J

which is the general term of det (_4 "), and the theorem follows.

Theorem 2.3. 7.e¿ A denote a matrix with Property (A), and let a denote
a consistent ordering. T/co^O, and if\ is a nonzero eigenvalue of L,,«,, and if p.
satisfies

(2.4) (X + co - l)2 = coVX,

then p is an eigenvalue of B. On the other hand if p. is an eigenvalue of B, and if\
salifies (2.4), then X is an eigenvalue of !,,„,

Here J3 = (6.,-,y) is defined in terms of A by (1.4).

Proof. We first prove

Lemma 2.1. If p is a k-fold nonzero eigenvalue of B, then (— p) is a k-fold
eigenvalue of B.

Proof. Since the matrix B—pI has Property (A) we can show by the
method of the preceding theorem that with a consistent ordering, each non-
zero term of the expansion of det iB—pI) contains as many terms from
above the main diagonal as from below the main diagonal. Hence the num-
ber of factors from the main diagonal is congruent to TV (modulo 2). After
factoring the highest common power r oí p from the expanded determinant
we find that det iB—pI) equals the product of ur and an even polynomial in
p. of degree N—r. Since the eigenvalues of B are independent of the ordering,
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this representation of the determinant is valid for any ordering, and the
lemma follows.

It is easy to show, see for instance [4] or [15], that L,riU,[v]—Xv if and
only if

[i-l N -I

Z h.jkVj +   Z Kflj   - (w - t)vi = \Vi {i = 1, 2, • • • , N).
y-i j=i+i -I

Therefore, the eigenvalues of 7,„,u are the roots of the equation det {G)=0
where G = (g¿,y) and

-   (« -   1)  - X     {im j),

wbij {i < j),

XcoÔi.j {i > j).

Since A has Property (A) so does G; hence by Theorem 2.2 we have det {G)
= det(G') where

i- («-(« - l) - x  (i = /),
(* * i)-

Therefore we have

det (G) = det (X1'2^ - (X + co - 1)7).

By Lemma 2.1, for some integer r,

det {B - yl) = (-n)»^n G** - W)
í-i

where + ßi, ¿M2, • • • , ±Mr are the nonzero eigenvalues of B. Therefore we
have, replacing u by (X+co— 1) and Ui by coX1/2/¿¿ in the last equation,

(2.5) det (G) = (1 - co - X)*-2rn [(X + co - l)2 - co'x^].
¿=i

If u is an eigenvalue of B, and if X satisfies (2.4), then one of the factors
of (2.5) vanishes and X is an eigenvalue of L,iU. On the other hand if X^O,
co5¿0, and X is an eigenvalue of L,¡a, then at least one of the factors of (2.5)
vanishes. If u^t) and ß satisfies (2.4), then X+co —1^0; hence for some i,
(X+co—l)2 = co2X/u2. Subtracting this equation from (2.4) we get co2\{ß2 — u\)
= 0, and ß = ßi or ß= —ß,. Since +ßi and —/¿,- are both eigenvalues of B it
follows that ß is an eigenvalue of B. It ß = 0, and ß satisfies (2.4), then
X+co—1 =0. If zero were not an eigenvalue of B, then every factor of (2.5)
would be of the form [(X+co— l)2—co2X)u2] for some /-c?5=0; hence no factor of
(2.5) would vanish and X would not be an eigenvalue of B. This contradiction
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proves that zero is actually an eigenvalue of B, and the proof of Theorem 2.3
is complete.

We remark that if &> = 0, all eigenvalues of £„,„ equal unity regardless of
the eigenvalues of B. If X = 0, then co = l, and the eigenvalues of L,,i are zero,
repeated N—r times, and p.2, p\, ■ ■ ■ , a2.

Evidently B is the matrix of the operator associated with the method of
simultaneous displacements ([17] and [4]) defined by

N

(2.6) Ui        = X °i.3uj    + d (»» _■ 0; * «■ 1, 2, • • • ,.N),
y=i

where m(0) is arbitrary. Again assuming that A has Property (A) we have

Corollary 2.1. If p is an eigenvalue of B, then p2 is an eigenvalue of L„y,
if X is a nonzero eigenvalue of T,„,i and if /¿2=X, then p. is an eigenvalue of B.
The method of simultaneous displacements converges if and only if the Gauss-
Seidel method converges, and if both converge, the latter converges exactly twice
as fast.

