
Iterative Methods
for Sparse

Linear Systems

Yousef Saad

1

2 3

4 5

6

7

8

9

10

11

12

13

14

15

Copyright c2000 by Yousef Saad.

SECOND EDITION WITH CORRECTIONS. JANUARY 3RD, 2000.

CONTENTS

PREFACE xiii

Acknowledgments . xiv

Suggestions for Teaching . xv

1 BACKGROUND IN LINEAR ALGEBRA 1

1.1 Matrices . 1

1.2 Square Matrices and Eigenvalues . 3

1.3 Types of Matrices . 4

1.4 Vector Inner Products and Norms . 6

1.5 Matrix Norms . 8

1.6 Subspaces, Range, and Kernel . 9

1.7 Orthogonal Vectors and Subspaces . 10

1.8 Canonical Forms of Matrices . 15

1.8.1 Reduction to the Diagonal Form 15

1.8.2 The Jordan Canonical Form . 16

1.8.3 The Schur Canonical Form . 17

1.8.4 Application to Powers of Matrices 19

1.9 Normal and Hermitian Matrices . 21

1.9.1 Normal Matrices . 21

1.9.2 Hermitian Matrices . 24

1.10 Nonnegative Matrices, M-Matrices . 26

1.11 Positive-Definite Matrices . 30

1.12 Projection Operators . 33

1.12.1 Range and Null Space of a Projector 33

1.12.2 Matrix Representations . 35

1.12.3 Orthogonal and Oblique Projectors 35

1.12.4 Properties of Orthogonal Projectors 37

1.13 Basic Concepts in Linear Systems . 38

1.13.1 Existence of a Solution . 38

1.13.2 Perturbation Analysis . 39

Exercises and Notes . 41

2 DISCRETIZATION OF PDES 44

2.1 Partial Differential Equations . 44

2.1.1 Elliptic Operators . 45

2.1.2 The Convection Diffusion Equation 47

v

vi CONTENTS

2.2 Finite Difference Methods . 47

2.2.1 Basic Approximations . 48

2.2.2 Difference Schemes for the Laplacean Operator 49

2.2.3 Finite Differences for 1-D Problems 51

2.2.4 Upwind Schemes . 51

2.2.5 Finite Differences for 2-D Problems 54

2.3 The Finite Element Method . 55

2.4 Mesh Generation and Refinement . 61

2.5 Finite Volume Method . 63

Exercises and Notes . 66

3 SPARSE MATRICES 68

3.1 Introduction . 68

3.2 Graph Representations . 70

3.2.1 Graphs and Adjacency Graphs 70

3.2.2 Graphs of PDE Matrices . 72

3.3 Permutations and Reorderings . 72

3.3.1 Basic Concepts . 72

3.3.2 Relations with the Adjacency Graph 75

3.3.3 Common Reorderings . 75

3.3.4 Irreducibility . 83

3.4 Storage Schemes . 84

3.5 Basic Sparse Matrix Operations . 87

3.6 Sparse Direct Solution Methods . 88

3.7 Test Problems . 88

Exercises and Notes . 91

4 BASIC ITERATIVE METHODS 95

4.1 Jacobi, Gauss-Seidel, and SOR . 95

4.1.1 Block Relaxation Schemes . 98

4.1.2 Iteration Matrices and Preconditioning 102

4.2 Convergence . 104

4.2.1 General Convergence Result 104

4.2.2 Regular Splittings . 107

4.2.3 Diagonally Dominant Matrices 108

4.2.4 Symmetric Positive Definite Matrices 112

4.2.5 Property A and Consistent Orderings 112

4.3 Alternating Direction Methods . 116

Exercises and Notes . 119

5 PROJECTION METHODS 122

5.1 Basic Definitions and Algorithms . 122

5.1.1 General Projection Methods 123

5.1.2 Matrix Representation . 124

5.2 General Theory . 126

5.2.1 Two Optimality Results . 126

CONTENTS vii

5.2.2 Interpretation in Terms of Projectors 127

5.2.3 General Error Bound . 129

5.3 One-Dimensional Projection Processes 131

5.3.1 Steepest Descent . 132

5.3.2 Minimal Residual (MR) Iteration 134

5.3.3 Residual Norm Steepest Descent 136

5.4 Additive and Multiplicative Processes 136

Exercises and Notes . 139

6 KRYLOV SUBSPACE METHODS – PART I 144

6.1 Introduction . 144

6.2 Krylov Subspaces . 145

6.3 Arnoldi’s Method . 147

6.3.1 The Basic Algorithm . 147

6.3.2 Practical Implementations . 149

6.4 Arnoldi’s Method for Linear Systems (FOM) 152

6.4.1 Variation 1: Restarted FOM . 154

6.4.2 Variation 2: IOM and DIOM 155

6.5 GMRES . 158

6.5.1 The Basic GMRES Algorithm 158

6.5.2 The Householder Version . 159

6.5.3 Practical Implementation Issues 161

6.5.4 Breakdown of GMRES . 165

6.5.5 Relations between FOM and GMRES 165

6.5.6 Variation 1: Restarting . 168

6.5.7 Variation 2: Truncated GMRES Versions 169

6.6 The Symmetric Lanczos Algorithm . 174

6.6.1 The Algorithm . 174

6.6.2 Relation with Orthogonal Polynomials 175

6.7 The Conjugate Gradient Algorithm . 176

6.7.1 Derivation and Theory . 176

6.7.2 Alternative Formulations . 180

6.7.3 Eigenvalue Estimates from the CG Coefficients 181

6.8 The Conjugate Residual Method . 183

6.9 GCR, ORTHOMIN, and ORTHODIR 183

6.10 The Faber-Manteuffel Theorem . 186

6.11 Convergence Analysis . 188

6.11.1 Real Chebyshev Polynomials 188

6.11.2 Complex Chebyshev Polynomials 189

6.11.3 Convergence of the CG Algorithm 193

6.11.4 Convergence of GMRES . 194

6.12 Block Krylov Methods . 197

Exercises and Notes . 202

7 KRYLOV SUBSPACE METHODS – PART II 205

7.1 Lanczos Biorthogonalization . 205

viii CONTENTS

7.1.1 The Algorithm . 205

7.1.2 Practical Implementations . 208

7.2 The Lanczos Algorithm for Linear Systems 210

7.3 The BCG and QMR Algorithms . 210

7.3.1 The Biconjugate Gradient Algorithm 211

7.3.2 Quasi-Minimal Residual Algorithm 212

7.4 Transpose-Free Variants . 214

7.4.1 Conjugate Gradient Squared 215

7.4.2 BICGSTAB . 217

7.4.3 Transpose-Free QMR (TFQMR) 221

Exercises and Notes . 227

8 METHODS RELATED TO THE NORMAL EQUATIONS 230

8.1 The Normal Equations . 230

8.2 Row Projection Methods . 232

8.2.1 Gauss-Seidel on the Normal Equations 232

8.2.2 Cimmino’s Method . 234

8.3 Conjugate Gradient and Normal Equations 237

8.3.1 CGNR . 237

8.3.2 CGNE . 238

8.4 Saddle-Point Problems . 240

Exercises and Notes . 243

9 PRECONDITIONED ITERATIONS 245

9.1 Introduction . 245

9.2 Preconditioned Conjugate Gradient . 246

9.2.1 Preserving Symmetry . 246

9.2.2 Efficient Implementations . 249

9.3 Preconditioned GMRES . 251

9.3.1 Left-Preconditioned GMRES 251

9.3.2 Right-Preconditioned GMRES 253

9.3.3 Split Preconditioning . 254

9.3.4 Comparison of Right and Left Preconditioning 255

9.4 Flexible Variants . 256

9.4.1 Flexible GMRES . 256

9.4.2 DQGMRES . 259

9.5 Preconditioned CG for the Normal Equations 260

9.6 The CGW Algorithm . 261

Exercises and Notes . 263

10 PRECONDITIONING TECHNIQUES 265

10.1 Introduction . 265

10.2 Jacobi, SOR, and SSOR Preconditioners 266

10.3 ILU Factorization Preconditioners . 269

10.3.1 Incomplete LU Factorizations 270

10.3.2 Zero Fill-in ILU (ILU(0)) . 275

CONTENTS ix

10.3.3 Level of Fill and ILU(p) . 278

10.3.4 Matrices with Regular Structure 281

10.3.5 Modified ILU (MILU) . 286

10.4 Threshold Strategies and ILUT . 287

10.4.1 The ILUT Approach . 288

10.4.2 Analysis . 289

10.4.3 Implementation Details . 292

10.4.4 The ILUTP Approach . 294

10.4.5 The ILUS Approach . 296

10.5 Approximate Inverse Preconditioners 298

10.5.1 Approximating the Inverse of a Sparse Matrix 299

10.5.2 Global Iteration . 299

10.5.3 Column-Oriented Algorithms 301

10.5.4 Theoretical Considerations . 303

10.5.5 Convergence of Self Preconditioned MR 305

10.5.6 Factored Approximate Inverses 307

10.5.7 Improving a Preconditioner . 310

10.6 Block Preconditioners . 310

10.6.1 Block-Tridiagonal Matrices . 311

10.6.2 General Matrices . 312

10.7 Preconditioners for the Normal Equations 313

10.7.1 Jacobi, SOR, and Variants . 313

10.7.2 IC(0) for the Normal Equations 314

10.7.3 Incomplete Gram-Schmidt and ILQ 316

Exercises and Notes . 319

11 PARALLEL IMPLEMENTATIONS 324

11.1 Introduction . 324

11.2 Forms of Parallelism . 325

11.2.1 Multiple Functional Units . 325

11.2.2 Pipelining . 326

11.2.3 Vector Processors . 326

11.2.4 Multiprocessing and Distributed Computing 326

11.3 Types of Parallel Architectures . 327

11.3.1 Shared Memory Computers . 327

11.3.2 Distributed Memory Architectures 329

11.4 Types of Operations . 331

11.4.1 Preconditioned CG . 332

11.4.2 GMRES . 332

11.4.3 Vector Operations . 333

11.4.4 Reverse Communication . 334

11.5 Matrix-by-Vector Products . 335

11.5.1 The Case of Dense Matrices 335

11.5.2 The CSR and CSC Formats . 336

11.5.3 Matvecs in the Diagonal Format 339

11.5.4 The Ellpack-Itpack Format . 340

x CONTENTS

11.5.5 The Jagged Diagonal Format 341

11.5.6 The Case of Distributed Sparse Matrices 342

11.6 Standard Preconditioning Operations 345

11.6.1 Parallelism in Forward Sweeps 346

11.6.2 Level Scheduling: the Case of 5-Point Matrices 346

11.6.3 Level Scheduling for Irregular Graphs 347

Exercises and Notes . 350

12 PARALLEL PRECONDITIONERS 353

12.1 Introduction . 353

12.2 Block-Jacobi Preconditioners . 354

12.3 Polynomial Preconditioners . 356

12.3.1 Neumann Polynomials . 356

12.3.2 Chebyshev Polynomials . 357

12.3.3 Least-Squares Polynomials . 360

12.3.4 The Nonsymmetric Case . 363

12.4 Multicoloring . 365

12.4.1 Red-Black Ordering . 366

12.4.2 Solution of Red-Black Systems 367

12.4.3 Multicoloring for General Sparse Matrices 368

12.5 Multi-Elimination ILU . 369

12.5.1 Multi-Elimination . 370

12.5.2 ILUM . 371

12.6 Distributed ILU and SSOR . 374

12.6.1 Distributed Sparse Matrices . 374

12.7 Other Techniques . 376

12.7.1 Approximate Inverses . 377

12.7.2 Element-by-Element Techniques 377

12.7.3 Parallel Row Projection Preconditioners 379

Exercises and Notes . 380

13 DOMAIN DECOMPOSITION METHODS 383

13.1 Introduction . 383

13.1.1 Notation . 384

13.1.2 Types of Partitionings . 385

13.1.3 Types of Techniques . 386

13.2 Direct Solution and the Schur Complement 388

13.2.1 Block Gaussian Elimination 388

13.2.2 Properties of the Schur Complement 389

13.2.3 Schur Complement for Vertex-Based Partitionings 390

13.2.4 Schur Complement for Finite-Element Partitionings 393

13.3 Schwarz Alternating Procedures . 395

13.3.1 Multiplicative Schwarz Procedure 395

13.3.2 Multiplicative Schwarz Preconditioning 400

13.3.3 Additive Schwarz Procedure 402

13.3.4 Convergence . 404

CONTENTS xi

13.4 Schur Complement Approaches . 408

13.4.1 Induced Preconditioners . 408

13.4.2 Probing . 410

13.4.3 Preconditioning Vertex-Based Schur Complements 411

13.5 Full Matrix Methods . 412

13.6 Graph Partitioning . 414

13.6.1 Basic Definitions . 414

13.6.2 Geometric Approach . 415

13.6.3 Spectral Techniques . 417

13.6.4 Graph Theory Techniques . 418

Exercises and Notes . 422

REFERENCES 425

INDEX 439

xii

PREFACE

Iterative methods for solving general, large sparse linear systems have been gaining

popularity in many areas of scientific computing. Until recently, direct solution methods

were often preferred to iterative methods in real applications because of their robustness

and predictable behavior. However, a number of efficient iterative solvers were discovered

and the increased need for solving very large linear systems triggered a noticeable and

rapid shift toward iterative techniques in many applications.

This trend can be traced back to the 1960s and 1970s when two important develop-

ments revolutionized solution methods for large linear systems. First was the realization

that one can take advantage of “sparsity” to design special direct methods that can be

quite economical. Initiated by electrical engineers, these “direct sparse solution methods”

led to the development of reliable and efficient general-purpose direct solution software

codes over the next three decades. Second was the emergence of preconditioned conjugate

gradient-like methods for solving linear systems. It was found that the combination of pre-

conditioning and Krylov subspace iterations could provide efficient and simple “general-

purpose” procedures that could compete with direct solvers. Preconditioning involves ex-

ploiting ideas from sparse direct solvers. Gradually, iterative methods started to approach

the quality of direct solvers. In earlier times, iterative methods were often special-purpose

in nature. They were developed with certain applications in mind, and their efficiency relied

on many problem-dependent parameters.

Now, three-dimensional models are commonplace and iterative methods are al-

most mandatory. The memory and the computational requirements for solving three-

dimensional Partial Differential Equations, or two-dimensional ones involving many

degrees of freedom per point, may seriously challenge the most efficient direct solvers

available today. Also, iterative methods are gaining ground because they are easier to

implement efficiently on high-performance computers than direct methods.

My intention in writing this volume is to provide up-to-date coverage of iterative meth-

ods for solving large sparse linear systems. I focused the book on practical methods that

work for general sparse matrices rather than for any specific class of problems. It is indeed

becoming important to embrace applications not necessarily governed by Partial Differ-

ential Equations, as these applications are on the rise. Apart from two recent volumes by

Axelsson [15] and Hackbusch [116], few books on iterative methods have appeared since

the excellent ones by Varga [213]. and later Young [232]. Since then, researchers and prac-

titioners have achieved remarkable progress in the development and use of effective iter-

ative methods. Unfortunately, fewer elegant results have been discovered since the 1950s

and 1960s. The field has moved in other directions. Methods have gained not only in effi-

ciency but also in robustness and in generality. The traditional techniques which required

xiii

xiv PREFACE

rather complicated procedures to determine optimal acceleration parameters have yielded

to the parameter-free conjugate gradient class of methods.

The primary aim of this book is to describe some of the best techniques available today,

from both preconditioners and accelerators. One of the aims of the book is to provide a

good mix of theory and practice. It also addresses some of the current research issues

such as parallel implementations and robust preconditioners. The emphasis is on Krylov

subspace methods, currently the most practical and common group of techniques used in

applications. Although there is a tutorial chapter that covers the discretization of Partial

Differential Equations, the book is not biased toward any specific application area. Instead,

the matrices are assumed to be general sparse, possibly irregularly structured.

The book has been structured in four distinct parts. The first part, Chapters 1 to 4,

presents the basic tools. The second part, Chapters 5 to 8, presents projection methods and

Krylov subspace techniques. The third part, Chapters 9 and 10, discusses precondition-

ing. The fourth part, Chapters 11 to 13, discusses parallel implementations and parallel

algorithms.

ACKNOWLEDGMENTS

I am grateful to a number of colleagues who proofread or reviewed different versions of

the manuscript. Among them are Randy Bramley (University of Indiana at Bloomingtin),

Xiao-Chuan Cai (University of Colorado at Boulder), Tony Chan (University of California

at Los Angeles), Jane Cullum (IBM, Yorktown Heights), Alan Edelman (Massachussett

Institute of Technology), Paul Fischer (Brown University), David Keyes (Old Dominion

University), Beresford Parlett (University of California at Berkeley) and Shang-Hua Teng

(University of Minnesota). Their numerous comments, corrections, and encouragements

were a highly appreciated contribution. In particular, they helped improve the presenta-

tion considerably and prompted the addition of a number of topics missing from earlier

versions.

This book evolved from several successive improvements of a set of lecture notes for

the course “Iterative Methods for Linear Systems” which I taught at the University of Min-

nesota in the last few years. I apologize to those students who used the earlier error-laden

and incomplete manuscripts. Their input and criticism contributed significantly to improv-

ing the manuscript. I also wish to thank those students at MIT (with Alan Edelman) and

UCLA (with Tony Chan) who used this book in manuscript form and provided helpful

feedback. My colleagues at the university of Minnesota, staff and faculty members, have

helped in different ways. I wish to thank in particular Ahmed Sameh for his encourage-

ments and for fostering a productive environment in the department. Finally, I am grateful

to the National Science Foundation for their continued financial support of my research,

part of which is represented in this work.

Yousef Saad

PREFACE xv

SUGGESTIONS FOR TEACHING

This book can be used as a text to teach a graduate-level course on iterative methods for

linear systems. Selecting topics to teach depends on whether the course is taught in a

mathematics department or a computer science (or engineering) department, and whether

the course is over a semester or a quarter. Here are a few comments on the relevance of the

topics in each chapter.

For a graduate course in a mathematics department, much of the material in Chapter 1

should be known already. For non-mathematics majors most of the chapter must be covered

or reviewed to acquire a good background for later chapters. The important topics for

the rest of the book are in Sections: 1.8.1, 1.8.3, 1.8.4, 1.9, 1.11. Section 1.12 is best

treated at the beginning of Chapter 5. Chapter 2 is essentially independent from the rest

and could be skipped altogether in a quarter course. One lecture on finite differences and

the resulting matrices would be enough for a non-math course. Chapter 3 should make

the student familiar with some implementation issues associated with iterative solution

procedures for general sparse matrices. In a computer science or engineering department,

this can be very relevant. For mathematicians, a mention of the graph theory aspects of

sparse matrices and a few storage schemes may be sufficient. Most students at this level

should be familiar with a few of the elementary relaxation techniques covered in Chapter

4. The convergence theory can be skipped for non-math majors. These methods are now

often used as preconditioners and this may be the only motive for covering them.

Chapter 5 introduces key concepts and presents projection techniques in general terms.

Non-mathematicians may wish to skip Section 5.2.3. Otherwise, it is recommended to

start the theory section by going back to Section 1.12 on general definitions on projectors.

Chapters 6 and 7 represent the heart of the matter. It is recommended to describe the first

algorithms carefully and put emphasis on the fact that they generalize the one-dimensional

methods covered in Chapter 5. It is also important to stress the optimality properties of

those methods in Chapter 6 and the fact that these follow immediately from the properties

of projectors seen in Section 1.12. When covering the algorithms in Chapter 7, it is crucial

to point out the main differences between them and those seen in Chapter 6. The variants

such as CGS, BICGSTAB, and TFQMR can be covered in a short time, omitting details of

the algebraic derivations or covering only one of the three. The class of methods based on

the normal equation approach, i.e., Chapter 8, can be skipped in a math-oriented course,

especially in the case of a quarter system. For a semester course, selected topics may be

Sections 8.1, 8.2, and 8.4.

Currently, preconditioning is known to be the critical ingredient in the success of it-

erative methods in solving real-life problems. Therefore, at least some parts of Chapter 9

and Chapter 10 should be covered. Section 9.2 and (very briefly) 9.3 are recommended.

From Chapter 10, discuss the basic ideas in Sections 10.1 through 10.3. The rest could be

skipped in a quarter course.

Chapter 11 may be useful to present to computer science majors, but may be skimmed

or skipped in a mathematics or an engineering course. Parts of Chapter 12 could be taught

primarily to make the students aware of the importance of “alternative” preconditioners.

Suggested selections are: 12.2, 12.4, and 12.7.2 (for engineers). Chapter 13 presents an im-

xvi PREFACE

portant research area and is primilarily geared to mathematics majors. Computer scientists

or engineers may prefer to cover this material in less detail.

To make these suggestions more specific, the following two tables are offered as sam-

ple course outlines. Numbers refer to sections in the text. A semester course represents

approximately 30 lectures of 75 minutes each whereas a quarter course is approximately

20 lectures of 75 minutes each. Different topics are selected for a mathematics course and

a non-mathematics course.

Semester course

Weeks Mathematics Computer Science / Eng.

1.9 –1.13 1.1 – 1.6 (Read)

1 – 3 2.1 – 2.5 1.7 – 1.13, 2.1 – 2.2

3.1 – 3.3, 3.7 3.1 – 3.7

4.1 – 4.3 4.1 – 4.2

4 – 6 5. 1 – 5.4 5.1 – 5.2.1

6.1 – 6.3 6.1 – 6.3

6.4 – 6.7 (Except 6.5.2) 6.4 – 6.5 (Except 6.5.5)

7 – 9 6.9 – 6.11 6.7.1, 6.8–6.9, 6.11.3.

7.1 – 7.3 7.1 – 7.3

7.4.1; 7.4.2 – 7.4.3 (Read) 7.4.1; 7.4.2 – 7.4.3 (Read)

10 – 12 8.1, 8.2, 8.4; 9.1 – 9.3 8.1 – 8.3; 9.1 – 9.3

10.1 – 10.3 10.1 – 10.4

10.5.1 – 10.5.6 10.5.1 – 10.5.4

13 – 15 10.6 ; 12.2 – 12.4 11.1 – 11.4 (Read); 11.5 – 11.6

13.1 – 13.6 12.1 – 12.2; 12.4 – 12.7

Quarter course

Weeks Mathematics Computer Science / Eng.

1 – 2 1.9 – 1.13, 3.1 – 3.2 1.1 – 1.6 (Read); 3.1 – 3.7

4.1 – 4.3 4.1

3 – 4 5.1 – 5.4 5.1 – 5.2.1

6.1 – 6.4 6.1 – 6.3

5 – 6 6.4 – 6.7 (Except 6.5.2) 6.4 – 6.5 (Except 6.5.5)

6.11, 7.1 – 7.3 6.7.1, 6.11.3, 7.1 – 7.3

7 – 8 7.4.1; 7.4.2 – 7.4.3 (Read) 7.4.1; 7.4.2 – 7.4.3 (Read)

9.1 – 9.3; 10.1 – 10.3 9.1 – 9.3; 10.1 – 10.3

9 – 10 10.6 ; 12.2 – 12.4 11.1 – 11.4 (Read); 11.5 – 11.6

13.1 – 13.4 12.1 – 12.2; 12.4 – 12.7

C H A P T E R

1

BACKGROUND IN LINEAR

ALGEBRA

This chapter gives an overview of the relevant concepts in linear algebra

which are useful in later chapters. It begins with a review of basic ma-

trix theory and introduces the elementary notation used throughout the

book. The convergence analysis of iterative methods requires a good level

of knowledge in mathematical analysis and in linear algebra. Traditionally,

many of the concepts presented speci�cally for these analyses have been

geared toward matrices arising from the discretization of Partial Di�erential

Equations and basic relaxation-type methods. These concepts are now be-

coming less important because of the trend toward projection-type methods

which have more robust convergence properties and require di�erent analy-

sis tools. The material covered in this chapter will be helpful in establishing

some theory for the algorithms and de�ning the notation used throughout

the book.

MATRICES

1.1

For the sake of generality, all vector spaces considered in this chapter are complex, unless

otherwise stated. A complex n�m matrix A is an n�m array of complex numbers

aij ; i = 1; : : : ; n; j = 1; : : : ;m:

The set of all n � m matrices is a complex vector space denoted by C
n�m

. The main

operations with matrices are the following:

� Addition: C = A+B, where A;B, and C are matrices of size n�m and

cij = aij + bij ; i = 1; 2; : : : n; j = 1; 2; : : :m:

1

2 CHAPTER 1 BACKGROUND IN LINEAR ALGEBRA

� Multiplication by a scalar: C = �A, where

cij = � aij ; i = 1; 2; : : : n; j = 1; 2; : : :m:

� Multiplication by another matrix:

C = AB;

where A 2 C
n�m

; B 2 C
m�p

; C 2 C
n�p

, and

cij =
mX
k=1

aikbkj :

Sometimes, a notation with column vectors and row vectors is used. The column vector

a�j is the vector consisting of the j-th column of A,

a�j =

0
BB@
a1j
a2j

...

anj

1
CCA :

Similarly, the notation ai� will denote the i-th row of the matrix A

ai� = (ai1; ai2; : : : ; aim) :

For example, the following could be written

A = (a�1; a�2; : : : ; a�m) ;

or

A =

0
BBB@

a1�
a2�
:
:

an�

1
CCCA :

The transpose of a matrix A in C
n�m

is a matrix C in C
m�n

whose elements are

defined by cij = aji; i = 1; : : : ;m; j = 1; : : : ; n. It is denoted by AT . It is often more

relevant to use the transpose conjugate matrix denoted by AH and defined by

AH = �AT = AT ;

in which the bar denotes the (element-wise) complex conjugation.

Matrices are strongly related to linear mappings between vector spaces of finite di-

mension. This is because they represent these mappings with respect to two given bases:

one for the initial vector space and the other for the image vector space, or range of A.

1.2 SQUARE MATRICES AND EIGENVALUES 3

SQUARE MATRICES AND EIGENVALUES

1.2

A matrix is square if it has the same number of columns and rows, i.e., if m = n. An

important square matrix is the identity matrix

I = f�ijgi;j=1;:::;n;

where �ij is the Kronecker symbol. The identity matrix satisfies the equalityAI = IA = A
for every matrix A of size n. The inverse of a matrix, when it exists, is a matrix C such that

CA = AC = I:

The inverse of A is denoted by A�1.
The determinant of a matrix may be defined in several ways. For simplicity, the fol-

lowing recursive definition is used here. The determinant of a 1 � 1 matrix (a) is defined

as the scalar a. Then the determinant of an n� n matrix is given by

det(A) =

nX
j=1

(�1)j+1a1jdet(A1j);

where A1j is an (n � 1) � (n � 1) matrix obtained by deleting the first row and the j-th

column of A. A matrix is said to be singular when det(A) = 0 and nonsingular otherwise.

We have the following simple properties:

� det(AB) = det(BA).

� det(AT) = det(A).

� det(�A) = �ndet(A).

� det(�A) = det(A).

� det(I) = 1.

From the above definition of determinants it can be shown by induction that the func-

tion that maps a given complex value � to the value pA(�) = det(A��I) is a polynomial

of degree n; see Exercise 8. This is known as the characteristic polynomial of the matrix

A.

DEFINITION 1.1 A complex scalar � is called an eigenvalue of the square matrix A if

a nonzero vector u of C
n

exists such that Au = �u. The vector u is called an eigenvector

of A associated with �. The set of all the eigenvalues of A is called the spectrum of A and

is denoted by �(A).

A scalar � is an eigenvalue of A if and only if det(A��I) � pA(�) = 0. That is true

if and only if (iff thereafter) � is a root of the characteristic polynomial. In particular, there

are at most n distinct eigenvalues.

It is clear that a matrix is singular if and only if it admits zero as an eigenvalue. A well

known result in linear algebra is stated in the following proposition.

PROPOSITION 1.1 A matrix A is nonsingular if and only if it admits an inverse.

4 CHAPTER 1 BACKGROUND IN LINEAR ALGEBRA

Thus, the determinant of a matrix determines whether or not the matrix admits an inverse.

The maximum modulus of the eigenvalues is called spectral radius and is denoted by

�(A)

�(A) = max
�2�(A)

j�j:

The trace of a matrix is equal to the sum of all its diagonal elements

tr(A) =

nX
i=1

aii:

It can be easily shown that the trace of A is also equal to the sum of the eigenvalues of A
counted with their multiplicities as roots of the characteristic polynomial.

PROPOSITION 1.2 If � is an eigenvalue of A, then �� is an eigenvalue of AH . An

eigenvector v of AH associated with the eigenvalue �� is called a left eigenvector of A.

When a distinction is necessary, an eigenvector of A is often called a right eigenvector.

Therefore, the eigenvalue � as well as the right and left eigenvectors, u and v, satisfy the

relations

Au = �u; vHA = �vH ;

or, equivalently,

uHAH = ��uH ; AHv = ��v:

TYPES OF MATRICES

1.3

The choice of a method for solving linear systems will often depend on the structure of

the matrix A. One of the most important properties of matrices is symmetry, because of

its impact on the eigenstructure of A. A number of other classes of matrices also have

particular eigenstructures. The most important ones are listed below:

� Symmetric matrices: AT = A.

� Hermitian matrices: AH = A.

� Skew-symmetric matrices: AT = �A.

� Skew-Hermitian matrices: AH = �A.

� Normal matrices: AHA = AAH .

� Nonnegative matrices: aij � 0; i; j = 1; : : : ; n (similar definition for nonpositive,

positive, and negative matrices).

� Unitary matrices: QHQ = I .

1.3 TYPES OF MATRICES 5

It is worth noting that a unitary matrixQ is a matrix whose inverse is its transpose conjugate

QH , since

QHQ = I ! Q�1 = QH : (1.1)

A matrix Q such that QHQ is diagonal is often called orthogonal.

Some matrices have particular structures that are often convenient for computational

purposes. The following list, though incomplete, gives an idea of these special matrices

which play an important role in numerical analysis and scientific computing applications.

� Diagonal matrices: aij = 0 for j 6= i. Notation:

A = diag (a11; a22; : : : ; ann) :

� Upper triangular matrices: aij = 0 for i > j.

� Lower triangular matrices: aij = 0 for i < j.

� Upper bidiagonal matrices: aij = 0 for j 6= i or j 6= i+ 1.

� Lower bidiagonal matrices: aij = 0 for j 6= i or j 6= i� 1.

� Tridiagonal matrices: aij = 0 for any pair i; j such that jj � ij > 1. Notation:

A = tridiag (ai;i�1; aii; ai;i+1) :

� Banded matrices: aij 6= 0 only if i�ml � j � i+mu, where ml and mu are two

nonnegative integers. The number ml +mu + 1 is called the bandwidth of A.

� Upper Hessenberg matrices: aij = 0 for any pair i; j such that i > j + 1. Lower

Hessenberg matrices can be defined similarly.

� Outer product matrices: A = uvH , where both u and v are vectors.

� Permutation matrices: the columns of A are a permutation of the columns of the

identity matrix.

� Block diagonal matrices: generalizes the diagonal matrix by replacing each diago-

nal entry by a matrix. Notation:

A = diag (A11; A22; : : : ; Ann) :

� Block tridiagonal matrices: generalizes the tridiagonal matrix by replacing each

nonzero entry by a square matrix. Notation:

A = tridiag (Ai;i�1; Aii; Ai;i+1) :

The above properties emphasize structure, i.e., positions of the nonzero elements with

respect to the zeros. Also, they assume that there are many zero elements or that the matrix

is of low rank. This is in contrast with the classifications listed earlier, such as symmetry

or normality.

6 CHAPTER 1 BACKGROUND IN LINEAR ALGEBRA

VECTOR INNER PRODUCTS AND NORMS

1.4

An inner product on a (complex) vector space X is any mapping s from X � X into C ,

x 2 X; y 2 X ! s(x; y) 2 C ;

which satisfies the following conditions:

1. s(x; y) is linear with respect to x, i.e.,

s(�1x1 + �2x2; y) = �1s(x1; y) + �2s(x2; y); 8 x1; x2 2 X;8 �1; �2 2 C :

2. s(x; y) is Hermitian, i.e.,

s(y; x) = s(x; y); 8 x; y 2 X:

3. s(x; y) is positive definite, i.e.,

s(x; x) > 0; 8 x 6= 0:

Note that (2) implies that s(x; x) is real and therefore, (3) adds the constraint that s(x; x)
must also be positive for any nonzero x. For any x and y,

s(x; 0) = s(x; 0:y) = 0:s(x; y) = 0:

Similarly, s(0; y) = 0 for any y. Hence, s(0; y) = s(x; 0) = 0 for any x and y. In particular

the condition (3) can be rewritten as

s(x; x) � 0 and s(x; x) = 0 iff x = 0;

as can be readily shown. A useful relation satisfied by any inner product is the so-called

Cauchy-Schwartz inequality:

js(x; y)j2 � s(x; x) s(y; y): (1.2)

The proof of this inequality begins by expanding s(x��y; x��y) using the properties of

s,

s(x � �y; x� �y) = s(x; x)� ��s(x; y)� �s(y; x) + j�j2s(y; y):

If y = 0 then the inequality is trivially satisfied. Assume that y 6= 0 and take � =
s(x; y)=s(y; y). Then s(x� �y; x� �y) � 0 shows the above equality

0 � s(x� �y; x� �y) = s(x; x) � 2
js(x; y)j2

s(y; y)
+
js(x; y)j2

s(y; y)

= s(x; x) �
js(x; y)j2

s(y; y)
;

which yields the result (1.2).

In the particular case of the vector space X = C
n

, a “canonical” inner product is the

Euclidean inner product. The Euclidean inner product of two vectors x = (xi)i=1;:::;n and

1.4 VECTOR INNER PRODUCTS AND NORMS 7

y = (yi)i=1;:::;n of C
n

is defined by

(x; y) =

nX
i=1

xi�yi; (1.3)

which is often rewritten in matrix notation as

(x; y) = yHx: (1.4)

It is easy to verify that this mapping does indeed satisfy the three conditions required for

inner products, listed above. A fundamental property of the Euclidean inner product in

matrix computations is the simple relation

(Ax; y) = (x;AHy); 8 x; y 2 C
n
: (1.5)

The proof of this is straightforward. The adjoint of A with respect to an arbitrary inner

product is a matrixB such that (Ax; y) = (x;By) for all pairs of vectors x and y. A matrix

is self-adjoint, or Hermitian with respect to this inner product, if it is equal to its adjoint.

The following proposition is a consequence of the equality (1.5).

PROPOSITION 1.3 Unitary matrices preserve the Euclidean inner product, i.e.,

(Qx;Qy) = (x; y)

for any unitary matrix Q and any vectors x and y.

Proof. Indeed, (Qx;Qy) = (x;QHQy) = (x; y).

A vector norm on a vector space X is a real-valued function x ! kxk on X, which

satisfies the following three conditions:

1. kxk � 0; 8 x 2 X; and kxk = 0 iff x = 0.

2. k�xk = j�jkxk; 8 x 2 X; 8� 2 C .

3. kx+ yk � kxk+ kyk; 8 x; y 2 X.

For the particular case when X = C
n

, we can associate with the inner product (1.3)

the Euclidean norm of a complex vector defined by

kxk2 = (x; x)1=2:

It follows from Proposition 1.3 that a unitary matrix preserves the Euclidean norm metric,

i.e.,

kQxk2 = kxk2; 8 x:

The linear transformation associated with a unitary matrix Q is therefore an isometry.

The most commonly used vector norms in numerical linear algebra are special cases

of the Hölder norms

kxkp =

nX

i=1

jxij
p

!1=p

: (1.6)

8 CHAPTER 1 BACKGROUND IN LINEAR ALGEBRA

Note that the limit of kxkp when p tends to infinity exists and is equal to the maximum

modulus of the xi’s. This defines a norm denoted by k:k1. The cases p = 1, p = 2, and

p =1 lead to the most important norms in practice,

kxk1 = jx1j+ jx2j+ � � �+ jxnj;

kxk2 =
�
jx1j

2 + jx2j
2 + � � �+ jxnj

2
�1=2

;

kxk1 = max
i=1;:::;n

jxij:

The Cauchy-Schwartz inequality of (1.2) becomes

j(x; y)j � kxk2kyk2:

MATRIX NORMS

1.5

For a general matrix A in C
n�m

, we define the following special set of norms

kAkpq = max
x2C

m
; x 6=0

kAxkp
kxkq

: (1.7)

The norm k:kpq is induced by the two norms k:kp and k:kq. These norms satisfy the usual

properties of norms, i.e.,

kAk � 0; 8 A 2 C
n�m

; and kAk = 0 iff A = 0

k�Ak = j�jkAk;8 A 2 C
n�m

; 8 � 2 C

kA+Bk � kAk+ kBk; 8 A;B 2 C
n�m

:

The most important cases are again those associated with p; q = 1; 2;1. The case

q = p is of particular interest and the associated norm k:kpq is simply denoted by k:kp and

called a “p-norm.” A fundamental property of a p-norm is that

kABkp � kAkpkBkp;

an immediate consequence of the definition (1.7). Matrix norms that satisfy the above

property are sometimes called consistent. A result of consistency is that for any square

matrix A,

kAkkp � kAkkp:

In particular the matrix Ak converges to zero if any of its p-norms is less than 1.

The Frobenius norm of a matrix is defined by

kAkF =

0
@ mX

j=1

nX
i=1

jaij j
2

1
A
1=2

: (1.8)

This can be viewed as the 2-norm of the column (or row) vector in C
n2

consisting of all the

columns (respectively rows) of A listed from 1 to m (respectively 1 to n.) It can be shown

1.6 SUBSPACES, RANGE, AND KERNEL 9

that this norm is also consistent, in spite of the fact that it is not induced by a pair of vector

norms, i.e., it is not derived from a formula of the form (1.7); see Exercise 5. However, it

does not satisfy some of the other properties of the p-norms. For example, the Frobenius

norm of the identity matrix is not equal to one. To avoid these difficulties, we will only use

the term matrix norm for a norm that is induced by two norms as in the definition (1.7).

Thus, we will not consider the Frobenius norm to be a proper matrix norm, according to

our conventions, even though it is consistent.

The following equalities satisfied by the matrix norms defined above lead to alternative

definitions that are often easier to work with:

kAk1 = max
j=1;:::;m

nX
i=1

jaij j; (1.9)

kAk1 = max
i=1;:::;n

mX
j=1

jaij j; (1.10)

kAk2 =
�
�(AHA)

�1=2
=
�
�(AAH)

�1=2
; (1.11)

kAkF =
�
tr(AHA)

�1=2
=
�
tr(AAH)

�1=2
: (1.12)

As will be shown later, the eigenvalues of AHA are nonnegative. Their square roots

are called singular values of A and are denoted by �i; i = 1; : : : ;m. Thus, the relation

(1.11) states that kAk2 is equal to �1, the largest singular value of A.

Example 1.1 From the relation (1.11), it is clear that the spectral radius �(A) is equal

to the 2-norm of a matrix when the matrix is Hermitian. However, it is not a matrix norm

in general. For example, the first property of norms is not satisfied, since for

A =

�
0 1
0 0

�
;

we have �(A) = 0 while A 6= 0. Also, the triangle inequality is not satisfied for the pair A,

and B = AT where A is defined above. Indeed,

�(A+B) = 1 while �(A) + �(B) = 0:

SUBSPACES, RANGE, AND KERNEL

1.6

A subspace of C
n

is a subset of C
n

that is also a complex vector space. The set of all

linear combinations of a set of vectors G = fa1; a2; : : : ; aqg of C
n

is a vector subspace

called the linear span of G,

spanfGg = span fa1; a2; : : : ; aqg

10 CHAPTER 1 BACKGROUND IN LINEAR ALGEBRA

=

(
z 2 C

n

���� z =
qX

i=1

�iai; f�igi=1;:::;q 2 C
q

)
:

If the ai’s are linearly independent, then each vector of spanfGg admits a unique expres-

sion as a linear combination of the ai’s. The set G is then called a basis of the subspace

spanfGg.

Given two vector subspaces S1 and S2, their sum S is a subspace defined as the set of

all vectors that are equal to the sum of a vector of S1 and a vector of S2. The intersection

of two subspaces is also a subspace. If the intersection of S1 and S2 is reduced to f0g, then

the sum of S1 and S2 is called their direct sum and is denoted by S = S1
L

S2. When S
is equal to C

n
, then every vector x of C

n
can be written in a unique way as the sum of

an element x1 of S1 and an element x2 of S2. The transformation P that maps x into x1
is a linear transformation that is idempotent, i.e., such that P 2 = P . It is called a projector

onto S1 along S2.

Two important subspaces that are associated with a matrix A of C
n�m

are its range,

defined by

Ran(A) = fAx j x 2 C
m
g; (1.13)

and its kernel or null space

Ker(A) = fx 2 C
m
j Ax = 0 g:

The range of A is clearly equal to the linear span of its columns. The rank of a matrix

is equal to the dimension of the range of A, i.e., to the number of linearly independent

columns. This column rank is equal to the row rank, the number of linearly independent

rows of A. A matrix in C
n�m

is of full rank when its rank is equal to the smallest of m
and n.

A subspace S is said to be invariant under a (square) matrix A whenever AS � S. In

particular for any eigenvalue � of A the subspace Ker(A � �I) is invariant under A. The

subspace Ker(A � �I) is called the eigenspace associated with � and consists of all the

eigenvectors of A associated with �, in addition to the zero-vector.

ORTHOGONAL VECTORS AND SUBSPACES

1.7

A set of vectors G = fa1; a2; : : : ; arg is said to be orthogonal if

(ai; aj) = 0 when i 6= j:

It is orthonormal if, in addition, every vector of G has a 2-norm equal to unity. A vector

that is orthogonal to all the vectors of a subspace S is said to be orthogonal to this sub-

space. The set of all the vectors that are orthogonal to S is a vector subspace called the

orthogonal complement of S and denoted by S?. The space C
n

is the direct sum of S and

its orthogonal complement. Thus, any vector x can be written in a unique fashion as the

sum of a vector in S and a vector in S?. The operator which maps x into its component in

the subspace S is the orthogonal projector onto S.

1.7 ORTHOGONAL VECTORS AND SUBSPACES 11

Every subspace admits an orthonormal basis which is obtained by taking any basis and

“orthonormalizing” it. The orthonormalization can be achieved by an algorithm known as

the Gram-Schmidt process which we now describe. Given a set of linearly independent

vectors fx1; x2; : : : ; xrg, first normalize the vector x1, which means divide it by its 2-

norm, to obtain the scaled vector q1 of norm unity. Then x2 is orthogonalized against the

vector q1 by subtracting from x2 a multiple of q1 to make the resulting vector orthogonal

to q1, i.e.,

x2 x2 � (x2; q1)q1:

The resulting vector is again normalized to yield the second vector q2. The i-th step of

the Gram-Schmidt process consists of orthogonalizing the vector xi against all previous

vectors qj .

ALGORITHM 1.1: Gram-Schmidt

1. Compute r11 := kx1k2. If r11 = 0 Stop, else compute q1 := x1=r11.

2. For j = 2; : : : ; r Do:

3. Compute rij := (xj ; qi) , for i = 1; 2; : : : ; j � 1

4. q̂ := xj �
j�1P
i=1

rijqi

5. rjj := kq̂k2 ,

6. If rjj = 0 then Stop, else qj := q̂=rjj
7. EndDo

It is easy to prove that the above algorithm will not break down, i.e., all r steps will

be completed if and only if the set of vectors x1; x2; : : : ; xr is linearly independent. From

lines 4 and 5, it is clear that at every step of the algorithm the following relation holds:

xj =

jX
i=1

rijqi:

If X = [x1; x2; : : : ; xr], Q = [q1; q2; : : : ; qr], and if R denotes the r � r upper triangular

matrix whose nonzero elements are the rij defined in the algorithm, then the above relation

can be written as

X = QR: (1.14)

This is called the QR decomposition of the n�r matrix X . From what was said above, the

QR decomposition of a matrix exists whenever the column vectors of X form a linearly

independent set of vectors.

The above algorithm is the standard Gram-Schmidt process. There are alternative for-

mulations of the algorithm which have better numerical properties. The best known of

these is the Modified Gram-Schmidt (MGS) algorithm.

ALGORITHM 1.2: Modi�ed Gram-Schmidt

1. Define r11 := kx1k2. If r11 = 0 Stop, else q1 := x1=r11.

2. For j = 2; : : : ; r Do:

12 CHAPTER 1 BACKGROUND IN LINEAR ALGEBRA

3. Define q̂ := xj
4. For i = 1; : : : ; j � 1, Do:

5. rij := (q̂; qi)
6. q̂ := q̂ � rijqi
7. EndDo

8. Compute rjj := kq̂k2,

9. If rjj = 0 then Stop, else qj := q̂=rjj
10. EndDo

Yet another alternative for orthogonalizing a sequence of vectors is the Householder

algorithm. This technique uses Householder reflectors, i.e., matrices of the form

P = I � 2wwT ; (1.15)

in which w is a vector of 2-norm unity. Geometrically, the vector Px represents a mirror

image of x with respect to the hyperplane spanfwg?.

To describe the Householder orthogonalization process, the problem can be formulated

as that of finding a QR factorization of a given n�mmatrixX . For any vector x, the vector

w for the Householder transformation (1.15) is selected in such a way that

Px = �e1;

where � is a scalar. Writing (I � 2wwT)x = �e1 yields

2wTx w = x� �e1: (1.16)

This shows that the desired w is a multiple of the vector x� �e1,

w = �
x� �e1

kx� �e1k2
:

For (1.16) to be satisfied, we must impose the condition

2(x� �e1)
Tx = kx� �e1k

2
2

which gives 2(kxk21 � ��1) = kxk22 � 2��1 + �2, where �1 � eT1 x is the first component

of the vector x. Therefore, it is necessary that

� = �kxk2:

In order to avoid that the resulting vector w be small, it is customary to take

� = �sign(�1)kxk2;

which yields

w =
x+ sign(�1)kxk2e1

kx+ sign(�1)kxk2e1k2
: (1.17)

Given an n�m matrix, its first column can be transformed to a multiple of the column

e1, by premultiplying it by a Householder matrix P1,

X1 � P1X; X1e1 = �e1:

Assume, inductively, that the matrix X has been transformed in k�1 successive steps into

1.7 ORTHOGONAL VECTORS AND SUBSPACES 13

the partially upper triangular form

Xk � Pk�1 : : : P1X1 =

0
BBBBBBBBBBBB@

x11 x12 x13 � � � � � � � � � x1m
x22 x23 � � � � � � � � � x2m

x33 � � � � � � � � � x3m
. . . � � � � � �

...

xkk � � �
...

xk+1;k � � � xk+1;m
...

...
...

xn;k � � � xn;m

1
CCCCCCCCCCCCA
:

This matrix is upper triangular up to column number k�1. To advance by one step, it must

be transformed into one which is upper triangular up the k-th column, leaving the previous

columns in the same form. To leave the first k � 1 columns unchanged, select a w vector

which has zeros in positions 1 through k � 1. So the next Householder reflector matrix is

defined as

Pk = I � 2wkw
T
k ; (1.18)

in which the vector wk is defined as

wk =
z

kzk2
; (1.19)

where the components of the vector z are given by

zi =

8<
:

0 if i < k
� + xii if i = k
xik if i > k

(1.20)

with

� = sign(xkk)�

nX
i=k

x2ik

!1=2
: (1.21)

We note in passing that the premultiplication of a matrix X by a Householder trans-

form requires only a rank-one update since,

(I � 2wwT)X = X � wvT where v = 2XTw:

Therefore, the Householder matrices need not, and should not, be explicitly formed. In

addition, the vectors w need not be explicitly scaled.

Assume now that m�1 Householder transforms have been applied to a certain matrix

14 CHAPTER 1 BACKGROUND IN LINEAR ALGEBRA

X of dimension n�m, to reduce it into the upper triangular form,

Xm � Pm�1Pm�2 : : : P1X =

0
BBBBBBBBBBB@

x11 x12 x13 � � � x1m
x22 x23 � � � x2m

x33 � � � x3m
. . .

...

xm;m

0
...
...

1
CCCCCCCCCCCA
: (1.22)

Recall that our initial goal was to obtain a QR factorization of X . We now wish to recover

the Q and R matrices from the Pk’s and the above matrix. If we denote by P the product

of the Pi on the left-side of (1.22), then (1.22) becomes

PX =

�
R
O

�
; (1.23)

in which R is an m �m upper triangular matrix, and O is an (n �m) �m zero block.

Since P is unitary, its inverse is equal to its transpose and, as a result,

X = P T

�
R
O

�
= P1P2 : : : Pm�1

�
R
O

�
:

If Em is the matrix of size n � m which consists of the first m columns of the identity

matrix, then the above equality translates into

X = P TEmR:

The matrix Q = P TEm represents the m first columns of P T . Since

QTQ = ET
mPP

TEm = I;

Q and R are the matrices sought. In summary,

X = QR;

in which R is the triangular matrix obtained from the Householder reduction of X (see

(1.22) and (1.23)) and

Qej = P1P2 : : : Pm�1ej :

ALGORITHM 1.3: Householder Orthogonalization

1. Define X = [x1; : : : ; xm]
2. For k = 1; : : : ;m Do:

3. If k > 1 compute rk := Pk�1Pk�2 : : : P1xk
4. Compute wk using (1.19), (1.20), (1.21)

5. Compute rk := Pkrk with Pk = I � 2wkw
T
k

6. Compute qk = P1P2 : : : Pkek
7. EndDo

1.8 CANONICAL FORMS OF MATRICES 15

Note that line 6 can be omitted since the qi are not needed in the execution of the

next steps. It must be executed only when the matrix Q is needed at the completion of

the algorithm. Also, the operation in line 5 consists only of zeroing the components k +
1; : : : ; n and updating the k-th component of rk . In practice, a work vector can be used for

rk and its nonzero components after this step can be saved into an upper triangular matrix.

Since the components 1 through k of the vector wk are zero, the upper triangular matrix R
can be saved in those zero locations which would otherwise be unused.

CANONICAL FORMS OF MATRICES

1.8

This section discusses the reduction of square matrices into matrices that have simpler

forms, such as diagonal, bidiagonal, or triangular. Reduction means a transformation that

preserves the eigenvalues of a matrix.

DEFINITION 1.2 Two matrices A and B are said to be similar if there is a nonsingular

matrix X such that

A = XBX�1:

The mapping B ! A is called a similarity transformation.

It is clear that similarity is an equivalence relation. Similarity transformations preserve

the eigenvalues of matrices. An eigenvector uB of B is transformed into the eigenvector

uA = XuB of A. In effect, a similarity transformation amounts to representing the matrix

B in a different basis.

We now introduce some terminology.

1. An eigenvalue � of A has algebraic multiplicity �, if it is a root of multiplicity �
of the characteristic polynomial.

2. If an eigenvalue is of algebraic multiplicity one, it is said to be simple. A nonsimple

eigenvalue is multiple.

3. The geometric multiplicity of an eigenvalue � of A is the maximum number of

independent eigenvectors associated with it. In other words, the geometric multi-

plicity is the dimension of the eigenspace Ker (A� �I).

4. A matrix is derogatory if the geometric multiplicity of at least one of its eigenvalues

is larger than one.

5. An eigenvalue is semisimple if its algebraic multiplicity is equal to its geometric

multiplicity. An eigenvalue that is not semisimple is called defective.

Often, �1; �2; : : : ; �p (p � n) are used to denote the distinct eigenvalues of A. It is

easy to show that the characteristic polynomials of two similar matrices are identical; see

Exercise 9. Therefore, the eigenvalues of two similar matrices are equal and so are their

algebraic multiplicities. Moreover, if v is an eigenvector of B, then Xv is an eigenvector

16 CHAPTER 1 BACKGROUND IN LINEAR ALGEBRA

of A and, conversely, if y is an eigenvector of A then X�1y is an eigenvector of B. As

a result the number of independent eigenvectors associated with a given eigenvalue is the

same for two similar matrices, i.e., their geometric multiplicity is also the same.

1.8.1 REDUCTION TO THE DIAGONAL FORM

The simplest form in which a matrix can be reduced is undoubtedly the diagonal form.

Unfortunately, this reduction is not always possible. A matrix that can be reduced to the

diagonal form is called diagonalizable. The following theorem characterizes such matrices.

THEOREM 1.1 A matrix of dimension n is diagonalizable if and only if it has n line-

arly independent eigenvectors.

Proof. A matrix A is diagonalizable if and only if there exists a nonsingular matrix X
and a diagonal matrix D such that A = XDX�1, or equivalentlyAX = XD, where D is

a diagonal matrix. This is equivalent to saying that n linearly independent vectors exist —

the n column-vectors of X — such that Axi = dixi. Each of these column-vectors is an

eigenvector of A.

A matrix that is diagonalizable has only semisimple eigenvalues. Conversely, if all the

eigenvalues of a matrix A are semisimple, then A has n eigenvectors. It can be easily

shown that these eigenvectors are linearly independent; see Exercise 2. As a result, we

have the following proposition.

PROPOSITION 1.4 A matrix is diagonalizable if and only if all its eigenvalues are

semisimple.

Since every simple eigenvalue is semisimple, an immediate corollary of the above result

is: When A has n distinct eigenvalues, then it is diagonalizable.

1.8.2 THE JORDAN CANONICAL FORM

From the theoretical viewpoint, one of the most important canonical forms of matrices is

the well known Jordan form. A full development of the steps leading to the Jordan form

is beyond the scope of this book. Only the main theorem is stated. Details, including the

proof, can be found in standard books of linear algebra such as [117]. In the following, m i

refers to the algebraic multiplicity of the individual eigenvalue �i and li is the index of the

eigenvalue, i.e., the smallest integer for which Ker(A� �iI)
li+1 = Ker(A� �iI)

li .

THEOREM 1.2 Any matrix A can be reduced to a block diagonal matrix consisting of

p diagonal blocks, each associated with a distinct eigenvalue �i. Each of these diagonal

blocks has itself a block diagonal structure consisting of i sub-blocks, where i is the

geometric multiplicity of the eigenvalue �i. Each of the sub-blocks, referred to as a Jordan

1.8 CANONICAL FORMS OF MATRICES 17

block, is an upper bidiagonal matrix of size not exceeding li � mi, with the constant �i
on the diagonal and the constant one on the super diagonal.

The i-th diagonal block, i = 1; : : : ; p, is known as the i-th Jordan submatrix (sometimes

“Jordan Box”). The Jordan submatrix number i starts in column ji � m1 +m2 + � � � +
mi�1 + 1. Thus,

X�1AX = J =

0
BBBBBBB@

J1
J2

. . .

Ji
. . .

Jp

1
CCCCCCCA
;

where each Ji is associated with �i and is of size mi the algebraic multiplicity of �i. It has

itself the following structure,

Ji =

0
BB@
Ji1

Ji2
. . .

Jii

1
CCA with Jik =

0
BB@
�i 1

. . .
. . .

�i 1
�i

1
CCA :

Each of the blocks Jik corresponds to a different eigenvector associated with the eigenvalue

�i. Its size li is the index of �i.

1.8.3 THE SCHUR CANONICAL FORM

Here, it will be shown that any matrix is unitarily similar to an upper triangular matrix. The

only result needed to prove the following theorem is that any vector of 2-norm one can be

completed by n� 1 additional vectors to form an orthonormal basis of C
n

.

THEOREM 1.3 For any square matrix A, there exists a unitary matrix Q such that

QHAQ = R

is upper triangular.

Proof. The proof is by induction over the dimension n. The result is trivial for n = 1.