This was shown to be true asymptotically as TV—>«> by Shortley and
Weiler [il], for the difference analogue of the Dirichlet problem.

It is shown in [17 ](5) that if A is symmetric and if a,-,i>0
(¿=1, 2, • • • , TV), then the Gauss-Seidel method converges if and only if A
is positive definite. From Corollary 2.1 we have, still assuming A to have
Property (A),

Corollary 2.2. If A is symmetric, then the method of simultaneous displace-
ments converges if and only if A is positive definite.

Explicit expressions can be derived for the eigenvectors of La,u in terms of
the eigenvectors of B, as shown in [20]. It is also shown that if <_ = 1, then
the p of equation (2.3) equals unity.

3. Choice of relaxation factor. In this section we shall discuss the problem
of choosing that relaxation factor which will produce the fastest convergence.
We assume henceforth that the matrix A has Property (A) and that its rows
and columns are arranged in a consistent ordering. For the present, however,
we shall not assume symmetry.

If X^O and coj^O we have from equation (2.4)

(3.1) At = or-^X1'2 + (co - l)X-i/2]

which defines a conformai transformation of the plane of the complex vari-
able X1/2 onto the plane of the complex variable p. Actually we should get a

(6) Actually, only the sufficiency is proved in [17]. However the necessity can be shown at
once by the methods of [17]. This is done by H. Geiringer in a discussion of a paper by B. A.
Boley, Journal of Aeronautical Sciences vol. 14 (1947) pp. 348-350.
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pair of equations because of the ambiguity of the sign of the square root, but
since we shall consider only centrally symmetric regions, we need use only
(3.1). The transformation defined by (3.1) is known as the Joukowski trans-

formation, and it is discussed in [16, p. 196].
Let X denote the spectral norm of 7,„,w. By Theorem 2.3 we have
51. If the image of the exterior of the circle Cp: |X1/2| = p contains no

eigenvalue of B, then X^p2.
52. If the image of the closed exterior of the circle Cp contains no eigen-

value of B, then X<p2.
53. If the image of the exterior of C„ contains an eigenvalue of B, then

X>p2.
54. If the image of the closed exterior of Cp contains an eigenvalue of B,

then X^P2.
If co>0, then the image of C„ is the ellipse Pp,u whose equation is

(3 2) [Re(M)]2 [imGQ]2 1

[(p + p-\" - I))/"]2       [(p - P-K" - I))/"]2 ~

If p2>co— 1, then the image of the exterior of C„ is the exterior of E„,a, but
if p2gco — 1, then the image of the closure of the exterior of C„ is the entire
p.-plane. Therefore, if co>0, then by S4 we have

(3.3) A è I» - l|
unless A7 = 0.

By S2 we have

Theorem 3.1. If no eigenvalue of B lies on the closed exterior of the ellipse

fp   nlu      [Im^]2 -[Re (m)]2 + -j--rT-i7= 1.
[(2 - co)/coJ2

and if |co—1| <1, then Lc¡a is convergent.

Since the expression (2 —co)/co is a decreasing function of co for co>0, we
have

Corollary 3.1. If D>0 and if no eigenvalue of B is contained in the closed
exterior of the ellipse

D'

and if 0<co^2/(l+7J>), then Z,„,w converges.

It follows that if all eigenvalues ß of B satisfy | Re {ß)\ <1, then Lc¡ul
converges for some co. Evidently P„iW may converge even when the method
of simultaneous displacements and the Gauss-Seidel method do not. On the
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other hand, if A is symmetric, then B is similar to the symmetric matrix
B* = ib*f) where ¿*j = ôi,y(a,-,i/aJ-,i,)1/2. Hence the eigenvalues of B are real
and if ß> 1, then for some eigenvalue p of 73, we have | Re fa.) | > 1. Therefore
we have by Corollary 2.2

Corollary 3.2. If A is symmetric, then there exists co such that L„¡a con-
verges if and only if A is positive definite.