Assume that it is true for n � 1 and consider any matrix A of size n. The matrix admits

at least one eigenvector u that is associated with an eigenvalue �. Also assume without

loss of generality that kuk2 = 1. First, complete the vector u into an orthonormal set, i.e.,

find an n � (n � 1) matrix V such that the n � n matrix U = [u; V] is unitary. Then

AU = [�u;AV] and hence,

UHAU =

�
uH

V H

�
[�u;AV] =

�
� uHAV
0 V HAV

�
: (1.24)

Now use the induction hypothesis for the (n � 1) � (n � 1) matrix B = V HAV : There

exists an (n� 1)� (n� 1) unitary matrix Q1 such that QH
1 BQ1 = R1 is upper triangular.

18 CHAPTER 1 BACKGROUND IN LINEAR ALGEBRA

Define the n� n matrix

Q̂1 =

�
1 0
0 Q1

�

and multiply both members of (1.24) by Q̂H
1 from the left and Q̂1 from the right. The

resulting matrix is clearly upper triangular and this shows that the result is true for A, with

Q = Q̂1U which is a unitary n� n matrix.

A simpler proof that uses the Jordan canonical form and the QR decomposition is the sub-

ject of Exercise 7. Since the matrix R is triangular and similar to A, its diagonal elements

are equal to the eigenvalues of A ordered in a certain manner. In fact, it is easy to extend

the proof of the theorem to show that this factorization can be obtained with any order for

the eigenvalues. Despite its simplicity, the above theorem has far-reaching consequences,

some of which will be examined in the next section.

It is important to note that for any k � n, the subspace spanned by the first k columns

of Q is invariant under A. Indeed, the relation AQ = QR implies that for 1 � j � k, we

have

Aqj =

i=jX
i=1

rijqi:

If we let Qk = [q1; q2; : : : ; qk] and if Rk is the principal leading submatrix of dimension k
of R, the above relation can be rewritten as

AQk = QkRk;

which is known as the partial Schur decomposition of A. The simplest case of this decom-

position is when k = 1, in which case q1 is an eigenvector. The vectors qi are usually called

Schur vectors. Schur vectors are not unique and depend, in particular, on the order chosen

for the eigenvalues.

A slight variation on the Schur canonical form is the quasi-Schur form, also called the

real Schur form. Here, diagonal blocks of size 2 � 2 are allowed in the upper triangular

matrix R. The reason for this is to avoid complex arithmetic when the original matrix is

real. A 2 � 2 block is associated with each complex conjugate pair of eigenvalues of the

matrix.

Example 1.2 Consider the 3� 3 matrix

A =

0
@ 1 10 0
�1 3 1
�1 0 1

1
A :

The matrix A has the pair of complex conjugate eigenvalues

2:4069 : : :� i� 3:2110 : : :

1.8 CANONICAL FORMS OF MATRICES 19

and the real eigenvalue 0:1863 : : :. The standard (complex) Schur form is given by the pair

of matrices

V =

0
@ 0:3381� 0:8462i 0:3572� 0:1071i 0:1749

0:3193� 0:0105i �0:2263� 0:6786i �0:6214
0:1824 + 0:1852i �0:2659� 0:5277i 0:7637

1
A

and

S =

0
@ 2:4069+ 3:2110i 4:6073� 4:7030i �2:3418� 5:2330i

0 2:4069� 3:2110i �2:0251� 1:2016i
0 0 0:1863

1
A :

It is possible to avoid complex arithmetic by using the quasi-Schur form which consists of

the pair of matrices

U =

0
@ �0:9768 0:1236 0:1749

�0:0121 0:7834 �0:6214
0:2138 0:6091 0:7637

1
A

and

R =

0
@ 1:3129 �7:7033 6:0407

1:4938 3:5008 �1:3870
0 0 0:1863

1
A :

We conclude this section by pointing out that the Schur and the quasi-Schur forms

of a given matrix are in no way unique. In addition to the dependence on the ordering

of the eigenvalues, any column of Q can be multiplied by a complex sign ei� and a new

corresponding R can be found. For the quasi-Schur form, there are infinitely many ways

to select the 2� 2 blocks, corresponding to applying arbitrary rotations to the columns of

Q associated with these blocks.

1.8.4 APPLICATION TO POWERS OF MATRICES

The analysis of many numerical techniques is based on understanding the behavior of the

successive powers Ak of a given matrix A. In this regard, the following theorem plays a

fundamental role in numerical linear algebra, more particularly in the analysis of iterative

methods.

THEOREM 1.4 The sequence Ak, k = 0; 1; : : : ; converges to zero if and only if

�(A) < 1.

Proof. To prove the necessary condition, assume that Ak ! 0 and consider u1 a unit

eigenvector associated with an eigenvalue �1 of maximum modulus. We have

Aku1 = �k1u1;

which implies, by taking the 2-norms of both sides,

j�k1 j = kAku1k2 ! 0:

20 CHAPTER 1 BACKGROUND IN LINEAR ALGEBRA

This shows that �(A) = j�1j < 1.

The Jordan canonical form must be used to show the sufficient condition. Assume that

�(A) < 1. Start with the equality

Ak = XJkX�1:

To prove that Ak converges to zero, it is sufficient to show that Jk converges to zero. An

important observation is that Jk preserves its block form. Therefore, it is sufficient to prove

that each of the Jordan blocks converges to zero. Each block is of the form

Ji = �iI +Ei

where Ei is a nilpotent matrix of index li, i.e., El1
i = 0. Therefore, for k � li,

Jk
i =

l1�1X
j=0

k!

j!(k � j)!
�k�j
i Ej

i :

Using the triangle inequality for any norm and taking k � li yields

kJk
i k �

l1�1X
j=0

k!

j!(k � j)!
j�ij

k�jkEj
i k:

Since j�ij < 1, each of the terms in this finite sum converges to zero as k !1. Therefore,

the matrix Jk
i converges to zero.

An equally important result is stated in the following theorem.

THEOREM 1.5 The series
1X

k=0

Ak

converges if and only if �(A) < 1. Under this condition, I�A is nonsingular and the limit

of the series is equal to (I �A)�1.

Proof. The first part of the theorem is an immediate consequence of Theorem 1.4. In-

deed, if the series converges, then kAkk ! 0. By the previous theorem, this implies that

�(A) < 1. To show that the converse is also true, use the equality

I �Ak+1 = (I �A)(I +A+A2 + : : :+Ak)

and exploit the fact that since �(A) < 1, then I �A is nonsingular, and therefore,

(I �A)�1(I �Ak+1) = I +A+A2 + : : :+Ak :

This shows that the series converges since the left-hand side will converge to (I � A)�1.

In addition, it also shows the second part of the theorem.

Another important consequence of the Jordan canonical form is a result that relates

the spectral radius of a matrix to its matrix norm.

1.9 NORMAL AND HERMITIAN MATRICES 21

THEOREM 1.6 For any matrix norm k:k, we have

lim
k!1

kAkk1=k = �(A):

Proof. The proof is a direct application of the Jordan canonical form and is the subject

of Exercise 10.

NORMAL AND HERMITIAN MATRICES

1.9

This section examines specific properties of normal matrices and Hermitian matrices, in-

cluding some optimality properties related to their spectra. The most common normal ma-

trices that arise in practice are Hermitian or skew-Hermitian.

1.9.1 NORMAL MATRICES

By definition, a matrix is said to be normal if it commutes with its transpose conjugate,

i.e., if it satisfies the relation

AHA = AAH : (1.25)

An immediate property of normal matrices is stated in the following lemma.

LEMMA 1.1 If a normal matrix is triangular, then it is a diagonal matrix.

Proof. Assume, for example, that A is upper triangular and normal. Compare the first

diagonal element of the left-hand side matrix of (1.25) with the corresponding element of

the matrix on the right-hand side. We obtain that

ja11j
2 =

nX
j=1

ja1j j
2;

which shows that the elements of the first row are zeros except for the diagonal one. The

same argument can now be used for the second row, the third row, and so on to the last row,

to show that aij = 0 for i 6= j.

A consequence of this lemma is the following important result.

THEOREM 1.7 A matrix is normal if and only if it is unitarily similar to a diagonal

matrix.

Proof. It is straightforward to verify that a matrix which is unitarily similar to a diagonal

matrix is normal. We now prove that any normal matrix A is unitarily similar to a diagonal

22 CHAPTER 1 BACKGROUND IN LINEAR ALGEBRA

matrix. Let A = QRQH be the Schur canonical form of A where Q is unitary and R is

upper triangular. By the normality of A,

QRHQHQRQH = QRQHQRHQH

or,

QRHRQH = QRRHQH :

Upon multiplication byQH on the left andQ on the right, this leads to the equalityRHR =
RRH which means that R is normal, and according to the previous lemma this is only

possible if R is diagonal.

Thus, any normal matrix is diagonalizable and admits an orthonormal basis of eigenvectors,

namely, the column vectors of Q.

The following result will be used in a later chapter. The question that is asked is:

Assuming that any eigenvector of a matrix A is also an eigenvector of AH , is A normal?

If A had a full set of eigenvectors, then the result is true and easy to prove. Indeed, if V
is the n � n matrix of common eigenvectors, then AV = V D1 and AHV = V D2, with

D1 and D2 diagonal. Then, AAHV = V D1D2 and AHAV = V D2D1 and, therefore,

AAH = AHA. It turns out that the result is true in general, i.e., independently of the

number of eigenvectors that A admits.

LEMMA 1.2 A matrix A is normal if and only if each of its eigenvectors is also an

eigenvector of AH .

Proof. If A is normal, then its left and right eigenvectors are identical, so the sufficient

condition is trivial. Assume now that a matrix A is such that each of its eigenvectors vi, i =
1; : : : ; k, with k � n is an eigenvector of AH . For each eigenvector vi of A, Avi = �ivi,
and since vi is also an eigenvector of AH , then AHvi = �vi. Observe that (AHvi; vi) =
�(vi; vi) and because (AHvi; vi) = (vi; Avi) = ��i(vi; vi), it follows that � = ��i. Next, it

is proved by contradiction that there are no elementary divisors. Assume that the contrary

is true for �i. Then, the first principal vector ui associated with �i is defined by

(A� �iI)ui = vi:

Taking the inner product of the above relation with vi, we obtain

(Aui; vi) = �i(ui; vi) + (vi; vi): (1.26)

On the other hand, it is also true that

(Aui; vi) = (ui; A
Hvi) = (ui; ��ivi) = �i(ui; vi): (1.27)

A result of (1.26) and (1.27) is that (vi; vi) = 0 which is a contradiction. Therefore, A has

a full set of eigenvectors. This leads to the situation discussed just before the lemma, from

which it is concluded that A must be normal.

Clearly, Hermitian matrices are a particular case of normal matrices. Since a normal

matrix satisfies the relation A = QDQH , with D diagonal and Q unitary, the eigenvalues

of A are the diagonal entries of D. Therefore, if these entries are real it is clear that AH =
A. This is restated in the following corollary.

1.9 NORMAL AND HERMITIAN MATRICES 23

COROLLARY 1.1 A normal matrix whose eigenvalues are real is Hermitian.

As will be seen shortly, the converse is also true, i.e., a Hermitian matrix has real eigenval-

ues.

An eigenvalue � of any matrix satisfies the relation

� =
(Au; u)

(u; u)
;

where u is an associated eigenvector. Generally, one might consider the complex scalars

�(x) =
(Ax; x)

(x; x)
; (1.28)

defined for any nonzero vector in C
n

. These ratios are known as Rayleigh quotients and

are important both for theoretical and practical purposes. The set of all possible Rayleigh

quotients as x runs over C
n

is called the field of values of A. This set is clearly bounded

since each j�(x)j is bounded by the the 2-norm of A, i.e., j�(x)j � kAk2 for all x.

If a matrix is normal, then any vector x in C
n

can be expressed as

nX
i=1

�iqi;

where the vectors qi form an orthogonal basis of eigenvectors, and the expression for �(x)
becomes

�(x) =
(Ax; x)

(x; x)
=

Pn
k=1 �kj�k j

2Pn
k=1 j�kj

2
�

nX
k=1

�k�k; (1.29)

where

0 � �i =
j�ij2Pn
k=1 j�k j

2
� 1; and

nX
i=1

�i = 1:

From a well known characterization of convex hulls established by Hausdorff (Hausdorff’s

convex hull theorem), this means that the set of all possible Rayleigh quotients as x runs

over all of C
n

is equal to the convex hull of the �i’s. This leads to the following theorem

which is stated without proof.

THEOREM 1.8 The field of values of a normal matrix is equal to the convex hull of its

spectrum.

The next question is whether or not this is also true for nonnormal matrices and the

answer is no: The convex hull of the eigenvalues and the field of values of a nonnormal

matrix are different in general. As a generic example, one can take any nonsymmetric real

matrix which has real eigenvalues only. In this case, the convex hull of the spectrum is

a real interval but its field of values will contain imaginary values. See Exercise 12 for

another example. It has been shown (Hausdorff) that the field of values of a matrix is a

convex set. Since the eigenvalues are members of the field of values, their convex hull is

contained in the field of values. This is summarized in the following proposition.

24 CHAPTER 1 BACKGROUND IN LINEAR ALGEBRA

PROPOSITION 1.5 The field of values of an arbitrary matrix is a convex set which

contains the convex hull of its spectrum. It is equal to the convex hull of the spectrum

when the matrix is normal.

1.9.2 HERMITIAN MATRICES

A first result on Hermitian matrices is the following.

THEOREM 1.9 The eigenvalues of a Hermitian matrix are real, i.e., �(A) � R.

Proof. Let � be an eigenvalue of A and u an associated eigenvector or 2-norm unity.

Then

� = (Au; u) = (u;Au) = (Au; u) = �;

which is the stated result.

It is not difficult to see that if, in addition, the matrix is real, then the eigenvectors can be

chosen to be real; see Exercise 21. Since a Hermitian matrix is normal, the following is a

consequence of Theorem 1.7.

THEOREM 1.10 Any Hermitian matrix is unitarily similar to a real diagonal matrix.

In particular a Hermitian matrix admits a set of orthonormal eigenvectors that form a basis

of C
n

.

In the proof of Theorem 1.8 we used the fact that the inner products (Au; u) are real.

Generally, it is clear that any Hermitian matrix is such that (Ax; x) is real for any vector

x 2 C
n

. It turns out that the converse is also true, i.e., it can be shown that if (Az; z) is

real for all vectors z in C
n

, then the matrix A is Hermitian; see Exercise 15.

Eigenvalues of Hermitian matrices can be characterized by optimality properties of

the Rayleigh quotients (1.28). The best known of these is the min-max principle. We now

label all the eigenvalues of A in descending order:

�1 � �2 � � � � � �n:

Here, the eigenvalues are not necessarily distinct and they are repeated, each according to

its multiplicity. In the following theorem, known as the Min-Max Theorem, S represents a

generic subspace of C
n

.

THEOREM 1.11 The eigenvalues of a Hermitian matrix A are characterized by the

relation

�k = min
S; dim (S)=n�k+1

max
x2S;x6=0

(Ax; x)

(x; x)
: (1.30)

1.9 NORMAL AND HERMITIAN MATRICES 25

Proof. Let fqigi=1;:::;n be an orthonormal basis of C
n

consisting of eigenvectors of A
associated with �1; : : : ; �n respectively. Let Sk be the subspace spanned by the first k of

these vectors and denote by �(S) the maximum of (Ax; x)=(x; x) over all nonzero vectors

of a subspace S. Since the dimension of Sk is k, a well known theorem of linear algebra

shows that its intersection with any subspace S of dimension n � k + 1 is not reduced to

f0g, i.e., there is vector x in S
T
Sk. For this x =

Pk
i=1 �iqi, we have

(Ax; x)

(x; x)
=

Pk
i=1 �ij�ij

2Pk
i=1 j�ij

2
� �k

so that �(S) � �k.

Consider, on the other hand, the particular subspace S0 of dimension n� k+1 which

is spanned by qk; : : : ; qn. For each vector x in this subspace, we have

(Ax; x)

(x; x)
=

Pn
i=k �ij�ij

2Pn
i=k j�ij

2
� �k

so that �(S0) � �k. In other words, as S runs over all the (n � k + 1)-dimensional

subspaces, �(S) is always � �k and there is at least one subspace S0 for which �(S0) �
�k. This shows the desired result.

The above result is often called the Courant-Fisher min-max principle or theorem. As a

particular case, the largest eigenvalue of A satisfies

�1 = max
x 6=0

(Ax; x)

(x; x)
: (1.31)

Actually, there are four different ways of rewriting the above characterization. The

second formulation is

�k = max
S; dim (S)=k

min
x2S;x 6=0

(Ax; x)

(x; x)
(1.32)

and the two other ones can be obtained from (1.30) and (1.32) by simply relabeling the

eigenvalues increasingly instead of decreasingly. Thus, with our labeling of the eigenvalues

in descending order, (1.32) tells us that the smallest eigenvalue satisfies

�n = min
x 6=0

(Ax; x)

(x; x)
; (1.33)

with �n replaced by �1 if the eigenvalues are relabeled increasingly.

In order for all the eigenvalues of a Hermitian matrix to be positive, it is necessary and

sufficient that

(Ax; x) > 0; 8 x 2 C
n
; x 6= 0:

Such a matrix is called positive definite. A matrix which satisfies (Ax; x) � 0 for any x is

said to be positive semidefinite. In particular, the matrix AHA is semipositive definite for

any rectangular matrix, since

(AHAx; x) = (Ax;Ax) � 0; 8 x:

Similarly, AAH is also a Hermitian semipositive definite matrix. The square roots of the

eigenvalues of AHA for a general rectangular matrix A are called the singular values of

26 CHAPTER 1 BACKGROUND IN LINEAR ALGEBRA

A and are denoted by �i. In Section 1.5, we have stated without proof that the 2-norm of

any matrix A is equal to the largest singular value �1 of A. This is now an obvious fact,

because

kAk22 = max
x6=0

kAxk22
kxk22

= max
x 6=0

(Ax;Ax)

(x; x)
= max

x 6=0

(AHAx; x)

(x; x)
= �21

which results from (1.31).

Another characterization of eigenvalues, known as the Courant characterization, is

stated in the next theorem. In contrast with the min-max theorem, this property is recursive

in nature.

THEOREM 1.12 The eigenvalue �i and the corresponding eigenvector qi of a Hermi-

tian matrix are such that

�1 =
(Aq1; q1)

(q1; q1)
= max

x2C
n
;x 6=0

(Ax; x)

(x; x)

and for k > 1,

�k =
(Aqk ; qk)

(qk ; qk)
= max

x 6=0;qH
1
x=:::=qH

k�1
x=0

(Ax; x)

(x; x)
: (1.34)

In other words, the maximum of the Rayleigh quotient over a subspace that is orthog-

onal to the first k � 1 eigenvectors is equal to �k and is achieved for the eigenvector qk
associated with �k. The proof follows easily from the expansion (1.29) of the Rayleigh

quotient.

NONNEGATIVE MATRICES, M-MATRICES

1.10

Nonnegative matrices play a crucial role in the theory of matrices. They are important in

the study of convergence of iterative methods and arise in many applications including

economics, queuing theory, and chemical engineering.

A nonnegative matrix is simply a matrix whose entries are nonnegative. More gener-

ally, a partial order relation can be defined on the set of matrices.

DEFINITION 1.3 Let A and B be two n�m matrices. Then

A � B

if by definition, aij � bij for 1 � i � n, 1 � j � m. If O denotes the n�m zero matrix,

then A is nonnegative if A � O, and positive if A > O. Similar definitions hold in which

“positive” is replaced by “negative”.

The binary relation “�” imposes only a partial order on R
n�m

since two arbitrary matrices

in R
n�m

are not necessarily comparable by this relation. For the remainder of this section,

1.10 NONNEGATIVE MATRICES, M-MATRICES 27

we now assume that only square matrices are involved. The next proposition lists a number

of rather trivial properties regarding the partial order relation just defined.

PROPOSITION 1.6 The following properties hold.

1. The relation � for matrices is reflexive (A � A), antisymmetric (if A � B and

B � A, then A = B), and transitive (if A � B and B � C, then A � C).

2. If A and B are nonnegative, then so is their product AB and their sum A+B.

3. If A is nonnegative, then so is Ak.

4. If A � B, then AT � BT .

5. If O � A � B, then kAk1 � kBk1 and similarly kAk1 � kBk1.

The proof of these properties is left as Exercise 23.

A matrix is said to be reducible if there is a permutation matrix P such that PAP T

is block upper triangular. Otherwise, it is irreducible. An important result concerning non-

negative matrices is the following theorem known as the Perron-Frobenius theorem.

THEOREM 1.13 Let A be a real n�n nonnegative irreducible matrix. Then � � �(A),
the spectral radius of A, is a simple eigenvalue of A. Moreover, there exists an eigenvector

u with positive elements associated with this eigenvalue.

A relaxed version of this theorem allows the matrix to be reducible but the conclusion is

somewhat weakened in the sense that the elements of the eigenvectors are only guaranteed

to be nonnegative.

Next, a useful property is established.

PROPOSITION 1.7 Let A;B;C be nonnegative matrices, with A � B. Then

AC � BC and CA � CB:

Proof. Consider the first inequality only, since the proof for the second is identical. The

result that is claimed translates into
nX

k=1

aikckj �
nX

k=1

bikckj ; 1 � i; j � n;

which is clearly true by the assumptions.

A consequence of the proposition is the following corollary.

COROLLARY 1.2 Let A and B be two nonnegative matrices, with A � B. Then

Ak � Bk; 8 k � 0: (1.35)

Proof. The proof is by induction. The inequality is clearly true for k = 0. Assume that

(1.35) is true for k. According to the previous proposition, multiplying (1.35) from the left

by A results in

Ak+1 � ABk: (1.36)

28 CHAPTER 1 BACKGROUND IN LINEAR ALGEBRA

Now, it is clear that if B � 0, then also Bk � 0, by Proposition 1.6. We now multiply both

sides of the inequalityA � B by Bk to the right, and obtain

ABk � Bk+1: (1.37)

The inequalities (1.36) and (1.37) show thatAk+1 � Bk+1, which completes the induction

proof.

A theorem which has important consequences on the analysis of iterative methods will

now be stated.

THEOREM 1.14 Let A and B be two square matrices that satisfy the inequalities

O � A � B: (1.38)

Then

�(A) � �(B): (1.39)

Proof. The proof is based on the following equality stated in Theorem 1.6

�(X) = lim
k!1

kXkk1=k

for any matrix norm. Choosing the 1�norm, for example, we have from the last property

in Proposition 1.6

�(A) = lim
k!1

kAkk
1=k
1 � lim

k!1
kBkk

1=k
1 = �(B)

which completes the proof.

THEOREM 1.15 Let B be a nonnegative matrix. Then �(B) < 1 if and only if I �B
is nonsingular and (I �B)�1 is nonnegative.

Proof. Define C = I � B. If it is assumed that �(B) < 1, then by Theorem 1.5,

C = I �B is nonsingular and

C�1 = (I �B)
�1

=

1X
i=0

Bi: (1.40)

In addition, since B � 0, all the powers of B as well as their sum in (1.40) are also

nonnegative.

To prove the sufficient condition, assume that C is nonsingular and that its inverse

is nonnegative. By the Perron-Frobenius theorem, there is a nonnegative eigenvector u
associated with �(B), which is an eigenvalue, i.e.,

Bu = �(B)u

or, equivalently,

C�1u =
1

1� �(B)
u:

Since u and C�1 are nonnegative, and I�B is nonsingular, this shows that 1��(B) > 0,

which is the desired result.

1.10 NONNEGATIVE MATRICES, M-MATRICES 29

DEFINITION 1.4 A matrix is said to be an M -matrix if it satisfies the following four

properties:

1. ai;i > 0 for i = 1; : : : ; n.

2. ai;j � 0 for i 6= j; i; j = 1; : : : ; n.

3. A is nonsingular.

4. A�1 � 0.

In reality, the four conditions in the above definition are somewhat redundant and

equivalent conditions that are more rigorous will be given later. Let A be any matrix which

satisfies properties (1) and (2) in the above definition and let D be the diagonal of A. Since

D > 0,

A = D � (D �A) = D
�
I � (I �D�1A)

�
:

Now define

B � I �D�1A:

Using the previous theorem, I �B = D�1A is nonsingular and (I �B)�1 = A�1D � 0
if and only if �(B) < 1. It is now easy to see that conditions (3) and (4) of Definition 1.4

can be replaced by the condition �(B) < 1.

THEOREM 1.16 Let a matrix A be given such that

1. ai;i > 0 for i = 1; : : : ; n.

2. ai;j � 0 for i 6= j; i; j = 1; : : : ; n.

Then A is an M -matrix if and only if

3. �(B) < 1, where B = I �D�1A.

Proof. From the above argument, an immediate application of Theorem 1.15 shows that

properties (3) and (4) of the above definition are equivalent to �(B) < 1, whereB = I�C
and C = D�1A. In addition, C is nonsingular iff A is and C�1 is nonnegative iff A is.

The next theorem shows that the condition (1) in Definition 1.4 is implied by the other

three.

THEOREM 1.17 Let a matrix A be given such that

1. ai;j � 0 for i 6= j; i; j = 1; : : : ; n.

2. A is nonsingular.

3. A�1 � 0.

Then

4. ai;i > 0 for i = 1; : : : ; n, i.e., A is an M -matrix.

5. �(B) < 1 where B = I �D�1A.

30 CHAPTER 1 BACKGROUND IN LINEAR ALGEBRA

Proof. Define C � A�1. Writing that (AC)ii = 1 yields

nX
k=1

aikcki = 1

which gives

aiicii = 1�
nX

k=1

k 6=i

aikcki:

Since aikcki � 0 for all k, the right-hand side is � 1 and since cii � 0, then aii > 0.

The second part of the result now follows immediately from an application of the previous

theorem.

Finally, this useful result follows.

THEOREM 1.18 Let A;B be two matrices which satisfy

1. A � B.

2. bij � 0 for all i 6= j.

Then if A is an M -matrix, so is the matrix B.

Proof. Assume that A is an M -matrix and let DX denote the diagonal of a matrix X .

The matrix DB is positive because

DB � DA > 0:

Consider now the matrix I �D�1B B. Since A � B, then

DA �A � DB �B � O

which, upon multiplying through by D�1A , yields

I �D�1A A � D�1A (DB �B) � D�1B (DB �B) = I �D�1B B � O:

Since the matrices I � D�1B B and I � D�1A A are nonnegative, Theorems 1.14 and 1.16

imply that

�(I �D�1B B) � �(I �D�1A A) < 1:

This establishes the result by using Theorem 1.16 once again.

POSITIVE-DEFINITE MATRICES

1.11

A real matrix is said to be positive definite or positive real if

(Au; u) > 0; 8 u 2 R
n
; u 6= 0: (1.41)

1.11 POSITIVE-DEFINITE MATRICES 31

It must be emphasized that this definition is only useful when formulated entirely for real

variables. Indeed, if u were not restricted to be real, then assuming that (Au; u) is real

for all u complex would imply that A is Hermitian; see Exercise 15. If, in addition to

Definition 1.41, A is symmetric (real), then A is said to be Symmetric Positive Definite

(SPD). Similarly, ifA is Hermitian, thenA is said to be Hermitian Positive Definite (HPD).

Some properties of HPD matrices were seen in Section 1.9, in particular with regards

to their eigenvalues. Now the more general case where A is non-Hermitian and positive

definite is considered.

We begin with the observation that any square matrix (real or complex) can be decom-

posed as

A = H + iS; (1.42)

in which

H =
1

2
(A+AH) (1.43)

S =
1

2i
(A�AH): (1.44)

Note that both H and S are Hermitian while the matrix iS in the decomposition (1.42)

is skew-Hermitian. The matrix H in the decomposition is called the Hermitian part of

A, while the matrix iS is the skew-Hermitian part of A. The above decomposition is the

analogue of the decomposition of a complex number z into z = x+ iy,

x = <e(z) =
1

2
(z + �z); y = =m(z) =

1

2i
(z � �z):

When A is real and u is a real vector then (Au; u) is real and, as a result, the decom-

position (1.42) immediately gives the equality

(Au; u) = (Hu; u): (1.45)

This results in the following theorem.

THEOREM 1.19 Let A be a real positive definite matrix. Then A is nonsingular. In

addition, there exists a scalar � > 0 such that

(Au; u) � �kuk22; (1.46)

for any real vector u.

Proof. The first statement is an immediate consequence of the definition of positive defi-

niteness. Indeed, ifAwere singular, then there would be a nonzero vector such thatAu = 0
and as a result (Au; u) = 0 for this vector, which would contradict (1.41). We now prove

the second part of the theorem. From (1.45) and the fact that A is positive definite, we

conclude that H is HPD. Hence, from (1.33) based on the min-max theorem, we get

min
u 6=0

(Au; u)

(u; u)
= min

u 6=0

(Hu; u)

(u; u)
� �min(H) > 0:

Taking � � �min(H) yields the desired inequality (1.46).

A simple yet important result which locates the eigenvalues ofA in terms of the spectra

32 CHAPTER 1 BACKGROUND IN LINEAR ALGEBRA

of H and S can now be proved.

THEOREM 1.20 Let A be any square (possibly complex) matrix and let H = 1
2 (A +

AH) and S = 1
2i (A�AH). Then any eigenvalue �j of A is such that

�min(H) � <e(�j) � �max(H) (1.47)

�min(S) � =m(�j) � �max(S): (1.48)

Proof. When the decomposition (1.42) is applied to the Rayleigh quotient of the eigen-

vector uj associated with �j , we obtain

�j = (Auj ; uj) = (Huj ; uj) + i(Suj ; uj); (1.49)

assuming that kujk2 = 1. This leads to

<e(�j) = (Huj ; uj)

=m(�j) = (Suj ; uj):

The result follows using properties established in Section 1.9.

Thus, the eigenvalues of a matrix are contained in a rectangle defined by the eigenval-

ues of its Hermitian part and its non-Hermitian part. In the particular case where A is real,

then iS is skew-Hermitian and its eigenvalues form a set that is symmetric with respect to

the real axis in the complex plane. Indeed, in this case, iS is real and its eigenvalues come

in conjugate pairs.

Note that all the arguments herein are based on the field of values and, therefore,

they provide ways to localize the eigenvalues of A from knowledge of the field of values.

However, this approximation can be inaccurate in some cases.

Example 1.3 Consider the matrix

A =

�
1 1
104 1

�
:

The eigenvalues of A are �99 and 101. Those of H are 1 � (104 + 1)=2 and those of iS
are �i(104 � 1)=2.

When a matrix B is Symmetric Positive Definite, the mapping

x; y ! (x; y)B � (Bx; y) (1.50)

from C
n
� C

n
to C is a proper inner product on C

n
, in the sense defined in Section 1.4.

The associated norm is often referred to as the energy norm. Sometimes, it is possible to

find an appropriate HPD matrixB which makes a given matrix A Hermitian, i.e., such that

(Ax; y)B = (x;Ay)B ; 8 x; y

although A is a non-Hermitian matrix with respect to the Euclidean inner product. The

simplest examples areA = B�1C andA = CB, whereC is Hermitian andB is Hermitian

Positive Definite.

1.12 PROJECTION OPERATORS 33

PROJECTION OPERATORS

1.12

Projection operators or projectors play an important role in numerical linear algebra, par-

ticularly in iterative methods for solving various matrix problems. This section introduces

these operators from a purely algebraic point of view and gives a few of their important

properties.

1.12.1 RANGE AND NULL SPACE OF A PROJECTOR

A projector P is any linear mapping from C
n

to itself which is idempotent, i.e., such that

P 2 = P:

A few simple properties follow from this definition. First, if P is a projector, then so is

(I � P), and the following relation holds,

Ker(P) = Ran(I � P):

In addition, the two subspaces Ker(P) and Ran(P) intersect only at the element zero.

Indeed, if a vector x belongs to Ran(P), then Px = x, by the idempotence property. If it

is also in Ker(P), then Px = 0. Hence, x = Px = 0 which proves the result. Moreover,

every element of C
n

can be written as x = Px+ (I � P)x. Therefore, the space C
n

can

be decomposed as the direct sum

C
n
= Ker(P) � Ran(P):

Conversely, every pair of subspaces M and S which forms a direct sum of C
n

defines a

unique projector such that Ran(P) = M and Ker(P) = S. This associated projector P
maps an element x of C

n
into the component x1, where x1 is the M -component in the

unique decomposition x = x1 + x2 associated with the direct sum.

In fact, this association is unique, that is, an arbitrary projector P can be entirely

determined by the given of two subspaces: (1) The range M of P , and (2) its null space S
which is also the range of I � P . For any x, the vector Px satisfies the conditions,

Px 2 M

x� Px 2 S:

The linear mapping P is said to project x onto M and along or parallel to the subspace S.

If P is of rankm, then the range of I�P is of dimension n�m. Therefore, it is natural to

define S through its orthogonal complement L = S? which has dimension m. The above

conditions that define u = Px for any x become

u 2 M (1.51)

x� u ? L: (1.52)

These equations define a projector P onto M and orthogonal to the subspace L. The first

statement, (1.51), establishes the m degrees of freedom, while the second, (1.52), gives

34 CHAPTER 1 BACKGROUND IN LINEAR ALGEBRA

the m constraints that define Px from these degrees of freedom. The general definition of

projectors is illustrated in Figure 1.1.

M

L

x

Px

Px 2 M
x� Px ? L

Figure 1.1 Projection of x onto M and orthogonal to L.

The question now is: Given two arbitrary subspaces, M and L both of dimension m, is it

always possible to define a projector ontoM orthogonal to L through the conditions (1.51)

and (1.52)? The following lemma answers this question.

LEMMA 1.3 Given two subspaces M and L of the same dimension m, the following

two conditions are mathematically equivalent.

i. No nonzero vector of M is orthogonal to L;

ii. For any x in C
n

there is a unique vector u which satisfies the conditions (1.51)

and (1.52).

Proof. The first condition states that any vector which is in M and also orthogonal to L
must be the zero vector. It is equivalent to the condition

M \ L? = f0g:

SinceL is of dimensionm,L? is of dimensionn�m and the above condition is equivalent

to the condition that

C
n
=M � L?: (1.53)

This in turn is equivalent to the statement that for any x, there exists a unique pair of vectors

u;w such that

x = u+ w;

where u belongs to M , and w = x� u belongs to L?, a statement which is identical with

ii.

In summary, given two subspacesM and L, satisfying the conditionM \L? = f0g, there

is a projectorP ontoM orthogonal toL, which defines the projected vector u of any vector

1.12 PROJECTION OPERATORS 35

x from equations (1.51) and (1.52). This projector is such that

Ran(P) = M; Ker(P) = L?:

In particular, the conditionPx = 0 translates into x 2 Ker(P) which means that x 2 L?.

The converse is also true. Hence, the following useful property,

Px = 0 iff x ? L: (1.54)

1.12.2 MATRIX REPRESENTATIONS

Two bases are required to obtain a matrix representation of a general projector: a basis

V = [v1; : : : ; vm] for the subspace M = Ran(P) and a second one W = [w1; : : : ; wm]
for the subspace L. These two bases are biorthogonal when

(vi; wj) = �ij : (1.55)

In matrix form this meansWHV = I . Since Px belongs toM , let V y be its representation

in the V basis. The constraint x� Px ? L is equivalent to the condition,

((x� V y); wj) = 0 for j = 1; : : : ;m:

In matrix form, this can be rewritten as

WH(x� V y) = 0: (1.56)

If the two bases are biorthogonal, then it follows that y = WHx. Therefore, in this case,

Px = V WHx, which yields the matrix representation of P ,

P = V WH : (1.57)

In case the bases V and W are not biorthogonal, then it is easily seen from the condition

(1.56) that

P = V (WHV)�1WH : (1.58)

If we assume that no vector of M is orthogonal to L, then it can be shown that the m�m
matrix WHV is nonsingular.

1.12.3 ORTHOGONAL AND OBLIQUE PROJECTORS

An important class of projectors is obtained in the case when the subspace L is equal to

M , i.e., when

Ker(P) = Ran(P)?:

Then, the projector P is said to be the orthogonal projector onto M . A projector that is

not orthogonal is oblique. Thus, an orthogonal projector is defined through the following

requirements satisfied for any vector x,

Px 2 M and (I � P) x ?M (1.59)

36 CHAPTER 1 BACKGROUND IN LINEAR ALGEBRA

or equivalently,

Px 2 M and ((I � P)x; y) = 0 8 y 2M:

?

Px

x

M

Px 2 M
x� Px ?M

Figure 1.2 Orthogonal projection of x onto a subspace M .

It is interesting to consider the mapping PH defined as the adjoint of P

(PHx; y) = (x; Py); 8 x; 8 y: (1.60)

First note that PH is also a projector because for all x and y,

((PH)2x; y) = (PHx; Py) = (x; P 2y) = (x; Py) = (PHx; y):

A consequence of the relation (1.60) is

Ker(PH) = Ran(P)? (1.61)

Ker(P) = Ran(PH)?: (1.62)

The above relations lead to the following proposition.

PROPOSITION 1.8 A projector is orthogonal if and only if it is Hermitian.

Proof. By definition, an orthogonal projector is one for which Ker(P) = Ran(P)?.

Therefore, by (1.61), if P is Hermitian, then it is orthogonal. Conversely, ifP is orthogonal,

then (1.61) implies Ker(P) = Ker(PH) while (1.62) impliesRan(P) = Ran(PH). Since

PH is a projector and since projectors are uniquely determined by their range and null

spaces, this implies that P = PH .

Given any unitary n � m matrix V whose columns form an orthonormal basis of

M = Ran(P), we can represent P by the matrix P = V V H . This is a particular case of

the matrix representation of projectors (1.57). In addition to being idempotent, the linear

mapping associated with this matrix satisfies the characterization given above, i.e.,

V V Hx 2M and (I � V V H)x 2 M?:

It is important to note that this representation of the orthogonal projectorP is not unique. In

fact, any orthonormal basis V will give a different representation ofP in the above form. As

1.12 PROJECTION OPERATORS 37

a consequence for any two orthogonal bases V1; V2 of M , we must have V1V
H
1 = V2V

H
2 ,

an equality which can also be verified independently; see Exercise 26.

1.12.4 PROPERTIES OF ORTHOGONAL PROJECTORS

When P is an orthogonal projector, then the two vectors Px and (I � P)x in the decom-

position x = Px+ (I � P)x are orthogonal. The following relation results:

kxk22 = kPxk22 + k(I � P)xk22:

A consequence of this is that for any x,

kPxk2 � kxk2:

Thus, the maximum of kPxk2=kxk2, for all x in C
n

does not exceed one. In addition the

value one is reached for any element in Ran(P). Therefore,

kPk2 = 1

for any orthogonal projector P .

An orthogonal projector has only two eigenvalues: zero or one. Any vector of the range

of P is an eigenvector associated with the eigenvalue one. Any vector of the null-space is

obviously an eigenvector associated with the eigenvalue zero.

Next, an important optimality property of orthogonal projectors is established.

THEOREM 1.21 Let P be the orthogonal projector onto a subspace M . Then for any

given vector x in C
n
, the following is true:

min
y2M

kx� yk2 = kx� Pxk2: (1.63)

Proof. Let y be any vector of M and consider the square of its distance from x. Since

x� Px is orthogonal to M to which Px� y belongs, then

kx� yk22 = kx� Px+ (Px� y)k22 = kx� Pxk22 + k(Px� y)k22:

Therefore, kx � yk2 � kx � Pxk2 for all y in M . This establishes the result by noticing

that the minimum is reached for y = Px.

By expressing the conditions that define y� � Px for an orthogonal projector P onto

a subspace M , it is possible to reformulate the above result in the form of necessary and

sufficient conditions which enable us to determine the best approximation to a given vector

x in the least-squares sense.

COROLLARY 1.3 Let a subspace M , and a vector x in C
n

be given. Then

min
y2M

kx� yk2 = kx� y�k2; (1.64)

if and only if the following two conditions are satisfied,�
y� 2 M
x� y� ? M:

38 CHAPTER 1 BACKGROUND IN LINEAR ALGEBRA

BASIC CONCEPTS IN LINEAR SYSTEMS

1.13

Linear systems are among the most important and common problems encountered in scien-

tific computing. From the theoretical point of view, the problem is rather easy and explicit

solutions using determinants exist. In addition, it is well understood when a solution ex-

ists, when it does not, and when there are infinitely many solutions. However, the numerical

viewpoint is far more complex. Approximations may be available but it may be difficult to

estimate how accurate they are. This clearly will depend on the data at hand, i.e., primarily

on the coefficient matrix. This section gives a very brief overview of the existence theory

as well as the sensitivity of the solutions.

1.13.1 EXISTENCE OF A SOLUTION

Consider the linear system

Ax = b: (1.65)

Here, x is termed the unknown and b the right-hand side. When solving the linear system

(1.65), we distinguish three situations.

Case 1 The matrix A is nonsingular. There is a unique solution given by x = A�1b.

Case 2 The matrix A is singular and b 2 Ran(A). Since b 2 Ran(A), there is an x0
such that Ax0 = b. Then x0 + v is also a solution for any v in Ker(A). Since Ker(A) is

at least one-dimensional, there are infinitely many solutions.

Case 3 The matrix A is singular and b =2 Ran(A). There are no solutions.

Example 1.4 The simplest illustration of the above three cases is with small diagonal

matrices. Let

A =

�
2 0
0 4

�
b =

�
1
8

�
:

Then A is nonsingular and there is a unique x given by

x =

�
0:5
2

�
:

Now let

A =

�
2 0
0 0

�
; b =

�
1
0

�
:

Then A is singular and, as is easily seen, b 2 Ran(A). For example, a particular element

x0 such that Ax0 = b is x0 =
�
0:5
0

�
. The null space of A consists of all vectors whose first

component is zero, i.e., all vectors of the form
�
0
�

�
. Therefore, there are infinitely many

1.13 BASIC CONCEPTS IN LINEAR SYSTEMS 39

solution which are given by

x(�) =

�
0:5
�

�
8 �:

Finally, let A be the same as in the previous case, but define the right-hand side as

b =

�
1
1

�
:

In this case there are no solutions because the second equation cannot be satisfied.

1.13.2 PERTURBATION ANALYSIS

Consider the linear system (1.65) where A is an n�n nonsingular matrix. Given any matrix

E, the matrix A(�) = A+ �E is nonsingular for � small enough, i.e., for � � � where � is

some small number; see Exercise 32. Assume that we perturb the data in the above system,

i.e., that we perturb the matrix A by �E and the right-hand side b by �e. The solution x(�)
of the perturbed system satisfies the equation,

(A+ �E)x(�) = b+ �e: (1.66)

Let �(�) = x(�)� x. Then,

(A+ �E)�(�) = (b+ �e)� (A+ �E)x

= � (e�Ex)

�(�) = � (A+ �E)�1(e�Ex):

As an immediate result, the function x(�) is differentiable at � = 0 and its derivative is

given by

x0(0) = lim
�!0

�(�)

�
= A�1 (e�Ex) : (1.67)

The size of the derivative of x(�) is an indication of the size of the variation that the solu-

tion x(�) undergoes when the data, i.e., the pair [A; b] is perturbed in the direction [E; e].
In absolute terms, a small variation [�E; �e] will cause the solution to vary by roughly

�x0(0) = �A�1(e�Ex). The relative variation is such that

kx(�)� xk

kxk
� �kA�1k

�
kek

kxk
+ kEk

�
+ o(�):

Using the fact that kbk � kAkkxk in the above equation yields

kx(�)� xk

kxk
� �kAkkA�1k

�
kek

kbk
+
kEk

kAk

�
+ o(�) (1.68)

which relates the relative variation in the solution to the relative sizes of the perturbations.

The quantity

�(A) = kAk kA�1k

40 CHAPTER 1 BACKGROUND IN LINEAR ALGEBRA

is called the condition number of the linear system (1.65) with respect to the norm k:k. The

condition number is relative to a norm. When using the standard norms k:kp, p = 1; : : : ;1,

it is customary to label �(A) with the same label as the associated norm. Thus,

�p(A) = kAkpkA
�1kp:

For large matrices, the determinant of a matrix is almost never a good indication of

“near” singularity or degree of sensitivity of the linear system. The reason is that det(A) is

the product of the eigenvalues which depends very much on a scaling of a matrix, whereas

the condition number of a matrix is scaling-invariant. For example, for A = �I the deter-

minant is det(A) = �n, which can be very small if j�j < 1, whereas �(A) = 1 for any of

the standard norms.

In addition, small eigenvalues do not always give a good indication of poor condition-

ing. Indeed, a matrix can have all its eigenvalues equal to one yet be poorly conditioned.

Example 1.5 The simplest example is provided by matrices of the form

An = I + �e1e
T
n

for large �. The inverse of An is

A�1n = I � �e1e
T
n

and for the 1-norm we have

kAnk1 = kA�1n k1 = 1 + j�j

so that

�1(An) = (1 + j�j)2:

For a large �, this can give a very large condition number, whereas all the eigenvalues of

An are equal to unity.

When an iterative procedure is used for solving a linear system, we typically face the

problem of choosing a good stopping procedure for the algorithm. Often a residual norm,

krk = kb�A~xk

is available for some current approximation ~x and an estimate of the absolute error kx� ~xk
or the relative error kx� ~xk=kxk is desired. The following simple relation is helpful in this

regard,

kx� ~xk

kxk
� �(A)

krk

kbk
:

It is necessary to have an estimate of the condition number �(A) in order to exploit the

above relation.

EXERCISES AND NOTES 41

EXERCISES

1 Verify that the Euclidean inner product defined by (1.4) does indeed satisfy the general definition

of inner products on vector spaces.

2 Show that two eigenvectors associated with two distinct eigenvalues are linearly independent.

In a more general sense, show that a family of eigenvectors associated with distinct eigenvalues

forms a linearly independent family.

3 Show that if � is any nonzero eigenvalue of the matrix AB, then it is also an eigenvalue of the

matrix BA. Start with the particular case where A and B are square and B is nonsingular, then

consider the more general case where A;B may be singular or even rectangular (but such that

AB and BA are square).

4 Let A be an n � n orthogonal matrix, i.e., such that AHA = D, where D is a diagonal matrix.

Assuming that D is nonsingular, what is the inverse of A? Assuming that D > 0, how can A be

transformed into a unitary matrix (by operations on its rows or columns)?

5 Show that the Frobenius norm is consistent. Can this norm be associated to two vector norms

via (1.7)? What is the Frobenius norm of a diagonal matrix? What is the p-norm of a diagonal

matrix (for any p)?

6 Find the Jordan canonical form of the matrix:

A =

1 2 �4
0 1 2
0 0 2

!
:

Same question for the matrix obtained by replacing the element a33 by 1.

7 Give an alternative proof of Theorem 1.3 on the Schur form by starting from the Jordan canonical

form. [Hint: Write A = XJX�1 and use the QR decomposition of X .]

8 Show from the definition of determinants used in Section 1.2 that the characteristic polynomial

is a polynomial of degree n for an n � n matrix.

9 Show that the characteristic polynomials of two similar matrices are equal.

10 Show that

lim
k!1

kAkk1=k = �(A);

for any matrix norm. [Hint: Use the Jordan canonical form.]

11 Let X be a nonsingular matrix and, for any matrix norm k:k, define kAkX = kAXk. Show

that this is indeed a matrix norm. Is this matrix norm consistent? Show the same for kXAk and

kY AXk where Y is also a nonsingular matrix. These norms are not, in general, associated with

any vector norms, i.e., they can’t be defined by a formula of the form (1.7). Why? What about

the particular case kAk0 = kXAX�1k?

12 Find the field of values of the matrix

A =

�
0 1
0 0

�

and verify that it is not equal to the convex hull of its eigenvalues.

42 CHAPTER 1 BACKGROUND IN LINEAR ALGEBRA

13 Show that for a skew-Hermitian matrix S,

<e(Sx; x) = 0 for any x 2 C
n
:

14 Given an arbitrary matrix S, show that if (Sx; x) = 0 for all x in C
n

, then it is true that

(Sy; z) + (Sz; y) = 0 8 y; z 2 C
n
:

[Hint: Expand (S(y + z); y + z).]

15 Using the results of the previous two problems, show that if (Ax;x) is real for all x in C
n

,

then A must be Hermitian. Would this result be true if the assumption were to be replaced by:

(Ax;x) is real for all real x? Explain.

16 The definition of a positive definite matrix is that (Ax; x) be real and positive for all real vectors

x. Show that this is equivalent to requiring that the Hermitian part of A, namely, 1
2
(A + AH),

be (Hermitian) positive definite.

17 Let A1 = B�1C and A2 = CB where C is a Hermitian matrix and B is a Hermitian Positive

Definite matrix. Are A1 and A2 Hermitian in general? Show that A1 and A2 are Hermitian

(self-adjoint) with respect to the B-inner product.

18 Let a matrix A be such that AH = p(A) where p is a polynomial. Show that A is normal. [Hint:

Use Lemma 1.2.]

19 Show that A is normal iff its Hermitian and skew-Hermitian parts, as defined in Section 1.11,

commute.

20 Let A be a Hermitian matrix and B a Hermitian Positive Definite matrix defining a B-inner

product. Show that A is Hermitian (self-adjoint) with respect to the B-inner product if and only

if A and B commute. What condition must satisfy B for the same condition to hold in the more

general case where A is not Hermitian?

21 Let A be a real symmetric matrix and � an eigenvalue of A. Show that if u is an eigenvector

associated with �, then so is �u. As a result, prove that for any eigenvalue of a real symmetric

matrix, there is an associated eigenvector which is real.

22 Show that a Hessenberg matrix H such that hj+1;j 6= 0; j = 1; 2; : : : ; n� 1, cannot be deroga-

tory.

23 Prove all the properties listed in Proposition 1.6.

24 Let A be an M -matrix and u; v two nonnegative vectors such that vTA�1u < 1. Show that

A� uvT is an M -matrix.

25 Show that if O � A � B then O � ATA � BTB. Conclude that under the same assumption,

we have kAk2 � kBk2.

26 Show that for two orthogonal bases V1; V2 of the same subspace M of C
n

we have V1V
H
1 x =

V2V
H
2 x; 8 x.

27 What are the eigenvalues of a projector? What about its eigenvectors?

28 Show that if two projectors P1 and P2 commute, then their product P = P1P2 is a projector.

What are the range and kernel of P ?

EXERCISES AND NOTES 43

29 Consider the matrix A of size n� n and the vector x 2 R
n

,

A =

0
BBBBBB@

1 �1 �1 �1 : : : �1
0 1 �1 �1 : : : �1
0 0 1 �1 : : : �1
..
.

..

.
..
.

. . .
..
.

...
...

...
...

. . .
...

0 0 0 : : : 0 1

1
CCCCCCA

x =

0
BBBBB@

1
1=2
1=4
1=8

...

1=2n�1

1
CCCCCA :

a. Compute Ax, kAxk2, and kxk2.

b. Show that kAk2 � pn.

c. Give a lower bound for �2(A).

30 What is the inverse of the matrix A of the previous exercise? Give an expression of �1(A) and

�1(A) based on this.

31 Find a small rank-one perturbation which makes the matrix A in Exercise 29 singular. Derive a

lower bound for the singular values of A.

32 Consider a nonsingular matrix A. Given any matrix E, show that there exists � such that the

matrix A(�) = A + �E is nonsingular for all � < �. What is the largest possible value for �
satisfying the condition? [Hint: Consider the eigenvalues of the generalized eigenvalue problem

Au = �Eu.]

NOTES AND REFERENCES. For additional reading on the material presented in this chapter, see

Golub and Van Loan [108], Datta [64], Stewart [202], and Varga [213]. Details on matrix eigenvalue

problems can be found in Gantmacher’s book [100] and Wilkinson [227]. An excellent treatise of

nonnegative matrices is in the book by Varga [213] which remains a good reference on iterative

methods more three decades after its first publication. Another book with state-of-the-art coverage

on iterative methods up to the very beginning of the 1970s is the book by Young [232] which covers

M -matrices and related topics in great detail. For a good overview of the linear algebra aspects of

matrix theory and a complete proof of Jordan’s canonical form, Halmos [117] is recommended.

C H A P T E R

2

DISCRETIZATION OF PDES

Partial Di�erential Equations (PDEs) constitute by far the biggest source

of sparse matrix problems. The typical way to solve such equations is to

discretize them, i.e., to approximate them by equations that involve a �nite

number of unknowns. The matrix problems that arise from these discretiza-

tions are generally large and sparse, i.e., they have very few nonzero entries.

There are several di�erent ways to discretize a Partial Di�erential Equa-

tion. The simplest method uses �nite di�erence approximations for the par-

tial di�erential operators. The Finite Element Method replaces the original

function by a function which has some degree of smoothness over the global

domain, but which is piecewise polynomial on simple cells, such as small

triangles or rectangles. This method is probably the most general and well

understood discretization technique available. In between these two meth-

ods, there are a few conservative schemes called Finite Volume Methods,

which attempt to emulate continuous conservation laws of physics. This

chapter introduces these three di�erent discretization methods.

PARTIAL DIFFERENTIAL EQUATIONS

2.1

Physical phenomena are often modeled by equations that relate several partial derivatives

of physical quantities, such as forces, momentums, velocities, energy, temperature, etc.

These equations rarely have a closed-form (explicit) solution. In this chapter, a few types

of Partial Differential Equations are introduced, which will serve as models throughout the

book. Only one- or two-dimensional problems are considered, and the space variables are

denoted by x in the case of one-dimensional problems or x1 and x2 for two-dimensional

problems. In two dimensions, x denotes the “vector” of components (x1; x2).

44

2.1 PARTIAL DIFFERENTIAL EQUATIONS 45

2.1.1 ELLIPTIC OPERATORS

One of the most common Partial Differential Equations encountered in various areas of

engineering is Poisson’s equation:

@2u

@x21
+

@2u

@x22
= f; for x =

�
x1
x2

�
in
 (2.1)

where
 is a bounded, open domain in R
2

. Here, x1; x2 are the two space variables.

~n

x2

x1

 �

Figure 2.1 Domain
 for Poisson’s equation.

The above equation is to be satisfied only for points that are located at the interior of

the domain
. Equally important are the conditions that must be satisfied on the boundary

� of
. These are termed boundary conditions, and they come in three common types:

Dirichlet condition u(x) = �(x)
Neumann condition @u

@~n (x) = 0
Cauchy condition @u

@~n (x) + �(x)u(x) = (x)

The vector ~n usually refers to a unit vector that is normal to � and directed outwards.

Note that the Neumann boundary conditions are a particular case of the Cauchy conditions

with = � = 0. For a given unit vector, ~v with components v1 and v2, the directional

derivative @u=@~v is defined by

@u

@~v
(x) = lim

h!0

u(x+ h~v)� u(x)

h

=
@u

@x1
(x)v1 +

@u

@x2
(x)v2 (2.2)

= ru:~v (2.3)

46 CHAPTER 2 DISCRETIZATION OF PDES

whereru is the gradient of u,

ru =

@u
@x1
@u
@x2

!
; (2.4)

and the dot in (2.3) indicates a dot product of two vectors in R
2

.

In reality, Poisson’s equation is often a limit case of a time-dependent problem. It can,

for example, represent the steady-state temperature distribution in a region
 when there is

a heat source f that is constant with respect to time. The boundary conditions should then

model heat loss across the boundary �.

The particular case where f(x) = 0, i.e., the equation

�u = 0;

to which boundary conditions must be added, is called the Laplace equation and its solu-

tions are called harmonic functions.