If a region G of the /¿-plane is known to contain all eigenvalues of B, then
the best o> is such that for the smallest p, the image of the exterior of C„
under (3.1) contains no points of G. We shall consider here the special case
where G is a segment of the real axis. For the remainder of this section we
shall assume that A is symmetric and positive definite. Hence ß<l. Also,
since 73* is symmetric, and by Lemma 2.1, we can take G to be the segment
— A ̂ /- = /"• We now prove

Theorem 3.2. Let ß and a(co) denote respectively the spectral norms of B and
L„lW. If Ub satisfies (1.8), then the rate of convergence of La¡Wb is given by

(3-4) <RYA,„b) = - 2 log
1 + (1 - ß2Y<2

For all real co such that co^coô, we have

(3.5) _«£,,„) < _KL,.n).
7/co¡,gco^2, then

(3.6) X(co) = co - 1.

Proof. By SI and the obvious analogue of Corollary 3.1 for the open ex-
terior of the ellipse with 7> = 0, Lr¡Ub converges since co¡,<2. Next we observe
that, by (1.8) and (1.9), lgc0i,<2 and ub-l<p2<l.

By (3.2), if co>l, and if p= (co—1)1/2, then the image of the exterior of C„
is the exterior of the interval

2(co - l)1'2
I Re fa)

Since
d

du>[=5-1(2 - co)/co3

it follows that 2(co—l)1/2/co is an increasing function of co for 0<co<2. But by
(1.8) we have 2(co¡,— l)1/2/«¡, = /l. Therefore the image of the exterior of Cp
is contained in the exterior of the interval | Re fa) | g ß provided cotaw_s2;
hence X(co)^co —1. On the other hand by Í3.3) we have X(co)^co—1; hence
(3.6) follows. Equation (3.4) follows from (3.6), (1.9), and (2.2).

To prove (3.5) we show that if co^co;,, then X(co)>X(co&). If 2>co>co¡„ then
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X(co) =co — 1 >cob— 1 =X(co¡>) and X(co) >X(co¡,).
If co <co¡> then we have for 0 <p < 1

P + P_1(<<>i> — 1)      P + P_1(" — 1) _ ("j — co)(p_1 — p)

co¡, to COfcCO

If 2—co6^co<coj and if p = (coj—l)l/2, then

p + p-»(« - 1)        p + p-i(«4 - 1)        2(co6 - l)1'2
0 <-<-=-= p.

CO CO;, COfc

Hence the exterior of the image of C„ contains at least one eigenvalue of B
and by S3, X(co) >X(co¡,).

Next, if 0<co<2— cot, or if co^2, then we have |co—1| >|co4—1|, and by
{3.3) and (3.6) we have X(co) >X(co¡,).

Finally we consider the case co^O. Evidently X(0) = 1 since by (2.4) each
eigenvalue of Lc<a equals unity. If co<0, then ^(co) S; 1 >X(co¡,). For if we sub-
stitute ß tor ß in (2.4) and solve for X1'2 we find that one of the roots is in
absolute value not less than 1. Since ß is an eigenvalue of B, the statement
follows. This completes the proof.

It can be shown that if 2>co^co¡,, then all eigenvalues of 7_„,w have mod-
ulus co—1 and the Jordan normal form of the matrix of L„tU is a diagonal
matrix unless co=co¡„ in which case the normal form has precisely one non-
diagonal element [20]. Thus in (2.3), p — 2 if co=co¡,.

We now compare the rates of convergence of Lc,a¡¡ and L„,i.

Theorem 3.3. 7/co6 satisfies (1.8), then as ß—>1 — we have

(3.7) %{L„„b)~2[<K{L,,i)Yi2.
Proof. By Corollary 2.1 we have <R.(Z.„.i) = -2 log fl. By (3.4), both

members of (3.7) tend to zero as /*•—>1 —. Using L'Hospital's rule we get

%.{L,.Ul)                         dß
Lim-:—  = Lim-
-"- m-ù]m   --'- i »ul»

dß
2(-2 1ogp)i/2

= Lun- = 2,
í-i-     (1 - ß2)1'2

and the theorem follows.
In general ß is not known and must be estimated. Some methods for

doing this are discussed in the next section. To study the effect of using a
value p'r^pr we prove

Theorem 3.4. 7/co¡, and co satisfy (1.8) with ß = ß and ß = ß' respectively
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where

(3.8) il - ß') = Oil - ß) (O<0__1),

then as ß—»1 — we have

(3.9) _^£ri-) ~ fli/^i,.^).

Proof. By (3.6) and (1.9) we have

_KL,._) = - 2 log
1 + (1 -/z'2)1'2'

hence

d   . , d   , .  dj_' -20— {<H(7„W)} =—;{*«£,._)}
d/z dß' l '   dß       p'(l -/Z'2)1'2

Using L'Hospital's rule we have

*l(£,.-)        ..     T     m(1-m01/2
n

ft—»1—     -, -O.U.J

p<i + #t)1/a T.■    /i-aY'2

T.   *«£.._)     T.   r   ßii-ß2y2i
Lun-= Lim    6 -
5-1-_l(L„_J        S^i-L     m'(1-m'01,2J

r m(1 + A)1'2 1
= 0 Lim -   Lim (--)     = O1'2,

í-i- La'(i + m01/2J?-i-\i-a'/
and the theorem follows.

Thus a relative decrease in f\(Z,„,u), corresponding to an over estimation of
¿s, is not very serious. On the other hand, in [20] it is shown that an under-
estimation of ß causes a much larger relative decrease in the rate of conver-
gence.

4. Partial difference equations of elliptic type. The results of the preced-
ing sections can be applied to many systems of linear equations arising from
elliptic boundary value problems. For example let us consider the following
problem: given a closed bounded region ß in Euclidean 77-space with in-
terior 7? and boundary S, and a function g(x) defined on S, the problem is to
find a function w(x) which is continuous in ß, twice difierentiable in R, and
which satisfies

(4.1) 77 [«(*)] +Gix) = 0

for x G R and

(4.2) «(*)=_■(*)
for xGS, where the differential operator 77 [m] is defined by

r " r      à2u du~\
3[u] = Z\Ak — +Bk — \+Fu.

k-i L      dx% dXkJ
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It is assumed that the functions P, G, Au • • • , A„, Bu • • ■ , Bn are given
functions of x which are continuous and twice differentiable in ß and satisfy
the conditions

Ak{x) > 0    {k = 1, 2, ■ ■ ■ , n),       F{x) S 0.

Here x denotes a point in Euclidean w-space whose coordinates, referred to a
basis of unit coordinate vectors «i, e2, • • • , en, are Xi, x2, ■ ■ ■ , xn.

Of the many possible finite difference analogues of the above problem, we
select the one used by Southwell [13].

We first write 77[u] in the form

■rs /    du\ du~\
(4.3) H[u] = ^\        iA \ + Ck — \+Fu

k=i Loxk \       dxk/ dxkJ

where

dAk
Ck = Bk- {k = 1, 2, • • • , n).

dxk

If Cjt = 0 {k = l, 2, • • • , n), then 77 is self-adjoint. Evidently if n = \, then
there exists a function p(x) such that p77 is self-adjoint. For arbitrary n, we
assume that if such an integrating factor exists, then the equation (4.1) has
been multiplied through by the integrating factor and hence is self-adjoint.

To set up our finite difference analogue we construct a rectangular net
whose nodes are points x= {xi, x2, • ■ ■ , xn) such that

xk = pkhk {k = 1, 2, • • • , n)

where the pk are integers and for each k, hk is the mesh size in the direction
ek. We define the average mesh size by

1    "
h = — Z hk.

n k=,i

Two nodes with coordinates pkhk and pkhk are adjacent if Zt-i iPk~pk)2= 1.
We denote by ß>, the set of all nodes contained in ß. The set of nodes such that
all adjacent nodes belong to ß/, is called the interior of ß*, and is denoted by
Rh. All other nodes of ß* belong to the boundary oí ß*, denoted by 5*. The
set Rh is connected if any two nodes of Rh can be connected by an unbroken
chain of segments adjoining adjacent nodes of Rh. We assume that ß has the
property that there exists h such that if for all k, hk<h, then Rh is connected.

Let N and M denote respectively the number of nodes of Rh and 5a. To
each node of ß* we assign an integer i such that i^N implies x<~°GRh and
N<i^N+M implies x^GSh. The coordinates of x(i> are pfhk {k = t, 2,
•••,»).

We shall replace the partial derivatives in (4.1) by partial differences as
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follows. For each k we replace

d   /      du\
-\A"-)dxk \      dxj

by

h~k\l - E~k1){[ETAkix)][iEk - l)uix)]}

where, as in [7, Chap. II], the difference operator El is defined by

Ekuix) = uix + aekhk).