Many problems in physics have boundary conditions of mixed type, e.g., of Dirichlet

type in one part of the boundary and of Cauchy type in another. Another observation is that

the Neumann conditions do not define the solution uniquely. Indeed, if u is a solution, then

so is u+ c for any constant c.
The operator

� =
@2

@x21
+

@2

@x22

is called the Laplacean operator and appears in many models of physical and mechanical

phenomena. These models often lead to more general elliptic operators of the form

L =
@

@x1

�
a

@

@x1

�
+

@

@x2

�
a

@

@x2

�
= r: (ar) (2.5)

where the scalar function a depends on the coordinate and may represent some specific

parameter of the medium, such as density, porosity, etc. At this point it may be useful to

recall some notation which is widely used in physics and mechanics. The r operator can

be considered as a vector consisting of the components @
@x1

and @
@x2

. When applied to a

scalar function u, this operator is nothing but the gradient operator, since it yields a vector

with the components @u
@x1

and @u
@x2

as is shown in (2.4). The dot notation allows dot products

of vectors in R
2

to be defined. These vectors can include partial differential operators. For

example, the dot productr:u ofr with u =
�
u1
u2

�
yields the scalar quantity,

@u1
@x1

+
@u2
@x2

;

which is called the divergence of the vector function ~u =
�
u1
u2

�
. Applying this divergence

operator to u = ar, where a is a scalar function, yields the L operator in (2.5). The

divergence of the vector function ~v is often denoted by div ~v orr:~v. Thus,

div ~v = r:~v =
@v1
@x1

+
@v2
@x2

:

2.2 FINITE DIFFERENCE METHODS 47

The closely related operator

L =
@

@x1

�
a1

@

@x1

�
+

@

@x2

�
a2

@

@x2

�
= r (~a: r) (2.6)

is a further generalization of the Laplacean operator � in the case where the medium is

anisotropic and inhomogeneous. The coefficients a1; a2 depend on the space variable x and

reflect the position as well as the directional dependence of the material properties, such as

porosity in the case of fluid flow or dielectric constants in electrostatics. In fact, the above

operator can be viewed as a particular case of L = r:(Ar), where A is a 2 � 2 matrix

which acts on the two components ofr.

2.1.2 THE CONVECTION DIFFUSION EQUATION

Many physical problems involve a combination of “diffusion” and “convection” phenom-

ena. Such phenomena are modeled by the convection-diffusion equation

@u

@t
+ b1

@u

@x1
+ b2

@u

@x2
= r:(ar)u+ f

or

@u

@t
+~b:ru = r:(ar)u+ f

the steady-state version of which can be written as

�r:(ar)u+~b:ru = f: (2.7)

Problems of this type are often used as model problems because they represent the simplest

form of conservation of mass in fluid mechanics. Note that the vector ~b is sometimes quite

large, which may cause some difficulties either to the discretization schemes or to the

iterative solution techniques.

FINITE DIFFERENCE METHODS

2.2

The finite difference method is based on local approximations of the partial derivatives in

a Partial Differential Equation, which are derived by low order Taylor series expansions.

The method is quite simple to define and rather easy to implement. Also, it is particularly

appealing for simple regions, such as rectangles, and when uniform meshes are used. The

matrices that result from these discretizations are often well structured, which means that

they typically consist of a few nonzero diagonals. Another advantage is that there are a

number of “fast solvers” for constant coefficient problems, which can deliver the solution

in logarithmic time per grid point. This means the total number of operations is of the

order of n log(n) where n is the total number of discretization points. This section gives

48 CHAPTER 2 DISCRETIZATION OF PDES

an overview of finite difference discretization techniques.

2.2.1 BASIC APPROXIMATIONS

The simplest way to approximate the first derivative of a function u at the point x is via the

formula �
du

dx

�
(x) �

u(x+ h)� u(x)

h
: (2.8)

When u is differentiable at x, then the limit of the above ratio when h tends to zero is the

derivative of u at x. For a function that is C4 in the neighborhood of x, we have by Taylor’s

formula

u(x+ h) = u(x) + h
du

dx
+

h2

2

d2u

dx2
+

h3

6

d3u

dx3
+

h4

24

d4u

dx4
(�+); (2.9)

for some �+ in the interval (x; x + h). Therefore, the above approximation (2.8) satisfies

du

dx
=

u(x+ h)� u(x)

h
�

h

2

d2u(x)

dx2
+O(h2): (2.10)

The formula (2.9) can be rewritten with h replaced by �h to obtain

u(x� h) = u(x)� h
du

dx
+

h2

2

d2u

dx2
�

h3

6

d3u

dx3
+

h4

24

d4u(��)

dx4
; (2.11)

in which �� belongs to the interval (x � h; x). Adding (2.9) and (2.11), dividing through

by h2, and using the mean value theorem for the fourth order derivatives results in the

following approximation of the second derivative

d2u(x)

dx2
=

u(x+ h)� 2u(x) + u(x� h)

h2
�

h2

12

d4u(�)

dx4
; (2.12)

where �� � � � �+. The above formula is called a centered difference approximation of

the second derivative since the point at which the derivative is being approximated is the

center of the points used for the approximation. The dependence of this derivative on the

values of u at the points involved in the approximation is often represented by a “stencil”

or “molecule,” shown in Figure 2.2.

1 �2 1

Figure 2.2 The three-point stencil for the centered difference

approximation to the second order derivative.

The approximation (2.8) for the first derivative is forward rather than centered. Also,

a backward formula can be used which consists of replacing h with �h in (2.8). The two

formulas can also be averaged to obtain the centered difference formula:

du(x)

dx
�

u(x+ h)� u(x� h)

2 h
: (2.13)

2.2 FINITE DIFFERENCE METHODS 49

It is easy to show that the above centered difference formula is of the second order,

while (2.8) is only first order accurate. Denoted by �+ and ��, the forward and backward

difference operators are defined by

�+u(x) = u(x+ h)� u(x) (2.14)

��u(x) = u(x)� u(x� h): (2.15)

All previous approximations can be rewritten using these operators.

In addition to standard first order and second order derivatives, it is sometimes neces-

sary to approximate the second order operator

d

dx

�
a(x)

d

dx

�
:

A centered difference formula for this, which has second order accuracy, is given by

d

dx

�
a(x)

du

dx

�
=

1

h2
�+

�
ai�1=2 �

�u
�
+O(h2) (2.16)

�
ai+1=2(ui+1 � ui)� ai�1=2(ui � ui�1)

h2
:

2.2.2 DIFFERENCE SCHEMES FOR THE LAPLACEAN

OPERATOR

If the approximation (2.12) is used for both the @2

@x2
1

and @2

@x2
2

terms in the Laplacean oper-

ator, using a mesh size of h1 for the x1 variable and h2 for the x2 variable, the following

second order accurate approximation results:

�u(x) �
u(x1 + h1; x2)� 2u(x1; x2) + u(x� h1; x2)

h21
+

u(x1; x2 + h2)� 2u(x1; x2) + u(x1; x2 � h2)

h22
:

In the particular case where the mesh sizes h1 and h2 are the same and equal to a mesh

size h, the approximation becomes

�u(x) �
1

h2
[u(x1 + h; x2) + u(x1 � h; x2) + u(x1; x2 + h)

+ u(x1; x2 � h)� 4u(x1; x2)] ; (2.17)

which is called the five-point centered approximation to the Laplacean. The stencil of this

finite difference approximation is illustrated in (a) of Figure 2.3.

50 CHAPTER 2 DISCRETIZATION OF PDES

(a)

1

1 -4 1

1

(b)

1 1

-4

1 1

Figure 2.3 Five-point stencils for the centered difference ap-

proximation to the Laplacean operator: (a) the standard stencil,

(b) the skewed stencil.

Another approximation may be obtained by exploiting the four points u(x1�h; x2�h)
located on the two diagonal lines from u(x1; x2). These points can be used in the same

manner as in the previous approximation except that the mesh size has changed. The cor-

responding stencil is illustrated in (b) of Figure 2.3.

(c)

1 1 1

1 -8 1

1 1 1

(d)

1 4 1

4 -20 4

1 4 1

Figure 2.4 Two nine-point centered difference stencils for the

Laplacean operator.

The approximation (2.17) is second order accurate and the error takes the form

h2

12

�
@4u

@4x1
+

@4u

@4x2

�
+O(h3):

There are other schemes that utilize nine-point formulas as opposed to five-point formu-

las. Two such schemes obtained by combining the standard and skewed stencils described

above are shown in Figure 2.4. Both approximations (c) and (d) are second order accurate.

However, (d) is sixth order for harmonic functions, i.e., functions whose Laplacean is zero.

2.2 FINITE DIFFERENCE METHODS 51

2.2.3 FINITE DIFFERENCES FOR 1-D PROBLEMS

Consider the one-dimensional equation,

�u00(x) = f(x) for x 2 (0; 1) (2.18)

u(0) = u(1) = 0: (2.19)

The interval [0,1] can be discretized uniformly by taking the n+ 2 points

xi = i� h; i = 0; : : : ; n+ 1

where h = 1=(n + 1). Because of the Dirichlet boundary conditions, the values u(x0)
and u(xn+1) are known. At every other point, an approximation ui is sought for the exact

solution u(xi).
If the centered difference approximation (2.12) is used, then by the equation (2.18)

expressed at the point xi, the unknowns ui; ui�1; ui+1 satisfy the relation

�ui�1 + 2ui � ui+1 = h2 fi;

in which fi � f(xi). Notice that for i = 1 and i = n, the equation will involve u0 and

un+1 which are known quantities, both equal to zero in this case. Thus, for n = 6, the

linear system obtained is of the form

Ax = f

where

A =
1

h2

0
BBBBB@

2 �1
�1 2 �1

�1 2 �1
�1 2 �1

�1 2 �1
�1 2

1
CCCCCA :

2.2.4 UPWIND SCHEMES

Consider now the one-dimensional version of the convection-diffusion equation (2.7) in

which the coefficients a and b are constant, and f = 0, using Dirichlet boundary conditions,�
�a u00 + b u0 = 0; 0 < x < L = 1
u(0) = 0; u(L) = 1:

(2.20)

In this particular case, it is easy to verify that the exact solution to the above equation is

given by

u(x) =
1� eRx

1� eR

where R is the so-called Péclet number defined by R = bL=a. Now consider the approxi-

mate solution provided by using the centered difference schemes seen above, for both the

52 CHAPTER 2 DISCRETIZATION OF PDES

first- and second order derivatives. The equation for unknown number i becomes

b
ui+1 � ui�1

2h
� a

ui+1 � 2ui + ui�1
h2

= 0;

or, defining c = Rh=2,

�(1� c)ui+1 + 2ui � (1 + c)ui�1 = 0: (2.21)

This is a second order homogeneous linear difference equation and the usual way to solve

it is to seek a general solution in the form uj = rj . Substituting in (2.21), r must satisfy

(1� c)r2 � 2r + (c+ 1) = 0:

Therefore, r1 = 1 is a root and the second root is r2 = (1 + c)=(1 � c). The general

solution of the above difference equation is now sought as a linear combination of the two

solutions corresponding to these two roots,

ui = �ri1 + �ri2 = �+ �

�
1 + c

1� c

�i

:

Because of the boundary condition u0 = 0, it is necessary that � = ��. Likewise, the

boundary condition un+1 = 1 yields

� =
1

1� �n+1
with � �

1 + c

1� c
:

Thus, the solution is

ui =
1� �i

1� �n+1
:

When h > 2=R the factor � becomes negative and the above approximations will oscillate

around zero. In contrast, the exact solution is positive and monotone in the range [0; 1]. In

this situation the solution is very inaccurate regardless of the arithmetic. In other words,

the scheme itself creates the oscillations. To avoid this, a small enough mesh h can be

taken to ensure that c < 1. The resulting approximation is in much better agreement with

the exact solution. Unfortunately, this condition can limit the mesh size too drastically for

large values of b.
Note that when b < 0, the oscillations disappear since � < 1. In fact, a linear algebra

interpretation of the oscillations comes from comparing the tridiagonal matrices obtained

from the discretization. Again, for the case n = 6, the tridiagonal matrix resulting from

discretizing the equation (2.7) takes the form

A =
1

h2

0
BBBBB@

2 �1 + c
�1� c 2 �1 + c

�1� c 2 �1 + c
�1� c 2 �1 + c

�1� c 2 �1 + c
�1� c 2

1
CCCCCA :

The above matrix is no longer a diagonally dominant M-matrix. Observe that if the back-

ward difference formula for the first order derivative is used, we obtain

b
ui � ui�1

h
� a

ui�1 � 2ui + ui+1
h2

= 0:

2.2 FINITE DIFFERENCE METHODS 53

Then (weak) diagonal dominance is preserved if b > 0. This is because the new matrix

obtained for the above backward scheme is

A =
1

h2

0
BBBBB@

2 + c �1
�1� c 2 + c �1

�1� c 2 + c �1
�1� c 2 + c �1

�1� c 2 + c �1
�1� c 2 + c

1
CCCCCA

where c is now defined by c = Rh. Each diagonal term aii gets reinforced by the positive

term c while each subdiagonal term ai;i�1 increases by the same amount in absolute value.

In the case where b < 0, the forward difference formula

b
ui+1 � ui

h
� a

ui�1 � 2ui + ui+1

h2
= 0

can be used to achieve the same effect. Generally speaking, if b depends on the space

variable x, the effect of weak-diagonal dominance can be achieved by simply adopting the

following discretization known as an “upwind scheme”:

b
��i ui

h
� a

ui�1 � 2ui + ui+1

h2
= 0

where

��i =

�
��i if b > 0
�+i if b < 0:

The above difference scheme can be rewritten by introducing the sign function sign (b) =
jbj=b. The approximation to u0 at xi is then defined by

u0(xi) �
1

2
(1� sign(b))

�+ui

h
+

1

2
(1 + sign(b))

��ui

h
:

Making use of the notation

(x)+ =
1

2
(x+ jxj); (x)� =

1

2
(x� jxj); (2.22)

a slightly more elegant formula can be obtained by expressing the approximation of the

product b(xi)u
0(xi),

b(xi)u
0(xi) �

1

2
(bi � jbij)

�+ui

h
+

1

2
(bi + jbij)

��ui

h

�
1

h

�
�b+i ui�1 + jbijui + b�i ui+1

�
; (2.23)

where bi stands for b(xi). The diagonal term in the resulting tridiagonal matrix is nonneg-

ative, the offdiagonal terms are nonpositive, and the diagonal term is the negative sum of

the offdiagonal terms. This property characterizes upwind schemes.

A notable disadvantage of upwind schemes is the low order of approximation which

they yield. An advantage is that upwind schemes yield linear systems that are easier to

solve by iterative methods.

54 CHAPTER 2 DISCRETIZATION OF PDES

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

-

6

Figure 2.5 Natural ordering of the unknowns for a 7�5 two-

dimensional grid.

2.2.5 FINITE DIFFERENCES FOR 2-D PROBLEMS

Similar to the previous case, consider this simple problem,

�

�
@2u

@x21
+

@2u

@x22

�
= f in
 (2.24)

u = 0 on � (2.25)

where
 is now the rectangle (0; l1) � (0; l2) and � its boundary. Both intervals can be

discretized uniformly by taking n1 + 2 points in the x1 direction and n2 + 2 points in the

x2 directions:

x1;i = i� h1; i = 0; : : : ; n1 + 1 x2;j = j � h2; j = 0; : : : ; n2 + 1

where

h1 =
l1

n1 + 1
h2 =

l2
n2 + 1

:

Since the values at the boundaries are known, we number only the interior points, i.e.,

the points (x1;i; x2;j) with 0 < i < n1 and 0 < j < n2. The points are labeled from

the bottom up, one horizontal line at a time. This labeling is called natural ordering and is

shown in Figure 2.5 for the very simple case when n1 = 7 and n2 = 5. The pattern of the

matrix corresponding to the above equations appears in Figure 2.6.

2.3 THE FINITE ELEMENT METHOD 55

Figure 2.6 Pattern of matrix associated with the 7 � 5 finite

difference mesh of Figure 2.5.

To be more accurate, the matrix has the following block structure:

A =
1

h2

0
@ B �I
�I B �I

�I B

1
A with B =

0
B@

4 �1
�1 4 �1

�1 4 �1
�1 4

1
CA :

THE FINITE ELEMENT METHOD

2.3

The finite element method is best illustrated with the solution of a simple elliptic Partial

Differential Equation in a two-dimensional space. Consider again Poisson’s equation (2.24)

with the Dirichlet boundary condition (2.25), where
 is a bounded open domain in R
2

and � its boundary. The Laplacean operator

� =
@2

@x21
+

@2

@x22

appears in many models of physical and mechanical phenomena. Equations involving the

more general elliptic operators (2.5) and (2.6) can be treated in the same way as Pois-

son’s equation (2.24) and (2.25), at least from the viewpoint of the numerical solutions

techniques.

An essential ingredient for understanding the finite element method is Green’s for-

mula. The setting for this formula is an open set
 whose boundary consists of a closed

and smooth curve � as illustrated in Figure 2.1. A vector-valued function~v =
�
v1
v2

�
, which

is continuously differentiable in
, is given. The divergence theorem in two-dimensional

spaces states that Z

div~v dx =

Z
�

~v:~n ds: (2.26)

56 CHAPTER 2 DISCRETIZATION OF PDES

The dot in the right-hand side represents a dot product of two vectors in R
2

. In this case it is

between the vector ~v and the unit vector~n which is normal to � at the point of consideration

and oriented outward. To derive Green’s formula, consider a scalar function v and a vector

function ~w =
�
w1

w2

�
. By standard differentiation,

r:(v ~w) = (rv): ~w + vr: ~w;

which expressesrv:~w as

rv:~w = �vr: ~w +r:(v ~w): (2.27)

Integrating the above equality over
 and using the divergence theorem, we obtainZ

rv:~w dx = �

Z

vr: ~w dx+

Z

r:(v ~w) dx

= �

Z

vr: ~w dx+

Z
�

v ~w:~n ds: (2.28)

The above equality can be viewed as a generalization of the standard integration by part

formula in calculus. Green’s formula results from (2.28) by simply taking a vector ~w which

is itself a gradient of a scalar function u, namely, ~w = ru,Z

rv:ru dx = �

Z

vr:ru dx+

Z
�

vru:~n ds:

Observe that r:ru = �u. Also the function ru:~n is called the normal derivative and is

denoted by

ru:~n =
@u

@~n
:

With this, we obtain Green’s formulaZ

rv:ru dx = �

Z

v�u dx+

Z
�

v
@u

@~n
ds: (2.29)

We now return to the initial problem (2.24-2.25). To solve this problem approximately, it

is necessary to (1) take approximations to the unknown function u, and (2) translate the

equations into a system which can be solved numerically. The options for approximating

u are numerous. However, the primary requirement is that these approximations should be

in a (small) finite dimensional space. There are also some additional desirable numerical

properties. For example, it is difficult to approximate high degree polynomials numerically.

To extract systems of equations which yield the solution, it is common to use the weak

formulation of the problem. Let us define

a(u; v) �

Z

ru:rv dx =

Z

�
@u

@x1

@v

@x1
+

@u

@x2

@v

@x2

�
dx;

(f; v) �

Z

fv dx:

An immediate property of the functional a is that it is bilinear. That means that it is linear

with respect to u and v, namely,

a(�1u1 + �2u2; v) = �1a(u1; v) + �2a(u2; v); 8�1; �2 2 R;

a(u; �1v1 + �2v2) = �1a(u; v1) + �2a(u; v2); 8�1; �2 2 R:

2.3 THE FINITE ELEMENT METHOD 57

Notice that (u; v) denotes the L2-inner product of u and v in
, i.e.,

(u; v) =

Z

u(x)v(x)dx;

then, for functions satisfying the Dirichlet boundary conditions, which are at least twice

differentiable, Green’s formula (2.29) shows that

a(u; v) = �(�u; v):

The weak formulation of the initial problem (2.24-2.25) consists of selecting a subspace of

reference V of L2 and then defining the following problem:

Find u 2 V such that a(u; v) = (f; v); 8 v 2 V: (2.30)

In order to understand the usual choices for the space V , note that the definition of the

weak problem only requires the dot products of the gradients of u and v and the functions

f and v to be L2–integrable. The most general V under these conditions is the space of

all functions whose derivatives up to the first order are in L2. This is known as H1(
).
However, this space does not take into account the boundary conditions. The functions in

V must be restricted to have zero values on �. The resulting space is called H1
0 (
).

The finite element method consists of approximating the weak problem by a finite-

dimensional problem obtained by replacing V with a subspace of functions that are defined

as low-degree polynomials on small pieces (elements) of the original domain.

Figure 2.7 Finite element triangulation of a domain.

Consider a region
 in the plane which is triangulated as shown in Figure 2.7. In this

example, the domain is simply an ellipse but the external enclosing curve is not shown.

The original domain is thus approximated by the union
h of m triangles Ki,

h =

m[
i=1

Ki:

For the triangulation to be valid, these triangles must have no vertex that lies on the edge

58 CHAPTER 2 DISCRETIZATION OF PDES

of any other triangle. The mesh size h is defined by

h = max
i=1;:::;m

diam(Ki)

where diam(K), the diameter of a triangle K, is the length of its longest side.

Then the finite dimensional space Vh is defined as the space of all functions which

are piecewise linear and continuous on the polygonal region
h, and which vanish on the

boundary �. More specifically,

Vh = f� j �j
hcontinuous; �j�h = 0; �jKj
linear 8 jg:

Here, �jX represents the restriction of the function � to the subset X . If xj ; j = 1; : : : ; n
are the nodes of the triangulation, then a function �j in Vh can be associated with each

node xj , so that the family of functions �j ’s satisfies the following conditions:

�j(xi) = �ij =

�
1 if xi = xj
0 if xi 6= xj

: (2.31)

These conditions define �i; i = 1; : : : ; n uniquely. In addition, the �i’s form a basis of the

space Vh.

Each function of Vh can be expressed as

�(x) =

nX
i=1

�i�i(x):

The finite element approximation consists of writing the Galerkin condition (2.30) for func-

tions in Vh. This defines the approximate problem:

Find u 2 Vh such that a(u; v) = (f; v); 8 v 2 Vh: (2.32)

Since u is in Vh, there are n degrees of freedom. By the linearity of a with respect to v, it

is only necessary to impose the condition a(u; �i) = (f; �i) for i = 1; : : : ; n. This results

in n constraints.

Writing the desired solution u in the basis f�ig as

u =

nX
i=1

�i�i(x)

and substituting in (2.32) gives the linear problem

nX
j=1

�ij�i = �i (2.33)

where

�ij = a(�i; �j); �i = (f; �i):

The above equations form a linear system of equations

Ax = b;

in which the coefficients of A are the �ij ’s; those of b are the �j’s. In addition, A is a

Symmetric Positive Definite matrix. Indeed, it is clear thatZ

r�ir�j dx =

Z

r�jr�i dx;

2.3 THE FINITE ELEMENT METHOD 59

which means that �ij = �ji. To see that A is positive definite, first note that a(u; u) � 0
for any function u. If a(�; �) = 0 for a function in Vh, then it must be true that r� = 0
almost everywhere in
h. Since � is linear in each triangle and continuous, then it is clear

that it must be constant on all
. Since, in addition, it vanishes on the boundary, then it

must be equal to zero on all of
. The result follows by exploiting the relation

(A�; �) = a(�; �) with � =

nX
i=1

�i�i;

which is valid for any vector f�igi=1::::;n.

Another important observation is that the matrix A is also sparse. Indeed, �ij is

nonzero only when the two basis functions �i and �j have common support triangles,

or equivalently when the nodes i and j are the vertices of a common triangle. Specifically,

for a given node i, the coefficient �ij will be nonzero only when the node j is one of the

nodes of a triangle that is adjacent to node i.
In practice, the matrix is built by summing up the contributions of all triangles by

applying the formula

a(�i; �j) =
X
K

aK(�i; �j)

in which the sum is over all the triangles K and

aK(�i; �j) =

Z
K

r�i r�j dx:

Note that aK(�i; �j) is zero unless the nodes i and j are both vertices ofK. Thus, a triangle

contributes nonzero values to its three vertices from the above formula. The 3� 3 matrix

AK =

0
@ aK(�i; �i) aK(�i; �j) aK(�i; �k)

aK(�j ; �i) aK(�j ; �j) aK(�j ; �k)
aK(�k; �i) aK(�k; �j) aK(�k; �k)

1
A

associated with the triangle K(i; j; k) with vertices i; j; k is called an element stiffness

matrix. In order to form the matrix A, it is necessary to sum up all the contributions

aK(�k ; �m) to the position k;m of the matrix. This process is called an assembly pro-

cess. In the assembly, the matrix is computed as

A =

nelX
e=1

A[e]; (2.34)

in which nel is the number of elements. Each of the matrices A[e] is of the form

A[e] = PeAKe
P T
e

where AKe
is the element matrix for the element Ke as defined above. Also Pe is an n� 3

Boolean connectivity matrix which maps the coordinates of the 3� 3 matrix AKe
into the

coordinates of the full matrix A.

60 CHAPTER 2 DISCRETIZATION OF PDES

Finite element mesh

1

2 3

4 5

6

1

2

3

4

Assembled matrix

Figure 2.8 A simple finite element mesh and the pattern of

the corresponding assembled matrix.

Example 2.1 The assembly process can be illustrated with a very simple example. Con-

sider the finite element mesh shown in Figure 2.8. The four elements are numbered from

bottom to top as indicated by the labels located at their centers. There are six nodes in this

mesh and their labeling is indicated in the circled numbers. The four matrices A[e] asso-

ciated with these elements are shown in Figure 2.9. Thus, the first element will contribute

to the nodes 1; 2; 3, the second to nodes 2; 3; 5, the third to nodes 2; 4; 5, and the fourth to

nodes 4; 5; 6.

A[1] A[2] A[3] A[4]

Figure 2.9 The element matrices A[e], e = 1; : : : ; 4 for the

finite element mesh shown in Figure 2.8.

In fact there are two different ways to represent and use the matrix A. We can form

all the element matrices one by one and then we can store them, e.g., in an nel � 3 � 3
rectangular array. This representation is often called the unassembled form of A. Then the

matrix A may be assembled if it is needed. However, element stiffness matrices can also

be used in different ways without having to assemble the matrix. For example, frontal

techniques are direct solution methods that take the linear system in unassembled form and

compute the solution by a form of Gaussian elimination. There are also iterative solution

techniques which work directly with unassembled matrices. One of the main operations

2.4 MESH GENERATION AND REFINEMENT 61

required in many iterative methods is to compute y = Ax, the product of the matrix A by

an arbitrary vector x. In unassembled form, this can be achieved as follows:

y = Ax =

nelX
e=1

A[e]x =

nelX
e=1

PeAKe
(P T

e x): (2.35)

Thus, the product P T
e x gathers the x data associated with the e-element into a 3-vector

consistent with the ordering of the matrix AKe
. After this is done, this vector must be mul-

tiplied by AKe
. Finally, the result is added to the current y vector in appropriate locations

determined by the Pe array. This sequence of operations must be done for each of the nel
elements.

A more common and somewhat more appealing technique is to perform the assembly

of the matrix. All the elements are scanned one by one and the nine associated contribu-

tions aK(�k; �m), k;m 2 fi; j; kg added to the corresponding positions in the global

“stiffness” matrix. The assembled matrix must now be stored but the element matrices

may be discarded. The structure of the assembled matrix depends on the ordering of the

nodes. To facilitate the computations, a widely used strategy transforms all triangles into a

reference triangle with vertices (0; 0); (0; 1); (1; 0). The area of the triangle is then simply

the determinant of the Jacobian of the transformation that allows passage from one set of

axes to the other.

Simple boundary conditions such as Neumann or Dirichlet do not cause any difficulty.

The simplest way to handle Dirichlet conditions is to include boundary values as unknowns

and modify the assembled system to incorporate the boundary values. Thus, each equation

associated with the boundary point in the assembled system is replaced by the equation

ui = fi. This yields a small identity block hidden within the linear system. For Neumann

conditions, Green’s formula will give rise to the equationsZ

ru:r�j dx =

Z

f�jdx +

Z
�

�j
@u

@~n
ds; (2.36)

which will involve the Neumann data @u
@~n over the boundary. Since the Neumann data is

typically given at some points only (the boundary nodes), linear interpolation (trapezoidal

rule) or the mid-line value (midpoint rule) can be used to approximate the integral. Note

that (2.36) can be viewed as the j-th equation of the linear system. Another important point

is that if the boundary conditions are only of Neumann type, then the resulting system is

singular. An equation must be removed, or the linear system must be solved by taking this

singularity into account.

MESH GENERATION AND REFINEMENT

2.4

Generating a finite element triangulation can be done quite easily by exploiting some initial

grid and then refining the mesh a few times either uniformly or in specific areas. The

simplest refinement technique consists of taking the three midpoints of a triangle, thus

creating four smaller triangles from a larger triangle and losing one triangle, namely, the

62 CHAPTER 2 DISCRETIZATION OF PDES

original one. A systematic use of one level of this strategy is illustrated for the mesh in

Figure 2.8, and is shown in Figure 2.10.

Finite element mesh

1

2 3

4 5

6

7

8

9

1011

12

13

1415

1

2

3

4

5

67

8 9

10

11

1213

14 15

16

Assembled matrix

Figure 2.10 The simple finite element mesh of Figure 2.8 af-

ter one level of refinement and the corresponding matrix.

One advantage of this approach is that it preserves the angles of the original triangu-

lation. This is an important property since the angles on a good quality triangulation must

satisfy certain bounds. On the other hand, the indiscriminate use of the uniform refinement

strategy may lead to some inefficiencies. Indeed, it is desirable to introduce more triangles

in areas where the solution is likely to have large variations. In terms of vertices, midpoints

should be introduced only where needed. To obtain standard finite element triangles, the

points that have been created on the edges of a triangle must be linked to existing vertices in

the triangle. This is because no vertex of a triangle is allowed to lie on the edge of another

triangle.

Figure 2.11 shows three possible cases that can arise. The original triangle is (a). In

(b), only one new vertex (numbered 4) has appeared on one edge of the triangle and it

is joined to the vertex opposite to it. In (c), two new vertices appear inside the original

triangle. There is no alternative but to join vertices (4) and (5). However, after this is done,

either vertices (4) and (3) or vertices (1) and (5) must be joined. If angles are desired that

will not become too small with further refinements, the second choice is clearly better in

this case. In fact, various strategies for improving the quality of the triangles have been

devised. The final case (d) corresponds to the “uniform refinement” case where all edges

have been split in two. There are three new vertices and four new elements, and the larger

initial element is removed.

2.5 FINITE VOLUME METHOD 63

(a)

1 2

3
(b)

1 2

3

4

(c)

1 2

3

4

5

(d)

1 2

3

4

56

Figure 2.11 Original triangle (a) and three possible refine-

ment scenarios.

FINITE VOLUME METHOD

2.5

The finite volume method is geared toward the solution of conservation laws of the form:

@u

@t
+r: ~F = Q: (2.37)

In the above equation, ~F (u; t) is a certain vector function of u and time, possibly nonlinear.

This is called the “flux vector.” The source term Q is a function of space and time. We now

apply the principle used in the weak formulation, described before. Multiply both sides by

a test function w, and take the integralZ

w
@u

@t
dx+

Z

w r: ~F dx =

Z

w Q dx:

Then integrate by part using formula (2.28) for the second term on the left-hand side to

obtain Z

w
@u

@t
dx�

Z

rw:~F dx+

Z
�

w ~F :~n ds =

Z

w Q dx:

Consider now a control volume consisting, for example, of an elementary triangle Ki in

the two-dimensional case, such as those used in the finite element method. Take for w a

function wi whose value is one on the triangle and zero elsewhere. The second term in the

64 CHAPTER 2 DISCRETIZATION OF PDES

above equation vanishes and the following relation results:Z
Ki

@u

@t
dx+

Z
�i

~F :~n ds =

Z
Ki

Q dx: (2.38)

The above relation is at the basis of the finite volume approximation. To go a little further,

the assumptions will be simplified slightly by taking a vector function ~F that is linear with

respect to u. Specifically, assume

~F =

�
�1u

�2u

�
� ~�u:

Note that, in this case, the term r: ~F in (2.37) becomes ~F (u) = ~�:ru. In addition, the

right-hand side and the first term in the left-hand side of (2.38) can be approximated as

follows: Z
Ki

@u

@t
dx �

@ui
@t
jKij;

Z
Ki

Q dx � qijKij:

Here, jKij represents the volume 1 of Ki, and qi is some average value of Q in the cell Ki.

These are crude approximations but they serve the purpose of illustrating the scheme.

The finite volume equation (2.38) yields

@ui
@t
jKij+ ~�:

Z
�i

u ~n ds = qijKij: (2.39)

The contour integral Z
�i

u ~n ds

is the sum of the integrals over all edges of the control volume. Let the value of u on each

edge j be approximated by some “average” �uj . In addition, sj denotes the length of each

edge and a common notation is

~sj = sj~nj :

Then the contour integral is approximated by

~�:

Z
�i

u ~n ds �
X
edges

�uj~�:~njsj =
X
edges

�uj~�:~sj : (2.40)

The situation in the case where the control volume is a simple triangle is depicted in Figure

2.12. The unknowns are the approximations ui of the function u associated with each cell.

These can be viewed as approximations of u at the centers of gravity of each cell i. This

type of model is called cell-centered finite volume approximations. Other techniques based

on using approximations on the vertices of the cells are known as cell-vertex finite volume

techniques.

1In two dimensions, \volume" is considered to mean area.

2.5 FINITE VOLUME METHOD 65

*
~nj

�~nl

I
~nk

i

j

k

l

Figure 2.12 Finite volume cell associated with node i and

three neighboring cells.

The value �uj required in (2.40) can be taken simply as the average between the ap-

proximation ui of u in cell i and the approximation uj in the cell j on the other side of the

edge

�uj =
1

2
(uj + ui): (2.41)

This gives

@ui

@t
jKij +

1

2

X
j

(ui + uj)~�:~sj = qijKij:

One further simplification takes place by observing thatX
j

~sj = 0

and therefore X
j

ui
~�:~sj = ui

~�:
X
j

~sj = 0:

This yields

@ui

@t
jKij +

1

2

X
j

uj
~�:~sj = qijKij:

In the above equation, the summation is over all the neighboring cells j. One prob-

lem with such simple approximations is that they do not account for large gradients of

u in the components. In finite volume approximations, it is typical to exploit upwind

schemes which are more suitable in such cases. By comparing with one-dimensional up-

66 CHAPTER 2 DISCRETIZATION OF PDES

wind schemes, it can be easily seen that the suitable modification to (2.41) is as follows:

�uj =
1

2
(uj + ui)�

1

2
sign

�
~�:~sj

�
(uj � ui): (2.42)

This gives

@ui

@t
jKij+

X
j

~�:~sj

�
1

2
(uj + ui)�

1

2
sign(~�:~sj)(uj � ui)

�
= qijKij:

Now write

@ui

@t
jKij+

X
j

�
1

2
(uj + ui)~�:~sj �

1

2
j~�:~sj j(uj � ui)

�
= qijKij

@ui

@t
jKij+

X
j

�
ui(~�:~sj)

+ + uj(~�:~sj)
�
�
= qijKij

where

(z)� �
z � jzj

2
:

The equation for cell i takes the form

@ui

@t
jKij+ �iui +

X
j

�ijuj = qijKij;

where

�i =
X
j

(~�:~sj)
+ � 0; (2.43)

�ij = (~�:~sj)
� � 0: (2.44)

Thus, the diagonal elements of the matrix are nonnegative, while its offdiagonal elements

are nonpositive. In addition, the row-sum of the elements, i.e., the sum of all elements in

the same row, is equal to zero. This is because

�i +
X
j

�ij =
X
j

(~�:~sj)
+ +

X
j

(~�:~sj)
� =

X
j

~�:~sj = ~�:
X
j

~sj = 0:

The matrices obtained have the same desirable property of weak diagonal dominance seen

in the one-dimensional case. A disadvantage of upwind schemes, whether in the context of

irregular grids or in one-dimensional equations, is the loss of accuracy due to the low order

of the schemes.

EXERCISES

1 Derive Forward Difference formulas similar to (2.8), i.e., involving u(x); u(x + h); u(x +
2h); : : :, which are of second and third order. Write down the discretization errors explicitly.

EXERCISES AND NOTES 67

2 Derive a Centered Difference formula for the first derivative, similar to (2.13), which is at least

of third order.

3 Show that the Upwind Difference scheme described in 2.2.4, when a and~b are constant, is stable

for the model problem (2.7).

4 Develop the two nine-point formulas illustrated in Figure 2.4. Find the corresponding discretiza-

tion errors. [Hint: Combine 1

3
of the five-point formula (2.17) plus 2

3
of the same formula based

on the diagonal stencil f(x; y); (x+h; y+h)+(x+h; y�h); (x�h; y+h); (x�h; y�h)g
to get one formula. Use the reverse combination 2

3
, 1
3

to get the other formula.]

5 Consider a (two-dimensional) rectangular mesh which is discretized as in the finite difference

approximation. Show that the finite volume approximation to~�:ru yields the same matrix as an

upwind scheme applied to the same problem. What would be the mesh of the equivalent upwind

finite difference approximation?

6 Show that the right-hand side of equation (2.16) can also be written as

1

h2
��
�
ai+ 1

2

�+u
�
:

7 Show that the formula (2.16) is indeed second order accurate for functions that are in C4.

8 Show that the functions �i’s defined by (2.31) form a basis of Vh.

9 Develop the equivalent of Green’s formula for the elliptic operator L defined in (2.6).

10 Write a short FORTRAN or C program to perform a matrix-by-vector product when the matrix

is stored in unassembled form.

11 Consider the finite element mesh of Example 2.1. Compare the number of operations required to

perform a matrix-by-vector product when the matrix is in assembled and in unassembled form.

Compare also the storage required in each case. For a general finite element matrix, what can

the ratio be between the two in the worst case (consider only linear approximations on triangular

elements) for arithmetic? Express the number of operations in terms of the number of nodes and

edges of the mesh. You may make the assumption that the maximum number of elements that

are adjacent to a given node is p (e.g., p = 8).

12 Let K be a polygon in R
2

with m edges, and let ~sj = sj~nj , for j = 1; : : : ;m, where sj is the

length of the j-th edge and ~nj is the unit outward normal at the j-th edge. Use the divergence

theorem to prove that
Pm

j=1
~sj = 0.

NOTES AND REFERENCES. The material in this chapter is based on several sources. For a basic

description of the finite element method, the book by C. Johnson is a good reference [128]. Axelsson

and Barker [16] gives a treatment which includes various solution techniques emphasizing iterative

techniques. For finite difference and finite volume methods, we recommend C. Hirsch [121], which

also gives a good description of the equations and solution methods for fluid flow problems.

C H A P T E R

3

SPARSE MATRICES

As described in the previous chapter, standard discretizations of Partial

Di�erential Equations typically lead to large and sparse matrices. A sparse

matrix is de�ned, somewhat vaguely, as a matrix which has very few nonzero

elements. But, in fact, a matrix can be termed sparse whenever special

techniques can be utilized to take advantage of the large number of zero

elements and their locations. These sparse matrix techniques begin with the

idea that the zero elements need not be stored. One of the key issues is

to de�ne data structures for these matrices that are well suited for e�cient

implementation of standard solution methods, whether direct or iterative.

This chapter gives an overview of sparse matrices, their properties, their

representations, and the data structures used to store them.

INTRODUCTION

3.1

The natural idea to take advantage of the zeros of a matrix and their location was initiated

by engineers in various disciplines. In the simplest case involving banded matrices, special

techniques are straightforward to develop. Electrical engineers dealing with electrical net-

works in the 1960s were the first to exploit sparsity to solve general sparse linear systems

for matrices with irregular structure. The main issue, and the first addressed by sparse ma-

trix technology, was to devise direct solution methods for linear systems. These had to be

economical, both in terms of storage and computational effort. Sparse direct solvers can

handle very large problems that cannot be tackled by the usual “dense” solvers.

68

3.1 INTRODUCTION 69

1 2 3 4

5

6

7

8

9 10 11 12

13

14

15

16

17

18

19

20

21 22

23

24

25 26

27

28

29 30

31

32

33

34 35

36

37 38

39

4041 42

43

44

45

Figure 3.1 A finite element grid model.

Essentially, there are two broad types of sparse matrices: structured and unstructured.

A structured matrix is one whose nonzero entries form a regular pattern, often along a

small number of diagonals. Alternatively, the nonzero elements may lie in blocks (dense

submatrices) of the same size, which form a regular pattern, typically along a small num-

ber of (block) diagonals. A matrix with irregularly located entries is said to be irregularly

structured. The best example of a regularly structured matrix is a matrix that consists of

only a few diagonals. Finite difference matrices on rectangular grids, such as the ones seen

in the previous chapter, are typical examples of matrices with regular structure. Most fi-

nite element or finite volume techniques applied to complex geometries lead to irregularly

structured matrices. Figure 3.2 shows a small irregularly structured sparse matrix associ-

ated with the finite element grid problem shown in Figure 3.1.

The distinction between the two types of matrices may not noticeably affect direct

solution techniques, and it has not received much attention in the past. However, this dis-

tinction can be important for iterative solution methods. In these methods, one of the es-

sential operations is matrix-by-vector products. The performance of these operations can

differ significantly on high performance computers, depending on whether they are regu-

larly structured or not. For example, on vector computers, storing the matrix by diagonals

is ideal, but the more general schemes may suffer because they require indirect addressing.

The next section discusses graph representations of sparse matrices. This is followed

by an overview of some of the storage schemes used for sparse matrices and an explanation

of how some of the simplest operations with sparse matrices can be performed. Then sparse

linear system solution methods will be covered. Finally, Section 3.7 discusses test matrices.

70 CHAPTER 3 SPARSE MATRICES

Figure 3.2 Sparse matrix associated with the finite element

grid of Figure 3.1.

GRAPH REPRESENTATIONS

3.2

Graph theory is an ideal tool for representing the structure of sparse matrices and for this

reason it plays a major role in sparse matrix techniques. For example, graph theory is the

key ingredient used in unraveling parallelism in sparse Gaussian elimination or in precon-

ditioning techniques. In the following section, graphs are discussed in general terms and

then their applications to finite element or finite difference matrices are discussed.

3.2.1 GRAPHS AND ADJACENCY GRAPHS

Remember that a graph is defined by two sets, a set of vertices

V = fv1; v2; : : : ; vng;

and a set of edges E which consists of pairs (vi; vj), where vi; vj are elements of V , i.e.,

E � V � V:

This graph G = (V;E) is often represented by a set of points in the plane linked by

a directed line between the points that are connected by an edge. A graph is a way of

representing a binary relation between objects of a set V . For example, V can represent

the major cities of the world. A line is drawn between any two cities that are linked by

a nonstop airline connection. Such a graph will represent the relation “there is a nonstop

flight from city (A) to city (B).” In this particular example, the binary relation is likely to

3.2 GRAPH REPRESENTATIONS 71

be symmetric, i.e., when there is a nonstop flight from (A) to (B) there is also a nonstop

flight from (B) to (A). In such situations, the graph is said to be undirected, as opposed to

a general graph which is directed.

1 2

4 3

1 2

4 3

Figure 3.3 Graphs of two 4� 4 sparse matrices.

Going back to sparse matrices, the adjacency graph of a sparse matrix is a graph

G = (V;E), whose n vertices in V represent the n unknowns. Its edges represent the

binary relations established by the equations in the following manner: There is an edge

from node i to node j when aij 6= 0. This edge will therefore represent the binary relation

equation i involves unknown j. Note that the graph is directed, except when the matrix has

a symmetric pattern (aij 6= 0 iff aji 6= 0 for all 1 � i; j � n).

When a matrix has a symmetric nonzero pattern, i.e., when aij and aji are always

nonzero at the same time, then the graph is undirected. Thus, for undirected graphs, ev-

ery edge points in both directions. As a result, undirected graphs can be represented with

nonoriented edges.

As an example of the use of graph models, parallelism in Gaussian elimination can

be extracted by finding unknowns that are independent at a given stage of the elimination.

These are unknowns which do not depend on each other according to the above binary rela-

tion. The rows corresponding to such unknowns can then be used as pivots simultaneously.

Thus, in one extreme, when the matrix is diagonal, then all unknowns are independent.

Conversely, when a matrix is dense, each unknown will depend on all other unknowns.

Sparse matrices lie somewhere between these two extremes.

There are a few interesting simple properties of adjacency graphs. The graph of A2

can be interpreted as an n-vertex graph whose edges are the pairs (i; j) for which there

exists at least one path of length exactly two from node i to node j in the original graph of

A. Similarly, the graph of Ak consists of edges which represent the binary relation “there

is at least one path of length k from node i to node j.” For details, see Exercise 4.

72 CHAPTER 3 SPARSE MATRICES

3.2.2 GRAPHS OF PDE MATRICES

For Partial Differential Equations involving only one physical unknown per mesh point, the

adjacency graph of the matrix arising from the discretization is often the graph represented

by the mesh itself. However, it is common to have several unknowns per mesh point. For

example, the equations modeling fluid flow may involve the two velocity components of

the fluid (in two dimensions) as well as energy and momentum at each mesh point. In

such situations, there are two choices when labeling the unknowns. They can be labeled

contiguously at each mesh point. Thus, for the example just mentioned, we can label all

four variables (two velocities followed by momentum and then pressure) at a given mesh

point as u(k), : : :, u(k+3). Alternatively, all unknowns associated with one type of variable

can be labeled first (e.g., first velocity components), followed by those associated with the

second type of variables (e.g., second velocity components), etc. In either case, it is clear

that there is redundant information in the graph of the adjacency matrix. The quotient graph

corresponding to the physical mesh can be used instead. This results in substantial savings

in storage and computation. In the fluid flow example mentioned above, the storage can

be reduced by a factor of almost 16 for the integer arrays needed to represent the graph.

This is because the number of edges has been reduced by this much, while the number of

vertices, which is usually much smaller, remains the same.

PERMUTATIONS AND REORDERINGS

3.3

Permuting the rows or the columns, or both the rows and columns, of a sparse matrix is a

common operation. In fact, reordering rows and columns is one of the most important in-

gredients used in parallel implementations of both direct and iterative solution techniques.

This section introduces the ideas related to these reordering techniques and their relations

to the adjacency graphs of the matrices. Recall the notation introduced in Chapter 1 that

the j-th column of a matrix is denoted by a�j and the i-th row by ai�.

3.3.1 BASIC CONCEPTS

We begin with a definition and new notation.

DEFINITION 3.1 Let A be a matrix and � = fi1; i2; : : : ; ing a permutation of the set

f1; 2; : : : ; ng. Then the matrices

A�;� = fa�(i);jgi=1;:::;n;j=1;:::;m;

A�;� = fai;�(j)gi=1;:::;n;j=1;:::;m

are called row �-permutation and column �-permutation of A, respectively.

3.3 PERMUTATIONS AND REORDERINGS 73

It is well known that any permutation of the set f1; 2; : : : ; ng results from at most n inter-

changes, i.e., elementary permutations in which only two entries have been interchanged.

An interchange matrix is the identity matrix with two of its rows interchanged. Denote by

Xij such matrices, with i and j being the numbers of the interchanged rows. Note that

in order to interchange rows i and j of a matrix A, we only need to premultiply it by the

matrix Xij . Let � = fi1; i2; : : : ; ing be an arbitrary permutation. This permutation is the

product of a sequence of n consecutive interchanges �(ik; jk); k = 1; : : : ; n. Then the

rows of a matrix can be permuted by interchanging rows i1; j1, then rows i2; j2 of the

resulting matrix, etc., and finally by interchanging in; jn of the resulting matrix. Each of

these operations can be achieved by a premultiplication by Xik;jk . The same observation

can be made regarding the columns of a matrix: In order to interchange columns i and j of a

matrix, postmultiply it by Xij . The following proposition follows from these observations.

PROPOSITION 3.1 Let � be a permutation resulting from the product of the inter-

changes �(ik; jk), k = 1; : : : ; n. Then,

A�;� = P�A; A�;� = AQ�;

where

P� = Xin;jnXin�1;jn�1 : : :Xi1;j1 ; (3.1)

Q� = Xi1;j1Xi2;j2 : : : Xin;jn : (3.2)

Products of interchange matrices are called permutation matrices. Clearly, a permutation

matrix is nothing but the identity matrix with its rows (or columns) permuted.

Observe that X2
i;j = I , i.e., the square of an interchange matrix is the identity, or

equivalently, the inverse of an interchange matrix is equal to itself, a property which is

intuitively clear. It is easy to see that the matrices (3.1) and (3.2) satisfy

P�Q� = Xin;jnXin�1;jn�1 : : : Xi1;j1 �Xi1;j1Xi2;j2 : : : Xin;jn = I;

which shows that the two matrices Q� and P� are nonsingular and that they are the inverse

of one another. In other words, permuting the rows and the columns of a matrix, using

the same permutation, actually performs a similarity transformation. Another important

consequence arises because the products involved in the definitions (3.1) and (3.2) of P�

and Q� occur in reverse order. Since each of the elementary matrices Xik;jk is symmetric,

the matrix Q� is the transpose of P� . Therefore,

Q� = P T
� = P�1

� :

Since the inverse of the matrix P� is its own transpose, permutation matrices are unitary.

Another way of deriving the above relationships is to express the permutation matrices

P� and P T
� in terms of the identity matrix, whose columns or rows are permuted. It can

easily be seen (See Exercise 3) that

P� = I�;�; P T
� = I�;�:

It is then possible to verify directly that

A�;� = I�;�A = P�A; A�;� = AI�;� = AP T
� :

74 CHAPTER 3 SPARSE MATRICES

It is important to interpret permutation operations for the linear systems to be solved.

When the rows of a matrix are permuted, the order in which the equations are written is

changed. On the other hand, when the columns are permuted, the unknowns are in effect

relabeled, or reordered.

Example 3.1 Consider, for example, the linear system Ax = b where

A =

0
B@

a11 0 a13 0
0 a22 a23 a24
a31 a32 a33 0
0 a42 0 a44

1
CA

and � = f1; 3; 2; 4g, then the (column-) permuted linear system is0
B@

a11 a13 0 0
0 a23 a22 a24
a31 a33 a32 0
0 0 a42 a44

1
CA
0
B@

x1
x3
x2
x4

1
CA =

0
B@

b1
b2
b3
b4

1
CA :

Note that only the unknowns have been permuted, not the equations, and in particular, the

right-hand side has not changed.

In the above example, only the columns of A have been permuted. Such one-sided

permutations are not as common as two-sided permutations in sparse matrix techniques.

In reality, this is often related to the fact that the diagonal elements in linear systems play

a distinct and important role. For instance, diagonal elements are typically large in PDE

applications and it may be desirable to preserve this important property in the permuted

matrix. In order to do so, it is typical to apply the same permutation to both the columns

and the rows of A. Such operations are called symmetric permutations, and if denoted by

A�;�, then the result of such symmetric permutations satisfies the relation

A�;� = P T
� AP� :

The interpretation of the symmetric permutation is quite simple. The resulting matrix cor-

responds to renaming, or relabeling, or reordering the unknowns and then reordering the

equations in the same manner.

Example 3.2 For the previous example, if the rows are permuted with the same permu-

tation as the columns, the linear system obtained is0
B@

a11 a13 0 0
a31 a33 a32 0
0 a23 a22 a24
0 0 a42 a44

1
CA
0
B@

x1
x3
x2
x4

1
CA =

0
B@

b1
b3
b2
b4

1
CA :

Observe that the diagonal elements are now diagonal elements from the original matrix,

placed in a different order on the main diagonal.

3.3 PERMUTATIONS AND REORDERINGS 75

3.3.2 RELATIONS WITH THE ADJACENCY GRAPH

From the point of view of graph theory, another important interpretation of a symmetric

permutation is that it is equivalent to relabeling the vertices of the graph without altering

the edges. Indeed, let (i; j) be an edge in the adjacency graph of the original matrix A
and let A0 be the permuted matrix. Then a0

ij = a�(i);�(j) and a result (i; j) is an edge

in the adjacency graph of the permuted matrix A0, if and only if (�(i); �(j)) is an edge

in the graph of the original matrix A. Thus, the graph of the permuted matrix has not

changed; rather, the labeling of the vertices has. In contrast, nonsymmetric permutations

do not preserve the graph. In fact, they can transform an indirected graph into a directed

one. Symmetric permutations may have a tremendous impact on the structure of the matrix

even though the general graph of the adjacency matrix is identical.

Example 3.3 Consider the matrix illustrated in Figure 3.4 together with its adjacency

graph. Such matrices are sometimes called “arrow” matrices because of their shape, but it

would probably be more accurate to term them “star” matrices because of the structure of

their graphs.

If the equations are reordered using the permutation 9; 8; : : : ; 1, the matrix and graph

shown in Figure 3.5 are obtained. Although the difference between the two graphs may

seem slight, the matrices have a completely different structure, which may have a signif-

icant impact on the algorithms. As an example, if Gaussian elimination is used on the

reordered matrix, no fill-in will occur, i.e., the L and U parts of the LU factorization will

have the same structure as the lower and upper parts of A, respectively. On the other hand,

Gaussian elimination on the original matrix results in disastrous fill-ins. Specifically, the

L and U parts of the LU factorization are now dense matrices after the first step of Gaus-

sian elimination. With direct sparse matrix techniques, it is important to find permutations

of the matrix that will have the effect of reducing fill-ins during the Gaussian elimination

process.

To conclude this section, it should be mentioned that two-sided nonsymmetric permu-

tations may also arise in practice. However, they are more common in the context of direct

methods.

3.3.3 COMMON REORDERINGS

The type of reordering, or permutations, used in applications depends on whether a direct

or an iterative method is being considered. The following is a sample of such reorderings

which are more useful for iterative methods.

76 CHAPTER 3 SPARSE MATRICES

1

2

3

4

5

6

7

8

9

Figure 3.4 Pattern of a 9� 9 arrow matrix and its adjacency

graph.

1

2

3

4

5

6

7

8

9

Figure 3.5 Adjacency graph and matrix obtained from above

figure after permuting the nodes in reverse order.

Level-set orderings. This class of orderings contains a number of techniques that are

based on traversing the graph by level sets. A level set is defined recursively as the set

of all unmarked neighbors of all the nodes of a previous level set. Initially, a level set

consists of one node, although strategies with several starting nodes are also important

and will be considered later. As soon as a level set is traversed, its nodes are marked and

numbered. They can, for example, be numbered in the order in which they are traversed. In

addition, the order in which each level itself is traversed gives rise to different orderings.

For instance, the nodes of a certain level can be visited in the natural order in which they

are listed. The neighbors of each of these nodes are then inspected. Each time, a neighbor

of a visited vertex that is not numbered is encountered, it is added to the list and labeled as

3.3 PERMUTATIONS AND REORDERINGS 77

the next element of the next level set. This simple strategy is called Breadth First Search

(BFS) traversal in graph theory. The ordering will depend on the way in which the nodes

are traversed in each level set. In BFS the elements of a level set are always traversed in

the natural order in which they are listed. In the Cuthill-McKee ordering the elements of a

level set are traversed from the nodes of lowest degree to those of highest degree.

ALGORITHM 3.1: Cuthill-McKee Ordering

1. Input: initial node i1; Output: permutation array iperm .

2. Start: Set levset := fi1g; next = 2;

3. Set marker(i1) = 1; iperm (1) = i1
4. While (next < n) Do:

5. Next levset = ;
6. Traverse levset in order of increasing degree and

7. for each visited node Do:

8. For each neighbor i of j such that marker(i) = 0 Do:

9. Add i to the set Next levset
10. marker(i) := 1; iperm (next) = i
11. next = next+ 1
12. EndDo

13. EndDo

14. levset := Next levset
15. EndWhile

The iperm array obtained from the procedure lists the nodes in the order in which

they are visited and can, in a practical implementation, be used to store the level sets in

succession. A pointer is needed to indicate where each set starts. The array iperm thus

constructed does in fact represent the permutation array � defined earlier.