Expanding the previous expression we get

d   (        du\ _2 I      ( 1 \r .
-\Ak-) ^ hk  \Ak[ x -\-hkek ][uix + hkek) — uix)]
dxk\      dxk/ i     \ 2 /

— Ak{x-hkek 1 [uix) — uix — hkek)]> .

Similarly, replacing du/dxk by i2hk)~1iEk — E^)uix), we get

du
-v^ i2hk)~1 [ uix + hkek) — uix — hkek)}.
dxk

Substituting in (4.1) and (4.3) we get

«(* + hkek) < X Ä*  \Akl x H-hkek\ + ihk/2)Ck  >

+ uix — hkek) <X^*  I -Ijti *- hkeA — ihk/2)Ck   >

- «(*)•! X h-2\Ak(x + — hkeA + Ak(x-hkekJ    - F(*)i

+ Gix) =0 ix= x^\ x<-2\ • • • , *«*>),

and
(4.5) uix) = |*(«) (* = *(JV+1), • • • , x(Ar+Jli0-

Here g*(x) =g(x0 where x' is some point of 5 near to x, such as a nearest
point. More accurate methods for treating the boundary values are available,
see for instance [20], [5], and [l].

Evidently if we replace w(xCi0 by Ui for ¿gTV we obtain a system of TV
linear equations and TV unknowns of the form (1.1) where, for i, j= 1, 2, • • -,
TV,

(4.4)
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- au = Z ^Ïak(xw + — hkek\ + Ak(x™-hkek\\ - F(*«>),

Oij = ¿I2   Ak(x^ -\-hkekJ + {hk/2)Ck   ,    if    *('> - x(i> + A*e*,

«í.y = hk~2\ Ak( x(i)-A*«:*) - (A*/2)cJ,    if    *<« = x(i) - hkek,

ai,i — 0    il    a;(i> is not adjacent to xu) and i 9^ j,

di = G(*<») + Z' C{¿*/*{° +— A*«*) + (A*/2)Cil g*(*(i) + hkek)

+ ¿"Al*¿¿J *<« - y hkek\ - {hk/2)Ck\ |*(*<« - A4et)

where Z'"=i an<^ /■'"■ denote respectively summation over all k such that
x(i)-\-hkek and x^— hkek are nodes of 5a.

It is easy to show that a,-,t<0 (*=•!, 2, • • • , A7), and that if the hk are
chosen so that Rk is connected and such that

hk < 2   Min Ak{x)/Ma.x | C*(z) | (A = 1, 2, ■ • • , n),
Lz£a »G« J

then |a¿,,| ^ Z^-u^i I°«.j|- Moreover since ß is bounded there exists i such
that x(i) is adjacent to some node of 5a; hence |a,-,<| > Zy^=u^i la>'.j'l- The
matrix A = (a,-,/) satisfies condition (1.2(b)) since Pa is connected and since if
x(i) and x^"> are distinct nodes of Pa, then a.-.y^O. Therefore A satisfies condi-
tions (1.2).

By Theorem 2.1 in order to show that A has Property (A) we need only
exhibit one ordering vector. Actually we shall exhibit two ordering vectors
in order to obtain two consistent orderings. Evidently 7U) and 7C2) are order-
ing vectors where

(i)
7i

1    if    Z Pk    is even,
k=i

«>I
k=l

(i)0    if    Z Pk    is odd,

(2) v-,      «)Ti     = l^pk   ■
k-l

Now, if di.y^O, then for some k* we have |x(i)— x{i)\ =hk'ek: Hence \pk}
-p$\=l and pf = pkn tor k^k*. Therefore | ZLi pf- ZLi P?\
m\p$-p$\ =1, and \t?-t»>\ =|7f-7f | -i.
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Since a,-,y = 0 unless* = 7 or x(<) is adjacent tox^, the ordering relation need
only be defined for pairs of adjacent nodes. Two consistent orderings are:

tri:    x
a) U)0 follows x(i) if X Pk   is even and X Pk   is odd

i=l k-1

a2:    x(i) follows xU) if

(i) (j)
Pn      >  pn    ,      Or

d)       (j)   (i)       in
Pn     =  Pn   , Pn-l >  Pn-1,      Or

or

(i) O)
Pn     =  Pn   , , f>2      =   P2    , Pi      >   Pi     ■

Evidently <ri corresponds to 7(1) and cr2 corresponds to y(2).
It can be shown that not all orderings are consistent unless w=l  [20].
If 77 is self-adjoint then Ck = 0 (é = l, 2, • ■ • , n). If a.-.y^O and i^j,

then for some k, x(i) =xu)+hkek or x (0, rCi). -Ttfcßjt. In the former case a,-,y
= hk2Akix(i) + il/2)hkek).   Moreover   x(£) =x^-hkek   and   ay^/V^tfaxt0
+Ätet) — il/2)hkek) =a,-,y. Similarly if x<J')=x(<) —Atet we haveai,y = ay,,-. Thus
when 77 is self-adjoint, the matrix A is symmetric.

For the Dirichlet problem we have

r  i      ^ ö2w77M = X—=0
t=i  ox\

and for the difference analogue

bi.j =

,-2At

2E*:
*=i

0

if xCi> - x('' = + /¡„e*,

if x(<) is not adjacent to x(i),

where the ¿>,-,y are defined by (1.4). If ßt is the rectangular region bounded by
the planes Xi = a,- fa'=l, 2, • • ■ , n), and if a./A,- is an integer for all i, then it
can be shown, see for instance [20 ], that

(4.6) M=Xt=i Zhk
cos

(?)•

If hi = h2 = ■hn = h, then we have
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1    " /xA\(4.7) p = -Zcos( —).
n ¿„i        \ak /

As h—»0, we have by Corollary 2.1

5l(¿,,i) = - 2 log ß „ ( Z ir2aï2JA2

and by Theorem 3.3

/ A   -2V251(7^) ~2ttÍ E«, J    A.

Thus the factor of increase using the successive overrelaxation method with
the proper relaxation factor is approximately

— (   Z ak   ) A     ,
T   \ k=i /

and the rate of convergence has been improved by an order of magnitude.
We have already seen in Theorem 3.4 that if ß is overestimated, the detri-

mental effect on the rate of convergence of £„,„ is relatively small. Non trivial
upper bounds for ß, that is, upper bounds less than unity, can often be ob-
tained by use of comparison theorems. For example, with a given difference
equation, ß is smaller for a region Pa than for R'h if PaCPÁ- A simple region
may be chosen for the larger region and ß may be computed for this larger
region as for the rectangle with the Dirichlet problem by (4.6). This can some-
times be done for other differential equations by the method of separation of
variables. Another useful comparison theorem yields the following: if a'(J
> I a,-,y| (*, 7= 1, 2, • • • , N), then the spectral norm of (a,-,,-) does not exceed
the spectral norm of {a'tJ) [8].

5. The use of large automatic computing machines. For a large system
of equations the convergence of the Gauss-Seidel method may be so slow that
even with a fast computing machine the time required to obtain a desired
accuracy might be excessive. In many cases the time required could be greatly
reduced by the use of the successive overrelaxation method. The number of
machine operations per iteration would not be increased by more than 10%
over that required for the Gauss-Seidel method and very little additional
storage would be required.

The following table gives estimates for the UN I VAC computing machine
for the Dirichlet problem for the unit square with A-1 = 20, 50, 100, 300. In
this case ß and coj can be computed exactly by (4.7) and (1.8). The time given
is in hours computing time for the UNIVAC based on an estimated .01A~2
seconds per iteration given in  [12]. The number of iterations required to
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reduce the error to 0.1% of its original value was estimated by finding the
smallest integer m such that

(5.1) m = -log .001/<R.(7„,i)

for the Gauss-Seidel method, and

(5.2) wX"*-1 g .001

where —log X = -\(7,„>a,6) for the successive overrelaxation method. For the
latter method m is determined from (5.2) rather than from

w=- log .001/iUZ,,^)
because in equation (2.3) we have p = 2 (see the first paragraph after the proof
of Theorem 3.2).