In 1971, George [103] observed that reversing the Cuthill-McKee ordering yields a

better scheme for sparse Gaussian elimination. The simplest way to understand this is to

look at the two graphs produced by these orderings. The results of the standard and reversed

Cuthill-McKee orderings on the sample finite element mesh problem seen earlier are shown

in Figures 3.6 and 3.7, when the initial node is i1 = 3 (relative to the labeling of the original

ordering of Figure 2.10). The case of the figure, corresponds to a variant of CMK in which

the traversals in Line 6, is done in a random order instead of according to the degree. A

large part of the structure of the two matrices consists of little “arrow” submatrices, similar

to the ones seen in Example 3.3. In the case of the regular CMK ordering, these arrows

point upward, as in Figure 3.4, a consequence of the level set labeling. These blocks are

similar the star matrices of Figure 3.4. As a result, Gaussian elimination will essentially

fill in the square blocks which they span. As was indicated in Example 3.3, a remedy is

to reorder the nodes backward, as is done globally in the reverse Cuthill-McKee strategy.

For the reverse CMK ordering, the arrows are pointing downward, as in Figure 3.5, and

Gaussian elimination yields much less fill-in.

78 CHAPTER 3 SPARSE MATRICES

12

3

4

5

6

7

8

910

11

1213

14

15

Figure 3.6 Cuthill-McKee ordering.

1

2

3 4

5

6 7

8

9

10

11

12

13

14 15

Figure 3.7 Reverse Cuthill-McKee ordering.

3.3 PERMUTATIONS AND REORDERINGS 79

Example 3.4 The choice of the initial node in the CMK and RCMK orderings may be

important. Referring to the original ordering of Figure 2.10, the previous illustration used

i1 = 3. However, it is clearly a poor choice if matrices with small bandwidth or profile are

desired. If i1 = 1 is selected instead, then the reverse Cuthill-McKee algorithm produces

the matrix in Figure 3.8, which is more suitable for banded or skyline solvers.

1

2 3

4 5 6

7 8 9

10 1112

13 14

15

Figure 3.8 Reverse Cuthill-McKee ordering starting with

i1 = 1.

Independent set orderings. The matrices that arise in the model finite element prob-

lems seen in Figures 2.7, 2.10, and 3.2 are all characterized by an upper-left block that is

diagonal, i.e., they have the structure

A =

�
D E
F C

�
; (3.3)

in which D is diagonal and C;E, and F are sparse matrices. The upper-diagonal block

corresponds to unknowns from the previous levels of refinement and its presence is due to

the ordering of the equations in use. As new vertices are created in the refined grid, they

are given new numbers and the initial numbering of the vertices is unchanged. Since the

old connected vertices are “cut” by new ones, they are no longer related by equations. Sets

such as these are called independent sets. Independent sets are especially useful in parallel

computing, for implementing both direct and iterative methods.

Referring to the adjacency graphG = (V;E) of the matrix, and denoting by (x; y) the

edge from vertex x to vertex y, an independent set S is a subset of the vertex set V such

that

if x 2 S; then f(x; y) 2 E or (y; x) 2 Eg ! y =2 S:

80 CHAPTER 3 SPARSE MATRICES

To explain this in words: Elements of S are not allowed to be connected to other elements

of S either by incoming or outgoing edges. An independent set is maximal if it cannot be

augmented by elements in its complement to form a larger independent set. Note that a

maximal independent set is by no means the largest possible independent set that can be

found. In fact, finding the independent set of maximum cardinal is NP -hard [132]. In the

following, the term independent set always refers to maximal independent set.

There are a number of simple and inexpensive heuristics for finding large maximal

independent sets. A greedy heuristic traverses the nodes in a given order, and if a node is

not already marked, it selects the node as a new member of S. Then this node is marked

along with its nearest neighbors. Here, a nearest neighbor of a node x means any node

linked to x by an incoming or an outgoing edge.

ALGORITHM 3.2: Greedy Algorithm for ISO

1. Set S = ;.

2. For j = 1; 2; : : : ; n Do:

3. If node j is not marked then

4. S = S [fjg
5. Mark j and all its nearest neighbors

6. EndIf

7. EndDo

In the above algorithm, the nodes are traversed in the natural order 1; 2; : : : ; n, but they

can also be traversed in any permutation fi1; : : : ; ing of f1; 2; : : : ; ng. Since the size of the

reduced system is n�jSj, it is reasonable to try to maximize the size of S in order to obtain

a small reduced system. It is possible to give a rough idea of the size of S. Assume that the

maximum degree of each node does not exceed �. Whenever the above algorithm accepts

a node as a new member of S, it potentially puts all its nearest neighbors, i.e., at most �
nodes, in the complement of S. Therefore, if s is the size of S, the size of its complement,

n� s, is such that n� s � �s, and as a result,

s �
n

1 + �
:

This lower bound can be improved slightly by replacing � with the maximum degree �S of

all the vertices that constitute S. This results in the inequality

s �
n

1 + �S
;

which suggests that it may be a good idea to first visit the nodes with smaller degrees. In

fact, this observation leads to a general heuristic regarding a good order of traversal. The

algorithm can be viewed as follows: Each time a node is visited, remove it and its nearest

neighbors from the graph, and then visit a node from the remaining graph. Continue in the

same manner until all nodes are exhausted. Every node that is visited is a member of S and

its nearest neighbors are members of �S. As result, if �i is the degree of the node visited at

step i, adjusted for all the edge deletions resulting from the previous visitation steps, then

the number ni of nodes that are left at step i satisfies the relation

ni = ni�1 � �i � 1:

3.3 PERMUTATIONS AND REORDERINGS 81

The process adds a new element to the set S at each step and stops when ni = 0. In order

to maximize jSj, the number of steps in the procedure must be maximized. The difficulty

in the analysis arises from the fact that the degrees are updated at each step i because of the

removal of the edges associated with the removed nodes. If the process is to be lengthened,

a rule of thumb would be to visit the nodes that have the smallest degrees first.

ALGORITHM 3.3: Increasing Degree Traversal for ISO

1. Set S = ;. Find an ordering i1; : : : ; in of the nodes by increasing degree.

2. For j = 1; 2; : : : n, Do:

3. If node ij is not marked then

4. S = S [fijg
5. Mark ij and all its nearest neighbors

6. EndIf

7. EndDo

A refinement to the above algorithm would be to update the degrees of all nodes in-

volved in a removal, and dynamically select the one with the smallest degree as the next

node to be visited. This can be implemented efficiently using a min-heap data structure.

A different heuristic is to attempt to maximize the number of elements in S by a form of

local optimization which determines the order of traversal dynamically. In the following,

removing a vertex from a graph means deleting the vertex and all edges incident to/from

this vertex.

Example 3.5 The algorithms described in this section were tested on the same example

used before, namely, the finite element mesh problem of Figure 2.10. Here, all strategies

used yield the initial independent set in the matrix itself, which corresponds to the nodes

of all the previous levels of refinement. This may well be optimal in this case, i.e., a larger

independent set may not exist.

Multicolor orderings. Graph coloring is a familiar problem in computer science which

refers to the process of labeling (coloring) the nodes of a graph in such a way that no

two adjacent nodes have the same label (color). The goal of graph coloring is to obtain

a colored graph which uses the smallest possible number of colors. However, optimality

in the context of numerical linear algebra is a secondary issue and simple heuristics do

provide adequate colorings.

Basic methods for obtaining a multicoloring of an arbitrary grid are quite simple. They

rely on greedy techniques, a simple version of which is as follows.

ALGORITHM 3.4: Greedy Multicoloring Algorithm

1. For i = 1; : : : ; n Do: set Color(i) = 0.

2. For i = 1; 2; : : : ; n Do:

3. Set Color(i) = min fk > 0 j k 6= Color(j);8 j 2 Adj(i))g
4. EndDo

82 CHAPTER 3 SPARSE MATRICES

Here, Adj(i) represents the set of nodes that are adjacent to node i. The color assigned to

node i in line 3 is the smallest allowable color number which can be assigned to node i.
Here, allowable means different from the colors of the nearest neighbors and positive. This

procedure is illustrated in Figure 3.9. The node being colored in the figure is indicated by

an arrow. It will be assigned color number 3, the smallest positive integer different from 1,

2, 4, 5.

3

4

5

2

1

0

0

Figure 3.9 The greedy multicoloring algorithm.

In the above algorithm, the order 1; 2; : : : ; n has been arbitrarily selected for traversing

the nodes and coloring them. Instead, the nodes can be traversed in any order fi1, i2, : : : ;
ing. If a graph is bipartite, i.e., if it can be colored with two colors, then the algorithm will

find the optimal two-color (Red-Black) ordering for Breadth-First traversals. In addition, if

a graph is bipartite, it is easy to show that the algorithm will find two colors for any traversal

which, at a given step, visits an unmarked node that is adjacent to at least one visited node.

In general, the number of colors needed does not exceed the maximum degree of each node

+1. These properties are the subject of Exercises 9 and 8.

Example 3.6 Figure 3.10 illustrates the algorithm for the same example used earlier,

i.e., the finite element mesh problem of Figure 2.10. The dashed lines separate the different

color sets found. Four colors are found in this example.

Once the colors have been found, the matrix can be permuted to have a block structure

in which the diagonal blocks are diagonal. Alternatively, the color sets Sj = [i
(j)
1 , : : :, i

(j)
nj]

and the permutation array in the algorithms can be used.

3.3 PERMUTATIONS AND REORDERINGS 83

1

2 3

4 5

6

7

8

9

10

11

12

13

14

15

Figure 3.10 Graph and matrix corresponding to mesh of

Figure 2.10 after multicolor ordering.

3.3.4 IRREDUCIBILITY

Remember that a path in a graph is a sequence of vertices v1; v2; : : : ; vk, which are such

that (vi; vi+1) is an edge for i = 1; : : : ; k � 1. Also, a graph is said to be connected if

there is a path between any pair of two vertices in V . A connected component in a graph

is a maximal subset of vertices which all can be connected to one another by paths in the

graph. Now consider matrices whose graphs may be directed. A matrix is reducible if its

graph is not connected, and irreducible otherwise. When a matrix is reducible, then it can

be permuted by means of symmetric permutations into a block upper triangular matrix of

the form

0
BB@

A11 A12 A13 : : :
A22 A23 : : :

. . .
...

App

1
CCA ;

where each partition corresponds to a connected component. It is clear that linear systems

with the above matrix can be solved through a sequence of subsystems with the matrices

Aii, i = p; p� 1; : : : ; 1.

84 CHAPTER 3 SPARSE MATRICES

STORAGE SCHEMES

3.4

In order to take advantage of the large number of zero elements, special schemes are re-

quired to store sparse matrices. The main goal is to represent only the nonzero elements,

and to be able to perform the common matrix operations. In the following, Nz denotes the

total number of nonzero elements. Only the most popular schemes are covered here, but

additional details can be found in books such as Duff, Erisman, and Reid [77].

The simplest storage scheme for sparse matrices is the so-called coordinate format.

The data structure consists of three arrays: (1) a real array containing all the real (or com-

plex) values of the nonzero elements of A in any order; (2) an integer array containing

their row indices; and (3) a second integer array containing their column indices. All three

arrays are of length Nz, the number of nonzero elements.

Example 3.7 The matrix

A =

0
BBB@
1: 0: 0: 2: 0:
3: 4: 0: 5: 0:
6: 0: 7: 8: 9:
0: 0: 10: 11: 0:
0: 0: 0: 0: 12:

1
CCCA

will be represented (for example) by

AA 12. 9. 7. 5. 1. 2. 11. 3. 6. 4. 8. 10.

JR 5 3 3 2 1 1 4 2 3 2 3 4

JC 5 5 3 4 1 4 4 1 1 2 4 3

In the above example, the elements are listed in an arbitrary order. In fact, they are

usually listed by row or columns. If the elements were listed by row, the array JC which

contains redundant information might be replaced by an array which points to the begin-

ning of each row instead. This would involve nonnegligible savings in storage. The new

data structure has three arrays with the following functions:

� A real array AA contains the real values aij stored row by row, from row 1 to n.

The length of AA is Nz.

� An integer array JA contains the column indices of the elements aij as stored in

the array AA. The length of JA is Nz.

� An integer array IA contains the pointers to the beginning of each row in the arrays

AA and JA. Thus, the content of IA(i) is the position in arrays AA and JA where

the i-th row starts. The length of IA is n+1 with IA(n+1) containing the number

IA(1) + Nz, i.e., the address in A and JA of the beginning of a fictitious row

number n+ 1.

3.4 STORAGE SCHEMES 85

Thus, the above matrix may be stored as follows:

AA 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.

JA 1 4 1 2 4 1 3 4 5 3 4 5

IA 1 3 6 10 12 13

This format is probably the most popular for storing general sparse matrices. It is

called the Compressed Sparse Row (CSR) format. This scheme is preferred over the coor-

dinate scheme because it is often more useful for performing typical computations. On the

other hand, the coordinate scheme is advantageous for its simplicity and its flexibility. It is

often used as an “entry” format in sparse matrix software packages.

There are a number of variations for the Compressed Sparse Row format. The most

obvious variation is storing the columns instead of the rows. The corresponding scheme is

known as the Compressed Sparse Column (CSC) scheme.

Another common variation exploits the fact that the diagonal elements of many ma-

trices are all usually nonzero and/or that they are accessed more often than the rest of the

elements. As a result, they can be stored separately. The Modified Sparse Row (MSR) for-

mat has only two arrays: a real array AA and an integer array JA. The first n positions in

AA contain the diagonal elements of the matrix in order. The position n+1 of the array AA
is not used, but may sometimes be used to carry other information concerning the matrix.

Starting at position n + 2, the nonzero elements of AA, excluding its diagonal elements,

are stored by row. For each element AA(k), the integer JA(k) represents its column index

on the matrix. The n+ 1 first positions of JA contain the pointer to the beginning of each

row in AA and JA. Thus, for the above example, the two arrays will be as follows:

AA 1. 4. 7. 11. 12. * 2. 3. 5. 6. 8. 9. 10.

JA 7 8 10 13 14 14 4 1 4 1 4 5 3

The star denotes an unused location. Notice that JA(n) = JA(n + 1) = 14, indicating

that the last row is a zero row, once the diagonal element has been removed.

Diagonally structured matrices are matrices whose nonzero elements are located

along a small number of diagonals. These diagonals can be stored in a rectangular ar-

ray DIAG(1:n,1:Nd), where Nd is the number of diagonals. The offsets of each of the

diagonals with respect to the main diagonal must be known. These will be stored in an ar-

ray IOFF(1:Nd). Thus, the element ai;i+io�(j) of the original matrix is located in position

(i; j) of the array DIAG, i.e.,

DIAG(i; j) ai;i+io�(j):

The order in which the diagonals are stored in the columns of DIAG is generally unimpor-

tant, though if several more operations are performed with the main diagonal, storing it in

the first column may be slightly advantageous. Note also that all the diagonals except the

main diagonal have fewer than n elements, so there are positions in DIAG that will not be

used.

86 CHAPTER 3 SPARSE MATRICES

Example 3.8 For example, the following matrix which has three diagonals

A =

0
BBB@
1: 0: 2: 0: 0:
3: 4: 0: 5: 0:
0: 6: 7: 0: 8:
0: 0: 9: 10: 0:
0: 0: 0: 11: 12:

1
CCCA

will be represented by the two arrays

DIAG =

* 1. 2.

3. 4. 5.

6. 7. 8.

9. 10. *

11 12. *

IOFF = -1 0 2 .

A more general scheme which is popular on vector machines is the so-called Ellpack-

Itpack format. The assumption in this scheme is that there are at mostNd nonzero elements

per row, where Nd is small. Then two rectangular arrays of dimension n � Nd each are

required (one real and one integer). The first, COEF, is similar to DIAG and contains the

nonzero elements of A. The nonzero elements of each row of the matrix can be stored in

a row of the array COEF(1:n,1:Nd), completing the row by zeros as necessary. Together

with COEF, an integer array JCOEF(1:n,1:Nd)must be stored which contains the column

positions of each entry in COEF.

Example 3.9 Thus, for the matrix of the previous example, the Ellpack-Itpack storage

scheme is

COEF =

1. 2. 0.

3. 4. 5.

6. 7. 8.

9. 10. 0.

11 12. 0.

JCOEF =

1 3 1

1 2 4

2 3 5

3 4 4

4 5 5

.

A certain column number must be chosen for each of the zero elements that must be

added to pad the shorter rows ofA, i.e., rows 1, 4, and 5. In this example, those integers are

selected to be equal to the row numbers, as can be seen in the JCOEF array. This is some-

what arbitrary, and in fact, any integer between 1 and n would be acceptable. However,

there may be good reasons for not inserting the same integers too often, e.g. a constant

number, for performance considerations.

3.5 BASIC SPARSE MATRIX OPERATIONS 87

BASIC SPARSE MATRIX OPERATIONS

3.5

The matrix-by-vector product is an important operation which is required in most of the

iterative solution algorithms for solving sparse linear systems. This section shows how

these can be implemented for a small subset of the storage schemes considered earlier.

The following Fortran 90 segment shows the main loop of the matrix-by-vector oper-

ation for matrices stored in the Compressed Sparse Row stored format.

DO I=1, N

K1 = IA(I)

K2 = IA(I+1)-1

Y(I) = DOTPRODUCT(A(K1:K2),X(JA(K1:K2)))

ENDDO

Notice that each iteration of the loop computes a different component of the resulting

vector. This is advantageous because each of these components can be computed indepen-

dently. If the matrix is stored by columns, then the following code could be used instead:

DO J=1, N

K1 = IA(J)

K2 = IA(J+1)-1

Y(JA(K1:K2)) = Y(JA(K1:K2))+X(J)*A(K1:K2)

ENDDO

In each iteration of the loop, a multiple of the j-th column is added to the result, which

is assumed to have been initially set to zero. Notice now that the outer loop is no longer

parallelizable. An alternative to improve parallelization is to try to split the vector operation

in each inner loop. The inner loop has few operations, in general, so this is unlikely to be a

sound approach. This comparison demonstrates that data structures may have to change to

improve performance when dealing with high performance computers.

Now consider the matrix-by-vector product in diagonal storage.

DO J=1, N

JOFF = IOFF(J)

DO I=1, N

Y(I) = Y(I) +DIAG(I,J)*X(JOFF+I)

ENDDO

ENDDO

Here, each of the diagonals is multiplied by the vector x and the result added to the

vector y. It is again assumed that the vector y has been filled with zeros at the start of

the loop. From the point of view of parallelization and/or vectorization, the above code is

probably the better to use. On the other hand, it is not general enough.

Solving a lower or upper triangular system is another important “kernel” in sparse

matrix computations. The following segment of code shows a simple routine for solving a

unit lower triangular system Lx = y for the CSR storage format.

88 CHAPTER 3 SPARSE MATRICES

X(1) = Y(1)

DO I = 2, N

K1 = IAL(I)

K2 = IAL(I+1)-1

X(I)=Y(I)-DOTPRODUCT(AL(K1:K2),X(JAL(K1:K2)))

ENDDO

At each step, the inner product of the current solution x with the i-th row is computed and

subtracted from y(i). This gives the value of x(i). The dotproduct function computes

the dot product of two arbitrary vectors u(k1:k2) and v(k1:k2). The vector AL(K1:K2)

is the i-th row of the matrix L in sparse format and X(JAL(K1:K2)) is the vector of the

components of X gathered into a short vector which is consistent with the column indices

of the elements in the row AL(K1:K2).

SPARSE DIRECT SOLUTION METHODS

3.6

Most direct methods for sparse linear systems perform an LU factorization of the original

matrix and try to reduce cost by minimizing fill-ins, i.e., nonzero elements introduced

during the elimination process in positions which were initially zeros. The data structures

employed are rather complicated. The early codes relied heavily on linked lists which are

convenient for inserting new nonzero elements. Linked-list data structures were dropped

in favor of other more dynamic schemes that leave some initial elbow room in each row

for the insertions, and then adjust the structure as more fill-ins are introduced.

A typical sparse direct solution solver for positive definite matrices consists of four

phases. First, preordering is applied to minimizing fill-in. Two popular methods are used:

minimal degree ordering and nested-dissection ordering. Second, a symbolic factorization

is performed. This means that the factorization is processed only symbolically, i.e., without

numerical values. Third, the numerical factorization, in which the actual factors L and U
are formed, is processed. Finally, the forward and backward triangular sweeps are executed

for each different right-hand side. In a code where numerical pivoting is necessary, the

symbolic phase cannot be separated from the numerical factorization.

TEST PROBLEMS

3.7

For comparison purposes it is important to use a common set of test matrices that represent

a wide spectrum of applications. There are two distinct ways of providing such data sets.

The first approach is to collect sparse matrices in a well-specified standard format from

various applications. This approach is used in the Harwell-Boeing collection of test matri-

ces. The second approach is to generate these matrices with a few sample programs such

3.7 TEST PROBLEMS 89

as those provided in the SPARSKIT library [179]. The coming chapters will use exam-

ples from these two sources. In particular, five test problems will be emphasized for their

varying degrees of difficulty.

The SPARSKIT package can generate matrices arising from the discretization of the

two- or three-dimensional Partial Differential Equations

�
@

@x

�
a
@u

@x

�
�

@

@y

�
b
@u

@y

�
�

@

@z

�
c
@u

@z

�

+
@ (du)

@x
+

@ (eu)

@y
+

@ (fu)

@z
+ gu = h

on rectangular regions with general mixed-type boundary conditions. In the test problems,

the regions are the square
 = (0; 1)2, or the cube
 = (0; 1)3; the Dirichlet condition

u = 0 is always used on the boundary. Only the discretized matrix is of importance, since

the right-hand side will be created artificially. Therefore, the right-hand side, h, is not

relevant.

a(x;y)=b(x;y)=
103

-

6

a(x; y) = b(x; y) = 1

1
4

3
4

1
4

3
4

Figure 3.11 Physical domain and coefficients for Problem 1.

Problem 1: F2DA. In the first test problem which will be labeled F2DA, the domain is

two-dimensional, with

a(x; y) = b(x; y) = 1:0

and

d(x; y) = (x+ y); e(x; y) = (x� y); f(x; y) = g(x; y) = 0:0; (3.4)

where the constant is equal to 10. The domain and coefficients for this problem are shown

is Figure 3.11. If the number of points in each direction is 34, then there are nx = ny = 32

90 CHAPTER 3 SPARSE MATRICES

interior points in each direction and a matrix of size n = nx � ny = 322 = 1024 is

obtained. In this test example, as well as the other ones described below, the right-hand

side is generated as

b = Ae;

in which e = (1; 1; : : : ; 1)T . The initial guess is always taken to be a vector of pseudo-

random values.

Problem 2: F2DB. The second test problem is similar to the previous one but involves

discontinuous coefficient functions a and b. Here, nx = ny = 32 and the functions

d; e; f; g are also defined by (3.4). However, the functions a and b now both take the value

1,000 inside the subsquare of width 1
2 centered at (12 ;

1
2), and one elsewhere in the domain,

i.e.,

a(x; y) = b(x; y) =

�
103 if 1

4 < x; y < 3
4

1 otherwise
:

Problem 3: F3D. The third test problem is three-dimensional with nx = ny = nz = 16
internal mesh points in each direction leading to a problem of size n = 4096. In this case,

we take

a(x; y; z) = b(x; y; z) = c(x; y; z) = 1

d(x; y; z) = exy; e(x; y; z) = e�xy;

and

f(x; y; z) = g(x; y; z) = 0:0:

The constant is taken to be equal to 10.0 as before.

The Harwell-Boeing collection is a large data set consisting of test matrices which

have been contributed by researchers and engineers from many different disciplines. These

have often been used for test purposes in the literature [78]. The collection provides a data

structure which constitutes an excellent medium for exchanging matrices. The matrices are

stored as ASCII files with a very specific format consisting of a four- or five-line header.

Then, the data containing the matrix is stored in CSC format together with any right-

hand sides, initial guesses, or exact solutions when available. The SPARSKIT library also

provides routines for reading and generating matrices in this format.

Only one matrix from the collection was selected for testing the algorithms described

in the coming chapters. The matrices in the last two test examples are both irregularly

structured.

Problem 4: ORS The matrix selected from the Harwell-Boeing collection is ORSIRR1.

This matrix arises from a reservoir engineering problem. Its size is n = 1030 and it has

a total of Nz =6,858 nonzero elements. The original problem is based on a 21� 21 � 5
irregular grid. In this case and the next one, the matrices are preprocessed by scaling their

rows and columns.

EXERCISES AND NOTES 91

Problem 5: FID This test matrix is extracted from the well known fluid flow simulation

package FIDAP [84]. It is actually the test example number 36 from this package and

features a two-dimensional Chemical Vapor Deposition in a Horizontal Reactor. The matrix

has a size of n = 3079 and has Nz = 53843 nonzero elements. It has a symmetric pattern

and few diagonally dominant rows or columns. The rows and columns are prescaled in the

same way as in the previous example. Figure 3.12 shows the patterns of the matrices ORS

and FID.

Figure 3.12 Patterns of the matrices ORS (left) and FID

(right).

EXERCISES

1 Consider the mesh of a discretized PDE. In which situations is the graph representing this mesh

the same as the adjacency graph of the matrix? Give examples from both Finite Difference and

Finite Element discretizations.

2 Let A and B be two sparse (square) matrices of the same dimension. How can the graph of

C = A+B be characterized with respect to the graphs of A and B?

3 Consider the matrix defined as

P� = I�;�:

Show directly (without using Proposition 3.1 or interchange matrices) that the following three

relations hold

A�;� = I�;�A

I�;� = P T
�

AP T
� = A�;�:

92 CHAPTER 3 SPARSE MATRICES

4 Consider the two matrices

A =

0
BBBB@

? ? 0 ? 0 0
0 ? 0 0 0 ?
0 ? ? 0 0 0
0 ? 0 0 ? 0
0 0 0 0 ? 0
0 0 0 0 0 ?

1
CCCCA B =

0
BBBB@

? 0 0 0 0 0
? 0 ? 0 ? 0
0 ? 0 0 0 0
? ? 0 0 0 0
0 ? 0 ? ? 0
0 0 ? 0 0 ?

1
CCCCA

where a ? represents an arbitrary nonzero element.

a. Show the adjacency graphs of the matrices A, B, AB, and BA. (Assume that there are

no numerical cancellations in computing the products AB and BA). Since there are zero

diagonal elements, represent explicitly the cycles corresponding to the (i; i) edges when

they are present.

b. Consider the matrix C = AB. Give an interpretation of an edge in the graph of C in terms

of edges in the graph of A and B. Verify this answer using the above matrices.

c. Consider the particular case in which B = A. Give an interpretation of an edge in the graph

of C in terms of paths of length two in the graph of A. The paths must take into account the

cycles corresponding to nonzero diagonal elements of A.

d. Now consider the case where B = A2. Give an interpretation of an edge in the graph of

C = A3 in terms of paths of length three in the graph of A. Generalize the result to arbitrary

powers of A.

5 Consider a 6� 6 matrix which has the pattern

A =

0
BBBB@

? ? ?
? ? ? ?

? ?
? ?

? ? ? ?
? ? ?

1
CCCCA :

a. Show the adjacency graph of A.

b. Consider the permutation � = f1; 3; 4; 2; 5; 6g. Show the adjacency graph and new pattern

for the matrix obtained from a symmetric permutation of A based on the permutation array �.

6 Consider a matrix which has the pattern

A =

0
BBBBBBBB@

? ? ? ?
? ? ? ?

? ? ? ?
? ? ? ?

? ? ? ?
? ? ? ?

? ? ? ?
? ? ? ?

1
CCCCCCCCA

:

a. Show the adjacency graph of A. (Place the 8 vertices on a circle.)

b. Consider the permutation � = f1; 3; 5; 7; 2; 4; 6; 8g. Show the adjacency graph and new

pattern for the matrix obtained from a symmetric permutation of A based on the permutation

array �.

c. Show the adjacency graph and new pattern for the matrix obtained from a reverse Cuthill-

McKee ordering of A starting with the node 1. (Assume the vertices adjacent to a given

vertex are always listed in increasing order in the data structure that describes the graph.)

EXERCISES AND NOTES 93

d. Find a multicolor ordering for A (give the vertex labels color 1, followed by those for color

2, etc.).

7 Given a five-point finite difference graph, show that the greedy algorithm will always find a

coloring of the graph with two colors.

8 Prove that the total number of colors found by the greedy multicoloring algorithm does not

exceed �max+1, where �max is the maximum degree of all the vertices of a graph (not counting

the cycles (i; i) associated with diagonal elements).

9 Consider a graph that is bipartite, i.e., 2-colorable. Assume that the vertices of the graph are

colored by a variant of Algorithm (3.4), in which the nodes are traversed in a certain order

i1; i2; : : : ; in.

a. Is it true that for any permutation i1; : : : ; in the number of colors found will be two?

b. Consider now a permutation satisfying the following property: for each j at least one of the

nodes i1; i2; : : : ; ij�1 is adjacent to ij . Show that the algorithm will find a 2-coloring of the

graph.

c. Among the following traversals indicate which ones satisfy the property of the previous

question: (1) Breadth-First Search, (2) random traversal, (3) traversal defined by ij = any

node adjacent to ij�1.

10 Given a matrix that is irreducible and with a symmetric pattern, show that its structural inverse is

dense. Structural inverse means the pattern of the inverse, regardless of the values, or otherwise

stated, is the union of all patterns of the inverses for all possible values. [Hint: Use Cayley

Hamilton’s theorem and a well known result on powers of adjacency matrices mentioned at the

end of Section 3.2.1.]

11 The most economical storage scheme in terms of memory usage is the following variation on the

coordinate format: Store all nonzero values aij in a real array AA[1 : Nz] and the corresponding

“linear array address” (i� 1) � n+ j in an integer array JA[1 : Nz]. The order in which these

corresponding entries are stored is unimportant as long as they are both in the same position in

their respective arrays. What are the advantages and disadvantages of this data structure? Write

a short routine for performing a matrix-by-vector product in this format.

12 Write a FORTRAN code segment to perform the matrix-by-vector product for matrices stored

in Ellpack-Itpack format.

13 Write a small subroutine to perform the following operations on a sparse matrix in coordinate

format, diagonal format, and CSR format:

a. Count the number of nonzero elements in the main diagonal;

b. Extract the diagonal whose offset is k;

c. Add a nonzero element in position (i; j) of the matrix (this position may initially contain a

zero or a nonzero element);

d. Add a given diagonal to the matrix. What is the most convenient storage scheme for each of

these operations?

14 Linked lists is another popular scheme often used for storing sparse matrices. These allow to link

together k data items (e.g., elements of a given row) in a large linear array. A starting position is

given in the array which contains the first element of the set. Then, a link to the next element in

the array is provided from a LINK array.

a. Show how to implement this scheme. A linked list is to be used for each row.

b. What are the main advantages and disadvantages of linked lists?

94 CHAPTER 3 SPARSE MATRICES

c. Write an algorithm to perform a matrix-by-vector product in this format.

NOTES AND REFERENCES. Two good references on sparse matrix computations are the book by

George and Liu [104] and the more recent volume by Duff, Erisman, and Reid [77]. These are geared

toward direct solution methods and the first specializes in symmetric positive definite problems. Also

of interest are [157] and [163] and the early survey by Duff [76].

Sparse matrix techniques have traditionally been associated with direct solution methods.

Clearly, this is now changing rapidly since the sophistication of iterative solution packages is

starting to equal that of direct solvers. The SPARSKIT library, a package for sparse matrix

computations [179] is currently in its second version and is available through anonymous FTP

(http://www.cs.umn.edu/Research/arpa/SPARSKIT). Another available software package

which emphasizes object-oriented design with the goal of hiding complex data structures from

users is PETSc [19]. A manipulation package for sparse matrices, similar to SPARSKIT in spirit, is

SMMS developed by Alvarado [6].

The idea of the greedy multicoloring algorithm is known in Finite Element techniques (to color

elements); see, e.g., Benantar and Flaherty [23]. Wu [229] presents the greedy algorithm for multi-

coloring vertices and uses it for SOR type iterations, see also [182]. The effect of multicoloring has

been extensively studied by Adams [2, 3] and Poole and Ortega [164]. Interesting results regarding

multicoloring in the context of finite elements based on quad-tree structures have been obtained by

Benantar and Flaherty [23] who show, in particular, that with this structure a maximum of six colors

is required.

C H A P T E R

4

BASIC ITERATIVE METHODS

The �rst iterative methods used for solving large linear systems were based

on relaxation of the coordinates. Beginning with a given approximate solu-

tion, these methods modify the components of the approximation, one or a

few at a time and in a certain order, until convergence is reached. Each of

these modi�cations, called relaxation steps, is aimed at annihilating one or

a few components of the residual vector. Now, these techniques are rarely

used separately. However, when combined with the more e�cient methods

described in later chapters, they can be quite successful. Moreover, there

are a few application areas where variations of these methods are still quite

popular.

JACOBI, GAUSS-SEIDEL, AND SOR

4.1

This chapter begins by reviewing the basic iterative methods for solving linear systems.

Given an n � n real matrix A and a real n-vector b, the problem considered is: Find x
belonging to R

n
such that

Ax = b (4.1)

Equation (4.1) is a linear system, A is the coefficient matrix, b is the right-hand side vector,

and x is the vector of unknowns. Most of the methods covered in this chapter involve pass-

ing from one iterate to the next by modifying one or a few components of an approximate

vector solution at a time. This is natural since there are simple criteria when modifying a

component in order to improve an iterate. One example is to annihilate some component(s)

of the residual vector b�Ax. The convergence of these methods is rarely guaranteed for all

matrices, but a large body of theory exists for the case where the coefficient matrix arises

from the finite difference discretization of Elliptic Partial Differential Equations.

95

96 CHAPTER 4 BASIC ITERATIVE METHODS

We begin with the decomposition

A = D �E � F; (4.2)

in which D is the diagonal of A, �E its strict lower part, and �F its strict upper part, as

illustrated in Figure 4.1. It is always assumed that the diagonal entries of A are all nonzero.

D

- F

- E

Figure 4.1 Initial partitioning of matrix A.

The Jacobi iteration determines the i-th component of the next approximation so as

to annihilate the i-th component of the residual vector. In the following, �
(k)
i denotes the

i-th component of the iterate xk and �i the i-th component of the right-hand side b. Thus,

writing

(b�Axk+1)i = 0; (4.3)

in which (y)i represents the i-th component of the vector y, yields

aii�
(k+1)
i = �

nX
j=1
j 6=i

aij�
(k)
j + �i;

or

�
(k+1)
i =

1

aii

0
B@�i � nX

j=1

j 6=i

aij�
(k)
j

1
CA i = 1; : : : ; n: (4.4)

This is a component-wise form of the Jacobi iteration. All components of the next iterate

can be grouped into the vector xk+1. The above notation can be used to rewrite the Jacobi

iteration (4.4) in vector form as

xk+1 = D�1(E + F)xk +D�1b: (4.5)

Similarly, the Gauss-Seidel iteration corrects the i-th component of the current ap-

proximate solution, in the order i = 1; 2; : : : ; n, again to annihilate the i-th component of

the residual. However, this time the approximate solution is updated immediately after the

new component is determined. The newly computed components �
(k)
i , i = 1; 2; : : : ; n can

be changed within a working vector which is redefined at each relaxation step. Thus, since

4.1 JACOBI, GAUSS-SEIDEL, AND SOR 97

the order is i = 1; 2; : : :, the result at the i-th step is

�i �
i�1X
j=1

aij�
(k+1)
j � aii�

(k+1)
i �

nX
j=i+1

aij�
(k)
j = 0; (4.6)

which leads to the iteration,

�
(k+1)
i =

1

aii

0
@� i�1X

j=1

aij�
(k+1)
j �

nX
j=i+1

aij�
(k)
j + �i

1
A ; i = 1; : : : ; n: (4.7)

The defining equation (4.6) can be written as

b+Exk+1 �Dxk+1 + Fxk = 0;

which leads immediately to the vector form of the Gauss-Seidel iteration

xk+1 = (D �E)�1Fxk + (D �E)�1b: (4.8)

Computing the new approximation in (4.5) requires multiplying by the inverse of the

diagonal matrix D. In (4.8) a triangular system must be solved with D � E, the lower

triangular part ofA. Thus, the new approximation in a Gauss-Seidel step can be determined

either by solving a triangular system with the matrix D �E or from the relation (4.7).

A backward Gauss-Seidel iteration can also be defined as

(D � F)xk+1 = Exk + b; (4.9)

which is equivalent to making the coordinate corrections in the order n; n � 1; : : : ; 1. A

Symmetric Gauss-Seidel Iteration consists of a forward sweep followed by a backward

sweep.

The Jacobi and the Gauss-Seidel iterations are both of the form

Mxk+1 = Nxk + b = (M �A)xk + b; (4.10)

in which

A = M �N (4.11)

is a splitting of A, with M = D for Jacobi, M = D � E for forward Gauss-Seidel,

and M = D � F for backward Gauss-Seidel. An iterative method of the form (4.10) can

be defined for any splitting of the form (4.11) where M is nonsingular. Overrelaxation is

based on the splitting

!A = (D � !E)� (!F + (1� !)D);

and the corresponding Successive Over Relaxation (SOR) method is given by the recursion

(D � !E)xk+1 = [!F + (1� !)D]xk + !b: (4.12)

The above iteration corresponds to the relaxation sequence

�
(k+1)
i = !�GSi + (1� !)�

(k)
i ; i = 1; 2; : : : ; n;

in which �GSi is defined by the expression in the right-hand side of (4.7). A backward SOR

sweep can be defined analogously to the backward Gauss-Seidel sweep (4.9).

98 CHAPTER 4 BASIC ITERATIVE METHODS

A Symmetric SOR (SSOR) step consists of the SOR step (4.12) followed by a back-

ward SOR step,

(D � !E)xk+1=2 = [!F + (1� !)D]xk + !b

(D � !F)xk+1 = [!E + (1� !)D]xk+1=2 + !b

This gives the recurrence

xk+1 = G!xk + f!;

where

G! = (D � !F)�1(!E + (1� !)D) �
(D � !E)�1(!F + (1� !)D); (4.13)

f! = !(D � !F)�1
�
I + [!E + (1� !)D](D � !E)�1

�
b: (4.14)

Observing that

[!E + (1� !)D](D � !E)�1 = [�(D � !E) + (2� !)D](D � !E)�1

= �I + (2� !)D(D � !E)�1;

f! can be rewritten as

f! = !(2� !) (D � !F)�1D(D � !E)�1b:

4.1.1 BLOCK RELAXATION SCHEMES

Block relaxation schemes are generalizations of the “point” relaxation schemes described

above. They update a whole set of components at each time, typically a subvector of the

solution vector, instead of only one component. The matrix A and the right-hand side and

solution vectors are partitioned as follows:

A =

0
BBBB@
A11 A12 A13 � � � A1p

A21 A22 A23 � � � A2p

A31 A32 A33 � � � A3p
...

...
...

. . .
...

Ap1 Ap2 � � � � � � App

1
CCCCA ; x =

0
BBBB@
�1
�2
�3
...

�p

1
CCCCA ; b =

0
BBBB@
�1
�2
�3
...

�p

1
CCCCA ; (4.15)

in which the partitionings of b and x into subvectors �i and �i are identical and compatible

with the partitioning of A. Thus, for any vector x partitioned as in (4.15),

(Ax)i =

pX
j=1

Aij�j ;

in which (y)i denotes the i-th component of the vector i according to the above partitioning.

The diagonal blocks in A are square and assumed nonsingular.

Now define, similarly to the scalar case, the splitting

A = D �E � F

4.1 JACOBI, GAUSS-SEIDEL, AND SOR 99

with

D =

0
BB@
A11

A22
. . .

App

1
CCA ; (4.16)

E = �

0
BB@

O
A21 O

...
...

. . .

Ap1 Ap2 � � � O

1
CCA ; F = �

0
BB@
O A12 � � � A1p

O � � � A2p

. . .
...

O

1
CCA :

With these definitions, it is easy to generalize the previous three iterative procedures de-

fined earlier, namely, Jacobi, Gauss-Seidel, and SOR. For example, the block Jacobi it-

eration is now defined as a technique in which the new subvectors �
(k)
i are all replaced

according to

Aii�
(k+1)
i = ((E + F)xk)i + �i

or,

�
(k+1)
i = A�1ii ((E + F)xk)i +A�1ii �i; i = 1; : : : ; p;

which leads to the same equation as before,

xk+1 = D�1(E + F)xk +D�1b;

except that the meanings of D, E, and F have changed to their block analogues.

With finite difference approximations of PDEs, it is standard to block the variables

and the matrix by partitioning along whole lines of the mesh. For example, for the two-

dimensional mesh illustrated in Figure 2.5, this partitioning is

�1 =

0
BBB@
u11
u12
u13
u14
u15

1
CCCA ; �2 =

0
BBB@
u21
u22
u23
u24
u25

1
CCCA ; �3 =

0
BBB@
u31
u32
u33
u34
u35

1
CCCA :

This corresponds to the mesh 2.5 of Chapter 2, whose associated matrix pattern is shown

in Figure 2.6. A relaxation can also be defined along the vertical instead of the horizontal

lines. Techniques of this type are often known as line relaxation techniques.

In addition, a block can also correspond to the unknowns associated with a few con-

secutive lines in the plane. One such blocking is illustrated in Figure 4.2 for a 6 � 6 grid.

The corresponding matrix with its block structure is shown in Figure 4.3. An important

difference between this partitioning and the one corresponding to the single-line partition-

ing is that now the matrices Aii are block-tridiagonal instead of tridiagonal. As a result,

solving linear systems with Aii may be much more expensive. On the other hand, the num-

ber of iterations required to achieve convergence often decreases rapidly as the block-size

increases.

100 CHAPTER 4 BASIC ITERATIVE METHODS

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

Figure 4.2 Partitioning of a 6�6 square mesh into three sub-

domains.

Figure 4.3 Matrix associated with the mesh of Figure 4.2.

Finally, block techniques can be defined in more general terms. First, by using blocks

that allow us to update arbitrary groups of components, and second, by allowing the blocks

to overlap. Since this is a form of the domain-decomposition method which will be seen

later, we define the approach carefully. So far, our partition has been based on an actual

set-partition of the variable set S = f1; 2; : : : ; ng into subsets S1; S2; : : : ; Sp, with the

condition that two distinct subsets are disjoint. In set theory, this is called a partition of S.

More generally, a set-decomposition of S removes the constraint of disjointness. In other

words it is required that the union of the subsets Si’s be equal to S:

Si � S;
[

i=1;���;p

Si = S:

In the following, ni denotes the size of Si and the subset Si is of the form,

Si = fmi(1);mi(2); : : :mi(ni)g:

4.1 JACOBI, GAUSS-SEIDEL, AND SOR 101

A general block Jacobi iteration can be defined as follows. Let Vi be the n�ni matrix

Vi = [emi(1); emi(2); : : : emi(ni)]

and

Wi = [�mi(1)emi(1); �mi(2)emi(2); : : : ; �mi(ni)emi(ni)];

where each ej is the j-th column of the n � n identity matrix, and �mi(j) represents a

weight factor chosen so that

W T
i Vi = I:

When there is no overlap, i.e., when the Si’s form a partition of the whole set f1; 2; : : : ; ng,

then define �mi(j) = 1.

Let Aij be the ni � nj matrix

Aij = W T
i AVj

and define similarly the partitioned vectors

�i = W T
i x; �i = W T

i b:

Note that ViW
T
i is a projector from R

n
to the subspace Ki spanned by the columnsmi(1),

. . . , mi(ni). In addition, we have the relation

x =

sX
i=1

Vi�i:

The ni-dimensional vector W T
i x represents the projection ViW

T
i x of x with respect to

the basis spanned by the columns of Vi. The action of Vi performs the reverse operation.

That means Viy is an extension operation from a vector y in Ki (represented in the basis

consisting of the columns of Vi) into a vector Viy in R
n

. The operator W T
i is termed a

restriction operator and Vi is an prolongation operator.

Each component of the Jacobi iteration can be obtained by imposing the condition that

the projection of the residual in the span of Si be zero, i.e.,

W T
i

2
4b�A

0
@ViW T

i xk+1 +
X
j 6=i

VjW
T
j xk

1
A
3
5 = 0:

Remember that �j = W T
j x, which can be rewritten as

�
(k+1)
i = �

(k)
i +A�1ii W T

i (b�Axk): (4.17)

This leads to the following algorithm:

ALGORITHM 4.1: General Block Jacobi Iteration

1. For k = 0; 1; : : : ; until convergence Do:

2. For i = 1; 2; : : : ; p Do:

3. Solve Aii�i = W T
i (b�Axk)

4. Set xk+1 := xk + Vi�i
5. EndDo

6. EndDo

102 CHAPTER 4 BASIC ITERATIVE METHODS

As was the case with the scalar algorithms, there is only a slight difference between

the Jacobi and Gauss-Seidel iterations. Gauss-Seidel immediately updates the component

to be corrected at step i, and uses the updated approximate solution to compute the residual

vector needed to correct the next component. However, the Jacobi iteration uses the same

previous approximation xk for this purpose. Therefore, the block Gauss-Seidel iteration

can be defined algorithmically as follows:

ALGORITHM 4.2: General Block Gauss-Seidel Iteration

1. Until convergence Do:

2. For i = 1; 2; : : : ; p Do:

3. Solve Aii�i =W T
i (b�Ax)

4. Set x := x+ Vi�i
5. EndDo

6. EndDo

From the point of view of storage, Gauss-Seidel is more economical because the new ap-

proximation can be overwritten over the same vector. Also, it typically converges faster. On

the other hand, the Jacobi iteration has some appeal on parallel computers since the second

Do loop, corresponding to the p different blocks, can be executed in parallel. Although the

point Jacobi algorithm by itself is rarely a successful technique for real-life problems, its

block Jacobi variant, when using large enough overlapping blocks, can be quite attractive

especially in a parallel computing environment.

4.1.2 ITERATION MATRICES AND PRECONDITIONING

The Jacobi and Gauss-Seidel iterations are of the form

xk+1 = Gxk + f; (4.18)

in which

GJA(A) = I �D�1A; (4.19)

GGS(A) = I � (D �E)�1A; (4.20)

for the Jacobi and Gauss-Seidel iterations, respectively. Moreover, given the matrix split-

ting

A =M �N; (4.21)

where A is associated with the linear system (4.1), a linear fixed-point iteration can be

defined by the recurrence

xk+1 =M�1Nxk +M�1b; (4.22)

4.1 JACOBI, GAUSS-SEIDEL, AND SOR 103

which has the form (4.18) with

G =M�1N =M�1(M �A) = I �M�1A; f =M�1b: (4.23)

For example, for the Jacobi iteration, M = D;N = A � D, while for the Gauss-Seidel

iteration, M = D � E;N =M �A = F .

The iteration xk+1 = Gxk + f can be viewed as a technique for solving the system

(I �G)x = f:

Since G has the form G = I �M�1A, this system can be rewritten as

M�1Ax =M�1b:

The above system which has the same solution as the original system is called a precon-

ditioned system and M is the preconditioning matrix or preconditioner. In other words, a

relaxation scheme is equivalent to a fixed-point iteration on a preconditioned system.

For example, for the Jacobi, Gauss-Seidel, SOR, and SSOR iterations, these precon-

ditioning matrices are, respectively,

MJA = D; (4.24)

MGS = D �E; (4.25)

MSOR =
1

!
(D � !E); (4.26)

MSSOR =
1

!(2� !)
(D � !E)D�1(D � !F): (4.27)

Thus, the Jacobi preconditioner is simply the diagonal of A, while the Gauss-Seidel pre-

conditioner is the lower triangular part of A. The constant coefficients in front of the matri-

ces MSOR and MSSOR only have the effect of scaling the equations of the preconditioned

system uniformly. Therefore, they are unimportant in the preconditioning context.

Note that the “preconditioned” system may be a full system. Indeed, there is no reason

why M�1 should be a sparse matrix (even though M may be sparse), since the inverse

of a sparse matrix is not necessarily sparse. This limits the number of techniques that can

be applied to solve the preconditioned system. Most of the iterative techniques used only

require matrix-by-vector products. In this case, to computew =M�1Av for a given vector

v, first compute r = Av and then solve the system Mw = r:

r = Av;

w =M�1r:

In some cases, it may be advantageous to exploit the splitting A = M �N and compute

w =M�1Av as w = (I �M�1N)v by the procedure

r = Nv;

w = M�1r;

w := v � w:

The matrix N may be sparser than A and the matrix-by-vector product Nv may be less

expensive than the product Av. A number of similar but somewhat more complex ideas

have been exploited in the context of preconditioned iterative methods. A few of these will

be examined in Chapter 9.

104 CHAPTER 4 BASIC ITERATIVE METHODS

CONVERGENCE

4.2

All the methods seen in the previous section define a sequence of iterates of the form

xk+1 = Gxk + f; (4.28)

in which G is a certain iteration matrix. The questions addressed in this section are: (a) if

the iteration converges, then is the limit indeed a solution of the original system? (b) under

which conditions does the iteration converge? (c) when the iteration does converge, how

fast is it?

If the above iteration converges, its limit x satisfies

x = Gx+ f: (4.29)

In the case where the above iteration arises from the splitting A =M �N , it is easy to see

that the solution x to the above system is identical to that of the original system Ax = b.
Indeed, in this case the sequence (4.28) has the form

xk+1 =M�1Nxk +M�1b

and its limit satisfies

Mx = Nx+ b;

or Ax = b. This answers question (a). Next, we focus on the other two questions.

4.2.1 GENERAL CONVERGENCE RESULT

If I�G is nonsingular then there is a solution x� to the equation (4.29). Subtracting (4.29)

from (4.28) yields

xk+1 � x� = G(xk � x�) = � � � = Gk+1(x0 � x�): (4.30)

Standard results seen in Chapter 1 imply that if the spectral radius of the iteration matrixG
is less than unity, then xk �x� converges to zero and the iteration (4.28) converges toward

the solution defined by (4.29). Conversely, the relation

xk+1 � xk = G(xk � xk�1) = � � � = Gk(f � (I �G)x0):

shows that if the iteration converges for any x0 and f then Gkv converges to zero for any

vector v. As a result, �(G) must be less than unity and the following theorem is proved:

THEOREM 4.1 Let G be a square matrix such that �(G) < 1. Then I � G is nonsin-

gular and the iteration (4.28) converges for any f and x0. Conversely, if the iteration (4.28)

converges for for any f and x0, then �(G) < 1.

Since it is expensive to compute the spectral radius of a matrix, sufficient conditions that

guarantee convergence can be useful in practice. One such sufficient condition could be

obtained by utilizing the inequality, �(G) � kGk, for any matrix norm.

4.2 CONVERGENCE 105

COROLLARY 4.1 Let G be a square matrix such that kGk < 1 for some matrix norm

k:k. Then I �G is nonsingular and the iteration (4.28) converges for any initial vector x0.

Apart from knowing that the sequence (4.28) converges, it is also desirable to know

how fast it converges. The error dk = xk � x� at step k satisfies

dk = Gkd0:

The matrix G can be expressed in the Jordan canonical form as G = XJX�1. Assume for

simplicity that there is only one eigenvalue of G of largest modulus and call it �. Then

dk = �kX

�
J

�

�k

X�1d0:

A careful look at the powers of the matrix J=� shows that all its blocks, except the block

associated with the eigenvalue �, converge to zero as k tends to infinity. Let this Jordan

block be of size p and of the form

J� = �I +E;

where E is nilpotent of index p, i.e., Ep = 0. Then, for k � p,

Jk
� = (�I +E)k = �k(I + ��1E)k = �k

p�1X
i=0

��i
�
k

i

�
Ei

!
:

If k is large enough, then for any � the dominant term in the above sum is the last term,

i.e.,

Jk
� � �k�p+1

�
k

p� 1

�
Ep�1:

Thus, the norm of dk = Gkd0 has the asymptotical form

kdkk � C � j�k�p+1j
�

k

p� 1

�
;

where C is some constant. The convergence factor of a sequence is the limit

� = lim
k!1

�kdkk
kd0k

�1=k
:

It follows from the above analysis that � = �(G). The convergence rate � is the (natural)

logarithm of the inverse of the convergence factor

� = � ln �:

The above definition depends on the initial vector x0, so it may be termed a specific

convergence factor. A general convergence factor can also be defined by

� = lim
k!1

max
x02R

n

kdkk
kd0k

!1=k
:

106 CHAPTER 4 BASIC ITERATIVE METHODS

This factor satisfies

� = lim
k!1

max
d02R

n

kGkd0k
kd0k

!1=k

= lim
k!1

�kGkk�1=k = �(G):

Thus, the global asymptotic convergence factor is equal to the spectral radius of the it-

eration matrix G. The general convergence rate differs from the specific rate only when

the initial error does not have any components in the invariant subspace associated with

the dominant eigenvalue. Since it is hard to know this information in advance, the general

convergence factor is more useful in practice.

Example 4.1 Consider the simple example of Richardson’s Iteration,

xk+1 = xk + � (b�Axk) ; (4.31)

where � is a nonnegative scalar. This iteration can be rewritten as

xk+1 = (I � �A)xk + �b: (4.32)

Thus, the iteration matrix is G� = I � �A and the convergence factor is �(I � �A).
Assume that the eigenvalues �i; i = 1; : : : ; n, are all real and such that,

�min � �i � �max:

Then, the eigenvalues �i of G� are such that

1� ��max � �i � 1� ��min:

In particular, if �min < 0 and �max > 0, at least one eigenvalue is > 1, and so �(G�) > 1
for any �. In this case the method will always diverge for some initial guess. Let us assume

that all eigenvalues are positive, i.e., �min > 0. Then, the following conditions must be

satisfied in order for the method to converge:

1� ��min < 1;

1� ��max > �1:
The first condition implies that � > 0, while the second requires that � � 2=�max. In

other words, the method converges for any scalar � which satisfies

0 < � <
2

�max
:

The next question is: What is the best value �opt for the parameter �, i.e., the value of �
which minimizes �(G�)? The spectral radius of G� is

�(G�) = maxfj1� ��minj; j1� ��maxjg:
This function of � is depicted in Figure 4.4. As the curve shows, the best possible � is

reached at the point where the curve j1 � �max�j with positive slope crosses the curve

j1� �min�j with negative slope, i.e., when

�1 + �max� = 1� �min�:

4.2 CONVERGENCE 107

1
�min

1
�max

�opt

j1� �min�j
j1� �max�j

�

1

Figure 4.4 The curve �(G�) as a function of �.

This gives

�opt =
2

�min + �max
: (4.33)

Replacing this in one of the two curves gives the corresponding optimal spectral radius

�opt =
�max � �min

�max + �min
:

This expression shows the difficulty with the presence of small and large eigenvalues. The

convergence rate can be extremely small for realistic problems. In addition, to achieve

good convergence, eigenvalue estimates are required in order to obtain the optimal or a

near-optimal �, and this may cause difficulties. Finally, since �max can be very large, the

curve �(G�) can be extremely sensitive near the optimal value of �. These observations

are common to many iterative methods that depend on an acceleration parameter.

4.2.2 REGULAR SPLITTINGS

DEFINITION 4.1 Let A;M;N be three given matrices satisfying A = M � N . The

pair of matrices M;N is a regular splitting of A, if M is nonsingular and M�1 and N are

nonnegative.

With a regular splitting, we associate the iteration

xk+1 =M�1Nxk +M�1b: (4.34)

The question asked is: Under which conditions does such an iteration converge? The fol-

lowing result, which generalizes Theorem 1.15, gives the answer.

THEOREM 4.2 Let M;N be a regular splitting of a matrix A. Then �(M�1N) < 1 if

and only if A is nonsingular and A�1 is nonnegative.

108 CHAPTER 4 BASIC ITERATIVE METHODS

Proof. Define G =M�1N . From the fact that �(G) < 1, and the relation

A = M(I �G) (4.35)

it follows that A is nonsingular. The assumptions of Theorem 1.15 are satisfied for the

matrix G since G = M�1N is nonnegative and �(G) < 1. Therefore, (I � G)�1 is

nonnegative as is A�1 = (I �G)
�1

M�1.

To prove the sufficient condition, assume that A is nonsingular and that its inverse is

nonnegative. Since A and M are nonsingular, the relation (4.35) shows again that I �G is

nonsingular and in addition,

A�1N =
�
M(I �M�1N)

��1
N

= (I �M�1N)�1M�1N

= (I �G)�1G: (4.36)

Clearly, G = M�1N is nonnegative by the assumptions, and as a result of the Perron-

Frobenius theorem, there is a nonnegative eigenvector x associated with �(G) which is an

eigenvalue, such that

Gx = �(G)x:

From this and by virtue of (4.36), it follows that

A�1Nx =
�(G)

1� �(G)
x:

Since x and A�1N are nonnegative, this shows that

�(G)

1� �(G)
� 0

and this can be true only when 0 � �(G) � 1. Since I �G is nonsingular, then �(G) 6= 1,

which implies that �(G) < 1.

This theorem establishes that the iteration (4.34) always converges, if M;N is a regu-

lar splitting and A is an M-matrix.

4.2.3 DIAGONALLY DOMINANT MATRICES

We begin with a few standard definitions.

DEFINITION 4.2 A matrix A is

� (weakly) diagonally dominant if

jajj j �
i=nX
i=1

i 6=j

jaij j; j = 1; : : : ; n:

4.2 CONVERGENCE 109

� strictly diagonally dominant if

jajj j >
i=nX
i=1
i6=j

jaij j; j = 1; : : : ; n:

� irreducibly diagonally dominant if A is irreducible, and

jajj j �
i=nX
i=1

i6=j

jaij j; j = 1; : : : ; n:

with strict inequality for at least one j.

Often the term diagonally dominant is used instead of weakly diagonally dominant.

Diagonal dominance is related to an important result in Numerical Linear Algebra

known as Gershgorin’s theorem. This theorem allows rough locations for all the eigenval-

ues of A to be determined. In some situations, it is desirable to determine these locations

in the complex plane by directly exploiting some knowledge of the entries of the matrix A.

The simplest such result is the bound

j�ij � kAk
for any matrix norm. Gershgorin’s theorem provides a more precise localization result.

THEOREM 4.3 (Gershgorin) Any eigenvalue � of a matrix A is located in one of the

closed discs of the complex plane centered at aii and having the radius

�i =

j=nX
j=1

j 6=i

jaij j:

In other words,

8 � 2 �(A); 9 i such that j�� aiij �
j=nX
j=1
j 6=i

jaij j: (4.37)

Proof. Let x be an eigenvector associated with an eigenvalue �, and let m be the index

of the component of largest modulus in x. Scale x so that j�mj = 1, and j�ij � 1, for

i 6= m. Since x is an eigenvector, then

(�� amm)�m = �
nX
j=1
j 6=m

amj�j ;

which gives

j�� ammj �
nX
j=1

j 6=m

jamj jj�j j �
nX
j=1

j 6=m

jamj j = �m: (4.38)

This completes the proof.

110 CHAPTER 4 BASIC ITERATIVE METHODS

Since the result also holds for the transpose of A, a version of the theorem can also be

formulated based on column sums instead of row sums.

The n discs defined in the theorem are called Gershgorin discs. The theorem states that

the union of these n discs contains the spectrum of A. It can also be shown that if there are

m Gershgorin discs whose union S is disjoint from all other discs, then S contains exactly

m eigenvalues (counted with their multiplicities). For example, when one disc is disjoint

from the others, then it must contain exactly one eigenvalue.

An additional refinement which has important consequences concerns the particular

case when A is irreducible.

THEOREM 4.4 Let A be an irreducible matrix, and assume that an eigenvalue � of A
lies on the boundary of the union of the n Gershgorin discs. Then � lies on the boundary

of all Gershgorin discs.

Proof. As in the proof of Gershgorin’s theorem, let x be an eigenvector associated with

�, with j�mj = 1, and j�ij � 1, for i 6= m. Start from equation (4.38) in the proof of

Gershgorin’s theorem which states that the point � belongs to the m-th disc. In addition, �
belongs to the boundary of the union of all the discs. As a result, it cannot be an interior

point to the disc D(�; �m). This implies that j�� ammj = �m. Therefore, the inequalities

in (4.38) both become equalities:

j�� ammj =
nX
j=1
j 6=m

jamj jj�j j =
nX
j=1
j 6=m

jamj j = �m: (4.39)

Let j be any integer 1 � j � n. SinceA is irreducible, its graph is connected and, therefore,

there exists a path from node m to node j in the adjacency graph. Let this path be

m;m1;m2; : : : ;mk = j:

By definition of an edge in the adjacency graph, am;m1
6= 0. Because of the equality in

(4.39), it is necessary that j�j j = 1 for any nonzero �j . Therefore, j�m1
j must be equal to

one. Now repeating the argument with m replaced by m1 shows that the following equality

holds:

j�� am1;m1
j =

nX
j=1
j 6=m1

jam1;j jj�j j =
nX
j=1
j 6=m1

jam1;j j = �m1
: (4.40)

The argument can be continued showing each time that

j�� ami;mi
j = �mi

; (4.41)

and this is valid for i = 1; : : : ; k. In the end, it will be proved that � belongs to the boundary

of the j-th disc for an arbitrary j.

An immediate corollary of the Gershgorin theorem and the above theorem follows.

COROLLARY 4.2 If a matrix A is strictly diagonally dominant or irreducibly diago-

nally dominant, then it is nonsingular.

4.2 CONVERGENCE 111

Proof. If a matrix is strictly diagonally dominant, then the union of the Gershgorin disks

excludes the origin, so � = 0 cannot be an eigenvalue. Assume now that it is only irre-

ducibly diagonal dominant. Then if it is singular, the zero eigenvalue lies on the boundary

of the union of the Gershgorin disks. In this situation, according to the previous theorem,

this eigenvalue should lie on the boundary of all the disks. This would mean that

jajj j =
nX
i=1
i 6=j

jaij j for j = 1; : : : ; n;

which contradicts the assumption of irreducible diagonal dominance.

The following theorem can now be stated.

THEOREM 4.5 IfA is a strictly diagonally dominant or an irreducibly diagonally dom-

inant matrix, then the associated Jacobi and Gauss-Seidel iterations converge for any x0.

Proof. We first prove the results for strictly diagonally dominant matrices. Let � be

the dominant eigenvalue of the iteration matrix MJ = D�1(E + F) for Jacobi and

MG = (D � E)�1F for Gauss-Seidel. As in the proof of Gershgorin’s theorem, let x
be an eigenvector associated with �, with j�mj = 1, and j�ij � 1, for i 6= 1. Start from

equation (4.38) in the proof of Gershgorin’s theorem which states that for MJ ,

j�j �
nX
j=1
j 6=m

jamj j
jammj j�j j �

nX
j=1
j 6=m

jamj j
jammj < 1:

This proves the result for Jacobi’s method.

For the Gauss-Seidel iteration, write the m-th row of the equation Fx = �(D �E)x
in the form

X
j<m

amj�j = �

0
@amm�m +

X
j>m

amj�j

1
A ;

which yields the inequality

j�j �
P

j<m jamj jj�j j
jammj �

P
j>m jamj jj�j j �

P
j<m jamj j

jammj �
P

j>m jamj j :

The last term in the above equation has the form �2=(d��1) with d; �1; �2 all nonnegative

and d� �1 � �2 > 0. Therefore,

j�j � �2
�2 + (d� �2 � �1)

< 1:

In the case when the matrix is only irreducibly diagonally dominant, the above proofs

only show that �(M�1N) � 1, where M�1N is the iteration matrix for either Jacobi or

Gauss-Seidel. A proof by contradiction will be used to show that in fact �(M�1N) < 1.

Assume that � is an eigenvalue of M�1N with j�j = 1. Then the matrix M�1N � �I
would be singular and, as a result, A0 = N � �M would also be singular. Since j�j = 1,

it is clear that A0 is also an irreducibly diagonally dominant matrix. This would contradict

Corollary 4.2.

112 CHAPTER 4 BASIC ITERATIVE METHODS

4.2.4 SYMMETRIC POSITIVE DEFINITE MATRICES

It is possible to show that when A is Symmetric Positive Definite, then SOR will converge

for any ! in the open interval (0; 2) and for any initial guess x0. In fact, the reverse is also

true under certain assumptions.

THEOREM 4.6 If A is symmetric with positive diagonal elements and for 0 < ! < 2,

SOR converges for any x0 if and only if A is positive definite.

4.2.5 PROPERTY A AND CONSISTENT ORDERINGS

A number of properties which are related to the graph of a finite difference matrix are

now defined. The first of these properties is called Property A. A matrix has Property A

if its graph is bipartite. This means that the graph is two-colorable in the sense defined in

Chapter 3: Its vertices can be partitioned in two sets in such a way that no two vertices in

the same set are connected by an edge. Note that, as usual, the self-connecting edges which

correspond to the diagonal elements are ignored.

DEFINITION 4.3 A matrix has Property A if the vertices of its adjacency graph can be

partitioned in two sets S1 and S2, so that any edge in the graph links a vertex of S1 to a

vertex of S2.

In other words, nodes from the first set are connected only to nodes from the second set

and vice versa. This definition is illustrated in Figure 4.5.

S2S1

Figure 4.5 Graph illustration of Property A.

An alternative definition is that a matrix has Property A if it can be permuted into a

matrix with the following structure:

A0 =

�
D1 �F
�E D2

�
; (4.42)

4.2 CONVERGENCE 113

where D1 and D2 are diagonal matrices. This structure can be obtained by first labeling

all the unknowns in S1 from 1 to n1, in which n1 = jS1j and the rest from n1 + 1 to n.

Note that the Jacobi iteration matrix will have the same structure except that the D1; D2

blocks will be replaced by zero blocks. These Jacobi iteration matrices satisfy an important

property stated in the following proposition.

PROPOSITION 4.1 Let B be a matrix with the following structure:

B =

�
O B12

B21 O

�
; (4.43)

and let L and U be the lower and upper triangular parts of B, respectively. Then

1. If � is an eigenvalue of B, then so is ��.

2. The eigenvalues of the matrix

B(�) = �L+
1

�
U

defined for � 6= 0 are independent of �.

Proof. The first property is shown by simply observing that if
�
x
v

�
is an eigenvector

associated with �, then
�

x
�v

�
is an eigenvector of B associated with the eigenvalue ��.

Consider the second property. For any �, the matrixB(�) is similar to B, i.e.,B(�) =
XBX�1 with X defined by

X =

�
1 O
O �

�
:

This proves the desired result

A definition which generalizes this important property is consistently ordered matrices.

Varga [213] calls a consistently ordered matrix one for which the eigenvalues of B(�) are

independent of �. Another definition given by Young [232] considers a specific class of

matrices which generalize this property. We will use this definition here. Unlike Property

A, the consistent ordering property depends on the initial ordering of the unknowns.

DEFINITION 4.4 A matrix is said to be consistently ordered if the vertices of its adja-

cency graph can be partitioned in p sets S1, S2, : : :, Sp with the property that any two

adjacent vertices i and j in the graph belong to two consecutive partitions Sk and Sk0 , with

k0 = k � 1, if j < i, and k0 = k + 1, if j > i.

It is easy to show that consistently ordered matrices satisfy property A: the first color is

made up of all the partitions Si with odd i and the second with the partitions Si with even

i.

114 CHAPTER 4 BASIC ITERATIVE METHODS

Example 4.2 Block tridiagonal matrices of the form

T =

0
BBBBB@

D1 T12
T21 D2 T23

T32 D3
. . .

. . .
. . . Tp�1;p

Tp;p�1 Dp

1
CCCCCA

whose diagonal blocks Di are diagonal matrices are called T -matrices. Clearly, such ma-

trices are consistently ordered. Note that matrices of the form (4.42) are a particular case

with p = 2.

Consider now a general, consistently ordered matrix. By definition, there is permuta-

tion � of f1; 2; : : : ; ng which is the union of p disjoint subsets

� = �1
[

�2 : : :
[

�p (4.44)

with the property that if aij 6= 0; j 6= i and i belongs to �k, then j belongs to �k�1

depending on whether i < j or i > j. This permutation � can be used to permute A
symmetrically. If P is the permutation matrix associated with the permutation �, then

clearly

A0 = P TAP

is a T -matrix.

Not every matrix that can be symmetrically permuted into a T -matrix is consistently

ordered. The important property here is that the partition f�ig preserves the order of the

indices i; j of nonzero elements. In terms of the adjacency graph, there is a partition of

the graph with the property that an oriented edge i; j from i to j always points to a set

with a larger index if j > i, or a smaller index otherwise. In particular, a very important

consequence is that edges corresponding to the lower triangular part will remain so in

the permuted matrix. The same is true for the upper triangular part. Indeed, if a nonzero

element in the permuted matrix is a0i0;j0 = a��1(i);��1(j) 6= 0 with i0 > j0, then by

definition of the permutation �(i0) > �(j0), or i = �(��1(i)) > j = �(��1(j)). Because

of the order preservation, it is necessary that i > j. A similar observation holds for the

upper triangular part. Therefore, this results in the following proposition.

PROPOSITION 4.2 If a matrix A is consistently ordered, then there exists a permuta-

tion matrix P such that P TAP is a T -matrix and

(P TAP)L = P TALP; (P TAP)U = P TAUP (4.45)

in which XL represents the (strict) lower part of X and XU the (strict) upper part of X .

With the above property it can be shown that for consistently ordered matrices the

eigenvalues of B(�) as defined in Proposition 4.1 are also invariant with respect to �.

PROPOSITION 4.3 LetB be the Jacobi iteration matrix associated with a consistently

ordered matrix A, and let L and U be the lower and upper triangular parts of B, respec-

4.2 CONVERGENCE 115

tively. Then the eigenvalues of the matrix

B(�) = �L+
1

�
U

defined for � 6= 0 do not depend on �.

Proof. First transformB(�) into a T -matrix using the permutation � in (4.44) provided

by the previous proposition

P TB(�)P = �P TLP +
1

�
P TUP:

From the previous proposition, the lower part of P TBP is precisely L0 = P TLP . Simi-

larly, the upper part is U 0 = P TUP , the lower and upper parts of the associated T -matrix.

Therefore, we only need to show that the property is true for a T -matrix.

In this case, for any �, the matrix B(�) is similar to B. This means that B(�) =
XBX�1 with X being equal to

X =

0
BBBB@
1

�I
�2I

. . .

�p�1I

1
CCCCA ;

where the partitioning is associated with the subsets �1; : : : ; �p respectively.

Note that T -matrices and matrices with the structure (4.42) are two particular cases

of matrices which fulfill the assumptions of the above proposition. There are a number of

well known properties related to Property A and consistent orderings. For example, it is

possible to show that,

� Property A is invariant under symmetric permutations.

� A matrix has Property A if and only if there is a permutation matrix P such that

A0 = P�1AP is consistently ordered.

Consistently ordered matrices satisfy an important property which relates the eigenval-

ues of the corresponding SOR iteration matrices to those of the Jacobi iteration matrices.

The main theorem regarding the theory for SOR is a consequence of the following result

proved by Young [232]. Remember that

MSOR = (D � !E)�1 (!F + (1� !)D)

= (I � !D�1E)�1
�
!D�1F + (1� !)I

�
:

THEOREM 4.7 Let A be a consistently ordered matrix such that aii 6= 0 for i =
1; : : : ; n, and let ! 6= 0. Then if � is a nonzero eigenvalue of the SOR iteration matrix

MSOR, any scalar � such that

(�+ ! � 1)
2
= �!2�2 (4.46)

is an eigenvalue of the Jacobi iteration matrix B. Conversely, if � is an eigenvalue of the

Jacobi matrix B and if a scalar � satisfies (4.46), then � is an eigenvalue of MSOR.

116 CHAPTER 4 BASIC ITERATIVE METHODS

Proof. Denote D�1E by L and D�1F by U , so that

MSOR = (I � !L)�1 (!U + (1� !)I)

and the Jacobi iteration matrix is merely L+ U . Writing that � is an eigenvalue yields

det
�
�I � (I � !L)�1(!U + (1� !)I)

�
= 0

which is equivalent to

det (�(I � !L)� (!U + (1� !)I)) = 0

or

det ((�+ ! � 1)I � !(�L+ U)) = 0:

Since ! 6= 0, this can be rewritten as

det

�
�+ ! � 1

!
I � (�L+ U)

�
= 0;

which means that (� + ! � 1)=! is an eigenvalue of �L + U . Since A is consistently

ordered, the eigenvalues of �L + U which are equal to �1=2(�1=2L + ��1=2U) are the

same as those of �1=2(L + U), where L + U is the Jacobi iteration matrix. The proof

follows immediately.

This theorem allows us to compute an optimal value for !, which can be shown to be

equal to

!opt =
2

1 +
p
1� �(B)2

: (4.47)

A typical SOR procedure starts with some !, for example, ! = 1, then proceeds with a

number of SOR steps with this !. The convergence rate for the resulting iterates is esti-

mated providing an estimate for �(B) using Theorem 4.7. A better ! is then obtained from

the formula (4.47), and the iteration restarted. Further refinements of the optimal ! are

calculated and retrofitted in this manner as the algorithm progresses.

ALTERNATING DIRECTION METHODS

4.3

The Alternating Direction Implicit (ADI) method was introduced in the mid-1950s by

Peaceman and Rachford [162] specifically for solving equations arising from finite dif-

ference discretizations of elliptic and parabolic Partial Differential Equations. Consider a

partial differential equation of elliptic type

@

@x

�
a(x; y)

@u(x; y)

@x

�
+

@

@y

�
b(x; y)

@u(x; y)

@y

�
= f(x; y) (4.48)

on a rectangular domain with Dirichlet boundary conditions. The equations are discretized

with centered finite differences using n + 2 points in the x direction and m + 2 points in

4.3 ALTERNATING DIRECTION METHODS 117

the y direction, This results in the system of equations

Hu + V u = b; (4.49)

in which the matrices H and V represent the three-point central difference approximations

to the operators

@

@x

�
a(x; y)

@

@x

�
and

@

@y

�
b(x; y)

@

@y

�
;

respectively. In what follows, the same notation is used to represent the discretized version

of the unknown function u.

The ADI algorithm consists of iterating by solving (4.49) in the x and y directions

alternatively as follows.

ALGORITHM 4.3: Peaceman-Rachford (PR) ADI

1. For k = 0:; 1; : : : ; until convergence Do:

2. Solve: (H + �kI)uk+ 1
2
= (�kI � V)uk + b

3. Solve: (V + �kI)uk+1 = (�kI �H)uk+ 1
2
+ b

4. EndDo

Here, �k; k = 1; 2; : : :, is a sequence of positive acceleration parameters.

The specific case where �k is chosen to be a constant � deserves particular attention.

In this case, we can formulate the above iteration in the usual form of (4.28) with

G = (V + �I)�1(H � �I)(H + �I)�1(V � �I); (4.50)

f = (V + �I)�1
�
I � (H � �I)(H + �I)�1

�
b (4.51)

or, when � > 0, in the form (4.22) with

M =
1

2�
(H + �I)(V + �I); N =

1

2�
(H � �I)(V � �I): (4.52)

Note that (4.51) can be rewritten in a simpler form; see Exercise 5.

The ADI algorithm is often formulated for solving the time-dependent Partial Differ-

ential Equation

@u

@t
=

@

@x

�
a(x; y)

@u

@x

�
+

@

@y

�
b(x; y)

@u

@y

�
(4.53)

on the domain (x; y; t) 2
 � [0; T] � (0; 1) � (0; 1) � [0; T]. The initial and boundary

conditions are:

u(x; y; 0) = x0(x; y); 8(x; y) 2
; (4.54)

u(�x; �y; t) = g(�x; �y; t); 8(�x; �y) 2 @
; t > 0; (4.55)

where @
 is the boundary of the unit square
. The equations are discretized with respect

to the space variables x and y as before, resulting in a system of Ordinary Differential

Equations:

du

dt
= Hu+ V u; (4.56)

118 CHAPTER 4 BASIC ITERATIVE METHODS

in which the matrices H and V have been defined earlier. The Alternating Direction Im-

plicit algorithm advances the relation (4.56) forward in time alternately in the x and y
directions as follows:

(I � 1

2
�t H)uk+ 1

2
= (I +

1

2
�t V)uk ;

(I � 1

2
�t V)uk+1 = (I +

1

2
�t H)uk+ 1

2
:

The acceleration parameters �k of Algorithm 4.3 are replaced by a natural time-step.

Horizontal ordering

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

Vertical ordering

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Figure 4.6 The horizontal and vertical orderings for the un-

knowns in ADI.

Assuming that the mesh-points are ordered by lines in the x-direction, then the first

step of Algorithm 4.3 constitutes a set ofm independent tridiagonal linear systems of size n
each. However, the second step constitutes a large tridiagonal system whose three diagonals

are offset by�m, 0, and m, respectively. This second system can also be rewritten as a set

of n independent tridiagonal systems of size m each by reordering the grid points by lines,

this time in the y direction. The natural (horizontal) and vertical orderings are illustrated

in Figure 4.6. Whenever moving from one half step of ADI to the next, we must implicitly

work with the transpose of the matrix representing the solution on the n � m grid points.

This data operation may be an expensive task on parallel machines and often it is cited as

one of the drawbacks of Alternating Direction Methods in this case.

ADI methods were extensively studied in the 1950s and 1960s for the particular case

of positive definite systems. For such systems, H and V have real eigenvalues and the

following is a summary of the main results in this situation. First, when H and V are

Symmetric Positive Definite, then the stationary iteration (�k = � > 0, for all k) converges.

For the model problem, the asymptotic rate of convergence of the stationary ADI iteration

using the optimal � is the same as that of SSOR using the optimal !. However, each ADI

step is more expensive than one SSOR step. One of the more important results in the

ADI theory is that the rate of convergence of ADI can be increased appreciably by using

a cyclic sequence of parameters, �k. A theory for selecting the best sequence of �k’s is

well understood in the case when H and V commute [26]. For the model problem, the

parameters can be selected so that the time complexity is reduced to O(n2 logn), for

details see [162].

EXERCISES AND NOTES 119

EXERCISES

1 Consider an n� n tridiagonal matrix of the form

T� =

0
BBBB@

� �1
�1 � �1

�1 � �1
�1 � �1

�1 � �1
�1 �

1
CCCCA ; (4.57)

where � is a real parameter.

a. Verify that the eigenvalues of T� are given by

�j = �� 2 cos (j�) j = 1; : : : ; n;

where

� =
�

n+ 1
and that an eigenvector associated with each �j is

qj = [sin(j�); sin(2j�); : : : ; sin(nj�)]T :

Under what condition on � does this matrix become positive definite?

b. Now take � = 2. How does this matrix relate to the matrices seen in Chapter 2 for one-

dimensional problems?

i. Will the Jacobi iteration converge for this matrix? If so, what will its convergence factor

be?

ii. Will the Gauss-Seidel iteration converge for this matrix? If so, what will its convergence

factor be?

iii. For which values of ! will the SOR iteration converge?

2 Prove that the iteration matrix G! of SSOR, as defined by (4.13), can be expressed as

G! = I � !(2� !)(D� !F)�1D(D � !E)�1A:

Deduce the expression (4.27) for the preconditioning matrix associated with the SSOR iteration.

3 Let A be a matrix with a positive diagonal D.

a. Obtain an expression equivalent to that of (4.13) for G! but which involves the matrices

SE � D�1=2ED�1=2 and SF � D�1=2FD�1=2.

b. Show that

D1=2G!D
�1=2 = (I � !SF)

�1(I � !SE)
�1(!SE + (1� !)I)(!SF + (1 � !)I)

c. Now assume that in addition to having a positive diagonal, A is symmetric. Prove that the

eigenvalues of the SSOR iteration matrix G! are real and nonnegative.

120 CHAPTER 4 BASIC ITERATIVE METHODS

4 Let

A =

0
BBBB@

D1 �F2
�E2 D2 �F3

�E3 D3

. . .
. . .

. . . �Fm
�Em Dm

1
CCCCA ;

where the Di blocks are nonsingular matrices which are not necessarily diagonal.

a. What are the block Jacobi and block Gauss-Seidel iteration matrices?

b. Show a result similar to that in Proposition 4.3 for the Jacobi iteration matrix.

c. Show also that for ! = 1 (1) the block Gauss-Seidel and block Jacobi iterations either both

converge or both diverge, and (2) when they both converge, then the block Gauss-Seidel

iteration is (asymptotically) twice as fast as the block Jacobi iteration.

5 According to formula (4.23), the f vector in iteration (4.22) should be equal to M�1b, where b
is the right-hand side and M is given in (4.52). Yet, formula (4.51) gives a different expression

for f . Reconcile the two results, i.e., show that the expression (4.51) can also be rewritten as

f = 2�(V + �I)�1(H + �I)�1b:

6 Show that a matrix has Property A if and only if there is a permutation matrix P such that

A0 = P�1AP is consistently ordered.

7 Consider a matrix A which is consistently ordered. Show that the asymptotic convergence rate

for Gauss-Seidel is double that of the Jacobi iteration.

8 A matrix of the form

B =

0 E 0
0 0 F
H 0 0

!

is called a three-cyclic matrix.

a. What are the eigenvalues of B? (Express them in terms of eigenvalues of a certain matrix

which depends on E, F , and H .)

b. Assume that a matrix A has the formA = D+B, whereD is a nonsingular diagonal matrix,

and B is three-cyclic. How can the eigenvalues of the Jacobi iteration matrix be related to

those of the Gauss-Seidel iteration matrix? How does the asymptotic convergence rate of the

Gauss-Seidel iteration compare with that of the Jacobi iteration matrix in this case?

c. Answer the same questions as in (2) for the case when SOR replaces the Gauss-Seidel itera-

tion.

d. Generalize the above results to p-cyclic matrices, i.e., matrices of the form

B =

0
BBB@

0 E1

0 E2

0
. . .

0 Ep�1

Ep 0

1
CCCA :

NOTES AND REFERENCES. Two good references for the material covered in this chapter are Varga

[213] and and Young [232]. Although relaxation-type methods were very popular up to the 1960s,

they are now mostly used as preconditioners, a topic which will be seen in detail in Chapters 9

and 10. One of the main difficulties with these methods is finding an optimal relaxation factor for

EXERCISES AND NOTES 121

general matrices. Theorem 4.4 is due to Ostrowski. For details on the use of Gershgorin’s theorem in

eigenvalue problems, see [180]. The original idea of the ADI method is described in [162] and those

results on the optimal parameters for ADI can be found in [26]. A comprehensive text on this class of

techniques can be found in [220]. Not covered in this book is the related class of multigrid methods;

see the reference [115] for a detailed exposition. Closely related to the multigrid approach is the

Aggregation-Disaggregation technique which is popular in Markov chain modeling. A recommended

book for these methods and others used in the context of Markov chain modeling is [203].

C H A P T E R

5

PROJECTION METHODS

Most of the existing practical iterative techniques for solving large linear

systems of equations utilize a projection process in one way or another.

A projection process represents a canonical way for extracting an approx-

imation to the solution of a linear system from a subspace. This chapter

describes these techniques in a very general framework and presents some

theory. The one-dimensional case is covered in detail at the end of the chap-

ter, as it provides a good preview of the more complex projection processes

to be seen in later chapters.

BASIC DEFINITIONS AND ALGORITHMS

5.1

Consider the linear system

Ax = b; (5.1)

where A is an n � n real matrix. In this chapter, the same symbol A is often used to de-

note the matrix and the linear mapping in R
n

that it represents. The idea of projection

techniques is to extract an approximate solution to the above problem from a subspace of

R
n

. If K is this subspace of candidate approximants, or search subspace, and if m is its

dimension, then, in general, m constraints must be imposed to be able to extract such an

approximation. A typical way of describing these constraints is to imposem (independent)

orthogonality conditions. Specifically, the residual vector b � Ax is constrained to be or-

thogonal to m linearly independent vectors. This defines another subspace L of dimension

m which will be called the subspace of constraints or left subspace for reasons that will

be explained below. This simple framework is common to many different mathematical

methods and is known as the Petrov-Galerkin conditions.

There are two broad classes of projection methods: orthogonal and oblique. In an

orthogonal projection technique, the subspace L is the same as K. In an oblique projection

122

5.1 BASIC DEFINITIONS AND ALGORITHMS 123

method, L is different from K and may be totally unrelated to it. This distinction is rather

important and gives rise to different types of algorithms.

5.1.1 GENERAL PROJECTION METHODS

Let A be an n � n real matrix and K and L be two m-dimensional subspaces of R
n
. A

projection technique onto the subspace K and orthogonal to L is a process which finds an

approximate solution ~x to (5.1) by imposing the conditions that ~x belong to K and that the

new residual vector be orthogonal to L,

Find ~x 2 K; such that b�A~x ? L: (5.2)

If we wish to exploit the knowledge of an initial guess x0 to the solution, then the approxi-

mation must be sought in the affine space x0+K instead of the homogeneous vector space

K. This requires a slight modification to the above formulation. The approximate problem

should be redefined as

Find ~x 2 x0 +K; such that b�A~x ? L: (5.3)

Note that if ~x is written in the form ~x = x0+ �, and the initial residual vector r0 is defined

as

r0 = b�Ax0; (5.4)

then the above equation becomes b�A(x0 + �) ? L or

r0 �A� ? L:
In other words, the approximate solution can be defined as

~x = x0 + �; � 2 K; (5.5)

(r0 �A�;w) = 0; 8w 2 L: (5.6)

The orthogonality condition (5.6) imposed on the new residual rnew = r0 � A� is illus-

trated in Figure 5.1.

L

�
r0-A�

6
rnew

O

Figure 5.1 Interpretation of the orthogonality condition.

This is a basic projection step, in its most general form. Most standard techniques

use a succession of such projections. Typically, a new projection step uses a new pair of

subspace K and L and an initial guess x0 equal to the most recent approximation obtained

124 CHAPTER 5 PROJECTION METHODS

from the previous projection step. Projection methods form a unifying framework for many

of the well known methods in scientific computing. In fact, virtually all of the basic iterative

techniques seen in the previous chapter can be considered projection techniques. Whenever

an approximation is defined via m degrees of freedom (subspace K) and m constraints

(Subspace L), a projection process results.

Example 5.1 In the simplest case, an elementary Gauss-Seidel step as defined by (4.6)

is nothing but a projection step withK = L = spanfeig. These projection steps are cycled

for i = 1; : : : ; n until convergence. See Exercise 1 for an alternative way of selecting the

sequence of ei’s.

Orthogonal projection methods correspond to the particular case when the two sub-

spaces L and K are identical. The distinction is particularly important in the Hermitian

case since we are guaranteed that the projected problem will be Hermitian in this situa-

tion, as will be seen shortly. In addition, a number of helpful theoretical results are true for

the orthogonal case. When L = K, the Petrov-Galerkin conditions are called the Galerkin

conditions.

5.1.2 MATRIX REPRESENTATION

Let V = [v1; : : : ; vm], an n � m matrix whose column-vectors form a basis of K and,

similarly, W = [w1; : : : ; wm], an n�m matrix whose column-vectors form a basis of L.

If the approximate solution is written as

x = x0 + V y;

then the orthogonality condition leads immediately to the following system of equations

for the vector y:

W TAV y = W T r0:

If the assumption is made that the m � m matrix W TAV is nonsingular, the following

expression for the approximate solution ~x results,

~x = x0 + V (W TAV)�1W T r0: (5.7)

In many algorithms, the matrix W TAV does not have to be formed since it is available

as a by-product of the algorithm. A prototype projection technique is represented by the

following algorithm.

5.1 BASIC DEFINITIONS AND ALGORITHMS 125

ALGORITHM 5.1: Prototype Projection Method

1. Until convergence, Do:

2. Select a pair of subspaces K and L
3. Choose bases V = [v1; : : : ; vm] and W = [w1; : : : ; wm] for K and L
4. r := b�Ax
5. y := (W TAV)�1W T r
6. x := x+ V y
7. EndDo

The approximate solution is defined only when the matrix W TAV is nonsingular,

which is not guaranteed to be true even when A is nonsingular.

Example 5.2 As an example, consider the matrix

A =

�
O I
I I

�
;

where I is the m�m identity matrix and O is the m�m zero matrix, and let V = W =
[e1; e2; : : : ; em]. AlthoughA is nonsingular, the matrixW TAV is precisely the O block in

the upper-left corner of A and is therefore singular.

There are two important particular cases where the nonsingularity of W TAV is guar-

anteed. These are discussed in the following proposition.

PROPOSITION 5.1 LetA,L, andK satisfy either one of the two following conditions,

i. A is positive definite and L = K, or

ii. A is nonsingular and L = AK.

Then the matrix B = W TAV is nonsingular for any bases V and W of K and L, respec-

tively.

Proof. Consider first the case (i). Let V be any basis of K and W be any basis of L. In

fact, since L and K are the same, W can always be expressed as W = V G, where G is a

nonsingularm�m matrix. Then

B = W TAV = GTV TAV:

Since A is positive definite, so is V TAV , see Chapter 1, and this shows that B is non-

singular.

Consider now case (ii). Let V be any basis of K and W be any basis of L. Since

L = AK, W can be expressed in this case as W = AV G, where G is a nonsingular

m�m matrix. Then

B = W TAV = GT (AV)TAV: (5.8)

Since A is nonsingular, the n�m matrix AV is of full rank and as a result, (AV)TAV is

nonsingular. This, along with (5.8), shows that B is nonsingular.

126 CHAPTER 5 PROJECTION METHODS

Now consider the particular case where A is symmetric (real) and an orthogonal pro-

jection technique is used. In this situation, the same basis can be used for L and K, which

are identical subspaces, and the projected matrix, which is B = V TAV , is symmetric. In

addition, if the matrix A is Symmetric Positive Definite, then so is B.

GENERAL THEORY

5.2

This section gives some general theoretical results without being specific about the sub-

spacesK and L which are used. The goal is to learn about the quality of the approximation

obtained from a general projection process. Two main tools are used for this. The first is

to exploit optimality properties of projection methods. These properties are induced from

those properties of projectors seen in Section 1.12.4 of Chapter 1. The second tool consists

of interpreting the projected problem with the help of projection operators in an attempt to

extract residual bounds.

5.2.1 TWO OPTIMALITY RESULTS

In this section, two important optimality results will be established that are satisfied by the

approximate solutions in some cases. Consider first the case when A is SPD.

PROPOSITION 5.2 Assume that A is Symmetric Positive Definite and L = K. Then

a vector ~x is the result of an (orthogonal) projection method ontoK with the starting vector

x0 if and only if it minimizes the A-norm of the error over x0 +K, i.e., if and only if

E(~x) = min
x2x0+K

E(x);

where

E(x) � (A(x� � x); x� � x)1=2:

Proof. As was seen in Section 1.12.4, for ~x to be the minimizer of E(x), it is necessary

and sufficient that x� � ~x be A-orthogonal to all the subspace K. This yields

(A(x� � ~x); v) = 0; 8v 2 K;
or, equivalently,

(b�A~x; v) = 0; 8v 2 K;
which is the Galerkin condition defining an orthogonal projection process for the approxi-

mation ~x.

We now take up the case when L is defined by L = AK.

5.2 GENERAL THEORY 127

PROPOSITION 5.3 Let A be an arbitrary square matrix and assume that L = AK.

Then a vector ~x is the result of an (oblique) projection method onto K orthogonally to L
with the starting vector x0 if and only if it minimizes the 2-norm of the residual vector

b�Ax over x 2 x0 +K, i.e., if and only if

R(~x) = min
x2x0+K

R(x);

where R(x) � kb�Axk2.

Proof. As was seen in Section 1.12.4, for ~x to be the minimizer of R(x), it is necessary

and sufficient that b�A~x be orthogonal to all vectors of the form v = Ay, where y belongs

to K, i.e.,

(b�A~x; v) = 0; 8v 2 AK;
which is precisely the Petrov-Galerkin condition that defines the approximate solution ~x.

It is worthwhile to point out that A need not be nonsingular in the above proposition. When

A is singular there may be infinitely many vectors ~x satisfying the optimality condition.

5.2.2 INTERPRETATION IN TERMS OF PROJECTORS

We now return to the two important particular cases singled out in the previous section,

namely, the cases L = K and L = AK. In these cases, the result of the projection process

can be interpreted easily in terms of actions of orthogonal projectors on the initial residual

or initial error. Consider the second case first, as it is slightly simpler. Let r0 be the initial

residual r0 = b� Ax0, and ~r = b�A~x the residual obtained after the projection process

with L = AK. Then,

~r = b�A(x0 + �) = r0 �A�: (5.9)

In addition, � is obtained by enforcing the condition that r0 � A� be orthogonal to AK.

Therefore, the vector A� is the orthogonal projection of the vector r0 onto the subspace

AK. This is illustrated in Figure 5.2. Hence, the following proposition can be stated.

PROPOSITION 5.4 Let ~x be the approximate solution obtained from a projection pro-

cess ontoK orthogonally to L = AK, and let ~r = b�A~x be the associated residual. Then,

~r = (I � P)r0; (5.10)

where P denotes the orthogonal projector onto the subspace AK.

A result of the proposition is that the 2-norm of the residual vector obtained after one

projection step will not exceed the initial 2-norm of the residual, i.e.,

k~rk2 � kr0k2;
a result which has been established already. This class of methods may be termed residual

projection methods.

128 CHAPTER 5 PROJECTION METHODS

r0

A� = Pr0

AK

O

6*
j

Figure 5.2 Interpretation of the projection process for the

case when L = AK.

Now consider the case where L = K and A is Symmetric Positive Definite. Let d0 =
x��x0 be the initial error, where x� denotes the exact solution to the system and, similarly,

let ~d = x�� ~x where ~x = x0+ � is the approximate solution resulting from the projection

step. Then (5.9) yields the relation

A ~d = ~r = A(d0 � �);

where � is now obtained by constraining the residual vector r0�A� to be orthogonal toK:

(r0 �A�;w) = 0; 8 w 2 K:
The above condition is equivalent to

(A(d0 � �); w) = 0; 8 w 2 K:
Since A is SPD, it defines an inner product (see Section 1.11) which is usually denoted by

(:; :)A and the above condition becomes

(d0 � �; w)A = 0; 8 w 2 K:
The above condition is now easy to interpret: The vector � is the A-orthogonal projection

of the initial error d0 onto the subspace K.

PROPOSITION 5.5 Let ~x be the approximate solution obtained from an orthogonal

projection process onto K and let ~d = x� � ~x be the associated error vector. Then,

~d = (I � PA)d0;

where PA denotes the projector onto the subspace K, which is orthogonal with respect to

the A-inner product.

A result of the proposition is that the A-norm of the error vector obtained after one projec-

tion step does not exceed the initial A-norm of the error, i.e.,

k ~dkA � kd0kA;

5.2 GENERAL THEORY 129

which is expected because it is known that the A-norm of the error is minimized in x0+K.

This class of methods may be termed error projection methods.

5.2.3 GENERAL ERROR BOUND

If no vector of the subspace K comes close to the exact solution x, then it is impossible

to find a good approximation ~x to x from K. Therefore, the approximation obtained by

any projection process based on K will be poor. On the other hand, if there is some vector

in K which is a small distance � away from x, then the question is: How good can the

approximate solution be? The purpose of this section is to try to answer this question.

K

L

?

x

P
K
x	QL

K
x

P
K
x 2 K; x�P

K
x ? K

QL
K
x 2 K; x�QL

K
x ? L

Figure 5.3 Orthogonal and oblique projectors.

Let P
K

be the orthogonal projector onto the subpace K and let QL
K

be the (oblique)

projector onto K and orthogonally to L. These projectors are defined by

P
K
x 2 K; x�P

K
x ? K;

QL
K
x 2 K; x�QL

K
x ? L;

and are illustrated in Figure 5.3. The symbol Am is used to denote the operator

Am = QL
K
AP

K
;

and it is assumed, without loss of generality, that x0 = 0. Then according to the property

(1.54), the approximate problem defined in (5.5 – 5.6) can be reformulated as follows: find

~x 2 K such that

QL
K
(b�A~x) = 0;

130 CHAPTER 5 PROJECTION METHODS

or, equivalently,

Am~x = QL
K
b; ~x 2 K:

Thus, an n-dimensional linear system is approximated by an m-dimensional one.

The following proposition examines what happens in the particular case when the

subspace K is invariant under A. This is a rare occurrence in practice, but the result helps

in understanding the breakdown behavior of the methods to be considered in later chapters.

PROPOSITION 5.6 Assume that K is invariant under A, x0 = 0, and b belongs to

K. Then the approximate solution obtained from any (oblique or orthogonal) projection

method onto K is exact.

Proof. An approximate solution ~x is defined by

QL
K
(b�A~x) = 0;

where ~x is a nonzero vector in K. The right-hand side b is in K, so we have QL
K
b = b.

Similarly, ~x belongs to K which is invariant under A, and therefore, QL
K
A~x = A~x. Then

the above equation becomes

b�A~x = 0;

showing that ~x is an exact solution.

The result can be extended trivially to the case where x0 6= 0. The required assumption in

this case is that the initial residual r0 = b�Ax0 belongs to the invariant subspace K.

An important quantity for the convergence properties of projection methods is the

distance k(I �P
K
)x�k2 of the exact solution x� from the subspace K. This quantity plays

a key role in the analysis of projection methods. Note that the solution x� cannot be well

approximated from K, if k(I �P
K
)x�k2 is not small because

k~x� x�k2 � k(I �PK)x�k2:
The fundamental quantity k(I�P

K
)x�k2=kx�k2 is the sine of the acute angle between the

solution x� and the subspaceK. The following theorem establishes an upper bound for the

residual norm of the exact solution with respect to the approximate operator Am.

THEOREM 5.1 Let = kQL
K
A(I � P

K
)k2 and assume that b is a member of K and

x0 = 0. Then the exact solution x� of the original problem is such that

kb�Amx�k2 � k(I �P
K
)x�k2: (5.11)

Proof. Since b 2 K, then

b�Amx� = QL
K
(b�AP

K
x�)

= QL
K
(Ax� �AP

K
x�)

= QL
K
A(x� �PKx�)

= QL
K
A(I �P

K
)x�:

5.3 ONE-DIMENSIONAL PROJECTION PROCESSES 131

Noting that I �P
K

is a projector, it follows that

kb�Amx�k2 = kQLKA(I �PK)(I �PK)x�k2
� kQL

K
A(I �P

K
)k2k(I �PK)x�k2;

which completes the proof.

It is useful to consider a matrix interpretation of the theorem. We consider only the

particular case of orthogonal projection methods (L = K). Assume that V is unitary, i.e.,

that the basis fv1; : : : ; vmg is orthonormal, and that W = V . Observe that b = V V T b.
Equation (5.11) can be represented in the basis V as

kb� V (V TAV)V Tx�k2 � k(I �P
K
)x�k2:

However,

kb� V (V TAV)V Tx�k2 = kV (V T b� (V TAV)V Tx�k2
= kV T b� (V TAV)V Tx�k2:

Thus, the projection of the exact solution has a residual norm with respect to the matrix

B = V TAV , which is of the order of k(I �P
K
)x�k2.

ONE-DIMENSIONAL PROJECTION PROCESSES

5.3

This section examines simple examples provided by one-dimensional projection processes.

In what follows, the vector r denotes the residual vector r = b � Ax for the current

approximation x. To avoid subscripts, arrow notation is used to denote vector updates.

Thus, “x x + �r” means “compute x + �r and overwrite the result on the current x.”

(This is known as a SAXPY operation.)

One-dimensional projection processes are defined when

K = spanfvg and L = spanfwg;
where v and w are two vectors. In this case, the new approximation takes the form

x x+ �v and the Petrov-Galerkin condition r �A� ? w yields

� =
(r; w)

(Av;w)
: (5.12)

Following are three popular choices to be considered.

5.3.1 STEEPEST DESCENT

The steepest descent algorithm is defined for the case where the matrix A is Symmetric

Positive Definite. It consists of taking at each step v = r and w = r. This yields an

iteration described by the following algorithm.

132 CHAPTER 5 PROJECTION METHODS

ALGORITHM 5.2: Steepest Descent Algorithm

1. Until convergence, Do:

2. r b�Ax
3. � (r; r)=(Ar; r)
4. x x+ �r
5. EndDo

Each step of the above iteration minimizes

f(x) = kx� x�k2A = (A(x � x�); (x � x�));
over all vectors of the form x+�d, where d is the negative of the gradient direction�rf .

The negative of the gradient direction is locally the direction that yields the fastest rate of

decrease for f . Next, we prove that convergence is guaranteed when A is SPD. The result

is a consequence of the following lemma known as the Kantorovich inequality.

LEMMA 5.1 (Kantorovich inequality) LetB be any Symmetric Positive Definite real

matrix and �max, �min its largest and smallest eigenvalues. Then,

(Bx; x)(B�1x; x)

(x; x)2
� (�max + �min)

2

4 �max�min
; 8x 6= 0: (5.13)

Proof. Clearly, it is equivalent to show that the result is true for any unit vector x. Since

B is symmetric, it is unitarily similar to a diagonal matrix, B = QTDQ, and

(Bx; x)(B�1x; x) = (QTDQx; x)(QTD�1Qx; x)

= (DQx;Qx)(D�1Qx;Qx):

Setting y = Qx = (y1; : : : ; yn)
T , and �i = y2i , note that

� � (Dy; y) =

nX
i=1

�i�i

is a convex combination of the eigenvalues �i; i = 1; : : : ; n. The following relation holds,

(Bx; x)(B�1x; x) = � (y)

with

 (y) = (D�1y; y) =

nX
i=1

�i
1

�i
:

Noting that the function 1=x is convex, (y) is bounded from above by the linear curve

that joins the points (�1; 1=�1) and (�n; 1=�n), i.e.,

 (y) � 1

�1
+

1

�n
� �

�1�n
:

Therefore,

(Bx; x)(B�1x; x) = � (y) � �
�

1

�1
+

1

�n
� �

�1�n

�
:

5.3 ONE-DIMENSIONAL PROJECTION PROCESSES 133

�1 �2 �i �n�

The maximum of the right-hand side is reached for � = 1
2 (�1 + �n) yielding,

(Bx; x)(B�1x; x) = � (y) � (�1 + �n)
2

4�1 �n

which gives the desired result.

This lemma helps to establish the following result regarding the convergence rate of

the method.

THEOREM 5.2 Let A be a Symmetric Positive Definite matrix. Then, the A-norms of

the error vectors dk = x� � xk generated by Algorithm 5.2 satisfy the relation

kdk+1kA � �max � �min
�max + �min

kdkkA; (5.14)

and Algorithm 5.2 converges for any initial guess x0.

Proof. Start by observing that kdk+1k2A = (Adk+1; dk+1) = (rk+1; dk+1) and then by

simple substitution,

kdk+1k2A = (rk+1; dk � �krk)

Since by construction the new residual vector rk+1 must be orthogonal to the search direc-

tion rk , the second term in the right-hand side of the above equation is zero. Thus,

kdk+1k2A = (rk � �kArk ; dk) (5.15)

= (rk ; A
�1rk)� �k(rk; rk) (5.16)

= kdkk2A
�
1� (rk ; rk)

(rk ; Ark)
� (rk ; rk)

(rk ; A�1rk)

�
: (5.17)

The result follows by applying the Kantorovich inequality (5.13).

134 CHAPTER 5 PROJECTION METHODS

5.3.2 MINIMAL RESIDUAL (MR) ITERATION

We now assume that A is not necessarily symmetric but only positive definite, i.e., its

symmetric part A + AT is Symmetric Positive Definite. Taking at each step v = r and

w = Ar, the following iterative procedure results.

ALGORITHM 5.3: Minimal Residual Iteration

1. Until convergence, Do:

2. r b�Ax
3. � (Ar; r)=(Ar;Ar)
4. x x+ �r
5. EndDo

Here, each step minimizes f(x) = kb � Axk22 in the direction r. The iteration converges

under the condition that A is positive definite as is stated in the next theorem.

THEOREM 5.3 Let A be a real positive definite matrix, and let

� = �min(A+AT)=2; � = kAk2:
Then the residual vectors generated by Algorithm 5.3 satisfy the relation

krk+1k2 �
�
1� �2

�2

�1=2
krkk2 (5.18)

and Algorithm (5.3) converges for any initial guess x0.

Proof. We proceed similarly to the steepest descent method, starting with the relation

krk+1k22 = (rk � �kArk ; rk � �kArk) (5.19)

= (rk � �kArk ; rk)� �k(rk � �kArk; Ark): (5.20)

By construction, the new residual vector rk � �kArk must be orthogonal to the search

directionArk , and, as a result, the second term in the right-hand side of the above equation

vanishes and we obtain

krk+1k22 = (rk � �kArk; rk)

= (rk; rk)� �k(Ark ; rk)

= krkk22
�
1� (Ark ; rk)

(rk ; rk)

(Ark; rk)

(Ark ; Ark)

�
(5.21)

= krkk22
�
1� (Ark ; rk)

2

(rk ; rk)2
krkk22
kArkk22

�
:

From Theorem 1.19, it can be stated that

(Ax; x)

(x; x)
� � > 0; (5.22)

5.3 ONE-DIMENSIONAL PROJECTION PROCESSES 135

where � = �min(A + AT)=2. The desired result follows immediately by using the in-

equality kArkk2 � kAk2 krkk2.

There are alternative ways of obtaining inequalities that prove convergence. For ex-

ample, starting from (5.21), (5.22) can be used again for the term (Ark ; rk)=(rk ; rk) and

similarly, we can write

(Ax; x)

(Ax;Ax)
=

(Ax;A�1(Ax))

(Ax;Ax)
� �min

�
A�1 +A�T

2

�
> 0;

since A�1 is also positive definite. This would yield the inequality

krk+1k22 �
�
1� �(A)�(A�1)

� krkk22; (5.23)

in which �(B) = �min(B +BT)=2.

Another interesting observation is that if we define

cos 6 k =
(Ark ; rk)

kArkk2 krkk2 ;

then (5.21) can be rewritten as

krk+1k22 = krkk22
�
1� (Ark ; rk)

(Ark ; Ark)

(Ark ; rk)

(rk; rk)

�
= krkk22

�
1� cos2 6 k

�
= krkk22 sin2 6 k:

At each step the reduction in the residual norm is equal to the sine of the acute angle

between r and Ar. The convergence factor is therefore bounded by

� = max
x 2 R

n
; x6=0

sin 6 (x;Ax);

in which 6 (x;Ax) is the acute angle between x and Ax. The maximum angle 6 (x;Ax) is

guaranteed to be less than �=2 when A is positive definite as the above results show.

5.3.3 RESIDUAL NORM STEEPEST DESCENT

In the residual norm steepest descent algorithm, the assumption that A is positive definite

is relaxed. In fact, the only requirement is that A is a (square) nonsingular matrix. At

each step the algorithm uses v = AT r and w = Av, giving the following sequence of

operations:

r b�Ax; v = AT r;
� kvk22=kAvk22;
x x+ �v:

(5.24)

However, an algorithm based on the above sequence of operations would require three

matrix-by-vector products, which is three times as many as the other algorithms seen in

this section. The number of matrix-by-vector operations can be reduced to two per step by

computing the residual differently. This variant is as follows.

136 CHAPTER 5 PROJECTION METHODS

ALGORITHM 5.4: Residual Norm Steepest Descent

1. Compute r := b�Ax
2. Until convergence, Do:

3. v := AT r
4. Compute Av and � := kvk22=kAvk22
5. x := x+ �v
6. r := r � �Av
7. EndDo

Here, each step minimizes f(x) = kb � Axk22 in the direction �rf . As it turns out,

this is equivalent to the steepest descent algorithm of Section 5.3.1 applied to the normal

equations ATAx = AT b. Since ATA is positive definite when A is nonsingular, then,

according to Theorem 5.2, the method will converge whenever A is nonsingular.

ADDITIVE AND MULTIPLICATIVE PROCESSES

5.4

We begin by considering again the block relaxation techniques seen in the previous chapter.

To define these techniques, a set-decomposition of S = f1; 2; : : : ; ng is considered as the

definition of p subsets S1; : : : ; Sp of S with

Si � S;
[

i=1;���;p

Si = S:

Denote by ni the size of Si and define the subset Si as

Si = fmi(1);mi(2); : : : ;mi(ni)g:
Let Vi be the n� ni matrix

Vi = [emi(1); emi(2); : : : ; emi(ni)];

where each ej is the j-th column of the n� n identity matrix.

If the block Jacobi and block Gauss-Seidel algorithms, Algorithms 4.1 and 4.2, are

examined carefully, it can be observed that each individual step in the main loop (lines 2 to

5) represents an orthogonal projection process over Ki = spanfVig. Indeed, the equation

(4.17) is exactly (5.7) with W = V = Vi. This individual projection step modifies only the

components corresponding to the subspaceKi. However, the general block Jacobi iteration

combines these modifications, implicitly adding them together, to obtain the next iterate

xk+1. Borrowing from the terminology of domain decomposition techniques, this will be

called an additive projection procedure. Generally, an additive projection procedure can

be defined for any sequence of subspaces Ki, not just subspaces spanned by the columns

of the identity matrix. The only requirement is that the subspaces Ki should be distinct,

although they are allowed to overlap.

Let a sequence of p orthogonal systems Vi be given, with the condition that spanfVig

5.4 ADDITIVE AND MULTIPLICATIVE PROCESSES 137

6= spanfVjg for i 6= j, and define

Ai = V T
i AVi:

The additive projection procedure can be written as

yi = A�1i V T
i (b�Axk); i = 1; : : : ; p ;

xk+1 = xk +

pX
i=1

Viyi; (5.25)

which leads to the following algorithm.

ALGORITHM 5.5: Additive Projection Procedure

1. For k = 0; 1; : : : ; until convergence, Do:

2. For i = 1; 2; : : : ; p Do:

3. Solve Aiyi = V T
i (b�Axk)

4. EndDo

5. Set xk+1 = xk +
Pp

i=1 Viyi
6. EndDo

Defining rk = b�Axk , the residual vector at step k, then clearly

rk+1 = b�Axk+1

= b�Axk �
pX

i=1

AVi
�
V T
i AVi

��1
V T
i rk

=

"
I �

pX
i=1

AVi
�
V T
i AVi

��1
V T
i

#
rk:

Observe that each of the p operators

Pi = AVi
�
V T
i AVi

��1
V T
i

represents the projector onto the subspace spanned by AVi, and orthogonal to Vi. Often,

the additive processes are used in conjunction with an acceleration parameter!, thus (5.25)

is replaced by

yi = A�1i V T
i (b�Axk); i = 1; : : : ; p ;

xk+1 = xk + !

pX
i=1

Viyi:

Even more generally, a different parameter !i can be used for each projection, i.e.,

yi = A�1i V T
i (b�Axk); i = 1; : : : ; p;

xk+1 = xk +

pX
i=1

!iViyi:

138 CHAPTER 5 PROJECTION METHODS

The residual norm in this situation is given by

rk+1 =

I �

pX
i=1

!iPi

!
rk; (5.26)

considering the single ! parameter as a particular case. Exercise 14 gives an example of

the choice of !i which has the effect of producing a sequence with decreasing residual

norms.

We now return to the generic case, where !i = 1; 8i. A least-squares option can be

defined by taking for each of the subproblems Li = AKi. In this situation, Pi becomes an

orthogonal projector onto AKi, since

Pi = AVi
�
(AVi)

TAVi
��1

(AVi)
T :

It is interesting to note that the residual vector obtained after one outer loop is related to

the previous residual by

rk+1 =

I �

pX
i=1

Pi

!
rk;

where the Pi’s are now orthogonal projectors. In particular, in the ideal situation when

the AVi’s are orthogonal to each other, and the total rank of the Pi’s is n, then the exact

solution would be obtained in one outer step, since in this situation

I �
pX

i=1

Pi = 0:

Thus, the maximum reduction in the residual norm is achieved when the Vi’s are A-

orthogonal to one another.