Table I

h~l

20
50

100
300

The Gauss-Seidel Method

7\(£¡r,i)     Iterations   Time

.024776 279 .31

.003950 1749 12.14

.000998 "6922 192.28

.000110 62798 15699.50

The Successive Overrelaxation Method

—■& 1\.(L„,™,) Iterations  Time     ma/ms

l.729454 .315459 35
1.881839 .125746 92
1.939091 .062843 195
1.979272 .020946 640

.04 7.97

.64 19.01
5.42 35.50

160.00 98.12

tmg = number of iterations for Gauss-Seidel method
ms = number of iterations for successive overrelaxation method

Bibliography
1. L. Collatz, Bemerkungen zur Fehlerabschälzung für das Differenzenverfahren bei partiellen

Differentialgleichungen, Zeitschrift für Angewandte Mathematik und Mechanik vol. 13 (1933)
pp. 56-57.

2. A. Dresden, On the iteration of linear homogeneous transformations, Bull. Amer. Math.
Soc. vol. 48 (1942) pp. 577-579.

3. S. Frankel, Convergence rates of iterative treatments of partial differential equations,
Mathematical Tables and Other Aids to Computation vol. 4 (1950) pp. 65-75.

4. H. Geiringer, On the solution of systems of linear equations by certain iteration methods,
Reissner Anniversary Volume, Ann Arbor, Michigan, 1949, pp. 365-393.

5. S. Gerschgorin, Fehlerabschätzung für das Differenzenverfahren zur Lösung partieller
Differentialgleichungen, Zeitschrift für Angewandte Mathematik und Mechanik vol. 10 (1930)
pp. 373-382.

6. H. Liebmann, Die angenährte Ermittelung harmonischer Functionen und konformer
Abbildungen, Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Klasse der Baj'er-
ischen Akademie der Wissenschaften zu München (1918) pp. 385-416.

7. L. M. Milne-Thomson, The calculus of finite differences, London, Macmillan, 1951.
8. R. Oldenburger, Infinite powers of matrices and characteristic roots, Duke Math. J. vol. 6

(1940) pp. 357-361.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1954] PARTIAL DIFFERENCE EQUATIONS OF ELLIPTIC TYPE 111

9. L. F. Richardson, The approximate arithmetical solution by finite differences of physical
problems involving differential equations with an application to the stresses in a masonry dam,
Philos. Trans. Roy. Soc. London vol. 210A (1910) pp. 307-357.

10. L. Seidel, Über ein Verfahren die Gleichungen, auf welche die Methode der kleinsten
Quadrate führt, sowie lineare Gleichungen überhaupt durch successive Annäherung aufzulösen,
Abhandlungen der Bayerischen Akademie vol. 11, Dritte Abteilung (1873) pp. 81-108.

11. G. Shortley and R. Weller, The numerical solution of Laplace's equation, Journal of
Applied Physics vol. 9 (1938) pp. 334-344.

12. F. Snyder and H. Livingston, Coding of a Laplace boundary value problem for the
UNIVAG, Mathematical Tables and Other Aids to Computation vol. 3 (1949) pp. 341-350.

13. R. Southwell, Relaxation methods in theoretical physics, Oxford University Press, 1946.
14. -, Relaxation methods as ancillary techniques, Proceedings of a Symposium on

the Construction and Application of Conformai Maps, National Bureau of Standards, Applied
Mathematics Series vol. 18 (1949) pp. 239-241.

15. P. Stein and R. Rosenberg, On the solution of linear simultaneous equations by itera-
tion, J. London Math. Soc. vol. 23 (1948) pp. 111-118.

16. E. Titchmarsh, The theory of functions, Oxford University Press, 2d ed., 1939.
17. R. von Mises and H. Geiringer, Praktische Verfahren der Gleichungsauflösung, Zusam-

menfassender Bericht. Zeitschrift für Angewandte Mathematik und Mechanik vol. 9 (1929)
pp. 58-77 and pp. 152-164.

18. J. Wedderburn, Lectures on matrices, Amer. Math. Soc. Colloquium Publications, vol.
17, New York, 1934.

19. D. Young, The rate of convergence of an improved iterative method for solving the finite
difference analogue of the Dirichlet problem, Bull. Amer. Math. Soc. Abstract 56-4-322.

20. -, Iterative methods for solving partial difference equations of elliptic type, Doctoral
Thesis, Harvard University, 1950.

21. -, On Richardson's method for solving linear systems with positive definite matrices,
to appear in the Journal of Mathematics and Physics.

Harvard University,
Cambridge, Mass.

University of Maryland,
College Park, Md.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