Similar to the Jacobi and Gauss-Seidel iterations, what distinguishes the additive and

multiplicative iterations is that the latter updates the component to be corrected at step

i immediately. Then this updated approximate solution is used to compute the residual

vector needed to correct the next component. The Jacobi iteration uses the same previous

approximation xk to update all the components of the solution. Thus, the analogue of the

block Gauss-Seidel iteration can be defined as follows.

ALGORITHM 5.6: Multiplicative Projection Procedure

1. Until convergence, Do:

2. For i = 1; 2; : : : ; p Do:

3. Solve Aiy = V T
i (b�Ax)

4. Set x := x+ Viy
5. EndDo

6. EndDo

EXERCISES AND NOTES 139

EXERCISES

1 Consider the linear system Ax = b, where A is a Symmetric Positive Definite matrix.

a. Consider the sequence of one-dimensional projection processes with K = L = spanfeig,

where the sequence of indices i is selected in any fashion. Let xnew be a new iterate after

one projection step from x and let r = b�Ax, d = A�1b� x, and dnew = A�1b� xnew .

Show that

(Adnew; dnew) = (Ad; d)� (r; ei)
2=aii:

Does this equality, as is, establish convergence of the algorithm?

b. Assume now that i is selected at each projection step to be the index of a component of

largest absolute value in the current residual vector r = b�Ax. Show that

kdnewkA �
�
1� 1

n�2(A)

�1=2

kdkA;

in which �(A) is the spectral condition number of A. [Hint: Use the inequality jeTi rj �
n�1=2krk2 .] Does this prove that the algorithm converges?

2 Consider the linear system Ax = b, where A is a Symmetric Positive Definite matrix. Consider

a projection step with K = L = spanfvg where v is some nonzero vector. Let xnew be the new

iterate after one projection step from x and let d = A�1b� x, and dnew = A�1b� xnew .

a. Show that

(Adnew; dnew) = (Ad; d)� (r; v)2=(Av; v):

Does this equality establish convergence of the algorithm?

b. In Gastinel’s method, the vector v is selected in such a way that (v; r) = krk1, e.g., by

defining the components of v to be vi = sign(eTi r), where r = b � Ax is the current

residual vector. Show that

kdnewkA �
�
1� 1

n�2(A)

�1=2

kdkA;

in which �(A) is the spectral condition number of A. Does this prove that the algorithm

converges?

c. Compare the cost of one step of this method with that of cyclic Gauss-Seidel (see Example

5.1) and that of “optimal” Gauss-Seidel where at each step K = L = spanfeig and i is a

component of largest magnitude in the current residual vector.

3 In Section 5.3.3, it was shown that taking a one-dimensional projection technique with K =
span fAT rg and L = spanfAAT rg is mathematically equivalent to using the usual steepest

descent algorithm applied to the normal equations ATAx = AT b. Show that an orthogonal pro-

jection method for ATAx = AT b using a subspace K is mathematically equivalent to applying

a projection method onto K, orthogonally to L = AK for solving the system Ax = b.

4 Consider the matrix

A =

1 �6 0
6 2 3
0 3 2

!
:

140 CHAPTER 5 PROJECTION METHODS

a. Find a rectangle or square in the complex plane which contains all the eigenvalues of A,

without computing the eigenvalues.

b. Is the Minimal Residual iteration guaranteed to converge for a linear system with the ma-

trix A?

5 Consider the linear system �
D1 �F
�E �D2

��
x1
x2

�
=

�
b1
b2

�
in which D1 and D2 are both nonsingular matrices of size m each.

a. Define an orthogonal projection method using the set of vectors e1; : : : ; em, i.e., L = K =
spanfe1; : : : ; emg. Write down the corresponding projection step (x1 is modified into ~x1).

Similarly, write the projection step for the second half of the vectors, i.e., when L = K =
spanfem+1, : : : ; eng.

b. Consider an iteration procedure which consists of performing the two successive half-steps

described above until convergence. Show that this iteration is equivalent to a (standard)

Gauss-Seidel iteration applied to the original system.

c. Now consider a similar idea in which K is taken to be the same as before for each half-step

and L = AK. Write down the iteration procedure based on this approach. Name another

technique to which it is mathematically equivalent.

6 Consider the linear system Ax = b, where A is a Symmetric Positive Definite matrix. We define

a projection method which uses a two-dimensional space at each step. At a given step, take

L = K = spanfr; Arg, where r = b�Ax is the current residual.

a. For a basis of K use the vector r and the vector p obtained by orthogonalizing Ar against r
with respect to the A-inner product. Give the formula for computing p (no need to normalize

the resulting vector).

b. Write the algorithm for performing the projection method described above.

c. Will the algorithm converge for any initial guess x0? Justify the answer. [Hint: Exploit the

convergence results for one-dimensional projection techniques.]

7 Consider projection methods which update at each step the current solution with linear combi-

nations from two directions: the current residual r and Ar.

a. Consider an orthogonal projection method, i.e., at each step L = K = spanfr; Arg. As-

suming that A is Symmetric Positive Definite, establish convergence of the algorithm.

b. Consider a least-squares projection method in which at each stepK = spanfr; Arg and L =
AK. Assuming that A is positive definite (not necessarily symmetric), establish convergence

of the algorithm.

[Hint: The convergence results for any of the one-dimensional projection techniques can be

exploited.]

8 The “least-squares” Gauss-Seidel relaxation method defines a relaxation step as xnew = x+� ei
(same as Gauss-Seidel), but chooses � to minimize the residual norm of xnew .

a. Write down the resulting algorithm.

b. Show that this iteration is mathematically equivalent to a Gauss-Seidel iteration applied to

the normal equations ATAx = AT b.

9 Derive three types of one-dimensional projection algorithms in the same manner as was done in

Section 5.3, by replacing every occurrence of the residual vector r by a vector ei, a column of

the identity matrix.

EXERCISES AND NOTES 141

10 Derive three types of one-dimensional projection algorithms in the same manner as was done in

Section 5.3, by replacing every occurrence of the residual vector r by a vector Aei, a column of

the matrix A. What would be an “optimal” choice for i at each projection step? Show that the

method is globally convergent in this case.

11 A minimal residual iteration as defined in Section 5.3.2 can also be defined for an arbitrary

search direction d, not necessarily related to r in any way. In this case, we still define e = Ad.

a. Write down the corresponding algorithm.

b. Under which condition are all iterates defined?

c. Under which condition on d does the new iterate make no progress, i.e., krk+1k2 = krkk2?

d. Write a general sufficient condition which must be satisfied by d at each step in order to

guarantee convergence.

12 Consider the following real-valued functions of the vector variable x, where A and b are the

coefficient matrix and right-hand system of a given linear system Ax = b and x� = A�1b.

a(x) = kx� � xk22;
f(x) = kb�Axk22;
g(x) = kAT b�ATAxk22;
h(x) = 2(b; x)� (Ax;x):

a. Calculate the gradients of all four functions above.

b. How is the gradient of g related to that of f?

c. How is the gradient of f related to that of h when A is symmetric?

d. How does the function h relate to the A-norm of the error x� � x when A is Symmetric

Positive Definite?

13 The block Gauss-Seidel iteration can be expressed as a method of successive projections. The

subspace K used for each projection is of the form

K = spanfei; ei+1; : : : ; ei+pg:

What is L? Not too commonly used an alternative is to take L = AK, which amounts to solving

a least-squares problem instead of a linear system. Develop algorithms for this case. What are

the advantages and disadvantages of the two approaches (ignoring convergence rates)?

14 Let the scalars !i in the additive projection procedure satisfy the constraint

pX
i=1

!i = 1: (5.27)

It is not assumed that each !i is positive but only that j!ij � 1 for all i. The residual vector is

given by the Formula (5.26) or, equivalently,

rk+1 =

pX
i=1

!i(I � Pi)rk:

a. Show that in the least-squares case, we have krk+1k2 � krkk2 for any choice of !i’s which

satisfy the constraint (5.27).

b. We wish to choose a set of !i’s such that the 2-norm of the residual vector rk+1 is minimal.

Determine this set of !i’s, assuming that the vectors (I �Pi)rk are all linearly independent.

142 CHAPTER 5 PROJECTION METHODS

c. The “optimal” !i’s provided in the previous question require the solution of a p�p Symmet-

ric Positive Definite linear system. Let zi � Viyi be the “search directions” provided by each

of the individual projection steps. To avoid this difficulty, a simpler strategy is used which

consists of performing p successive minimal residual iterations along these search directions,

as is described below.

r := rk
For i = 1; : : : ; p Do:

!i := (r;Azi)=(Azi; Azi)
x := x+ !izi
r := r � !iAzi

EndDo

Show that krk+1k2 � krkk2. Give a sufficient condition to ensure global convergence.

15 Consider the iteration: xk+1 = xk + �kdk, where dk is a vector called the direction of search,

and �k is a scalar. It is assumed throughout that dk is a nonzero vector. Consider a method which

determines xk+1 so that the residual krk+1k2 is the smallest possible.

a. Determine �k so that krk+1k2 is minimal.

b. Show that the residual vector rk+1 obtained in this manner is orthogonal to Ark.

c. Show that the residual vectors satisfy the relation:

krk+1k2 � krkk2 sin 6 (rk; Adk):

d. Assume that at each step k, we have (rk; Adk) 6= 0. Will the method always converge?

e. Now assume that A is positive definite and select at each step dk � rk. Prove that the method

will converge for any initial guess x0.

16 Consider the iteration: xk+1 = xk + �kdk, where dk is a vector called the direction of search,

and �k is a scalar. It is assumed throughout that dk is a vector which is selected in the form

dk = AT fk where fk is some nonzero vector. Let x� = A�1b be the exact solution. Now

consider a method which at each step k determines xk+1 so that the error norm kx� � xk+1k2
is the smallest possible.

a. Determine �k so that kx� � xk+1k2 is minimal and show that the error vector ek+1 =
x��xk+1 is orthogonal to dk. The expression of �k should not contain unknown quantities

(e.g., x� or ek).

b. Show that kek+1k2 � kekk2 sin 6 (ek; dk).

c. Establish the convergence of the algorithm for any x0, when fk � rk for all k.

NOTES AND REFERENCES. Initially, the term projection methods was used mainly to describe one-

dimensional techniques such as those presented in Section 5.3. An excellent account of what has been

done in the late 1950s and early 1960s can be found in Householder’s book [122] as well as Gastinel

[101]. For more general, including nonlinear, projection processes, a good reference is Kranoselskii

and co-authors [138].

Projection techniques are present in different forms in many other areas of scientific computing

and can be formulated in abstract Hilbert functional spaces. The terms Galerkin and Petrov-Galerkin

techniques are used commonly in finite element methods to describe projection methods on finite

element spaces. The principles are identical to those seen in this chapter.

C H A P T E R

6

KRYLOV SUBSPACE METHODS

PART I

The next two chapters explore a few methods which are considered cur-

rently to be among the most important iterative techniques available for

solving large linear systems. These techniques are based on projection pro-

cesses, both orthogonal and oblique, onto Krylov subspaces, which are sub-

spaces spanned by vectors of the form p(A)v where p is a polynomial. In

short, these techniques approximate A�1b by p(A)b, where p is a \good"

polynomial. This chapter covers methods derived from, or related to, the

Arnoldi orthogonalization. The next chapter covers methods based on Lanc-

zos biorthogonalization.

INTRODUCTION

6.1

Recall from the previous chapter that a general projection method for solving the linear

system

Ax = b; (6.1)

is a method which seeks an approximate solution xm from an affine subspace x0 +Km of

dimension m by imposing the Petrov-Galerkin condition

b�Axm ? Lm;
where Lm is another subspace of dimension m. Here, x0 represents an arbitrary initial

guess to the solution. A Krylov subspace method is a method for which the subspace Km
is the Krylov subspace

Km(A; r0) = spanfr0; Ar0; A2r0; : : : ; A
m�1r0g;

143

144 CHAPTER 6 KRYLOV SUBSPACE METHODS PART I

where r0 = b�Ax0. When there is no ambiguity,Km(A; r0) will be denoted by Km. The

different versions of Krylov subspace methods arise from different choices of the subspace

Lm and from the ways in which the system is preconditioned, a topic that will be covered

in detail in later chapters.

Viewed from the angle of approximation theory, it is clear that the approximations

obtained from a Krylov subspace method are of the form

A�1b � xm = x0 + qm�1(A)r0;

in which qm�1 is a certain polynomial of degree m�1. In the simplest case where x0 = 0,

then

A�1b � qm�1(A)b:

In other words, A�1b is approximated by qm�1(A)b.
Although all the techniques provide the same type of polynomial approximations, the

choice of Lm, i.e., the constraints used to build these approximations, will have an im-

portant effect on the iterative technique. Two broad choices for Lm give rise to the best-

known techniques. The first is simply Lm = Km and the minimum-residual variation

Lm = AKm. A few of the numerous methods in this category will be described in this

chapter. The second class of methods is based on defining Lm to be a Krylov subspace

method associated with AT , namely, Lm = Km(AT ; r0). Methods of this class will be

covered in the next chapter. There are also block extensions of each of these methods

termed block Krylov subspace methods, which will be discussed only briefly. Note that

a projection method may have several different implementations, giving rise to different

algorithms which are all mathematically equivalent.

KRYLOV SUBSPACES

6.2

In this section we consider projection methods on Krylov subspaces, i.e., subspaces of the

form

Km(A; v) � span fv;Av;A2v; : : : ; Am�1vg (6.2)

which will be denoted simply by Km if there is no ambiguity. The dimension of the sub-

space of approximants increases by one at each step of the approximation process. A few

elementary properties of Krylov subspaces can be established, many of which need no

proof. A first property is that Km is the subspace of all vectors in R
n

which can be writ-

ten as x = p(A)v, where p is a polynomial of degree not exceeding m � 1. Recall that

the minimal polynomial of a vector v is the nonzero monic polynomial p of lowest degree

such that p(A)v = 0. The degree of the minimal polynomial of v with respect to A is often

called the grade of v with respect to A, or simply the grade of v if there is no ambiguity.

A consequence of the Cayley-Hamilton theorem is that the grade of v does not exceed n.

The following proposition is easy to prove.

6.2 KRYLOV SUBSPACES 145

PROPOSITION 6.1 Let � be the grade of v. Then K� is invariant under A and Km =
K� for all m � �.

It was mentioned above that the dimension of Km is nondecreasing. In fact, the fol-

lowing proposition determines the dimension of Km in general.

PROPOSITION 6.2 The Krylov subspace Km is of dimension m if and only if the

grade � of v with respect to A is not less than m, i.e.,

dim(Km) = m $ grade(v) � m:

Therefore,

dim(Km) = min fm; grade(v)g:

Proof. The vectors v;Av; : : : ; Am�1v form a basis of Km if and only if for any set of

m scalars �i; i = 0; : : : ;m � 1, where at least one �i is nonzero, the linear combinationPm�1
i=0 �iA

iv is nonzero. This is equivalent to the condition that the only polynomial of

degree � m � 1 for which p(A)v = 0 is the zero polynomial. The second part of the

proposition is a consequence of the previous proposition.

PROPOSITION 6.3 Let Qm be any projector onto Km and let Am be the section of

A to Km, that is, Am = QmAjKm . Then for any polynomial q of degree not exceeding

m� 1,

q(A)v = q(Am)v;

and for any polynomial of degree� m,

Qmq(A)v = q(Am)v:

Proof. First we prove that q(A)v = q(Am)v for any polynomial q of degree� m�1. It

is sufficient to show the property for the monic polynomials qi(t) � ti; i = 0; : : : ;m� 1.

The proof is by induction. The property is true for the polynomial q0(t) � 1. Assume that

it is true for qi(t) � ti:

qi(A)v = qi(Am)v:

Multiplying the above equation by A on both sides yields

qi+1(A)v = Aqi(Am)v:

If i+1 � m�1 the vector on the left-hand side belongs to Km, and therefore if the above

equation is multiplied on both sides by Qm, then

qi+1(A)v = QmAqi(Am)v:

Looking at the right-hand side we observe that qi(Am)v belongs to Km. Hence,

qi+1(A)v = QmAjKmqi(Am)v = qi+1(Am)v;

which proves that the property is true for i + 1, provided i + 1 � m � 1. For the case

i + 1 = m, it only remains to show that Qmqm(A)v = qm(Am)v, which follows from

146 CHAPTER 6 KRYLOV SUBSPACE METHODS PART I

qm�1(A)v = qm�1(Am)v by simply multiplying both sides by QmA.

ARNOLDI'S METHOD

6.3

Arnoldi’s method [9] is an orthogonal projection method onto Km for general non-

Hermitian matrices. The procedure was introduced in 1951 as a means of reducing a dense

matrix into Hessenberg form. Arnoldi presented his method in this manner but hinted that

the eigenvalues of the Hessenberg matrix obtained from a number of steps smaller than

n could provide accurate approximations to some eigenvalues of the original matrix. It

was later discovered that this strategy leads to an efficient technique for approximating

eigenvalues of large sparse matrices. The method will first be described theoretically, i.e.,

assuming exact arithmetic, then implementation details will be addressed.

6.3.1 THE BASIC ALGORITHM

Arnoldi’s procedure is an algorithm for building an orthogonal basis of the Krylov subspace

Km. In exact arithmetic, one variant of the algorithm is as follows:

ALGORITHM 6.1: Arnoldi

1. Choose a vector v1 of norm 1

2. For j = 1; 2; : : : ;m Do:

3. Compute hij = (Avj ; vi) for i = 1; 2; : : : ; j

4. Compute wj := Avj �
Pj

i=1 hijvi
5. hj+1;j = kwjk2
6. If hj+1;j = 0 then Stop

7. vj+1 = wj=hj+1;j
8. EndDo

At each step, the algorithm multiplies the previous Arnoldi vector vj byA and then or-

thonormalizes the resulting vectorwj against all previous vi’s by a standard Gram-Schmidt

procedure. It will stop if the vector wj computed in line 4 vanishes. This case will be ex-

amined shortly. Now a few simple properties of the algorithm are proved.

PROPOSITION 6.4 Assume that Algorithm 6.1 does not stop before the m-th step.

Then the vectors v1; v2; : : : ; vm form an orthonormal basis of the Krylov subspace

Km = spanfv1; Av1; : : : ; Am�1v1g:

6.3 ARNOLDI'S METHOD 147

Proof. The vectors vj ; j = 1; 2; : : : ;m, are orthonormal by construction. That they span

Km follows from the fact that each vector vj is of the form qj�1(A)v1 where qj�1 is a

polynomial of degree j � 1. This can be shown by induction on j as follows. The result is

clearly true for j = 1, since v1 = q0(A)v1 with q0(t) � 1. Assume that the result is true

for all integers� j and consider vj+1. We have

hj+1vj+1 = Avj �
jX

i=1

hijvi = Aqj�1(A)v1 �
jX

i=1

hijqi�1(A)v1 (6.3)

which shows that vj+1 can be expressed as qj(A)v1 where qj is of degree j and completes

the proof.

PROPOSITION 6.5 Denote by Vm, the n � m matrix with column vectors v1, : : :,
vm, by �Hm, the (m+1)�m Hessenberg matrix whose nonzero entries hij are defined by

Algorithm 6.1, and by Hm the matrix obtained from �Hm by deleting its last row. Then the

following relations hold:

AVm = VmHm + wme
T
m (6.4)

= Vm+1 �Hm; (6.5)

V T
mAVm = Hm: (6.6)

Proof. The relation (6.5) follows from the following equality which is readily derived

from lines 4, 5, and 7 of Algorithm 6.1,

Avj =

j+1X
i=1

hijvi; j = 1; 2; : : : ;m: (6.7)

Relation (6.4) is a matrix reformulation of (6.7). Relation (6.6) follows by multiplying both

sides of (6.4) by V T
m and making use of the orthonormality of fv1; : : : ; vmg.

The result of the proposition is illustrated in Figure 6.1.

Vm + wme
T
m=A

Hm

Vm

Figure 6.1 The action of A on Vm gives VmHm plus a rank-

one matrix.

As was noted earlier, the algorithm may break down in case the norm ofwj vanishes at

a certain step j. In this case, the vector vj+1 cannot be computed and the algorithm stops.

148 CHAPTER 6 KRYLOV SUBSPACE METHODS PART I

Still to be determined are the conditions under which this situation occurs.

PROPOSITION 6.6 Arnoldi’s algorithm breaks down at step j (i.e., hj+1;j = 0 in line

5 of Algorithm 6.1), if and only if the minimal polynomial of v1 is of degree j. Moreover,

in this case the subspace Kj is invariant under A.

Proof. If the degree of the minimal polynomial is j, then wj must be equal to zero.

Indeed, otherwise vj+1 can be defined and as a result Kj+1 would be of dimension j + 1.

Then Proposition 6.2 would imply that � � j + 1, which is a contradiction. To prove

the converse, assume that wj = 0. Then the degree � of the minimal polynomial of v1 is

such that � � j. Moreover, it is impossible that � < j. Otherwise, by the first part of this

proof, the vector w� would be zero and the algorithm would have stopped at the earlier

step number �. The rest of the result follows from Proposition 6.1.

A corollary of the proposition is that a projection method onto the subspace Kj will

be exact when a breakdown occurs at step j. This result follows from Proposition 5.6 seen

in Chapter 5. It is for this reason that such breakdowns are often called lucky breakdowns.

6.3.2 PRACTICAL IMPLEMENTATIONS

In the previous description of the Arnoldi process, exact arithmetic was assumed, mainly

for simplicity. In practice, much can be gained by using the Modified Gram-Schmidt or the

Householder algorithm instead of the standard Gram-Schmidt algorithm. With the Modi-

fied Gram-Schmidt alternative the algorithm takes the following form:

ALGORITHM 6.2: Arnoldi-Modi�ed Gram-Schmidt

1. Choose a vector v1 of norm 1

2. For j = 1; 2; : : : ;m Do:

3. Compute wj := Avj
4. For i = 1; : : : ; j Do:

5. hij = (wj ; vi)
6. wj := wj � hijvi
7. EndDo

8. hj+1;j = kwjk2. If hj+1;j = 0 Stop

9. vj+1 = wj=hj+1;j

10. EndDo

In exact arithmetic, this algorithm and Algorithm 6.1 are mathematically equivalent. In

the presence of round-off the above formulation is much more reliable. However, there

are cases where cancellations are so severe in the orthogonalization steps that even the

Modified Gram-Schmidt option is inadequate. In this case, two further improvements can

be utilized.

The first improvement resorts to double orthogonalization. Whenever the final vector

wj obtained at the end of the main loop in the above algorithm has been computed, a

6.3 ARNOLDI'S METHOD 149

test is performed to compare its norm with the norm of the initial wj (which is kAvjk2).

If the reduction falls below a certain threshold, indicating severe cancellation might have

occurred, a second orthogonalization is made. It is known from a result by Kahan that

additional orthogonalizations are superfluous (see, for example, Parlett [160]).

The second improvement is to use a different technique altogether. From the numerical

point of view, one of the most reliable orthogonalization techniques is the Householder

algorithm. Recall from Chapter 1 that the Householder orthogonalization uses reflection

matrices of the form Pk = I�2wkw
T
k to transform a matrixX into upper triangular form.

In the Arnoldi algorithm, the column vectors of the matrix X to be orthonormalized are

not available ahead of time. Instead, the next vector is obtained as Avj , where vj is the

current basis vector. In the Householder algorithm an orthogonal column v i is obtained as

P1P2 : : : Piei where P1; : : : ; Pi are the previous Householder matrices. This vector is then

multiplied by A and the previous Householder transforms are applied to it. Then, the next

Householder transform is determined from the resulting vector. This procedure is described

in the following algorithm, which was originally proposed by Walker [221].

ALGORITHM 6.3: Householder Arnoldi

1. Select a nonzero vector v; Set z1 = v
2. For j = 1; : : : ;m;m+ 1 Do:

3. Compute the Householder unit vector wj such that

4. (wj)i = 0; i = 1; : : : ; j � 1 and

5. (Pjzj)i = 0; i = j + 1; : : : ; n, where Pj = I � 2wjw
T
j

6. hj�1 = Pjzj
7. vj = P1P2 : : : Pjej
8. If j � m compute zj+1 := PjPj�1 : : : P1Avj
9. EndDo

For details regarding the determination of the Householder vector wj in the third to fifth

lines and on its use in the sixth to eight lines, see Chapter 1. Recall that the matrices Pj need

not be formed explicitly. To obtain hj�1 from zj in line 6, zero out all the components from

position j+1 throughn of the n-vector zj and change its j-th component, leaving all others

unchanged. Thus, the n �m matrix [h0; h1; : : : ; hm] will have the same structure as the

matrixXm of equation (1.22) in Chapter 1. By comparison with the Householder algorithm

seen in Chapter 1, we can infer that the above process computes the QR factorization of

the matrix v;Av1; Av2; Av3; : : : ; Avm. Define

Qj = PjPj�1 : : : P1: (6.8)

The definition of zj+1 in line 8 of the algorithm yields the relation,

QjAvj = zj+1:

After the next Householder transformation Pj+1 is applied in line 6, hj satisfies the rela-

tion,

hj = Pj+1zj+1 = Pj+1QjAvj = Qj+1Avj : (6.9)

150 CHAPTER 6 KRYLOV SUBSPACE METHODS PART I

Now observe that since the components j + 2; : : : ; n of hj are zero, then Pihj = hj for

any i � j + 2. Hence,

hj = PmPm�1 : : : Pj+2hj = QmAvj ; j = 1; : : : ;m:

This leads to the factorization,

Qm[v;Av1; Av2; : : : ; Avm] = [h0; h1; : : : ; hm] (6.10)

where the matrix [h0; : : : ; hm] is n� (m+ 1) and is upper triangular and Qm is unitary.

It is important to relate the vectors vi and hi defined in this algorithm with vectors of

the standard Arnoldi process. Let �Hm be the (m + 1)� m matrix obtained from the first

m+1 rows of the n�mmatrix [h1; : : : ; hm]. SinceQj+1 is unitary we haveQ�1j+1 = QT
j+1

and hence, from the relation (6.9)

Avj = QT
j+1

j+1X
i=1

hijei =

j+1X
i=1

hijQ
T
j+1ei

where each ei is the i-th column of the n� n identity matrix. Since Pkei = ei for i < k,

it is not difficult to see that

QT
j+1ei = P1 : : : Pj+1ei = vi; for i � j + 1: (6.11)

This yields the relation Avj =
Pj+1

i=1 hijvi, for j = 1; : : : ;m, which can be written in

matrix form as

AVm = Vm+1
�Hm:

This is identical with the relation (6.5) obtained with the Gram-Schmidt or Modified Gram-

Schmidt implementation. The vi’s form an orthonormal basis of the Krylov subspace Km

and are identical with the vi’s defined by the Arnoldi process, apart from a possible sign

difference.

Although the Householder algorithm is numerically more viable than the Gram-

Schmidt or Modified Gram-Schmidt versions, it is also more expensive. The cost of each

of the outer loops, corresponding to the j control variable, is dominated by lines 7 and 8.

These apply the reflection matrices Pi for i = 1; : : : ; j to a vector, perform the matrix-

vector product Avj , and then apply the matrices Pi for i = j; j � 1; : : : ; 1 to a vector. The

application of each Pi to a vector is performed as

(I � 2wiw
T
i)v = v � �wi with � = 2wT

i v:

This is essentially the result of a dot-product of length n � i + 1 followed by a vector

update of the same length, requiring a total of about 4(n � i + 1) operations for each

application of Pi. Neglecting the last step, the number of operations due to the Householder

transformations alone approximately totals

mX
j=1

jX
i=1

8(n� i+ 1) = 8

mX
j=1

�
jn� j(j � 1)

2

�
� 4m2n� 4

3
m3:

The table below shows the costs of different orthogonalization procedures. GS stands for

Gram-Schmidt, MGS for Modified Gram-Schmidt, MGSR for Modified Gram-Schmidt

with reorthogonalization, and HO for Householder.

6.4 ARNOLDI'S METHOD FOR LINEAR SYSTEMS (FOM) 151

GS MGS MGSR HO

Flops 2m2n 2m2n 4m2n 4m2n� 4
3m

3

Storage (m+ 1)n (m+ 1)n (m+ 1)n (m+ 1)n� 1
2m

2

The number of operations shown for MGSR corresponds to the worst case scenario when a

second orthogonalization is performed each time. In practice, the number of operations is

usually closer to that of the standard MGS. Regarding storage, the vectors vi; i = 1; : : : ;m
need not be saved. In the algorithms for solving linear systems, these vectors are needed at

the end of the process. This issue will be covered with the Householder implementations

of these algorithms. For now, assume that only the wi’s are saved. The small gain in mem-

ory usage in the Householder version can be explained by the diminishing lengths of the

vectors required at each step of the Householder transformation. However, this difference

is negligible relative to the whole storage requirement of the algorithm, because m � n,

typically.

The Householder orthogonalization may be a reasonable choice when developing gen-

eral purpose, reliable software packages where robustness is a critical criterion. This is

especially true for solving eigenvalue problems since the cost of orthogonalization is then

amortized over several eigenvalue/eigenvector calculations. When solving linear systems,

the Modified Gram-Schmidt orthogonalization, with a reorthogonalization strategy based

on a measure of the level of cancellation, is more than adequate in most cases.

ARNOLDI'S METHOD FOR LINEAR SYSTEMS (FOM)

6.4

Given an initial guess x0 to the original linear systemAx = b, we now consider an orthogo-

nal projection method as defined in the previous chapter, which takesL = K = Km(A; r0),
with

Km(A; r0) = spanfr0; Ar0; A2r0; : : : ; A
m�1r0g; (6.12)

in which r0 = b � Ax0. This method seeks an approximate solution xm from the affine

subspace x0 +Km of dimension m by imposing the Galerkin condition

b�Axm ? Km: (6.13)

If v1 = r0=kr0k2 in Arnoldi’s method, and set � = kr0k2, then

V T
mAVm = Hm

by (6.6) and

V T
m r0 = V T

m (�v1) = �e1:

As a result, the approximate solution using the above m-dimensional subspaces is given

by

xm = x0 + Vmym; (6.14)

152 CHAPTER 6 KRYLOV SUBSPACE METHODS PART I

ym = H�1m (�e1): (6.15)

A method based on this approach and called the Full Orthogonalization Method

(FOM) is described next. Modified Gram-Schmidt is used in the Arnoldi step.

ALGORITHM 6.4: Full Orthogonalization Method (FOM)

1. Compute r0 = b�Ax0, � := kr0k2, and v1 := r0=�
2. Define the m�m matrix Hm = fhijgi;j=1;:::;m; Set Hm = 0
3. For j = 1; 2; : : : ;m Do:

4. Compute wj := Avj
5. For i = 1; : : : ; j Do:

6. hij = (wj ; vi)
7. wj := wj � hijvi
8. EndDo

9. Compute hj+1;j = kwjk2. If hj+1;j = 0 set m := j and Goto 12

10. Compute vj+1 = wj=hj+1;j .

11. EndDo

12. Compute ym = H�1m (�e1) and xm = x0 + Vmym

The above algorithm depends on a parameter m which is the dimension of the Krylov

subspace. In practice it is desirable to select m in a dynamic fashion. This would be pos-

sible if the residual norm of the solution xm is available inexpensively (without having to

compute xm itself). Then the algorithm can be stopped at the appropriate step using this

information. The following proposition gives a result in this direction.

PROPOSITION 6.7 The residual vector of the approximate solution xm computed by

the FOM Algorithm is such that

b�Axm = �hm+1;me
T
mymvm+1

and, therefore,

kb�Axmk2 = hm+1;mjeTmymj: (6.16)

Proof. We have the relations,

b�Axm = b�A(x0 + Vmym)

= r0 �AVmym

= �v1 � VmHmym � hm+1;me
T
mymvm+1:

By the definition of ym, Hmym = �e1, and so �v1�VmHmym = 0 from which the result

follows immediately.

A rough estimate of the cost of each step of the algorithm is determined as follows. If

Nz(A) is the number of nonzero elements of A, thenm steps of the Arnoldi procedure will

require m matrix-vector products at the cost of 2m�Nz(A). Each of the Gram-Schmidt

steps costs approximately 4� j � n operations, which brings the total over the m steps to

6.4 ARNOLDI'S METHOD FOR LINEAR SYSTEMS (FOM) 153

approximately 2m2n. Thus, on the average, a step of FOM costs approximately

2Nz(A) + 2mn:

Regarding storage, m vectors of length n are required to save the basis Vm. Additional

vectors must be used to keep the current solution and right-hand side, and a scratch vector

for the matrix-vector product. In addition, the Hessenberg matrix Hm must be saved. The

total is therefore roughly

(m+ 3)n+
m2

2
:

In most situations m is small relative to n, so this cost is dominated by the first term.

6.4.1 VARIATION 1: RESTARTED FOM

Consider now the algorithm from a practical viewpoint. As m increases, the computational

cost increases at least as O(m2)n because of the Gram-Schmidt orthogonalization. The

memory cost increases as O(mn). For large n this limits the largest value of m that can

be used. There are two remedies. The first is to restart the algorithm periodically and the

second is to “truncate” the orthogonalization in the Arnoldi algorithm. In this section we

consider the first of these two options, which is described below.

ALGORITHM 6.5: Restarted FOM (FOM(m))

1. Compute r0 = b�Ax0, � = kr0k2, and v1 = r0=�.

2. Generate the Arnoldi basis and the matrix Hm using the Arnoldi algorithm

3. starting with v1.

4. Compute ym = H�1m �e1 and xm = x0 + Vmym. If satisfied then Stop.

5. Set x0 := xm and go to 1.

There are many possible variations to this basic scheme. One that is generally more

economical in practice is based on the observation that sometimes a small m is sufficient

for convergence and sometimes the largest possible m is necessary. Hence, the idea of

averaging over different values of m. Start the algorithm with m = 1 and increment m by

one in line 5 until a certain mmax is reached, after which m is reset to one, or kept the

same. These variations will not be considered here.

Example 6.1 Table 6.1 shows the results of applying the FOM algorithm with no pre-

conditioning to three of the test problems described in Section 3.7.

Matrix Iters Kflops Residual Error

F2DA 109 4442 0.36E-03 0.67E-04

F3D 66 11664 0.87E-03 0.35E-03

ORS 300 13558 0.26E+00 0.71E-04

154 CHAPTER 6 KRYLOV SUBSPACE METHODS PART I

Table 6.1 A test run of FOM with no preconditioning.

The column labeled Iters shows the total actual number of matrix-vector multiplications

(matvecs) required to converge. The stopping criterion used is that the 2-norm of the resid-

ual be reduced by a factor of 107 relative to the 2-norm of the initial residual. A maximum

of 300 matvecs are allowed. Kflops is the total number of floating point operations per-

formed, in thousands. Residual and Error represent the two-norm of the residual and error

vectors, respectively. In this test, m was taken to be 10. Note that the method did not suc-

ceed in solving the third problem.

6.4.2 VARIATION 2: IOM AND DIOM

A second alternative to FOM is to truncate the Arnoldi recurrence. Specifically, an integer

k is selected and the following “incomplete” orthogonalization is performed.

ALGORITHM 6.6: Incomplete Orthogonalization Process

1. For j = 1; 2; : : : ;m Do:

2. Compute w := Avj
3. For i = maxf1; j � k + 1g; : : : ; j Do:

4. hi;j = (w; vi)
5. w := w � hijvi
6. EndDo

7. Compute hj+1;j = kwk2 and vj+1 = w=hj+1;j
8. EndDo

The number of directions k against which to orthogonalize may be dictated by mem-

ory limitations. The Incomplete Orthogonalization Method (IOM) consists of performing

the above incomplete orthogonalization procedure and computing an approximate solution

using the same formulas (6.14) and (6.15).

ALGORITHM 6.7: IOM Algorithm

Run a modification of Algorithm 6.4 in which the Arnoldi process in lines 3 to 11

is replaced by the Incomplete Orthogonalization process and every other compu-

tation remains unchanged.

It is now necessary to keep only the k previous vi vectors. The others are not needed

in the above process and may be discarded. However, the difficulty remains that when

the solution is computed by formula (6.14), all the vectors vi for i = 1; 2; : : : ;m are

required. One option is to recompute them at the end, but essentially this doubles the cost

of the algorithm. Fortunately, a formula can be developed whereby the current approximate

solution xm can be updated from the previous approximation xm�1 and a small number

6.4 ARNOLDI'S METHOD FOR LINEAR SYSTEMS (FOM) 155

of vectors that are also updated at each step. This progressive formulation of the solution

leads to an algorithm termed Direct IOM (DIOM) which we now derive.

The Hessenberg matrix Hm obtained from the incomplete orthogonalization process

has a band structure with a bandwidth of k+1. For example, when k = 3 and m = 5, it is

of the form

Hm =

0
BBB@
h11 h12 h13
h21 h22 h23 h24

h32 h33 h34 h35
h43 h44 h45

h54 h55

1
CCCA : (6.17)

The Direct version of IOM is derived from exploiting the special structure of the LU fac-

torization, Hm = LmUm, of the matrix Hm. Assuming no pivoting is used, the matrix Lm
is unit lower bidiagonal and Um is banded upper triangular, with k diagonals. Thus, the

above matrix has a factorization of the form

Hm =

0
BBB@

1
l21 1

l32 1
l43 1

l54 1

1
CCCA�

0
BBB@
u11 u12 u13

u22 u23 u24
u33 u34 u35

u44 u45
u55

1
CCCA :

The approximate solution is then given by

xm = x0 + VmU
�1
m L�1m (�e1):

Defining

Pm � VmU
�1
m

and

zm = L�1m (�e1);

the approximate solution is given by

xm = x0 + Pmzm: (6.18)

Because of the structure of Um, Pm can be updated easily. Indeed, equating the last

columns of the matrix relation PmUm = Vm yields

mX
i=m�k+1

uimpi = vm;

which allows the vector pm to be computed from the previous pi’s and vm, with the help

of the relation,

pm =
1

umm

"
vm �

m�1X
i=m�k+1

uimpi

#
:

In addition, because of the structure of Lm, we have the relation

zm =

�
zm�1
�m

�

156 CHAPTER 6 KRYLOV SUBSPACE METHODS PART I

in which

�m = �lm;m�1�m�1:

From (6.18),

xm = x0 + [Pm�1; pm]

�
zm�1
�m

�
= x0 + Pm�1zm�1 + �mpm:

Noting that x0+Pm�1zm�1 = xm�1, it follows that the approximationxm can be updated

at each step by the relation,

xm = xm�1 + �mpm

where pm is defined above. This gives the following algorithm, called the Direct Incom-

plete Orthogonalization Method (DIOM).

ALGORITHM 6.8: DIOM

1. Choose x0 and compute r0 = b�Ax0, � := kr0k2, v1 := r0=�.

2. For m = 1; 2; : : :, until convergence Do:

3. Compute him, i = maxf1;m� k + 1g; : : : ;m and vm+1 as in

4. lines 2-7 of Algorithm (6.6).

5. Update the LU factorization of Hm, i.e., obtain the last column

6. of Um using the previous k pivots. If umm = 0 Stop.

7. �m = f if m = 1 then �; else � lm;m�1 �m�1g
8. pm = u�1mm

�
vm �Pm�1

i=m�k+1 uimpi

�
(for i � 0 set uimpi � 0)

9. xm = xm�1 + �mpm
10. EndDo

Note that the above algorithm is based implicitly on Gaussian elimination without

pivoting for the solution of the Hessenberg system Hmym = �e1. This may cause a pre-

mature termination in line 6. Fortunately, there is an implementation based on Gaussian

elimination with partial pivoting. The details of this variant can be found in [174]. DIOM

can also be derived by imposing the properties that are satisfied by the residual vector and

the conjugate directions, i.e., the pi’s.

Observe that (6.4) is still valid and as a consequence, Proposition 6.7, which is based

on it, still holds. That is because the orthogonality properties were not used to derive the

two relations therein. Since the residual vector is a scalar multiple of vm+1 and since the

vi’s are no longer orthogonal, IOM and DIOM are not orthogonal projection techniques.

They can, however, be viewed as oblique projection techniques onto Km and orthogonal

to an artificially constructed subspace.

PROPOSITION 6.8 IOM and DIOM are mathematically equivalent to a projection

process onto Km and orthogonally to

Lm = spanfz1; z2; : : : ; zmg
where

zi = vi � (vi; vm+1)vm+1; i = 1; : : : ;m:

6.5 GMRES 157

Proof. The proof is an immediate consequence of the fact that rm is a multiple of vm+1

and by construction, vm+1 is orthogonal to all zi’s defined in the proposition.

The following simple properties can be shown:

� The residual vectors ri, i = 1; : : : ;m, are “locally” orthogonal,

(rj ; ri) = 0; for ji� jj � k; i 6= j:

� The pj’s are locally A-orthogonal to the Arnoldi vectors, i.e.,

(Apj ; vi) = 0 for j � k + 1 < i < j:

� For the case k =1 (full orthogonalization) the pj’s are semi-conjugate, i.e.,

(Apj ; pi) = 0 for i < j:

GMRES

6.5

The Generalized Minimum Residual Method (GMRES) is a projection method based on

taking K = Km and L = AKm, in which Km is the m-th Krylov subspace with v1 =
r0=kr0k2. As seen in Chapter 5, such a technique minimizes the residual norm over all

vectors in x0 +Km. The implementation of an algorithm based on this approach is similar

to that of the FOM algorithm. We first describe the basic idea and then discuss a few

practical variations.

6.5.1 THE BASIC GMRES ALGORITHM

There are two ways to derive the algorithm. The first way exploits the optimality property

and the relation (6.5). Any vector x in x0 +Km can be written as

x = x0 + Vmy; (6.19)

where y is an m-vector. Defining

J(y) = kb�Axk2 = kb�A (x0 + Vmy) k2; (6.20)

the relation (6.5) results in

b�Ax = b�A (x0 + Vmy)

= r0 �AVmy

= �v1 � Vm+1
�Hmy

= Vm+1

�
�e1 � �Hmy

�
: (6.21)

Since the column-vectors of Vm+1 are orthonormal, then

J(y) � kb�A (x0 + Vmy) k2 = k�e1 � �Hmyk2: (6.22)

158 CHAPTER 6 KRYLOV SUBSPACE METHODS PART I

The GMRES approximation is the unique vector of x0 +Km which minimizes (6.20). By

(6.19) and (6.22), this approximation can be obtained quite simply as xm = x0 + Vmym
where ym minimizes the function J(y) = k�e1 � �Hmyk2, i.e.,

xm = x0 + Vmym; where (6.23)

ym = argminyk�e1 � �Hmyk2: (6.24)

The minimizer ym is inexpensive to compute since it requires the solution of an (m+1)�m
least-squares problem where m is typically small. This gives the following algorithm.

ALGORITHM 6.9: GMRES

1. Compute r0 = b�Ax0, � := kr0k2, and v1 := r0=�
2. Define the (m+ 1)�m matrix �Hm = fhijg1�i�m+1;1�j�m. Set �Hm = 0.

3. For j = 1; 2; : : : ;m Do:

4. Compute wj := Avj
5. For i = 1; : : : ; j Do:

6. hij := (wj ; vi)
7. wj := wj � hijvi
8. EndDo

9. hj+1;j = kwjk2. If hj+1;j = 0 set m := j and go to 12

10. vj+1 = wj=hj+1;j
11. EndDo

12. Compute ym the minimizer of k�e1 � �Hmyk2 and xm = x0 + Vmym.

The second way to derive the GMRES algorithm is to use the equations (5.7) with

Wm = AVm. This is the subject of Exercise 4.

6.5.2 THE HOUSEHOLDER VERSION

The previous algorithm utilizes the Modified Gram-Schmidt orthogonalization in the Ar-

noldi process. Section 6.3.2 described a Householder variant of the Arnoldi process which

is numerically more robust than Gram-Schmidt. Here, we focus on a modification of GM-

RES which retrofits the Householder orthogonalization. Section 6.3.2 explained how to get

the vj and the columns of �Hm+1 at each step, from the Householder-Arnoldi algorithm.

Since Vm and �Hm are the only items needed to extract the approximate solution at the end

of the GMRES process, the modification seems rather straightforward. However, this is

only true if the vi’s are stored. In this case, line 12 would remain the same and the modifi-

cation to the algorithm would be in lines 3-11 which are to be replaced by the Householder

variant of the Arnoldi process. It was mentioned in Section 6.3.2 that it is preferable not

to store the vi’s because this would double the storage requirement. In this case, a formula

must be found to generate the approximate solution in line 12, using only the w i’s, i.e., the

Pi’s. Let

ym = (�1; �2; � � � ; �m)
T
;

6.5 GMRES 159

so that the solution is of the form xm = x0 + �1v1 + � � � + �mvm. Recall that in the

Householder variant of the Arnoldi process, each vj is defined by

vj = P1P2 : : : Pjej :

Using a Horner-like scheme, we obtain

xm = x0 + �1P1e1 + �2P1P2e2 + : : :+ �mP1P2 : : : Pmem

= x0 + P1 (�1e1 + P2 (�2e2 + : : :+ Pm�1 (�m�1em�1 + Pm�mem))) :

Therefore, when Householder orthogonalization is used, then line 12 of the GMRES algo-

rithm should be replaced by a step of the form

z := 0 (6.25)

z := Pj (�jej + z) ; j = m;m� 1; : : : ; 1 (6.26)

xm = x0 + z: (6.27)

The above step requires roughly as many operations as computing the last Arnoldi

vector vm. Therefore, its cost is negligible relative to the cost of the Arnoldi loop.

ALGORITHM 6.10: GMRES with Householder orthogonalization

1. Compute r0 = b�Ax0, z := r0.

2. For j = 1; : : : ;m;m+ 1 Do:

3. Compute the Householder unit vector wj such that

4. (wj)i = 0; i = 1; : : : ; j � 1 and

5. (Pjz)i = 0; i = j + 1; : : : ; n where Pj = I � 2wjw
T
j ;

6. hj�1 := Pjz; If j = 1 then let � := eT1 h0.

7. v := P1P2 : : : Pjej .
8. If j � m compute z := PjPj�1 : : : P1Av,

9. EndDo

10. Define �Hm = the (m+ 1)�m upper part of the matrix [h1; : : : ; hm].
11. Compute ym = Argminyk�e1 � �Hmyk2. Let ym = (�1; �2; : : : ; �m)T .

12. z := 0

13. For j = m;m� 1; : : : ; 1 Do:

14. z := Pj (�jej + z),
15. EndDo

16. Compute xm = x0 + z

Note that now only the set of wj vectors needs to be saved. The scalar � defined in line

6 is equal to�kr0k2. This is because P1z = �e1 where � is defined by the equations (1.21)

seen in Chapter 1, which define the first Householder transformation. As was observed

earlier the Householder factorization actually obtains the QR factorization (6.10) with v =
r0. We can also formulate GMRES directly from this factorization. Indeed, if x = x0 +
Vmym, then according to this factorization, the corresponding residual norm is equal to

kh0 � �1h1 � �2h2 � : : :� �mhmk2
whose minimizer is the same as the one defined by the algorithm.

160 CHAPTER 6 KRYLOV SUBSPACE METHODS PART I

The details of implementation of the solution of the least-squares problem as well as

the estimate of the residual norm are identical with those of the Gram-Schmidt versions

and are discussed next.

6.5.3 PRACTICAL IMPLEMENTATION ISSUES

A clear difficulty with Algorithm 6.9 is that it does not provide the approximate solution

xm explicitly at each step. As a result, it is not easy to determine when to stop. One remedy

is to compute the approximation solution xm at regular intervals and check for convergence

by a test on the residual, for example. However, there is a more elegant solution which is

related to the way in which the least-squares problem (6.24) is solved.

In order to solve the least-squares problem min k�e1 � �Hmyk, it is natural to trans-

form the Hessenberg matrix into upper triangular form by using plane rotations. Define the

rotation matrices

i =

0
BBBBBBBBBB@

1
. . .

1
ci si
�si ci

1
. . .

1

1
CCCCCCCCCCA

 row i
 row i+ 1

(6.28)

with c2i + s2i = 1. If m steps of the GMRES iteration are performed then these matrices

have dimension (m+ 1)� (m+ 1).
Multiply the Hessenberg matrix �Hm and the corresponding right-hand side �g0 � �e1

by a sequence of such matrices from the left. The coefficients si; ci are selected to eliminate

hi+1;i at each time. Thus, if m = 5 we would have

�H5 =

0
BBBBB@

h11 h12 h13 h14 h15
h21 h22 h23 h24 h25

h32 h33 h34 h35
h43 h44 h45

h54 h55
h65

1
CCCCCA ; �g0 =

0
BBBBB@

�
0
0
0
0
0

1
CCCCCA :

Then premultiply �H5 by

1 =

0
BBB@

c1 s1
�s1 c1

1
1

1

1
CCCA

with

s1 =
h21p

h211 + h221
; c1 =

h11p
h211 + h221

6.5 GMRES 161

to obtain the matrix and right-hand side

�H
(1)
5 =

0
BBBBBB@

h
(1)
11 h

(1)
12 h

(1)
13 h

(1)
14 h

(1)
15

h
(1)
22 h

(1)
23 h

(1)
24 h

(1)
25

h32 h33 h34 h35
h43 h44 h45

h54 h55
h65

1
CCCCCCA
; �g1 =

0
BBBBB@

c1�
�s1�
0
0
0
0

1
CCCCCA : (6.29)

We can now premultiply the above matrix and right-hand side again by a rotation matrix

2 to eliminate h32. This is achieved by taking

s2 =
h32q

(h
(1)
22)

2 + h232

; c2 =
h
(1)
22q

(h
(1)
22)

2 + h232

:

This elimination process is continued until the m-th rotation is applied, which transforms

the problem into one involving the matrix and right-hand side,

�H
(5)
5 =

0
BBBBBBB@

h
(5)
11 h

(5)
12 h

(5)
13 h

(5)
14 h

(5)
15

h
(5)
22 h

(5)
23 h

(5)
24 h

(5)
25

h
(5)
33 h

(5)
34 h

(5)
35

h
(5)
44 h

(5)
45

h
(5)
55

0

1
CCCCCCCA
; �g5 =

0
BBBBB@

1
2
3
:
:
6

1
CCCCCA : (6.30)

Generally, the scalars ci and si of the ith rotation
i are defined as

si =
hi+1;iq

(h
(i�1)
ii)2 + h2i+1;i

; ci =
h
(i�1)
iiq

(h
(i�1)
ii)2 + h2i+1;i

: (6.31)

Define Qm the product of matrices
i,

Qm =
m
m�1 : : :
1 (6.32)

and

�Rm = �H(m)
m = Qm

�Hm; (6.33)

�gm = Qm(�e1) = (1; : : : ; m+1)
T : (6.34)

Since Qm is unitary,

min k�e1 � �Hmyk2 = min k�gm � �Rmyk2:
The solution to the above least-squares problem is obtained by simply solving the triangular

system resulting from deleting the last row of the matrix �Rm and right-hand side �gm in

(6.30). In addition, it is clear that for the solution y�, the “residual” k�e1 � �Hmy�k is

nothing but the last element of the right-hand side, i.e., the term 6 in the above illustration.

PROPOSITION 6.9 Let
i; i = 1; : : : ;m be the rotation matrices used to transform
�Hm into an upper triangular form andRm, �gm = (1; : : : ; m+1)

T the resulting matrix and

right-hand side, as defined by (6.33), (6.34). Denote by Rm the m �m upper triangular

162 CHAPTER 6 KRYLOV SUBSPACE METHODS PART I

matrix obtained from �Rm by deleting its last row and by gm the m-dimensional vector

obtained from �gm by deleting its last component. Then,

1. The rank ofAVm is equal to the rank ofRm. In particular, if rmm = 0 then A must

be singular.

2. The vector ym which minimizes k�e1 � �Hmyk2 is given by

ym = R�1m gm:

3. The residual vector at step m satisfies

b�Axm = Vm+1
�
�e1 � �Hmym

�
= Vm+1Q

T
m(m+1em+1) (6.35)

and, as a result,

kb�Axmk2 = jm+1j: (6.36)

Proof. To prove first part (1), use (6.5), to obtain the relation

AVm = Vm+1 �Hm

= Vm+1Q
T
mQm �Hm

= Vm+1Q
T
m
�Rm:

Since Vm+1Q
T
m is unitary, the rank of AVm is that of �Rm, which equals the rank of Rm

since these two matrices differ only by a zero row (the last row of �Rm). If rmm = 0 then

Rm is of rank � m � 1 and as a result AVm is also of rank � m � 1. Since Vm is of full

rank, this means that A must be singular.

The second part (2), was essentially proved before the proposition. For any vector y,

k�e1 � �Hmyk22 = kQm(�e1 � �Hmy)k22
= k�gm � �Rmyk22
= jm+1j2 + kgm �Rmyk22 (6.37)

The minimum of the left-hand side is reached when the second term in the right-hand side

of (6.37) is zero. Since Rm is nonsingular, this is achieved when y = R�1m gm.

To prove the third part (3), we start with the definitions used for GMRES and the

relation (6.21). For any x = x0 + Vmy,

b�Ax = Vm+1
�
�e1 � �Hmy

�
= Vm+1Q

T
m Qm

�
�e1 � �Hmy

�
= Vm+1Q

T
m

�
�gm � �Rmy

�
:

As was seen in the proof of the second part above, the 2-norm of �gm � �Rmy is minimized

when y annihilates all components of the right-hand side �gm except the last one, which is

equal to m+1. As a result,

b�Axm = Vm+1Q
T
m(m+1em+1)

which is (6.35). The result (6.36) follows from the orthonormality of the column-vectors

of Vm+1Q
T
m.

So far we have only described a process for computing the least-squares solution ym

6.5 GMRES 163

of (6.24). Note that this approach with plane rotations can also be used to solve the linear

system (6.15) for the FOM method. The only difference is that the last rotation
m must

be omitted. In particular, a single program can be written to implement both algorithms

using a switch for selecting the FOM or GMRES options.

It is possible to implement the above process in a progressive manner, i.e., at each step

of the GMRES algorithm. This approach will allow one to obtain the residual norm at every

step, with virtually no additional arithmetic operations. To illustrate this, start with (6.30),

i.e., assume that the first m rotations have already been applied. Now the residual norm is

available for x5 and the stopping criterion can be applied. Assume that the test dictates that

further steps be taken. One more step of the Arnoldi algorithm must be executed to get Av6
and the 6-th column of �H6. This column is appended to �R5 which has been augmented by

a zero row to match the dimension. Then the previous rotations
1,
2; : : :,
5 are applied

to this last column. After this is done the following matrix and right-hand side are obtained:

H
(5)
6 =

0
BBBBBBBBB@

h
(5)
11 h

(5)
12 h

(5)
13 h

(5)
14 h

(5)
15 h

(5)
16

h
(5)
22 h

(5)
23 h

(5)
24 h

(5)
25 h

(5)
26

h
(5)
33 h

(5)
34 h

(5)
35 h

(5)
36

h
(5)
44 h

(5)
45 h

(5)
46

h
(5)
55 h

(5)
56

0 h
(5)
66

0 h76

1
CCCCCCCCCA
; g

(5)
6 =

0
BBBBBBB@

1
2
3
:
:
6
0

1
CCCCCCCA
: (6.38)

The algorithm now continues in the same way as before. We need to premultiply the matrix

by a rotation matrix
6 (now of size 7� 7) with

s6 =
h76q

(h
(5)
66)

2 + h276

; c6 =
h
(5)
66q

(h
(5)
66)

2 + h276

to get the matrix and right-hand side,

�R6 =

0
BBBBBBB@

r11 r12 r13 r14 r15 r16
r22 r23 r24 r25 r26

r33 r34 r35 r36
r44 r45 r46

r55 r56
r66
0

1
CCCCCCCA
; �g6 =

0
BBBBBBB@

1
2
3
:
:

c66
�s66

1
CCCCCCCA
: (6.39)

If the residual norm as given by jm+1j is small enough, the process must be stopped.

The last rows of �Rm and �gm are deleted and the resulting upper triangular system is solved

to obtain ym. Then the approximate solution xm = x0 + Vmym is computed.

Note from (6.39) that the following useful relation for j+1 results

j+1 = �sjj : (6.40)

In particular, if sj = 0 then the residual norm must be equal to zero which means that the

solution is exact at step j.

164 CHAPTER 6 KRYLOV SUBSPACE METHODS PART I

6.5.4 BREAKDOWN OF GMRES

If Algorithm 6.9 is examined carefully, we observe that the only possibilities of breakdown

in GMRES are in the Arnoldi loop, when v̂j+1 = 0, i.e., when hj+1;j = 0 at a given step j.

In this situation, the algorithm stops because the next Arnoldi vector cannot be generated.

However, in this situation, the residual vector is zero, i.e., the algorithm will deliver the

exact solution at this step. In fact, the converse is also true: If the algorithm stops at step j
with b�Axj = 0, then hj+1;j = 0.

PROPOSITION 6.10 Let A be a nonsingular matrix. Then, the GMRES algorithm

breaks down at step j, i.e., hj+1;j = 0, if and only if the approximate solution xj is exact.

Proof. To show the necessary condition, observe that if hj+1;j = 0, then sj = 0. Indeed,

since A is nonsingular, then rjj = h
(j�1)
jj is nonzero by the first part of Proposition 6.9

and (6.31) implies sj = 0. Then, the relations (6.36) and (6.40) imply that rj = 0.

To show the sufficient condition, we use (6.40) again. Since the solution is exact at step

j and not at step j � 1, then sj = 0. From the formula (6.31), this implies that hj+1;j = 0.

6.5.5 RELATIONS BETWEEN FOM AND GMRES

If the last row of the least-squares system in (6.38) is deleted, instead of the one in (6.39),

i.e., before the last rotation
6 is applied, the same approximate solution as FOM would

result. As a practical consequence a single subroutine can be written to handle both cases.

This observation can also be helpful in understanding the relationships between the two

algorithms.

We begin by establishing an interesting relation between the FOM and GMRES iter-

ates, which will be exploited in the next chapter. A general lemma is first shown regarding

the solutions of the triangular systems

Rmym = gm

obtained from applying successive rotations to the Hessenberg matrices �Hm. As was stated

before, the only difference between the ym vectors obtained in GMRES and Arnoldi is

that the last rotation
m is omitted in FOM. In other words, the Rm matrix for the two

methods differs only in its (m;m) entry while the right-hand sides differ only in their last

components.

LEMMA 6.1 Let ~Rm be the m�m upper part of the matrix Qm�1
�Hm and, as before,

let Rm be the m �m upper part of the matrix Qm
�Hm. Similarly, let ~gm be the vector of

the first m components of Qm�1(�e1) and let gm be the vector of the first m components

of Qm(�e1). Define

~ym = ~R�1m ~gm; ym = R�1m gm

the y vectors obtained for an m-dimensional FOM and GMRES methods, respectively.

6.5 GMRES 165

Then

ym �
�ym�1

0

�
= c2m

�
~ym �

�ym�1
0

��
(6.41)

in which cm is the cosine used in the m-th rotation
m, as defined by (6.31).

Proof. The following relation holds:

Rm =

�
Rm�1 zm
0 �m

�
; ~Rm =

�
Rm�1 zm
0 ~�m

�
:

Similarly, for the right-hand sides,

gm =

�
gm�1
m

�
; ~gm =

�
gm�1
~m

�
with

m = cm~m: (6.42)

Denoting by � the scalar

q
~�2m + h2m+1;m, and using the definitions of sm and cm, we

obtain

�m = cm~�m + smhm+1;m =
~�2m
�
+

h2m+1;m

�
= � =

~�m
cm

: (6.43)

Now,

ym = R�1m gm =

�
R�1m�1 � 1

�m
R�1m�1zm

0 1
�m

��
gm�1
m

�
(6.44)

which, upon observing that R�1m�1gm�1 = ym�1, yields,

ym �
�ym�1

0

�
=

m
�m

��R�1m�1zm
1

�
: (6.45)

Replacing ym; �m; m by ~ym; ~�m; ~m, respectively, in (6.44), a relation similar to (6.45)

would result except that m=�m is replaced by ~m=~�m which, by (6.42) and (6.43), satisfies

the relation

m
�m

= c2m
~m
~�m

:

The result follows immediately.

If the FOM and GMRES iterates are denoted by the superscripts F and G, respectively,

then the relation (6.41) implies that

xGm � xGm�1 = c2m
�
xFm � xGm�1

�
;

or,

xGm = s2mx
G
m�1 + c2mx

F
m: (6.46)

This leads to the following relation for the residual vectors obtained by the two methods,

rGm = s2mr
G
m�1 + c2mr

F
m (6.47)

166 CHAPTER 6 KRYLOV SUBSPACE METHODS PART I

which indicates that, in general, the two residual vectors will evolve hand in hand. In par-

ticular, if cm = 0, then GMRES will not progress at step m, a phenomenon known as

stagnation. However, in this situation, according to the definitions (6.31) of the rotations,

h
(m�1)
mm = 0 which implies that Hm is singular and, therefore, xFm is not defined. In fact,

the reverse of this is also true, a result due to Brown [43], which is stated without proof in

the following proposition.

PROPOSITION 6.11 If at any given step m, the GMRES iterates make no progress,

i.e., if xGm = xGm�1 then Hm is singular and xFm is not defined. Conversely, if Hm is

singular at step m, i.e., if FOM breaks down at step m, and A is nonsingular, then xGm =
xGm�1.

Note also that the use of the above lemma is not restricted to the GMRES-FOM pair.

Some of the iterative methods defined in this chapter and the next involve a least-squares

problem of the form (6.24). In such cases, the iterates of the least-squares method and those

of the orthogonal residual (Galerkin) method will be related by the same equation.

Another important observation from (6.40) is that if �i is the residual norm kb�Axik2
obtained at step i, then

�Gm = jsmj�Gm�1:
The superscripts G and F are used again to distinguish between GMRES and FOM quan-

tities. A consequence of this is that,

�Gm = js1s2 : : : smj�: (6.48)

Now consider the FOM iterates, assuming that xm is defined, i.e., that Hm is nonsingular.

An equation similar to (6.48) for FOM can be derived. Using the same notation as in the

proof of the lemma, and recalling that

�Fm = hm+1;mjeTmH�1m (�e1)j;
note that

eTmH
�1
m (�e1) =

~m
~�m

:

Clearly,

j~mj = jsm�1m�1j = � � � = js1s2 : : : sm�1�j
and therefore,

�Fm =
hm+1;m

j~�mj js1s2 : : : sm�1�j:

Using (6.31), observe that hm+1;m=j~�mj is the tangent of the angle defining the m-th rota-

tion, and therefore,

�Fm =
jsmj
q
~�2m + h2m+1;m

j~�mj js1s2 : : : sm�1�j

which, by a comparison with (6.48), yields a revealing relation between the residuals of

6.5 GMRES 167

the FOM and GMRES algorithms, namely,

�Fm =
1

cm
�Gm = �Gm

s
1 +

h2m+1;m

~�2m
:

Another way to prove the above expression is to exploit the relation (6.47); see Exercise

12. These results are summarized in the following proposition (Brown [43]).

PROPOSITION 6.12 Assume that m steps of the Arnoldi process have been taken

and that Hm is nonsingular. Let � � (Qm�1
�Hm)mm and h � hm+1;m. Then the residual

norms produced by the FOM and the GMRES algorithms are related by the equality

�Fm =
1

cm
�Gm = �Gm

s
1 +

h2

�2
: (6.49)

6.5.6 VARIATION 1: RESTARTING

Similar to the FOM algorithm of the previous section, the GMRES algorithm becomes

impractical when m is large because of the growth of memory and computational require-

ments as m increases. These requirements are identical with those of FOM. As with FOM,

there are two remedies. One is based on restarting and the other on truncating the Arnoldi

orthogonalization. The straightforward restarting option is described here.

ALGORITHM 6.11: Restarted GMRES

1. Compute r0 = b�Ax0, � = kr0k2, and v1 = r0=�
2. Generate the Arnoldi basis and the matrix �Hm using the Arnoldi algorithm

3. starting with v1
4. Compute ym which minimizes k�e1 � �Hmyk2 and xm = x0 + Vmym
5. If satisfied then Stop, else set x0 := xm and GoTo 1

Note that the implementation tricks discussed in the previous section can be applied, pro-

viding the residual norm at each sub-step j without computing the approximation xj . This

enables the program to exit as soon as this norm is small enough.

A well known difficulty with the restarted GMRES algorithm is that it can stagnate

when the matrix is not positive definite. The full GMRES algorithm is guaranteed to con-

verge in at most n steps, but this would be impractical if there were many steps required

for convergence. Obviously, a preconditioner for the linear system can be used to reduce

the number of steps, or a better preconditioner if one is already in use. This issue will be

covered later along with preconditioning techniques.

Example 6.2 Table 6.2 shows the results of applying the GMRES algorithm with no

preconditioning to three of the test problems described in Section 3.7.

168 CHAPTER 6 KRYLOV SUBSPACE METHODS PART I

Matrix Iters Kflops Residual Error

F2DA 95 3841 0.32E-02 0.11E-03

F3D 67 11862 0.37E-03 0.28E-03

ORS 205 9221 0.33E+00 0.68E-04

Table 6.2 A test run of GMRES with no preconditioning.

See Example 6.1 for the meaning of the column headers in the table. In this test, the di-

mension of the Krylov subspace is m = 10. Observe that the problem ORS, which could

not be solved by FOM(10), is now solved in 205 steps.

6.5.7 VARIATION 2: TRUNCATED GMRES VERSIONS

It is possible to derive an Incomplete version of the GMRES algorithm. This algorithm

is called Quasi-GMRES (QGMRES) for the sake of notational uniformity with other al-

gorithms developed in the literature (some of which will be seen in the next chapter). A

direct version called DQGMRES using exactly the same arguments as in Section 6.4.2 for

DIOM can also be derived. We begin by defining the QGMRES algorithm, in simple terms,

by replacing the Arnoldi Algorithm with Algorithm 6.6, the Incomplete Orthogonalization

procedure.

ALGORITHM 6.12: Quasi-GMRES

Run a modification of Algorithm 6.9 in which the Arnoldi process in lines 3 to 11

is replaced by the Incomplete Orthogonalization process and all other computa-

tions remain unchanged.

Similar to IOM, only the k previous vi vectors must be kept at any given step. How-

ever, this version of GMRES will potentially save computations but not storage. This is

because computing the solution by formula (6.23) requires the vectors v i for i = 1; : : : ;m
to be accessed. Fortunately, the approximate solution can be updated in a progressive man-

ner, as in DIOM.

The implementation of this progressive version is quite similar to DIOM. First, note

that if �Hm is banded, as for example, when m = 5; k = 2,

�H5 =

0
BBBBB@

h11 h12
h21 h22 h23

h32 h33 h34
h43 h44 h45

h54 h55
h65

1
CCCCCA ; g =

0
BBBBB@

�
0
0
0
0
0

1
CCCCCA (6.50)

then the premultiplications by the rotation matrices
i as described in the previous section

will only introduce an additional diagonal. For the above case, the resulting least-squares

6.5 GMRES 169

system is �R5y = �g5 with:

�R5 =

0
BBBBB@

r11 r12 r13
r22 r23 r24

r33 r34 r35
r44 r45

r55
0

1
CCCCCA ; �g5 =

0
BBBBB@

1
2
3
:
:
6

1
CCCCCA : (6.51)

The approximate solution is given by

xm = x0 + VmR
�1
m gm

where Rm and gm are obtained by removing the last row of �Rm and �gm, respectively.

Defining Pm as in DIOM,

Pm � VmR
�1
m

then,

xm = x0 + Pmgm:

Also note that similarly to DIOM,

gm =

�
gm�1
m

�
in which

m = cm
(m�1)
m ;

where
(m�1)
m is the last component of the vector �gm�1, i.e., the right-hand side before the

m-th rotation is applied. Thus, xm can be updated at each step, via the relation

xm = xm�1 + mpm:

ALGORITHM 6.13: DQGMRES

1. Compute r0 = b�Ax0, 1 := kr0k2, and v1 := r0=1
2. For m = 1; 2; : : :, until convergence Do:

3. Compute him, i = maxf1;m� k + 1g; : : : ;m and vm+1

4. as in lines 2 to 6 of Algorithm 6.6

5. Update the QR factorization of �Hm, i.e.,

6. Apply
i, i = m� k; : : : ;m� 1 to the m-th column of �Hm

7. Compute the rotation coefficients cm, sm by (6.31)

8. Apply
m to �Hm and �gm, i.e., Compute:

9. m+1 := �smm
10. m := cmm

11. hmm := cmhmm + smhm+1;m (=
q
h2m+1;m + h2mm)

12. pm =
�
vm �Pm�1

i=m�k himpi

�
=hmm

13. xm = xm�1 + mpm
14. If jm+1j is small enough then Stop

15. EndDo

170 CHAPTER 6 KRYLOV SUBSPACE METHODS PART I

The above algorithm does not minimize the norm of the residual vector over x0+Km.

Rather, it attempts to perform an approximate minimization. The formula (6.35) is still

valid since orthogonality is not used to derive it. Therefore,

b�Axm = Vm+1Q
T
m(m+1em+1): (6.52)

If the vi’s were orthogonal to each other, then this is equivalent to GMRES and the resid-

ual norm is minimized over all vectors of the form x0 + Vmy. Since only an incomplete

orthogonalization is used then the vi’s are only locally orthogonal and, as a result, only

an approximate minimization may be obtained. In addition, (6.36) is no longer valid. This

equality had been derived from the above equation by exploiting the orthogonality of the

vi’s. It turns out that in practice, jm+1j remains a reasonably good estimate of the actual

residual norm because the vi’s are nearly orthogonal. The following inequality provides an

actual upper bound of the residual norm in terms of computable quantities:

kb�Axmk �
p
m� k + 1 jm+1j: (6.53)

Here, k is to be replaced by m when m � k. The proof of this inequality is a consequence

of (6.52). If the unit vector q � QT
mem+1 has components �1; �2; : : : ; �m+1, then

kb�Axmk2 = jm+1j kVm+1qk2

� jm+1j
0
@

k+1X
i=1

�ivi

2

+

m+1X
i=k+2

�ivi

2

1
A

� jm+1j
0
@"k+1X

i=1

�2i

#1=2
+

m+1X
i=k+2

j�ij kvik2

1
A

� jm+1j
0
@"k+1X

i=1

�2i

#1=2
+
p
m� k

"
m+1X
i=k+2

�2i

#1=21A
Here, the orthogonality of the first k + 1 vectors vi was used and the last term comes

from using the Cauchy-Schwartz inequality. The desired inequality follows from using the

Cauchy-Schwartz inequality again in the form

1 : a+
p
m� k : b � p

m� k + 1
p
a2 + b2

and from the fact that the vector q is of norm unity. Thus, using jm+1j as a residual

estimate, we would make an error of a factor of
p
m� k + 1 at most. In general, this is an

overestimate and jm+1j tends to give an adequate estimate for the residual norm.

It is also interesting to observe that with a little bit more arithmetic, it is possible to

actually compute the exact residual vector and norm. This is based on the observation that,

according to (6.52), the residual vector is m+1 times the vector zm+1 which is the last

column of the matrix

Zm+1 � Vm+1Q
T
m: (6.54)

It is an easy exercise to see that this last column can be updated from vm+1 and zm. Indeed,

Zm+1 = [Vm; vm+1]Q
T
m�1
m

6.5 GMRES 171

= [VmQ
T
m�1; vm+1]
m

= [Zm; vm+1]
m

where all the matrices related to the rotation are of size (m + 1)� (m + 1). The result is

that

zm+1 = �smzm + cmvm+1: (6.55)

The zi’s can be updated at the cost of one extra vector in memory and 4n operations at

each step. The norm of zm+1 can be computed at the cost of 2n operations and the exact

residual norm for the current approximate solution can then be obtained by multiplying

this norm by jm+1j.
Because this is a little expensive, it may be preferred to just “correct” the estimate

provided by m+1 by exploiting the above recurrence relation,

kzm+1k2 � jsmjkzmk2 + jcmj:
If �m � kzmk2 , then the following recurrence relation holds,

�m+1 � jsmj�m + jcmj: (6.56)

The above relation is inexpensive to update, yet provides an upper bound that is sharper

than (6.53); see Exercise 20.

An interesting consequence of (6.55) is a relation between two successive residual

vectors:

rm = m+1zm+1

= m+1[�smzm + cmvm+1]

= s2mrm�1 + cmm+1vm+1: (6.57)

This exploits the fact that m+1 = �smm and rj = j+1zj+1.

Example 6.3 Table 6.3 shows the results of applying the DQGMRES algorithm with no

preconditioning to three of the test problems described in Section 3.7.

Matrix Iters Kflops Residual Error

F2DA 98 7216 0.36E-02 0.13E-03

F3D 75 22798 0.64E-03 0.32E-03

ORS 300 24138 0.13E+02 0.25E-02

Table 6.3 A test run of DQGMRES with no preconditioning.

See Example 6.1 for the meaning of the column headers in the table. In this test the number

k of directions in the recurrence is k = 10.

It is possible to relate the quasi-minimal residual norm to the actual minimal residual

norm provided by GMRES. The following result was proved by Nachtigal (1991) [152] for

the QMR algorithm to be seen in the next chapter.

172 CHAPTER 6 KRYLOV SUBSPACE METHODS PART I

THEOREM 6.1 Assume that Vm+1, the Arnoldi basis associated with DQGMRES, is

of full rank. Let rQm and rGm be the residual norms obtained afterm steps of the DQGMRES

and GMRES algorithms, respectively. Then

krQmk2 � �2(Vm+1)krGmk2: (6.58)

Proof. Consider the subset of Km+1 defined by

R = fr : r = Vm+1t; t = �e1 � �Hmy; y 2 C
mg:

Denote by ym the minimizer of k�e1 � �Hmyk2 over y and tm = �e1 � �Hmym, rm =
Vm+1tm � rQm. By assumption, Vm+1 is of full rank and there is an (m + 1) � (m + 1)
nonsingular matrix S such that Wm+1 = Vm+1S is unitary. Then, for any member of R,

r =Wm+1S
�1t; t = SWH

m+1r

and, in particular,

krmk2 � kS�1k2ktmk2: (6.59)

Now ktmk2 is the minimum of the 2-norm of �e1 � �Hmy over all y’s and therefore,

ktmk2 = kSWH
m+1rmk � kSWH

m+1rk2 8r 2 R
� kSk2krk2 8r 2 R
� kSk2krGk2: (6.60)

The result follows from (6.59), (6.60), and the fact that �2(Vm+1) = �2(S).

THE SYMMETRIC LANCZOS ALGORITHM

6.6

The symmetric Lanczos algorithm can be viewed as a simplification of Arnoldi’s method

for the particular case when the matrix is symmetric. When A is symmetric, then the Hes-

senberg matrix Hm becomes symmetric tridiagonal. This leads to a three-term recurrence

in the Arnoldi process and short-term recurrences for solution algorithms such as FOM

and GMRES. On the theoretical side, there is also much more to be said on the resulting

approximation in the symmetric case.

6.6.1 THE ALGORITHM

To introduce the Lanczos algorithm we begin by making the observation stated in the

following theorem.

6.6 THE SYMMETRIC LANCZOS ALGORITHM 173

THEOREM 6.2 Assume that Arnoldi’s method is applied to a real symmetric matrix

A. Then the coefficients hij generated by the algorithm are such that

hij = 0; for 1 � i < j � 1; (6.61)

hj;j+1 = hj+1;j ; j = 1; 2; : : : ;m: (6.62)

In other words, the matrix Hm obtained from the Arnoldi process is tridiagonal and sym-

metric.

Proof. The proof is an immediate consequence of the fact that Hm = V T
mAVm is a

symmetric matrix which is also a Hessenberg matrix by construction. Therefore,Hm must

be a symmetric tridiagonal matrix.

The standard notation used to describe the Lanczos algorithm is obtained by setting

�j � hjj ; �j � hj�1;j ;

and if Tm denotes the resulting Hm matrix, it is of the form,

Tm =

0
BBB@
�1 �2
�2 �2 �3

: : :
�m�1 �m�1 �m

�m �m

1
CCCA : (6.63)

This leads to the following form of the Modified Gram-Schmidt variant of Arnoldi’s

method, namely, Algorithm 6.2.

ALGORITHM 6.14: The Lanczos Algorithm

1. Choose an initial vector v1 of norm unity. Set �1 � 0; v0 � 0
2. For j = 1; 2; : : : ;m Do:

3. wj := Avj � �jvj�1
4. �j := (wj ; vj)
5. wj := wj � �jvj
6. �j+1 := kwjk2. If �j+1 = 0 then Stop

7. vj+1 := wj=�j+1
8. EndDo

It is rather surprising that the above simple algorithm guarantees, at least in exact

arithmetic, that the vectors vi; i = 1; 2; : : : ; are orthogonal. In reality, exact orthogonality

of these vectors is only observed at the beginning of the process. At some point the vi’s
start losing their global orthogonality rapidly. There has been much research devoted to

finding ways to either recover the orthogonality, or to at least diminish its effects by partial

or selective orthogonalization; see Parlett [160].

The major practical differences with Arnoldi’s method are that the matrix Hm is tridi-

agonal and, more importantly, that only three vectors must be saved, unless some form of

reorthogonalization is employed.

174 CHAPTER 6 KRYLOV SUBSPACE METHODS PART I

6.6.2 RELATION WITH ORTHOGONAL POLYNOMIALS

In exact arithmetic, the core of Algorithm 6.14 is a relation of the form

�j+1vj+1 = Avj � �jvj � �j�1vj�1:

This three-term recurrence relation is reminiscent of the standard three-term recurrence

relation of orthogonal polynomials. In fact, there is indeed a strong relationship between

the Lanczos algorithm and orthogonal polynomials. To begin, recall that if the grade of v1
is � m, then the subspace Km is of dimension m and consists of all vectors of the form

q(A)v1, where q is a polynomial with degree(q) � m � 1. In this case there is even an

isomorphism betweenKm and Pm�1, the space of polynomials of degree� m� 1, which

is defined by

q 2 Pm�1 ! x = q(A)v1 2 Km:

Moreover, we can consider that the subspace Pm�1 is provided with the inner product

< p; q >v1= (p(A)v1; q(A)v1): (6.64)

This is indeed a nondegenerate bilinear form under the assumption that m does not exceed

�, the grade of v1. Now observe that the vectors vi are of the form

vi = qi�1(A)v1

and the orthogonality of the vi’s translates into the orthogonality of the polynomials with

respect to the inner product (6.64). It is known that real orthogonal polynomials satisfy a

three-term recurrence. Moreover, the Lanczos procedure is nothing but the Stieltjes algo-

rithm; (see, for example, Gautschi [102]) for computing a sequence of orthogonal poly-

nomials with respect to the inner product (6.64). It is known [180] that the characteristic

polynomial of the tridiagonal matrix produced by the Lanczos algorithm minimizes the

norm k:kv1 over the monic polynomials. The recurrence relation between the characteris-

tic polynomials of tridiagonal matrices also shows that the Lanczos recurrence computes

the sequence of vectors pTm(A)v1, where pTm is the characteristic polynomial of Tm.

THE CONJUGATE GRADIENT ALGORITHM

6.7

The Conjugate Gradient algorithm is one of the best known iterative techniques for solving

sparse Symmetric Positive Definite linear systems. Described in one sentence, the method

is a realization of an orthogonal projection technique onto the Krylov subspaceKm(r0; A)
where r0 is the initial residual. It is therefore mathematically equivalent to FOM. How-

ever, because A is symmetric, some simplifications resulting from the three-term Lanczos

recurrence will lead to more elegant algorithms.

6.7 THE CONJUGATE GRADIENT ALGORITHM 175

6.7.1 DERIVATION AND THEORY

We first derive the analogue of FOM, or Arnoldi’s method, for the case when A is sym-

metric. Given an initial guess x0 to the linear system Ax = b and the Lanczos vectors

vi; i = 1; : : : ;m together with the tridiagonal matrix Tm, the approximate solution ob-

tained from an orthogonal projection method onto Km, is given by

xm = x0 + Vmym; ym = T�1m (�e1): (6.65)

ALGORITHM 6.15: Lanczos Method for Linear Systems

1. Compute r0 = b�Ax0, � := kr0k2, and v1 := r0=�
2. For j = 1; 2; : : : ;m Do:

3. wj = Avj � �jvj�1 (If j = 1 set �1v0 � 0)

4. �j = (wj ; vj)
5. wj := wj � �jvj
6. �j+1 = kwjk2. If �j+1 = 0 set m := j and go to 9

7. vj+1 = wj=�j+1
8. EndDo

9. Set Tm = tridiag (�i; �i; �i+1), and Vm = [v1; : : : ; vm].
10. Compute ym = T�1m (�e1) and xm = x0 + Vmym

Many of the results obtained from Arnoldi’s method for linear systems are still valid. For

example, the residual vector of the approximate solution xm is such that

b�Axm = ��m+1e
T
mymvm+1: (6.66)

The Conjugate Gradient algorithm can be derived from the Lanczos algorithm in the

same way DIOM was derived from IOM. In fact, the Conjugate Gradient algorithm can be

viewed as a variation of DIOM(2) for the case when A is symmetric. We will follow the

same steps as with DIOM, except that the notation will be simplified whenever possible.

First write the LU factorization of Tm as Tm = LmUm. The matrix Lm is unit lower

bidiagonal and Um is upper bidiagonal. Thus, the factorization of Tm is of the form

Tm =

0
BBB@

1
�2 1

�3 1
�4 1

�5 1

1
CCCA�

0
BBB@
�1 �2

�2 �3
�3 �4

�4 �5
�5

1
CCCA :

The approximate solution is then given by,

xm = x0 + VmU
�1
m L�1m (�e1):

Letting

Pm � VmU
�1
m

and

zm = L�1m �e1;

176 CHAPTER 6 KRYLOV SUBSPACE METHODS PART I

then,

xm = x0 + Pmzm:

As for DIOM, pm, the last column of Pm, can be computed from the previous pi’s and vm
by the simple update

pm = ��1m [vm � �mpm�1]:

Note that �m is a scalar computed from the Lanczos algorithm, while �m results from the

m-th Gaussian elimination step on the tridiagonal matrix, i.e.,

�m =
�m
�m�1

; (6.67)

�m = �m � �m�m: (6.68)

In addition, following again what has been shown for DIOM,

zm =

�
zm�1
�m

�
;

in which �m = ��m�m�1. As a result, xm can be updated at each step as

xm = xm�1 + �mpm

where pm is defined above.

This gives the following algorithm, which we call the direct version of the Lanczos

algorithm for linear systems.

ALGORITHM 6.16: D-Lanczos

1. Compute r0 = b�Ax0, �1 := � := kr0k2, and v1 := r0=�
2. Set �1 = �1 = 0, p0 = 0
3. For m = 1; 2; : : :, until convergence Do:

4. Compute w := Avm � �mvm�1 and �m = (w; vm)

5. If m > 1 then compute �m = �m
�m�1

and �m = ��m�m�1
6. �m = �m � �m�m
7. pm = ��1m (vm � �mpm�1)
8. xm = xm�1 + �mpm
9. If xm has converged then Stop

10. w := w � �mvm
11. �m+1 = kwk2, vm+1 = w=�m+1

12. EndDo

This algorithm computes the solution of the tridiagonal system Tmym = �e1 pro-

gressively by using Gaussian elimination without pivoting. However, as was explained for

DIOM, partial pivoting can also be implemented at the cost of having to keep an extra

vector. In fact, Gaussian elimination with partial pivoting is sufficient to ensure stability

for tridiagonal systems. The more complex LQ factorization has also been exploited in this

context and gave rise to an algorithm known as SYMMLQ [159].

The two algorithms 6.15 and 6.16 are mathematically equivalent, that is, they deliver

the same approximate solution if they are both executable. However, since Gaussian elimi-

6.7 THE CONJUGATE GRADIENT ALGORITHM 177

nation without pivoting is being used implicitly to solve the tridiagonal system Tmy = �e1,

the direct version may be more prone to breakdowns.

Observe that the residual vector for this algorithm is in the direction of vm+1 due to

equation (6.66). Therefore, the residual vectors are orthogonal to each other as in FOM.

Likewise, the vectors pi are A-orthogonal, or conjugate. These results are established in

the next proposition.

PROPOSITION 6.13 Let rm = b � Axm, m = 0; 1; : : :, be the residual vec-

tors produced by the Lanczos and the D-Lanczos algorithms (6.15 and 6.16) and pm,

m = 0; 1; : : : ; the auxiliary vectors produced by Algorithm 6.16. Then,

1. Each residual vector rm is such that rm = �mvm+1 where �m is a certain scalar.

As a result, the residual vectors are orthogonal to each other.

2. The auxiliary vectors pi form an A-conjugate set, i.e., (Api; pj) = 0, for i 6= j.

Proof. The first part of the proposition is an immediate consequence of the relation

(6.66). For the second part, it must be proved that P T
mAPm is a diagonal matrix, where

Pm = VmU
�1
m . This follows from

P T
mAPm = U�Tm V T

mAVmU
�1
m

= U�Tm TmU
�1
m

= U�Tm Lm:

Now observe that U�Tm Lm is a lower triangular which is also symmetric since it is equal

to the symmetric matrix P T
mAPm. Therefore, it must be a diagonal matrix.

A consequence of the above proposition is that a version of the algorithm can be

derived by imposing the orthogonality and conjugacy conditions. This gives the Conjugate

Gradient algorithm which we now derive. The vector xj+1 can be expressed as

xj+1 = xj + �jpj : (6.69)

Therefore, the residual vectors must satisfy the recurrence

rj+1 = rj � �jApj : (6.70)

If the rj’s are to be orthogonal, then it is necessary that (rj � �jApj ; rj) = 0 and as a

result

�j =
(rj ; rj)

(Apj ; rj)
: (6.71)

Also, it is known that the next search direction pj+1 is a linear combination of rj+1 and

pj , and after rescaling the p vectors appropriately, it follows that

pj+1 = rj+1 + �jpj : (6.72)

Thus, a first consequence of the above relation is that

(Apj ; rj) = (Apj ; pj � �j�1pj�1) = (Apj ; pj)

178 CHAPTER 6 KRYLOV SUBSPACE METHODS PART I

because Apj is orthogonal to pj�1. Then, (6.71) becomes �j = (rj ; rj)=(Apj ; pj). In

addition, writing that pj+1 as defined by (6.72) is orthogonal to Apj yields

�j = � (rj+1; Apj)

(pj ; Apj)
:

Note that from (6.70)

Apj = � 1

�j
(rj+1 � rj) (6.73)

and therefore,

�j =
1

�j

(rj+1; (rj+1 � rj))

(Apj ; pj)
=

(rj+1; rj+1)

(rj ; rj)
:

Putting these relations together gives the following algorithm.

ALGORITHM 6.17: Conjugate Gradient

1. Compute r0 := b�Ax0, p0 := r0.

2. For j = 0; 1; : : :, until convergence Do:

3. �j := (rj ; rj)=(Apj ; pj)
4. xj+1 := xj + �jpj
5. rj+1 := rj � �jApj
6. �j := (rj+1; rj+1)=(rj ; rj)
7. pj+1 := rj+1 + �jpj
8. EndDo

It is important to note that the scalars �j ; �j in this algorithm are different from those of

the Lanczos algorithm. The vectors pj are multiples of the pj’s of Algorithm 6.16.

In terms of storage, in addition to the matrix A, four vectors (x, p, Ap, and r) must be

saved in Algorithm 6.17, versus five vectors (vm, vm�1, w, p, and x) for Algorithm 6.16.

6.7.2 ALTERNATIVE FORMULATIONS

Algorithm 6.17 is the best known formulation of the Conjugate Gradient algorithm. There

are, however, several alternative formulations. Here, only one such formulation is shown,

which can be derived once more from the Lanczos algorithm.

The residual polynomial rm(t) associated with the m-th CG iterate must satisfy a

three-term recurrence, implied by the three-term recurrence of the Lanczos vectors. Indeed,

these vectors are just the scaled versions of the residual vectors. Therefore, we must seek

a three-term recurrence of the form

rm+1(t) = �m(rm(t)� mtrm(t)) + �mrm�1(t):

In addition, the consistency condition rm(0) = 1 must be maintained for each m, leading

to the recurrence,

rm+1(t) = �m(rm(t)� mtrm(t)) + (1� �m)rm�1(t): (6.74)

6.7 THE CONJUGATE GRADIENT ALGORITHM 179

Observe that if rm(0) = 1 and rm�1(0) = 1, then rm+1(0) = 1, as desired. Translating

the above relation into the sequence of residual vectors yields

rm+1 = �m(rm � mArm) + (1� �m)rm�1: (6.75)

Recall that the vectors ri’s are multiples of the Lanczos vectors vi’s. As a result, m should

be the inverse of the scalar �m of the Lanczos algorithm. In terms of the r-vectors this

means

m =
(rm; rm)

(Arm; rm)
:

Equating the inner products of both sides of (6.75) with rm�1, and using the orthogonality

of the r-vectors, gives the following expression for �m, after some algebraic calculations,

�m =

�
1� m

m�1

(rm; rm)

(rm�1; rm�1)

1

�m�1

��1
: (6.76)

The recurrence relation for the approximate solution vectors can be extracted from

the recurrence relation for the residual vectors. This is found by starting from (6.74) and

using the relation rm(t) = 1� tsm�1(t) between the solution polynomial sm�1(t) and the

residual polynomial rm(t). Thus,

sm(t) =
1� rm+1(t)

t

= �m

�
1� rm(t)

t
� mrm(t)

�
+ (1� �m)

1� rm�1(t)

t

= �m (sm�1(t)� mrm(t)) + (1� �m)sm�2(t):

This gives the recurrence,

xm+1 = �m(xm � mrm) + (1� �m)xm�1: (6.77)

All that is left for the recurrence to be determined completely is to define the first two

iterates. The initial iterate x0 is given. The first vector should be of the form

x1 = x0 � 0r0;

to ensure that r1 is orthogonal to r0. This means that the two-term recurrence can be started

with �0 = 1, and by setting x�1 � 0. Putting these relations and definitions together gives

the following algorithm.

ALGORITHM 6.18: CG { Three-Term Recurrence Variant

1. Compute r0 = b�Ax0. Set x�1 � 0 and �0 = 1.

2. For j = 0; 1; : : :, until convergence Do:

3. Compute Arj and j =
(rj;rj)
(Arj;rj)

4. If (j > 0) compute �j =
h
1� j

j�1

(rj ;rj)
(rj�1;rj�1)

1
�j�1

i�1
5. xj+1 = �j (xj � jrj) + (1� �j)xj�1
6. Compute rj+1 = �j(rj � jArj) + (1� �j)rj�1
7. EndDo

180 CHAPTER 6 KRYLOV SUBSPACE METHODS PART I

The residual rj+1 could also be computed directly as rj+1 = b � Axj+1 in line 6 of the

algorithm, but this would require an additional matrix-vector product.

6.7.3 EIGENVALUE ESTIMATES FROM THE CG

COEFFICIENTS

Sometimes, it is useful to be able to obtain the tridiagonal matrix Tm related to the un-

derlying Lanczos iteration from the coefficients of the Conjugate Gradient algorithm 6.17.

This tridiagonal matrix can provide valuable eigenvalue information on the matrix A. For

example, the largest and smallest eigenvalues of the tridiagonal matrix can approximate

the smallest and largest eigenvalues of A. This could be used to compute an estimate of

the condition number of A which in turn can help provide estimates of the error norm from

the residual norm. Since the Greek letters �i and �i have been used in both algorithms,

notations must be changed. Denote by

Tm = tridiag [�j ; �j ; �j+1];

the tridiagonal matrix (6.63) associated with the m-th step of the Lanczos algorithm. We

must seek expressions of the coefficients �j ; �j in terms of the coefficients �j ; �j , obtained

from the CG algorithm. The key information regarding the correspondence between the

two pairs of coefficients resides in the correspondence between the vectors generated by

the two algorithms. From (6.66) it is known that

rj = scalar � vj+1: (6.78)

As a result,

�j+1 =
(Avj+1; vj+1)

(vj+1; vj+1)
=

(Arj ; rj)

(rj ; rj)
:

The denominator (rj ; rj) is readily available from the coefficients of the CG algorithm, but

the numerator (Arj ; rj) is not. The relation (6.72) can be exploited to obtain

rj = pj � �j�1pj�1 (6.79)

which is then substituted in (Arj ; rj) to get

(Arj ; rj) = (A(pj � �j�1pj�1); pj � �j�1pj�1) :

Note that the terms �j�1pj�1 are defined to be zero when j = 0. Because the p vectors are

A-orthogonal,

(Arj ; rj) = (Apj ; pj) + �2j�1 (Apj�1; pj�1) ;

from which we finally obtain for j > 0,

�j+1 =
(Apj ; pj)

(rj ; rj)
+ �2j�1

(Apj�1; pj�1)

(rj ; rj)
=

1

�j
+

�j�1
�j�1

: (6.80)

The above expression is only valid for j > 0. For j = 0, the second term in the right-hand

side should be omitted as was observed above. Therefore, the diagonal elements of Tm are

6.8 THE CONJUGATE RESIDUAL METHOD 181

given by

�j+1 =

(
1
�j

for j = 0;
1
�j

+
�j�1
�j�1

for j > 0:
(6.81)

Now an expression for the co-diagonal elements �j+1 is needed. From the definitions

in the Lanczos algorithm,

�j+1 = (Avj ; vj+1) =
j(Arj�1; rj)j
krj�1k2krjk2 :

Using (6.79) again and the relation (6.73) as well as orthogonality properties of the CG

algorithm, the following sequence of equalities results:

(Arj�1; rj) = (A(pj�1 � �j�2pj�2); rj)

= (Apj�1; rj)� �j�2(Apj�2; rj)

=
�1
�j�1

(rj � rj�1; rj) +
�j�2
�j�2

(rj�1 � rj�2; rj)

=
�1
�j�1

(rj ; rj):

Therefore,

�j+1 =
1

�j�1

(rj ; rj)

krj�1k2krjk2 =
1

�j�1

krjk2
krj�1k2 =

p
�j�1

�j�1
:

This finally gives the general form of the m-dimensional Lanczos tridiagonal matrix in

terms of the CG coefficients,

Tm =

0
BBBBBBB@

1
�0

p
�0
�0p

�0
�0

1
�1

+ �0
�0

p
�1
�1

: : :

: :

p
�m�2
�m�2p

�m�2
�m�2

1
�m�1

+ �m�2
�m�2

1
CCCCCCCA
: (6.82)

THE CONJUGATE RESIDUAL METHOD

6.8

In the previous section we derived the Conjugate Gradient algorithm as a special case of

FOM for Symmetric Positive Definite matrices. Similarly, a new algorithm can be derived

from GMRES for the particular case whereA is Hermitian. In this case, the residual vectors

should be A-orthogonal, i.e., conjugate. In addition, the vectors Ap i’s i = 0; 1; : : : ; are

orthogonal. When looking for an algorithm with the same structure as CG, but satisfying

these conditions, we find the Conjugate Residual algorithm. Notice that the residual vectors

are now conjugate to each other, hence, the name of the algorithm.

182 CHAPTER 6 KRYLOV SUBSPACE METHODS PART I

ALGORITHM 6.19: Conjugate Residual Algorithm

1. Compute r0 := b�Ax0, p0 := r0
2. For j = 0; 1; : : : ; until convergence Do:

3. �j := (rj ; Arj)=(Apj ; Apj)
4. xj+1 := xj + �jpj
5. rj+1 := rj � �jApj
6. �j := (rj+1; Arj+1)=(rj ; Arj)
7. pj+1 := rj+1 + �jpj
8. Compute Apj+1 = Arj+1 + �jApj
9. EndDo

The last line in the above algorithm computes Apj+1 from Arj+1 without an additional

matrix-vector product. Five vectors of storage are needed in addition to the matrix A: x, p,

Ap, r, Ar. The algorithm requires one more vector update, i.e., 2n more operations than

the Conjugate Gradient method and one more vector of storage. Since the two methods

exhibit typically a similar convergence behavior, the Conjugate Gradient method is often

preferred over the Conjugate Residual algorithm.

GCR, ORTHOMIN, AND ORTHODIR

6.9

All algorithms developed in this chapter are strongly related to, as well as defined by,

the choice of a basis of the Krylov subspace. The GMRES algorithm uses an orthogonal

basis. In the Conjugate Gradient algorithm, the p’s are A-orthogonal, i.e., conjugate. In

the Conjugate Residual method just described, the Api’s are orthogonal, i.e., the pi’s are

ATA-orthogonal. A number of algorithms can be developed using a basis of this form in

the nonsymmetric case as well. The main result that is exploited in all these algorithms is

the following lemma.

LEMMA 6.2 Let p0; p1; : : : ; pm�1 be a basis of the Krylov subspace Km(A; r0) which

is ATA-orthogonal, i.e., such that

(Api; Apj) = 0; for i 6= j:

Then the approximate solution xm which has the smallest residual norm in the affine space

x0 +Km(A; r0) is given by

xm = x0 +

m�1X
i=0

(r0; Api)

(Api; Api)
pi: (6.83)

In addition, xm can be computed from xm�1 by

xm = xm�1 +
(rm�1; Apm�1)

(Apm�1; Apm�1)
pm�1: (6.84)

6.9 GCR, ORTHOMIN, AND ORTHODIR 183

Proof. The approximate solution and the associated residual vector can be written in the

form

xm = x0 +

m�1X
i=0

�ipi; rm = r0 �
m�1X
i=0

�iApi: (6.85)

According to the optimality result of Proposition 5.3, in order for krmk2 to be minimum,

the orthogonality relations

(rm; Api) = 0; i = 0; : : : ;m� 1

must be enforced. Using (6.85) and the orthogonality of the Ap i’s gives immediately,

�i = (r0; Api)=(Api; Api):

This proves the first part of the lemma. Assume now that xm�1 is known and that xm
must be determined. According to formula (6.83), xm = xm�1 + �m�1pm�1 with �m�1
defined above. Note that from the second part of (6.85),

rm�1 = r0 �
m�2X
j=0

�jApj

so that

(rm�1; Apm�1) = (r0; Apm�1)�
m�2X
j=0

�j(Apj ; Apm�1) = (r0; Apm�1)

exploiting, once more, the orthogonality of the vectors Apj , j = 0; : : : ;m� 1. Thus,

�m�1 =
(rm�1; Apm�1)

(Apm�1; Apm�1)
;

which proves the expression (6.84).

This lemma opens up many different ways to obtain algorithms that are mathemati-

cally equivalent to the full GMRES. The simplest option computes the next basis vector

pm+1 as a linear combination of the current residual rm and all previous pi’s. The approxi-

mate solution is updated by using (6.84). This is called the Generalized Conjugate Residual

(GCR) algorithm.

ALGORITHM 6.20: GCR

1. Compute r0 = b�Ax0. Set p0 = r0.

2. For j = 0; 1; 2; : : : ; until convergence Do:

3. �j =
(rj ;Apj)
(Apj ;Apj)

4. xj+1 = xj + �jpj
5. rj+1 = rj � �jApj

6. Compute �ij = � (Arj+1;Api)
(Api;Api)

, for i = 0; 1; : : : ; j

7. pj+1 = rj+1 +
Pj

i=0 �ijpi
8. EndDo

184 CHAPTER 6 KRYLOV SUBSPACE METHODS PART I

To compute the scalars �ij in the above algorithm, the vector Arj and the previous Api’s
are required. In order to limit the number of matrix-vector products per step to one, we

can proceed as follows. Follow line 5 by a computation of Arj+1 and then compute Apj+1
after line 7 from the relation

Apj+1 = Arj+1 +

jX
i=0

�ijApi:

Both the set of pi’s and that of the Api’s need to be saved. This doubles the storage re-

quirement compared with GMRES. The number of arithmetic operations per step is also

roughly 50% higher than GMRES.

The above version of GCR suffers from the same practical limitations as GMRES

and FOM. A restarted version called GCR(m) can be trivially defined. Also, a truncation

of the orthogonalization of the Api’s, similar to IOM, leads to an algorithm known as

ORTHOMIN(k). Specifically, lines 6 and 7 of Algorithm 6.20 are replaced by

6a. Compute �ij = � (Arj+1;Api)
(Api;Api)

, for i = j � k + 1; : : : ; j

7a. pj+1 = rj+1 +
Pj

i=j�k+1 �ijpi .

Another class of algorithms is defined by computing the next basis vector pj+1 as

pj+1 = Apj +

jX
i=0

�ijpi (6.86)

in which, as before, the �ij ’s are selected to make the Api’s orthogonal, i.e.,

�ij = � (A
2pj ; Api)

(Api; Api)
:

The resulting algorithm is called ORTHODIR [127]. Restarted and truncated versions of

ORTHODIR can also be defined.

THE FABER-MANTEUFFEL THEOREM

6.10

As was seen in Section 6.6 when A is symmetric, the Arnoldi algorithm simplifies into the

Lanczos procedure, which is defined through a three-term recurrence. As a consequence,

FOM is mathematically equivalent to the Conjugate Gradient algorithm in this case. Simi-

larly, the full GMRES algorithm gives rise to the Conjugate Residual algorithm. It is clear

that the CG-type algorithms, i.e., algorithms defined through short-term recurrences, are

more desirable than those algorithms which require storing entire sequences of vectors as

in the GMRES process. These algorithms require less memory and operations per step.

Therefore, the question is: Is it possible to define algorithms which are based on op-

timal Krylov subspace projection and which give rise to sequences involving short-term

recurrences? An optimal Krylov subspace projection means a technique which minimizes

a certain norm of the error, or residual, on the Krylov subspace. Such methods can be de-

6.10 THE FABER-MANTEUFFEL THEOREM 185

fined from the Arnoldi process. If the Arnoldi process simplifies into an s-term recurrence,

i.e., if hij = 0 for i < j� s+1, then the conjugate directions pi in DIOM are also defined

from an s-term recurrence. Similarly, the full GMRES would also simplify into a DQGM-

RES algorithm involving a short recurrence. Therefore, for all purposes, it is sufficient to

analyze what happens to the Arnoldi process (or FOM). We start by generalizing the CG

result in a simple way, by considering the DIOM algorithm.

PROPOSITION 6.14 Let A be a matrix such that

AT v 2 Ks(A; v)

for any vector v. Then, DIOM(s) is mathematically equivalent to the FOM algorithm.

Proof. The assumption is equivalent to the statement that, for any v, there is a polyno-

mial qv of degree � s � 1, such that AT v = qv(A)v. In the Arnoldi process, the scalars

hij are defined by hij = (Avj ; vi) and therefore

hij = (Avj ; vi) = (vj ; A
T vi) = (vj ; qvj (A)vi): (6.87)

Since qvj is a polynomial of degree � s � 1, the vector qvj (A)vi is a linear combination

of the vectors vi; vi+1; : : : ; vi+s�1. As a result, if i < j � s+ 1, then hij = 0. Therefore,

DIOM(k) will give the same approximate solution as FOM.

In particular, if

AT = q(A)

where q is a polynomial of degree � s � 1, then the result holds. However, the above

relation implies that each eigenvector of A is also an eigenvector of AT . According to

Theorem 1.2, this can be true only if A is a normal matrix. As it turns out, the reverse is

also true. That is, when A is normal, then there is a polynomial of degree � n � 1 such

that AH = q(A). Proving this is easy because when A = Q�QH where Q is unitary and

� diagonal, then q(A) = Qq(�)QH . By choosing the polynomial q so that

q(�j) = ��j ; j = 1; : : : ; n

we obtain q(A) = Q��QH = AH which is the desired result.

Let �(A) be the smallest degree of all polynomials q such that AH = q(A). Then the

following lemma due to Faber and Manteuffel [85] states an interesting relation between s
and �(A).

LEMMA 6.3 A nonsingular matrix A is such that

AHv 2 Ks(A; v)

for every vector v if and only if A is normal and �(A) � s� 1.

Proof. The sufficient condition is trivially true. To prove the necessary condition, assume

that, for any vector v, AHv = qv(A)v where qv is a polynomial of degree � s � 1. Then

it is easily seen that any eigenvector of A is also an eigenvector of AH . Therefore, from

Theorem 1.2, A is normal. Let � be the degree of the minimal polynomial for A. Then,

since A has � distinct eigenvalues, there is a polynomial q of degree � � 1 such that

186 CHAPTER 6 KRYLOV SUBSPACE METHODS PART I

q(�i) = ��i for i = 1; : : : ; �. According to the above argument, for this q, it holds AH =
q(A) and therefore �(A) � �� 1. Now it must be shown that � � s. Let w be a (nonzero)

vector whose grade is �. By assumption, AHw 2 Ks(A;w). On the other hand, we also

haveAHw = q(A)w. Since the vectorsw;Aw; : : : ; A��1w are linearly independent,��1
must not exceed s � 1. Otherwise, two different expressions for AHw with respect to the

basis w;Aw; : : : ; A��1w would result and this would imply that AHw = 0. Since A is

nonsingular, then w = 0, which is a contradiction.

Proposition 6.14 gives a sufficient condition for DIOM(s) to be equivalent to FOM.

According to Lemma 6.3, this condition is equivalent to A being normal and �(A) �
s� 1. Now consider the reverse result. Faber and Manteuffel define CG(s) to be the class

of all matrices such that for every v1, it is true that (Avj ; vi) = 0 for all i; j such that

i + s � j � �(v1) � 1. The inner product can be different from the canonical Euclidean

dot product. With this definition it is possible to show the following theorem [85] which is

stated without proof.

THEOREM 6.3 A 2 CG(s), if and only if �(A) � s orA is normal and �(A) � s�1.

It is interesting to consider the particular case where �(A) � 1, which is the case of

the Conjugate Gradient method. In fact, it is easy to show that in this case A either has a

minimal degree� 1, or is Hermitian, or is of the form

A = ei� (�I +B)

where � and � are real and B is skew-Hermitian, i.e., BH = �B. Thus, the cases in

which DIOM simplifies into an (optimal) algorithm defined from a three-term recurrence

are already known. The first is the Conjugate Gradient method. The second is a version

of the CG algorithm for skew-Hermitian matrices which can be derived from the Lanczos

algorithm in the same way as CG. This algorithm will be seen in Chapter 9.

CONVERGENCE ANALYSIS

6.11

The convergence behavior of the different algorithms seen in this chapter can be analyzed

by exploiting optimality properties whenever such properties exist. This is the case for

the Conjugate Gradient and the GMRES algorithms. On the other hand, the non-optimal

algorithms such as FOM, IOM, and QGMRES will be harder to analyze.

One of the main tools used in the analysis of these methods is Chebyshev polynomials.

These polynomials are useful both in theory, when studying convergence, and in practice,

as a means of accelerating single-vector iterations or projection processes. In the following,

real and complex Chebyshev polynomials are discussed separately.

6.11 CONVERGENCE ANALYSIS 187

6.11.1 REAL CHEBYSHEV POLYNOMIALS

The Chebyshev polynomial of the first kind of degree k is defined by

Ck(t) = cos[k cos�1(t)] for � 1 � t � 1: (6.88)

That this is a polynomial with respect to t can be shown easily by induction from the

trigonometric relation

cos[(k + 1)�] + cos[(k � 1)�] = 2 cos � cos k�;

and the fact that C1(t) = t; C0(t) = 1. Incidentally, this also shows the important three-

term recurrence relation

Ck+1(t) = 2 t Ck(t)� Ck�1(t):

The definition (6.88) can be extended to cases where jtj > 1 with the help of the following

formula:

Ck(t) = cosh [k cosh�1(t)]; jtj � 1: (6.89)

This is readily seen by passing to complex variables and using the definition cos � =
(ei� + e�i�)=2. As a result of (6.89) the following expression can be derived:

Ck(t) =
1

2

��
t+

p
t2 � 1

�k
+
�
t+

p
t2 � 1

��k�
; (6.90)

which is valid for jtj � 1 but can also be extended to the case of jtj < 1. The following

approximation, valid for large values of k, will be sometimes used:

Ck(t) '
1

2

�
t+

p
t2 � 1

�k
for jtj � 1: (6.91)

In what follows we denote by Pk the set of all polynomials of degree k. An important

result from approximation theory is the following theorem.

THEOREM 6.4 Let [�; �] be a non-empty interval in R and let be any real scalar

outside the interval [�; �]. Then the minimum

min
p2Pk;p()=1

max
t2[�;�]

jp(t)j

is reached by the polynomial

Ĉk(t) �
Ck

�
1 + 2 t��

���

�
Ck

�
1 + 2 ��

���

� : (6.92)

For a proof, see Cheney [52]. The maximum of Ck for t in [�1; 1] is 1 and a corollary

of the above result is

min
p2Pk; p()=1

max
t2[�;�]

jp(t)j = 1

jCk(1 + 2 ��
���)j

=
1

jCk(2
��
���)j

188 CHAPTER 6 KRYLOV SUBSPACE METHODS PART I

in which � � (� + �)=2 is the middle of the interval. The absolute values in the denomi-

nator are needed only when is to the left of the interval, i.e., when � �. For this case,

it may be more convenient to express the best polynomial as

Ĉk(t) �
Ck

�
1 + 2 ��t

���

�
Ck

�
1 + 2��

���

� :
which is obtained by exchanging the roles of � and � in (6.92).

6.11.2 COMPLEX CHEBYSHEV POLYNOMIALS

The standard definition of real Chebyshev polynomials given by equation (6.88) extends

without difficulty to complex variables. First, as was seen before, when t is real and jtj > 1,

the alternative definition, Ck(t) = cosh[k cosh�1(t)], can be used. These definitions can

be unified by switching to complex variables and writing

Ck(z) = cosh(k�); where cosh(�) = z :

Defining the variable w = e� , the above formula is equivalent to

Ck(z) =
1

2
[wk + w�k] where z =

1

2
[w + w�1]: (6.93)

The above definition for Chebyshev polynomials will be used in C . Note that the equation
1
2 (w+w�1) = z has two solutions w which are inverse of each other. As a result, the value

of Ck(z) does not depend on which of these solutions is chosen. It can be verified directly

that the Ck’s defined by the above equations are indeed polynomials in the z variable and

that they satisfy the three-term recurrence

Ck+1(z) = 2 zCk(z)� Ck�1(z); (6.94)

C0(z) � 1; C1(z) � z:

As is now explained, Chebyshev polynomials are intimately related to ellipses in the

complex plane. Let C� be the circle of radius � centered at the origin. Then the so-called

Joukowski mapping

J(w) =
1

2
[w + w�1]

transforms C� into an ellipse of center the origin, foci �1; 1, major semi-axis 1
2 [� + ��1]

and minor semi-axis 1
2 j�� ��1j. This is illustrated in Figure 6.2.

There are two circles which have the same image by the mapping J(w), one with the

radius � and the other with the radius ��1. So it is sufficient to consider only those circles

with radius � � 1. Note that the case � = 1 is a degenerate case in which the ellipse

E(0; 1;�1) reduces to the interval [�1; 1] traveled through twice.

An important question is whether or not a generalization of the min-max result of The-

orem 6.4 holds for the complex case. Here, the maximum of jp(z)j is taken over the ellipse

boundary and is some point not enclosed by the ellipse. The answer to the question is no;

Chebyshev polynomials are only optimal in some cases. However, Chebyshev polynomials

are asymptotically optimal, which is all that is needed in practice.

6.11 CONVERGENCE ANALYSIS 189

-

6

<e(w)

=m(w)

w = �ei��

-
J(w)

-

6

<e(z)

=m(z)

z = w+w�1

2�

Figure 6.2 The Joukowski mapping transforms a circle into

an ellipse in the complex plane.

To prove the asymptotic optimality, we begin with a lemma due to Zarantonello, which

deals with the particular case where the ellipse reduces to a circle. This particular case is

important in itself.

LEMMA 6.4 Zarantonello Let C(0; �) be a circle of center the origin and radius �
and let be a point of C not enclosed by C(0; �). Then

min
p2Pk; p()=1

max
z 2 C(0;�)

jp(z)j =
�

�

jj
�k

; (6.95)

the minimum being achieved for the polynomial (z=)k.

Proof. See reference [168] for a proof.

Note that by changing variables, shifting, and rescaling the polynomial, then for any

circle centered at c and for any scalar such that jj > �, the following min-max result

holds:

min
p2Pk p()=1

max
z 2 C(c;�)

jp(z)j =
�

�

j � cj
�k

:

Now consider the case of an ellipse centered at the origin, with foci 1;�1 and semi-

major axis a, which can be considered as mapped by J from the circle C(0; �), with the

convention that � � 1. Denote by E� such an ellipse.

THEOREM 6.5 Consider the ellipse E� mapped from C(0; �) by the mapping J and

let be any point in the complex plane not enclosed by it. Then

�k

jw jk � min
p2Pk p()=1

max
z 2 E�

jp(z)j � �k + ��k

jwk
 + w�k j (6.96)

in which w is the dominant root of the equation J(w) = .

Proof. We start by showing the second inequality. Any polynomial p of degree k satis-

190 CHAPTER 6 KRYLOV SUBSPACE METHODS PART I

fying the constraint p() = 1 can be written as

p(z) =

Pk
j=0 �jz

jPk
j=0 �j

j
:

A point z on the ellipse is transformed by J from a certain w in C(0; �). Similarly, let w

be one of the two inverse transforms of by the mapping, namely, the one with largest

modulus. Then, p can be rewritten as

p(z) =

Pk
j=0 �j(w

j + w�j)Pk
j=0 �j(w

j
 + w�j)

: (6.97)

Consider the particular polynomial obtained by setting �k = 1 and �j = 0 for j 6= k,

p�(z) =
wk + w�k

wk
 + w�k

which is a scaled Chebyshev polynomial of the first kind of degree k in the variable z. It

is apparent that the maximum modulus of this polynomial is reached in particular when

w = �ei� is real, i.e., when w = �. Thus,

max
z2E�

jp�(z)j = �k + ��k

jwk
 + w�k j

which proves the second inequality.

To prove the left inequality, we rewrite (6.97) as

p(z) =

�
w�k

w�k

� Pk
j=0 �j(w

k+j + wk�j)Pk
j=0 �j(w

k+j
 + wk�j

)

and take the modulus of p(z),

jp(z)j = ��k

jw j�k

�����
Pk

j=0 �j(w
k+j + wk�j)Pk

j=0 �j(w
k+j
 + wk�j

)

����� :
The polynomial in w of degree 2k inside the large modulus bars in the right-hand side is

such that its value at w is one. By Lemma 6.4, the modulus of this polynomial over the

circle C(0; �) is not less than (�=jw j)2k, i.e., for any polynomial, satisfying the constraint

p() = 1,

max
z2 E�

jp(z)j � ��k

jw j�k
�2k

jw j2k =
�k

jw jk :

This proves that the minimum over all such polynomials of the maximum modulus on the

ellipse E� is � (�=jw j)k .

The difference between the left and right bounds in (6.96) tends to zero as k increases

to infinity. Thus, the important point made by the theorem is that for large k, the Chebyshev

polynomial

p�(z) =
wk + w�k

wk
 + w�k

; where z =
w + w�1

2

6.11 CONVERGENCE ANALYSIS 191

is close to the optimal polynomial. More specifically, Chebyshev polynomials are asymp-

totically optimal.

For a more general ellipse E(c; d; a) centered at c, and with focal distance d and semi-

major axis a, a simple change of variables shows that the near-best polynomial is given

by

Ĉk(z) =
Ck

�
c�z
d

�
Ck

�
c�
d

� : (6.98)

In addition, by examining the expression (wk +w�k)=2 for w = �ei� it is easily seen that

the maximum modulus of Ĉk(z), i.e., the infinity norm of this polynomial over the ellipse,

is reached at the point c+ a located on the real axis. From this we get,

max
z 2 E(c;d;a)

jĈk(z)j =
Ck

�
a
d

�
jCk

�
c�
d

� j
Here, we point out that d and a both can be purely imaginary [for an example, see part

(B) of Figure 6.3]. In this case a=d is real and the numerator in the above expression is

always real. Using the definition for Ck we obtain the following useful expression and

approximation:

Ck

�
a
d

�
Ck

�
c�
d

� =
�
a
d +

q�
a
d

�2 � 1

�k
+

�
a
d +

q�
a
d

�2 � 1

��k
�
c�
d +

q�
c�
d

�2 � 1

�k
+

�
c�
d +

q�
c�
d

�2 � 1

��k (6.99)

�

a+
p
a2 � d2

c� +
p
(c�)2 � d2

!k

(6.100)

Finally, we note that an alternative and more detailed result has been proven by Fischer

and Freund in [89].

6.11.3 CONVERGENCE OF THE CG ALGORITHM

As usual, kxkA denotes the norm defined by

kxkA = (Ax; x)1=2:

The following lemma characterizes the approximation obtained from the Conjugate Gra-

dient algorithm.

LEMMA 6.5 Let xm be the approximate solution obtained from the m-th step of the

CG algorithm, and let dm = x� � xm where x� is the exact solution. Then, xm is of the

form

xm = x0 + qm(A)r0

where qm is a polynomial of degree m� 1 such that

k(I �Aqm(A))d0kA = min
q 2 Pm�1

k(I �Aq(A))d0kA:

192 CHAPTER 6 KRYLOV SUBSPACE METHODS PART I

Proof. This is a consequence of the fact that xm minimizes the A-norm of the error in

the affine subspace x0 +Km, a result of Proposition 5.2, and the fact that Km is the set of

all vectors of the form x0 + q(A)r0, where q is a polynomial of degree � m� 1.

From this, the following theorem can be proved.

THEOREM 6.6 Let xm be the approximate solution obtained at the m-th step of the

Conjugate Gradient algorithm, and x� the exact solution and define

� =
�min

�max � �min
: (6.101)

Then,

kx� � xmkA � kx� � x0kA
Cm(1 + 2�)

; (6.102)

in which Cm is the Chebyshev polynomial of degree m of the first kind.

Proof. From the previous lemma, it is known that kx� � xmkA minimizes A-norm of

the error over polynomials r(t) which take the value one at 0, i.e.,

kx� � xmkA = min
r2 Pm; r(0)=1

kr(A)d0kA:

If �i; i = 1; : : : ; n are the eigenvalues of A, and �i; i = 1; : : : ; n the components of the

initial error d0 in the eigenbasis, then

kr(A)d0k2A =
nX
i=1

�ir(�i)
2(�i)

2 � max
i
(r(�i))

2kd0k2A

� max
� 2[�min;�max]

(r(�))2kd0k2A:

Therefore,

kx� � xmkA � min
r2 Pm; r(0)=1

max
� 2[�min;�max]

jr(�)jkd0kA:

The result follows immediately by using the well known result of Theorem 6.4 from ap-

proximation theory. This gives the polynomial r which minimizes the right-hand side.

A slightly different formulation of inequality (6.102) can be derived. Using the rela-

tion,

Cm(t) =
1

2

��
t+

p
t2 � 1

�m
+
�
t+

p
t2 � 1

��m�

� 1

2

�
t+

p
t2 � 1

�m
then

Cm(1 + 2�) � 1

2

�
1 + 2� +

p
(1 + 2�)2 � 1

�m
� 1

2

�
1 + 2� + 2

p
�(� + 1)

�m
:

6.11 CONVERGENCE ANALYSIS 193

Now notice that

1 + 2� + 2
p
�(� + 1) =

�p
� +

p
� + 1

�2
(6.103)

=

�p
�min +

p
�max

�2
�max � �min

(6.104)

=

p
�max +

p
�minp

�max �
p
�min

(6.105)

=

p
�+ 1p
�� 1

(6.106)

in which � is the spectral condition number � = �max=�min.

Substituting this in (6.102) yields,

kx� � xmkA � 2

�p
�� 1p
�+ 1

�m
kx� � x0kA: (6.107)

This bound is similar to that of the steepest descent algorithm except that the condition

number of A is now replaced by its square root.

6.11.4 CONVERGENCE OF GMRES

We begin by stating a global convergence result. Recall that a matrix A is called positive

definite if its symmetric part (A+AT)=2 is Symmetric Positive Definite. This is equivalent

to the property that (Ax; x) > 0 for all nonzero real vectors x.

THEOREM 6.7 If A is a positive definite matrix, then GMRES(m) converges for any

m � 1.

Proof. This is true because the subspace Km contains the initial residual vector at each

restart. Since the algorithm minimizes the residual norm in the subspace Km, at each outer

iteration, the residual norm will be reduced by as much as the result of one step of the

Minimal Residual method seen in the previous chapter. Therefore, the inequality (5.18) is

satisfied by residual vectors produced after each outer iteration and the method converges.

Next we wish to establish a result similar to the one for the Conjugate Gradient

method, which would provide an upper bound on the convergence rate of the GMRES

iterates. We begin with a lemma similar to Lemma 6.5.

LEMMA 6.6 Let xm be the approximate solution obtained from the m-th step of the

GMRES algorithm, and let rm = b�Axm. Then, xm is of the form

xm = x0 + qm(A)r0

and

krmk2 = k(I �Aqm(A))r0k2 = min
q 2 Pm�1

k(I �Aq(A))r0k2:

194 CHAPTER 6 KRYLOV SUBSPACE METHODS PART I

Proof. This is true because xm minimizes the 2-norm of the residual in the affine sub-

space x0 +Km, a result of Proposition 5.3, and the fact that Km is the set of all vectors of

the form x0 + q(A)r0, where q is a polynomial of degree � m� 1.

Unfortunately, it not possible to prove a simple result such as Theorem 6.6 unless A is

normal.

PROPOSITION 6.15 Assume that A is a diagonalizable matrix and let A = X�X�1

where � = diag f�1; �2; : : : ; �ng is the diagonal matrix of eigenvalues. Define,

�(m) = min
p2Pm;p(0)=1

max
i=1;:::;n

jp(�i)j:

Then, the residual norm achieved by the m-th step of GMRES satisfies the inequality

krmk2 � �2(X)�(m)kr0k2:
where �2(X) � kXk2kX�1k2.

Proof. Let p be any polynomial of degree � m which satisfies the constraint p(0) = 1,

and x the vector in Km to which it is associated via b�Ax = p(A)r0. Then,

kb�Axk2 = kXp(�)X�1r0k2 � kXk2kX�1k2kr0k2kp(�)k2
Since � is diagonal, observe that

kp(�)k2 = max
i=1;:::;n

jp(�i)j:

Since xm minimizes the residual norm over x0 +Km, then for any consistent polynomial

p,

kb�Axmk � kb�Axk2 � kXk2kX�1k2kr0k2 max
i=1;:::;n

jp(�i)j:

Now the polynomial p which minimizes the right-hand side in the above inequality can be

used. This yields the desired result,

kb�Axmk � kb�Axk2 � kXk2kX�1k2kr0k2�(m):

The results of Section 6.11.2 on near-optimal Chebyshev polynomials in the complex

plane can now be used to obtain an upper bound for �(m). Assume that the spectrum of A
in contained in an ellipse E(c; d; a) with center c, focal distance d, and major semi axis a.

In addition it is required that the origin lie outside this ellipse. The two possible cases are

shown in Figure 6.3. Case (B) corresponds to the situation when d is purely imaginary, i.e.,

the major semi-axis is aligned with the imaginary axis.

COROLLARY 6.1 Let A be a diagonalizable matrix, i.e, let A = X�X�1 where

� = diag f�1; �2; : : : ; �ng is the diagonal matrix of eigenvalues. Assume that all the

eigenvalues of A are located in the ellipse E(c; d; a) which excludes the origin. Then, the

6.11 CONVERGENCE ANALYSIS 195

residual norm achieved at the m-th step of GMRES satisfies the inequality,

krmk2 � �2(X)
Cm

�
a
d

���Cm

�
c
d

��� kr0k2:

-

6

<e(z)

=m(z)

c c+ dc� d c+ a

c� aI

(A)

-

6

<e(z)

=m(z)

c

c+ d

c� d

c+ a

c� a

(B)

Figure 6.3 Ellipses containing the spectrum of A. Case (A):

real d; case (B): purely imaginary d.

Proof. All that is needed is an upper bound for the scalar �(m) under the assumptions.

By definition,

�(m) = min
p2Pm;p(0)=1

max
i=1;:::;n

jp(�i)j

� min
p2Pm;p(0)=1

max
� 2 E(c;d;a)

jp(�)j:

The second inequality is due to the fact that the maximum modulus of a complex analytical

function is reached on the boundary of the domain. We can now use as a trial polynomial

Ĉm defined by (6.98), with = 0:

�(m) � min
p2Pm;p(0)=1

max
� 2 E(c;d;a)

jp(�)j

� max
� 2 E(c;d;a)

jĈm(�)j = Cm

�
a
d

���Cm

�
c
d

��� :
This completes the proof.

196 CHAPTER 6 KRYLOV SUBSPACE METHODS PART I

An explicit expression for the coefficient Cm

�
a
d

�
= Cm

�
c
d

�
and an approximation are

readily obtained from (6.99-6.100) by taking = 0:

Cm

�
a
d

�
Cm

�
c
d

� =

�
a
d +

q�
a
d

�2 � 1

�k

+

�
a
d +

q�
a
d

�2 � 1

��k
�

c
d +

q�
c
d

�2 � 1

�k

+

�
c
d +

q�
c
d

�2 � 1

��k

�

a+

p
a2 � d2

c+
p
c2 � d2

!k

:

Since the condition number �2(X) of the matrix of eigenvectors X is typically not

known and can be very large, results of the nature of the corollary are of limited practical

interest. They can be useful only when it is known that the matrix is nearly normal, in

which case, �2(X) � 1.

BLOCK KRYLOV METHODS

6.12

In many circumstances, it is desirable to work with a block of vectors instead of a single

vector. For example, out-of-core finite-element codes are more efficient when they are

programmed to exploit the presence of a block of the matrix A in fast memory, as much as

possible. This can be achieved by using block generalizations of Krylov subspace methods,

for which A always operates on a group of vectors instead of a single vector. We begin by

describing a block version of the Arnoldi algorithm.

ALGORITHM 6.21: Block Arnoldi

1. Choose a unitary matrix V1 of dimension n� p.

2. For j = 1; 2; : : : ;m Do:

3. Compute Hij = V T
i AVj i = 1; 2; : : : ; j

4. Compute Wj = AVj �
Pj

i=1 ViHij

5. Compute the Q-R factorization of Wj : Wj = Vj+1Hj+1;j

6. EndDo

The above algorithm is a straightforward block analogue of Algorithm 6.1. By con-

struction, the blocks generated by the algorithm are orthogonal blocks that are also orthog-

onal to each other. In the following we denote by Ik the k � k identity matrix and use the

following notation:

Um = [V1; V2; : : : ; Vm];

Hm = (Hij)1�i;j�m; Hij � 0; for i > j + 1;

Em = matrix of the last p columns of In:

6.12 BLOCK KRYLOV METHODS 197

Then, the following analogue of the relation (6.4) is easily proved:

AUm = UmHm + Vm+1Hm+1;mE
T
m: (6.108)

Here, the matrix Hm is no longer Hessenberg, but band-Hessenberg, meaning that it has

p subdiagonals instead of only one. Note that the dimension of the subspace in which the

solution is sought is not m but m:p.

A second version of the algorithm uses a modified block Gram-Schmidt procedure

instead of the simple Gram-Schmidt procedure used above. This leads to a block general-

ization of Algorithm 6.2, the Modified Gram-Schmidt version of Arnoldi’s method.

ALGORITHM 6.22: Block Arnoldi with Block MGS

1. Choose a unitary matrix V1 of size n� p
2. For j = 1; 2; : : : ;m Do:

3. Compute Wj := AVj
4. For i = 1; 2; : : : ; j do:

5. Hij := V T
i Wj

6. Wj :=Wj � ViHij

7. EndDo

8. Compute the Q-R decomposition Wj = Vj+1Hj+1;j

9. EndDo

Again, in practice the above algorithm is more viable than its predecessor. Finally, a third

version, developed by A. Ruhe [170] for the symmetric case (block Lanczos), yields a vari-

ant that is quite similar to the original Arnoldi algorithm. Assume that the initial block of

p orthonormal vectors, v1; : : : ; vp is available. The first step of the algorithm is to multiply

v1 by A and orthonormalize the resulting vector w against v1; : : : ; vp. The resulting vector

is defined to be vp+1. In the second step it is v2 that is multiplied byA and orthonormalized

against all available vi’s. Thus, the algorithm works similarly to Algorithm 6.2 except for

a delay in the vector that is multiplied by A at each step.

ALGORITHM 6.23: Block Arnoldi{Ruhe's variant

1. Choose p initial orthonormal vectors fvigi=1;:::;p.

2. For j = p; p+ 1; : : : ;m Do:

3. Set k := j � p+ 1;

4. Compute w := Avk ;

5. For i = 1; 2; : : : ; j Do:

6. hi;k := (w; vi)
7. w := w � hi;kvi
8. EndDo

9. Compute hj+1;k := kwk2 and vj+1 := w=hj+1;k .

10. EndDo

Observe that the particular case p = 1 coincides with the usual Arnoldi process. Also, the

dimension m of the subspace of approximants, is no longer restricted to being a multiple

198 CHAPTER 6 KRYLOV SUBSPACE METHODS PART I

of the block-size p as in the previous algorithms. The mathematical equivalence of Algo-

rithms 6.22 and 6.23 when m is a multiple of p is straightforward to show. The advantage

of the above formulation is its simplicity. A slight disadvantage is that it gives up some

potential parallelism. In the original version, the columns of the matrix AVj can be com-

puted in parallel whereas in the new algorithm, they are computed in sequence. This can

be remedied, however, by performing p matrix-by-vector products every p steps.

At the end of the loop consisting of lines 5 through 8 of Algorithm 6.23, the vector w
satisfies the relation

w = Avk �
jX

i=1

hikvi;

where k and j are related by k = j � p+1. Line 9 gives w = hj+1;kvj+1 which results in

Avk =

k+pX
i=1

hikvi:

As a consequence, the analogue of the relation (6.5) for Algorithm 6.23 is

AVm = Vm+p
�Hm: (6.109)

As before, for any j the matrix Vj represents the n� j matrix with columns v1; : : : vj . The

matrix �Hm is now of size (m+ p)�m.

Now the block generalizations of FOM and GMRES can be defined in a straightfor-

ward way. These block algorithms can solve linear systems with multiple right-hand sides,

Ax(i) = b(i); i = 1; � � � ; p; (6.110)

or, in matrix form

AX = B; (6.111)

where the columns of the n � p matrices B and X are the b(i)’s and x(i)’s, respectively.

Given an initial block of initial guesses x
(i)
0 for i = 1; : : : ; p, we define R0 the block of

initial residuals

R0 � [r
(1)
0 ; r

(2)
0 ; : : : ; r

(p)
0];

where each column is r
(i)
0 = b(i) � Ax

(i)
0 . It is preferable to use the unified notation

derived from Algorithm 6.23. In this notation,m is not restricted to being a multiple of the

block-size p and the same notation is used for the vi’s as in the scalar Arnoldi Algorithm.

Thus, the first step of the block-FOM or block-GMRES algorithm is to compute the QR

factorization of the block of initial residuals:

R0 = [v1; v2; : : : ; vp] R:

Here, the matrix [v1; : : : ; vp] is unitary and R is p � p upper triangular. This factorization

provides the first p vectors of the block-Arnoldi basis.

Each of the approximate solutions has the form

x(i) = x
(i)
0 + Vmy

(i); (6.112)

and, grouping these approximations x(i) in a block X and the y(i) in a block Y , we can

6.12 BLOCK KRYLOV METHODS 199

write

X = X0 + VmY: (6.113)

It is now possible to imitate what was done for the standard FOM and GMRES algorithms.

The only missing link is the vector �e1 in (6.21) which now becomes a matrix. Let E1 be

the (m+ p)� p matrix whose upper p� p principal block is an identity matrix. Then, the

relation (6.109) results in

B �AX = B �A (X0 + VmY)

= R0 �AVmY

= [v1; : : : ; vp]R � Vm+p
�HmY

= Vm+p

�
E1R� �HmY

�
: (6.114)

The vector

�g(i) � E1Rei

is a vector of length m + p whose components are zero except those from 1 to i which

are extracted from the i-th column of the upper triangular matrix R. The matrix �Hm is an

(m + p) �m matrix. The block-FOM approximation would consist of deleting the last p
rows of �g(i) and �Hm and solving the resulting system,

Hmy
(i) = g(i):

The approximate solution x(i) is then computed by (6.112).

The block-GMRES approximation x(i) is the unique vector of the form x
(i)
0 + Vmy

(i)

which minimizes the 2-norm of the individual columns of the block-residual (6.114). Since

the column-vectors of Vm+p are orthonormal, then from (6.114) we get,

kb(i) � Ax(i)k2 = k�g(i) � �Hmy
(i)k2: (6.115)

To minimize the residual norm, the function on the right hand-side must be minimized over

y(i). The resulting least-squares problem is similar to the one encountered for GMRES.

The only differences are in the right-hand side and the fact that the matrix is no longer

Hessenberg, but band-Hessenberg. Rotations can be used in a way similar to the scalar

case. However, p rotations are now needed at each new step instead of only one. Thus, if

m = 6 and p = 2, the matrix �H6 and block right-hand side would be as follows:

�H8 =

0
BBBBBBBBB@

h11 h12 h13 h14 h15 h16
h21 h22 h23 h24 h25 h26
h31 h32 h33 h34 h35 h36

h42 h43 h44 h45 h46
h53 h54 h55 h56

h64 h65 h66
h75 h76

h86

1
CCCCCCCCCA

�G =

0
BBBBBBBBB@

g11 g12
g22

1
CCCCCCCCCA
:

For each new column generated in the block-Arnoldi process, p rotations are required to

eliminate the elements hk;j , for k = j + p down to k = j + 1. This backward order is

important. In the above example, a rotation is applied to eliminate h3;1 and then a second

rotation is used to eliminate the resulting h2;1, and similarly for the second, third step, etc.

200 CHAPTER 6 KRYLOV SUBSPACE METHODS PART I

This complicates programming slightly since two-dimensional arrays must now be used

to save the rotations instead of one-dimensional arrays in the scalar case. After the first

column of �Hm is processed, the block of right-hand sides will have a diagonal added under

the diagonal of the upper triangular matrix. Specifically, the above two matrices will have

the structure,

�H8 =

0
BBBBBBBBB@

? ? ? ? ? ?
? ? ? ? ?
? ? ? ? ?
? ? ? ? ?

? ? ? ?
? ? ?

? ?
?

1
CCCCCCCCCA

�G =

0
BBBBBBBBB@

? ?
? ?

?

1
CCCCCCCCCA
;

where a ? represents a nonzero element. After all columns are processed, the following

least-squares system is obtained.

�H8 =

0
BBBBBBBBBB@

? ? ? ? ? ?
? ? ? ? ?

? ? ? ?
? ? ?

? ?
?

1
CCCCCCCCCCA

�G =

0
BBBBBBBBBB@

? ?
? ?
? ?
? ?
? ?
? ?
? ?

?

1
CCCCCCCCCCA
:

To obtain the least-squares solutions for each right-hand side, ignore anything below the

horizontal lines in the above matrices and solve the resulting triangular systems. The resid-

ual norm of the i-th system for the original problem is the 2-norm of the vector consisting

of the componentsm+1, throughm+i in the i-th column of the above block of right-hand

sides.

Generally speaking, the block methods are of great practical value in applications in-

volving linear systems with multiple right-hand sides. However, they are not as well studied

from the theoretical point of view. Perhaps, one of the reasons is the lack of a convincing

analogue for the relationship with orthogonal polynomials, established in subsection 6.6.2

for the single-vector Lanczos algorithm. The block version of the Lanczos algorithm has

not been covered but the generalization is straightforward.

EXERCISES

1 In the Householder implementation of the Arnoldi algorithm, show the following points of detail:

a. Qj+1 is unitary and its inverse is QT
j+1.

b. QT
j+1 = P1P2 : : : Pj+1.

EXERCISES AND NOTES 201

c. QT
j+1ei = vi for i < j.

d. Qj+1AVm = Vm+1[e1; e2; : : : ; ej+1] �Hm, where ei is the i-th column of the n� n identity

matrix.

e. The vi’s are orthonormal.

f. The vectors v1; : : : ; vj are equal to the Arnoldi vectors produced by the Gram-Schmidt ver-

sion, except possibly for a scaling factor.

2 Rewrite the Householder implementation of the Arnoldi algorithm with more detail. In particu-

lar, define precisely the Householder vector wj used at step j (lines 3-5).

3 Consider the Householder implementation of the Arnoldi algorithm. Give a detailed operation

count of the algorithm and compare it with the Gram-Schmidt and Modified Gram-Schmidt

algorithm.

4 Derive the basic version of GMRES by using the standard formula (5.7) with V = Vm and

W = AVm.

5 Derive a version of the DIOM algorithm which includes partial pivoting in the solution of the

Hessenberg system.

6 Show how the GMRES and FOM methods will converge on the linear system Ax = b when

A =

0
BB@

1
1

1
1

1

1
CCA ; b =

0
BB@

1
0
0
0
0

1
CCA

and with x0 = 0.

7 Give a full proof of Proposition 6.11.

8 Let a matrix A have the form

A =

�
I Y
0 I

�
:

Assume that (full) GMRES is used to solve a linear system, with the coefficient matrix A. What

is the maximum number of steps that GMRES would require to converge?

9 Let a matrix A have the form:

A =

�
I Y
0 S

�
:

Assume that (full) GMRES is used to solve a linear system with the coefficient matrix A. Let

r0 =

�
r
(1)
0

r
(2)
0

�

be the initial residual vector. It is assumed that the degree of the minimal polynomial of r
(2)
0

with respect to S (i.e., its grade) is k. What is the maximum number of steps that GMRES

would require to converge for this matrix? [Hint: Evaluate the sum
Pk

i=0
�i(A

i+1 � Ai)r0

where
Pk

i=0
�it

i is the minimal polynomial of r
(2)
0 with respect to S.]

202 CHAPTER 6 KRYLOV SUBSPACE METHODS PART I

10 Let

A =

0
BBBBB@

I Y2
I Y3

I
. . .

I Yk�1
I Yk

I

1
CCCCCA :

a. Show that (I �A)k = 0.

b. Assume that (full) GMRES is used to solve a linear system with the coefficient matrix A.

What is the maximum number of steps that GMRES would require to converge?

11 Show that if Hm is nonsingular, i.e., xFm is defined, and if xGm = xFm, then rGm = rFm = 0, i.e.,

both the GMRES and FOM solutions are exact. [Hint: use the relation (6.46) and Proposition

6.11 or Proposition 6.12.]

12 Derive the relation (6.49) from (6.47). [Hint: Use the fact that the vectors on the right-hand side

of (6.47) are orthogonal.]

13 In the Householder-GMRES algorithm the approximate solution can be computed by formulas

(6.25-6.27). What is the exact cost of this alternative (compare memory as well as arithmetic

requirements)? How does it compare with the cost of keeping the vi’s?

14 An alternative to formulas (6.25-6.27) for accumulating the approximate solution in the House-

holder-GMRES algorithm without keeping the vi’s is to compute xm as

xm = x0 + P1P2 : : : Pmy

where y is a certain n-dimensional vector to be determined. (1) What is the vector y for the

above formula in order to compute the correct approximate solution xm? [Hint: Exploit (6.11).]

(2) Write down an alternative to formulas (6.25-6.27) derived from this approach. (3) Compare

the cost of this approach with the cost of using (6.25-6.27).

15 Obtain the formula (6.76) from (6.75).

16 Show that the determinant of the matrix Tm in (6.82) is given by

det (Tm) =
1Qm�1

i=0
�i

17 The Lanczos algorithm is more closely related to the implementation of Algorithm 6.18 of the

Conjugate Gradient algorithm. As a result the Lanczos coefficients �j+1 and �j+1 are easier

to extract from this algorithm than from Algorithm 6.17. Obtain formulas for these coefficients

from the coefficients generated by Algorithm 6.18, as was done in Section 6.7.3 for the standard

CG algorithm.

18 Show that if the rotations generated in the course of the GMRES (and DQGMRES) algorithm

are such that

jcmj � c > 0;

then GMRES, DQGMRES, and FOM will all converge.

19 Show the exact expression of the residual vector in the basis v1; v2; : : : ; vm+1 for either GMRES

or DQGMRES. [Hint: A starting point is (6.52).]

20 Prove that the inequality (6.56) is sharper than (6.53), in the sense that �m+1 �
p
m� k + 11

(for m � k). [Hint: Use Cauchy-Schwarz inequality on (6.56).]

EXERCISES AND NOTES 203

21 Denote by Sm the unit upper triangular matrix S in the proof of Theorem 6.1 which is ob-

tained from the Gram-Schmidt process (exact arithmetic assumed) applied to the incomplete

orthogonalization basis Vm. Show that the Hessenberg matrix �HQm obtained in the incomplete

orthogonalization process is related to the Hessenberg matrix �HGm obtained from the (complete)

Arnoldi process by
�HGm = S�1m+1 �H

Q
mSm:

NOTES AND REFERENCES. Lemma 6.1 was proved by Roland Freund [95] in a slightly different

form. Proposition 6.12 is due to Brown [43] who proved a number of other theoretical results, includ-

ing Proposition 6.11. Recently, Cullum and Greenbaum [63] discussed further relationships between

FOM and GMRES and other Krylov subspace methods.

The Conjugate Gradient method was developed independently and in different forms by Lanc-

zos [142] and Hesteness and Stiefel [120]. The method was essentially viewed as a direct solu-

tion technique and was abandoned early on because it did not compare well with other existing

techniques. For example, in inexact arithmetic, the method does not terminate in n steps as is

predicted by the theory. This is caused by the severe loss of of orthogonality of vector quantities

generated by the algorithm. As a result, research on Krylov-type methods remained dormant for

over two decades thereafter. This changed in the early 1970s when several researchers discovered

that this loss of orthogonality did not prevent convergence. The observations were made and ex-

plained for eigenvalue problems [158, 106] as well as linear systems [167]. The early to the middle

1980s saw the development of a new class of methods for solving nonsymmetric linear systems

[13, 14, 127, 172, 173, 185, 218]. The works of Faber and Manteuffel [85] and Voevodin [219]

showed that one could not find optimal methods which, like CG, are based on short-term recur-

rences. Many of the methods developed are mathematically equivalent, in the sense that they realize

the same projection process, with different implementations.

The Householder version of GMRES is due to Walker [221]. The Quasi-GMRES algorithm

described in Section 6.5.7 was initially described by Brown and Hindmarsh [44], although the direct

version DQGMRES was only discussed recently in [187]. The proof of Theorem 6.1 can be found in

[152] for the QMR algorithm.

The non-optimality of the Chebyshev polynomials on ellipses in the complex plane was estab-

lished by Fischer and Freund [90]. Prior to this, a 1963 paper by Clayton [59] was believed to have

established the optimality for the special case where the ellipse has real foci and is real.

Until recently, little attention has been given to block Krylov methods. In addition to their at-

traction for solving linear systems with several right-hand sides [177, 196], these techniques can also

help reduce the effect of the sequential inner products in parallel environments and minimize I/O

costs in out-of-core implementations. The block-GMRES algorithm is analyzed by Simoncini and

Gallopoulos [197] and in [184]. Alternatives to GMRES which require fewer inner products have

been proposed by Sadok [188] and Jbilou [125]. Sadok investigated a GMRES-like method based

on the Hessenberg algorithm [227], while Jbilou proposed a multi-dimensional generalization of

Gastinel’s method seen in Exercise 2 of Chapter 5.

C H A P T E R

7

KRYLOV SUBSPACE METHODS

PART II

The previous chapter considered a number of Krylov subspace methods

which relied on some form of orthogonalization of the Krylov vectors in

order to compute an approximate solution. This chapter will describe a

class of Krylov subspace methods which are instead based on a biortho-

gonalization algorithm due to Lanczos. These are projection methods that

are intrinsically non-orthogonal. They have some appealing properties, but

are harder to analyze theoretically.

LANCZOS BIORTHOGONALIZATION

7.1

The Lanczos biorthogonalization algorithm is an extension to nonsymmetric matrices of

the symmetric Lanczos algorithm seen in the previous chapter. One such extension, the

Arnoldi procedure, has already been seen. However, the nonsymmetric Lanczos algorithm

is quite different in concept from Arnoldi’s method because it relies on biorthogonal se-

quences instead of orthogonal sequences.

7.1.1 THE ALGORITHM

The algorithm proposed by Lanczos for nonsymmetric matrices builds a pair of biortho-

gonal bases for the two subspaces

Km(A; v1) = spanfv1; Av1; : : : ; Am�1v1g
and

Km(AT ; w1) = spanfw1; A
Tw1; : : : ; (A

T)m�1w1g:
204

7.1 LANCZOS BIORTHOGONALIZATION 205

The algorithm that achieves this is the following.

ALGORITHM 7.1: The Lanczos Biorthogonalization Procedure

1. Choose two vectors v1; w1 such that (v1; w1) = 1.

2. Set �1 = �1 � 0, w0 = v0 � 0
3. For j = 1; 2; : : : ;m Do:

4. �j = (Avj ; wj)
5. v̂j+1 = Avj � �jvj � �jvj�1
6. ŵj+1 = ATwj � �jwj � �jwj�1

7. �j+1 = j(v̂j+1; ŵj+1)j1=2. If �j+1 = 0 Stop

8. �j+1 = (v̂j+1; ŵj+1)=�j+1
9. wj+1 = ŵj+1=�j+1

10. vj+1 = v̂j+1=�j+1
11. EndDo

Note that there are numerous ways to choose the scalars �j+1; �j+1 in lines 7 and 8.

These two parameters are scaling factors for the two vectors vj+1 and wj+1 and can be

selected in any manner to ensure that (vj+1; wj+1) = 1. As a result of lines 9 and 10 of the

algorithm, it is only necessary to choose two scalars �j+1; �j+1 that satisfy the equality

�j+1�j+1 = (v̂j+1; ŵj+1): (7.1)

The choice taken in the above algorithm scales the two vectors so that they are divided

by two scalars which have the same modulus. Both vectors can also be scaled by their

2-norms. In that case, the inner product of vj+1 and wj+1 is no longer equal to 1 and the

algorithm must be modified accordingly; see Exercise 3.

Consider the case where the pair of scalars �j+1; �j+1 is any pair that satisfies the

relation (7.1). Denote by Tm the tridiagonal matrix

Tm =

0
BBB@
�1 �2
�2 �2 �3

: : :
�m�1 �m�1 �m

�m �m

1
CCCA : (7.2)

If the determinations of �j+1; �j+1 of lines 7–8 are used, then the �j’s are positive and

�j = ��j .

Observe from the algorithm that the vectors vi belong to Km(A; v1), while the wj ’s

are in Km(AT ; w1). In fact, the following proposition can be proved.

PROPOSITION 7.1 If the algorithm does not break down before step m, then the

vectors vi; i = 1; : : : ;m, and wj ; j = 1; : : : ;m, form a biorthogonal system, i.e.,

(vj ; wi) = �ij 1 � i; j � m:

Moreover, fvigi=1;2;:::;m is a basis of Km(A; v1) and fwigi=1;2;:::;m is a basis of

Km(AT ; w1) and the following relations hold,

AVm = VmTm + �m+1vm+1e
T
m; (7.3)

206 CHAPTER 7 KRYLOV SUBSPACE METHODS PART II

ATWm =WmT
T
m + �m+1wm+1e

T
m; (7.4)

W T
mAVm = Tm: (7.5)

Proof. The biorthogonality of the vectors vi; wi will be shown by induction. By assump-

tion (v1; w1) = 1. Assume now that the vectors v1; : : : vj and w1; : : : wj are biorthogonal,

and let us prove that the vectors v1; : : : vj+1 and w1; : : : wj+1 are biorthogonal.

First, we show that (vj+1; wi) = 0 for i � j. When i = j, then

(vj+1; wj) = ��1j+1[(Avj ; wj)� �j(vj ; wj)� �j(vj�1; wj)]:

The last inner product in the above expression vanishes by the induction hypothesis. The

two other terms cancel each other by the definition of �j and the fact that (vj ; wj) = 1.

Consider now the inner product (vj+1; wi) with i < j,

(vj+1; wi) = ��1j+1[(Avj ; wi)� �j(vj ; wi)� �j(vj�1; wi)]

= ��1j+1[(vj ; A
Twi)� �j(vj�1; wi)]

= ��1j+1[(vj ; �i+1wi+1 + �iwi + �iwi�1)� �j(vj�1; wi)]:

For i < j � 1, all of the inner products in the above expression vanish, by the induction

hypothesis. For i = j � 1, the inner product is

(vj+1; wj�1) = ��1j+1[(vj ; �jwj + �j�1wj�1 + �j�1wj�2)� �j(vj�1; wj�1)]

= ��1j+1[�j(vj ; wj)� �j(vj�1; wj�1)]

= 0:

It can be proved in exactly the same way that (vi; wj+1) = 0 for i � j. Finally,

by construction (vj+1; wj+1) = 1. This completes the induction proof. The proof of the

matrix relations (7.3–7.5) is similar to that of the relations (6.4–6.6) in Arnoldi’s method.

The relations (7.3–7.5) allow us to interpret the algorithm. The matrix Tm is the pro-

jection of A obtained from an oblique projection process onto Km(A; v1) and orthogo-

nally to Km(AT ; w1). Similarly, T T
m represents the projection of AT on Km(AT ; w1) and

orthogonally to Km(A; v1). Thus, an interesting new feature here is that the operators A
and AT play a dual role because similar operations are performed with them. In fact, two

linear systems are solved implicitly, one with A and the other with AT . If there were two

linear systems to solve, one with A and the other with AT , then this algorithm is suitable.

Otherwise, the operations with AT are essentially wasted. Later a number of alternative

techniques developed in the literature will be introduced that avoid the use of AT .

From a practical point of view, the Lanczos algorithm has a significant advantage over

Arnoldi’s method because it requires only a few vectors of storage, if no reorthogonali-

zation is performed. Specifically, six vectors of length n are needed, plus some storage for

the tridiagonal matrix, no matter how large m is.

On the other hand, there are potentially more opportunities for breakdown with the

nonsymmetric Lanczos method. The algorithm will break down whenever �j+1 as defined

in line 7 vanishes. This is examined more carefully in the next section. In practice, the

difficulties are more likely to be caused by the near occurrence of this phenomenon. A

look at the algorithm indicates that the Lanczos vectors may have to be scaled by small

7.1 LANCZOS BIORTHOGONALIZATION 207

quantities when this happens. After a few steps the cumulated effect of these scalings may

introduce excessive rounding errors.

Since the subspace from which the approximations are taken is identical to that of

Arnoldi’s method, the same bounds for the distance k(I � �m)uk2 are valid. However,

this does not mean in any way that the approximations obtained by the two methods are

likely to be similar in quality. The theoretical bounds shown in Chapter 5 indicate that the

norm of the projector may play a significant role.

7.1.2 PRACTICAL IMPLEMENTATIONS

There are various ways to improve the standard nonsymmetric Lanczos algorithm which

we now discuss briefly. A major concern here is the potential breakdowns or “near break-

downs” in the algorithm. There exist a number of approaches that have been developed to

avoid such breakdowns. Other approaches do not attempt to eliminate the breakdown, but

rather try to deal with it. The pros and cons of these strategies will be discussed after the

various existing scenarios are described.

Algorithm 7.1 will abort in line 7 whenever,

(v̂j+1; ŵj+1) = 0: (7.6)

This can arise in two different ways. Either one of the two vectors v̂j+1 or ŵj+1 van-

ishes, or they are both nonzero, but their inner product is zero. The first case is the “lucky

breakdown” scenario which has been seen for symmetric matrices. Thus, if v̂j+1 = 0 then

spanfVjg is invariant and, as was seen in Chapter 5, the approximate solution is exact.

If ŵj+1 = 0 then spanfWjg is invariant. However, in this situation nothing can be said

about the approximate solution for the linear system with A. If the algorithm is being used

to solve a pair of linear systems, one with A and a dual system with AT , then the approxi-

mate solution for the dual system will be exact in this case. The second scenario in which

(7.6) can occur is when neither of the two vectors is zero, but their inner product is zero.

Wilkinson (see [227], p. 389) called this a serious breakdown. Fortunately, there are cures

for this problem which allow the algorithm to continue in most cases. The corresponding

modifications of the algorithm are often put under the denomination Look-Ahead Lanczos

algorithms. There are also rare cases of incurable breakdowns which will not be discussed

here (see references [161] and [206]).

The main idea of Look-Ahead variants of the Lanczos algorithm is that the pair

vj+2; wj+2 can often be defined even though the pair vj+1; wj+1 is not defined. The al-

gorithm can be pursued from that iterate as before until a new breakdown is encountered.

If the pair vj+2; wj+2 cannot be defined then the pair vj+3; wj+3 can be tried, and so on.

To better explain the idea, it is best to refer to the connection with orthogonal polyno-

mials mentioned earlier for the symmetric case. The relationship can be extended to the

nonsymmetric case by defining the bilinear form on the subspace Pm�1

< p; q >= (p(A)v1; q(A
T)w1): (7.7)

Unfortunately, this is now an “indefinite inner product” in general since < p; p > can be

zero or even negative. Note that there is a polynomial pj of degree j such that v̂j+1 =
pj(A)v1 and, in fact, the same polynomial intervenes in the equivalent expression ofwj+1.

208 CHAPTER 7 KRYLOV SUBSPACE METHODS PART II

More precisely, there is a scalar j such that ŵj+1 = jpj(A
T)v1. Similar to the symmetric

case, the nonsymmetric Lanczos algorithm attempts to compute a sequence of polynomials

that are orthogonal with respect to the indefinite inner product defined above. If we define

the moment matrix

Mk = f< xi�1; xj�1 >gi;j=1;:::;k
then this process is mathematically equivalent to the computation of the factorization

Mk = LkUk

of the moment matrix Mk, in which Uk is upper triangular and Lk is lower triangular. Note

that Mk is a Hankel matrix, i.e., its coefficients mij are constant along anti-diagonals, i.e.,

for i+ j = constant.
Because

< pj ; pj >= j(pj(A)v1; pj(A
T)w1);

we observe that there is a serious breakdown at step j if and only if the indefinite norm of

the polynomial pj at step j vanishes. If this polynomial is skipped, it may still be possible

to compute pj+1 and continue to generate the sequence. To explain this simply, consider

qj(t) = xpj�1(t) and qj+1(t) = x2pj�1(t):

Both qj and qj+1 are orthogonal to the polynomials p1; : : : ; pj�2. We can define (some-

what arbitrarily) pj = qj , and then pj+1 can be obtained by orthogonalizing qj+1 against

pj�1 and pj . It is clear that the resulting polynomial will then be orthogonal against all

polynomials of degree � j; see Exercise 5. Therefore, the algorithm can be continued

from step j + 1 in the same manner. Exercise 5 generalizes this for the case where k poly-

nomials are skipped rather than just one. This is a simplified description of the mechanism

which underlies the various versions of Look-Ahead Lanczos algorithms proposed in the

literature. The Parlett-Taylor-Liu implementation [161] is based on the observation that

the algorithm breaks because the pivots encountered during the LU factorization of the

moment matrix Mk vanish. Then, divisions by zero are avoided by performing implicitly a

pivot with a 2� 2 matrix rather than using a standard 1� 1 pivot.

The drawback of Look-Ahead implementations is the nonnegligible added complexity.

Besides the difficulty of identifying these near breakdown situations, the matrix Tm ceases

to be tridiagonal. Indeed, whenever a step is skipped, elements are introduced above the

superdiagonal positions, in some subsequent step. In the context of linear systems, near

breakdowns are rare and their effect generally benign. Therefore, a simpler remedy, such

as restarting the Lanczos procedure, may well be adequate. For eigenvalue problems, Look-

Ahead strategies may be more justified.

7.2 THE LANCZOS ALGORITHM FOR LINEAR SYSTEMS 209

THE LANCZOS ALGORITHM FOR LINEAR SYSTEMS

7.2

We present in this section a brief description of the Lanczos method for solving nonsym-

metric linear systems. Consider the (single) linear system:

Ax = b (7.8)

where A is n � n and nonsymmetric. Suppose that a guess x0 to the solution is available

and let its residual vector be r0 = b� Ax0. Then the Lanczos algorithm for solving (7.8)

can be described as follows.

ALGORITHM 7.2: Two-sided Lanczos Algorithm for Linear Systems

1. Compute r0 = b�Ax0 and � := kr0k2
2. Run m steps of the nonsymmetric Lanczos Algorithm, i.e.,

3. Start with v1 := r0=�, and any w1 such that (v1; w1) = 1
4. Generate the Lanczos vectors v1; : : : ; vm, w1; : : : ; wm
5. and the tridiagonal matrix Tm from Algorithm 7.1.

6. Compute ym = T�1m (�e1) and xm := x0 + Vmym.

Note that it is possible to incorporate a convergence test when generating the Lanczos

vectors in the second step without computing the approximate solution explicitly. This is

due to the following formula, which is similar to Equation (6.66) for the symmetric case,

kb�Axjk2 = j�j+1eTj yj j kvj+1k2; (7.9)

and which can be proved in the same way, by using (7.3). This formula gives us the residual

norm inexpensively without generating the approximate solution itself.

THE BCG AND QMR ALGORITHMS

7.3

The Biconjugate Gradient (BCG) algorithm can be derived from Algorithm 7.1 in exactly

the same way as the Conjugate Gradient method was derived from Algorithm 6.14. The

algorithm was first proposed by Lanczos [142] in 1952 and then in a different form (Con-

jugate Gradient-like version) by Fletcher [92] in 1974. Implicitly, the algorithm solves not

only the original system Ax = b but also a dual linear system ATx� = b� with AT . This

dual system is often ignored in the formulations of the algorithm.

210 CHAPTER 7 KRYLOV SUBSPACE METHODS PART II

7.3.1 THE BICONJUGATE GRADIENT ALGORITHM

The Biconjugate Gradient (BCG) algorithm is a projection process onto

Km = spanfv1; Av1; � � � ; Am�1v1g
orthogonally to

Lm = spanfw1; A
Tw1; � � � ; (AT)m�1w1g

taking, as usual, v1 = r0=kr0k2. The vector w1 is arbitrary, provided (v1; w1) 6= 0, but it

is often chosen to be equal to v1. If there is a dual system ATx� = b� to solve with AT ,

then w1 is obtained by scaling the initial residual b� �ATx�0.

Proceeding in the same manner as for the derivation of the Conjugate Gradient al-

gorithm from the symmetric Lanczos algorithm, we write the LDU decomposition of Tm
as

Tm = LmUm (7.10)

and define

Pm = VmU
�1
m : (7.11)

The solution is then expressed as

xm = x0 + VmT
�1
m (�e1)

= x0 + VmU
�1
m L�1m (�e1)

= x0 + PmL
�1
m (�e1):

Notice that the solution xm is updatable from xm�1 in a similar way to the Conjugate

Gradient algorithm. Like the Conjugate Gradient algorithm, the vectors rj and r�j are in the

same direction as vj+1 and wj+1, respectively. Hence, they form a biorthogonal sequence.

Define similarly the matrix

P �m = WmL
�T
m : (7.12)

Clearly, the column-vectors p�i of P �
m and those pi of Pm are A-conjugate, since,

(P �m)
TAPm = L�1m W T

mAVmU
�1
m = L�1m TmU

�1
m = I:

Utilizing this information, a Conjugate Gradient–like algorithm can be easily derived from

the Lanczos procedure.

ALGORITHM 7.3: Biconjugate Gradient (BCG)

1. Compute r0 := b�Ax0. Choose r�0 such that (r0; r
�
0) 6= 0.

2. Set, p0 := r0, p�0 := r�0
3. For j = 0; 1; : : :, until convergence Do:

4. �j := (rj ; r
�
j)=(Apj ; p

�
j)

5. xj+1 := xj + �jpj
6. rj+1 := rj � �jApj
7. r�j+1 := r�j � �jA

T p�j
8. �j := (rj+1; r

�
j+1)=(rj ; r

�
j)

7.3 THE BCG AND QMR ALGORITHMS 211

9. pj+1 := rj+1 + �jpj
10. p�j+1 := r�j+1 + �jp

�
j

11. EndDo

If a dual system with AT is being solved, then in line 1 r�0 should be defined as r�0 =
b� � ATx�0 and the update x�j+1 := x�j + �jp

�
j to the dual approximate solution must

beinserted after line 5. The vectors produced by this algorithm satisfy a few biorthogonality

properties stated in the following proposition.

PROPOSITION 7.2 The vectors produced by the Biconjugate Gradient algorithm sat-

isfy the following orthogonality properties:

(rj ; r
�
i) = 0; for i 6= j; (7.13)

(Apj ; p
�
i) = 0; for i 6= j: (7.14)

Proof. The proof is either by induction or by simply exploiting the relations between the

vectors rj , r�j , pj , p
�
j , and the vector columns of the matrices Vm, Wm, Pm, P �

m. This is

left as an exercise.

Example 7.1 Table 7.1 shows the results of applying the BCG algorithm with no pre-

conditioning to three of the test problems described in Section 3.7. See Example 6.1 for the

meaning of the column headers in the table. Recall that Iters really represents the number

of matrix-by-vector multiplications rather the number of Biconjugate Gradient steps.

Matrix Iters Kflops Residual Error

F2DA 163 2974 0.17E-03 0.86E-04

F3D 123 10768 0.34E-04 0.17E-03

ORS 301 6622 0.50E-01 0.37E-02

Table 7.1 A test run of BCG without preconditioning.

Thus, the number 163 in the first line represents 81 steps of BCG, which require 81�2
matrix-by-vector products in the iteration, and an extra one to compute the initial residual.

7.3.2 QUASI-MINIMAL RESIDUAL ALGORITHM

The result of the Lanczos algorithm is a relation of the form

AVm = Vm+1
�Tm (7.15)

in which �Tm is the (m+ 1)�m tridiagonal matrix

�Tm =

�
Tm

�m+1e
T
m

�
:

212 CHAPTER 7 KRYLOV SUBSPACE METHODS PART II

Now (7.15) can be exploited in the same way as was done to develop GMRES. If v1 is

defined as a multiple of r0, i.e., if v1 = �r0, then the residual vector associated with an

approximate solution of the form

x = x0 + Vmy

is given by

b�Ax = b�A (x0 + Vmy)

= r0 �AVmy

= �v1 � Vm+1 �Tmy

= Vm+1
�
�e1 � �Tmy

�
: (7.16)

The norm of the residual vector is therefore

kb�Axk = kVm+1
�
�e1 � �Tmy

� k2: (7.17)

If the column-vectors of Vm+1 were orthonormal, then we would have kb � Axk =
k�e1 � �Tmyk2, as in GMRES. Therefore, a least-squares solution could be obtained from

the Krylov subspace by minimizing k�e1 � �Tmyk2 over y. In the Lanczos algorithm, the

vi’s are not orthonormal. However, it is still a reasonable idea to minimize the function

J(y) � k�e1 � �Tmyk2
over y and compute the corresponding approximate solution x0 + Vmy. The resulting so-

lution is called the Quasi-Minimal Residual approximation.

Thus, the Quasi-Minimal Residual (QMR) approximation from the m-th Krylov sub-

space is obtained as x0+Vmym, where ym minimizes the function J(y) = k�e1� �Tmyk2,

i.e., just as in GMRES, except that the Arnoldi process is replaced by the Lanczos process.

Because of the simple structure of the matrix �Tm, the following algorithm is obtained,

which is adapted from the DQGMRES algorithm (Algorithm 6.13).

ALGORITHM 7.4: QMR

1. Compute r0 = b�Ax0 and 1 := kr0k2, w1 := v1 := r0=1
2. For m = 1; 2; : : :, until convergence Do:

3. Compute �m; �m+1 and vm+1; wm+1 as in Algorithm 7.1

4. Update the QR factorization of �Tm, i.e.,

5. Apply
i, i = m� 2;m� 1 to the m-th column of �Tm
6. Compute the rotation coefficients cm, sm by (6.31)

7. Apply rotation
m, to �Tm and �gm, i.e., compute:

8. m+1 := �smm,

9. m := cmm, and,

10. �m := cm�m + sm�m+1

�
=
q
�2m+1 + �2m

�
11. pm =

�
vm �Pm�1

i=m�2 timpi

�
=tmm

12. xm = xm�1 + mpm
13. If jm+1j is small enough then Stop

14. EndDo

7.4 TRANSPOSE-FREE VARIANTS 213

The following proposition establishes a result on the residual norm of the solution. It

is similar to Proposition 6.9.

PROPOSITION 7.3 The residual norm of the approximate solution xm satisfies the

relation

kb�Axmk � kVm+1k2 js1s2 : : : smj kr0k2: (7.18)

Proof. According to (7.16) the residual norm is given by

b�Axm = Vm+1[�e1 � �Tmym] (7.19)

and using the same notation as in Proposition 6.9, referring to (6.37)

k�e1 � �Hmyk22 = jm+1j2 + kgm �Rmyk22
in which gm �Rmy = 0 by the minimization procedure. In addition, by (6.40) we have

m+1 = s1 : : : sm1:

The result follows immediately using (7.19).

The following simple upper bound for kVm+1k2 can be used to estimate the residual

norm:

kVm+1k2 �
"
m+1X
i=1

kvik22
#1=2

:

Observe that ideas similar to those used for DQGMRES can be exploited to obtain

a better estimate of the residual norm. Also, note that the relation (6.57) for DQGMRES

holds. More interestingly, Theorem 6.1 is also valid and it is now restated for QMR.

THEOREM 7.1 Assume that the Lanczos algorithm does not break down on or before

stepm and let Vm+1 be the Lanczos basis obtained at stepm. Let rQm and rGm be the residual

norms obtained after m steps of the QMR and GMRES algorithms, respectively. Then,

krQmk2 � �2(Vm+1)krGmk2:

The proof of this theorem is essentially identical with that of Theorem 6.1. Note that Vm+1
is now known to be of full rank, so we need not make this assumption as in Theorem 6.1.

TRANSPOSE-FREE VARIANTS

7.4

Each step of the Biconjugate Gradient algorithm and QMR requires a matrix-by-vector

product with both A and AT . However, observe that the vectors p�i or wj generated with

AT do not contribute directly to the solution. Instead, they are used only to obtain the

scalars needed in the algorithm, e.g., the scalars �j and �j for BCG. The question arises

214 CHAPTER 7 KRYLOV SUBSPACE METHODS PART II

as to whether or not it is possible to bypass the use of the transpose of A and still generate

iterates that are related to those of the BCG algorithm. One of the motivations for this ques-

tion is that, in some applications, A is available only through some approximations and not

explicitly. In such situations, the transpose of A is usually not available. A simple exam-

ple is when a CG-like algorithm is used in the context of Newton’s iteration for solving

F (u) = 0. The linear system that arises at each Newton step can be solved without having

to compute the Jacobian J(uk) at the current iterate uk explicitly, by using the difference

formula

J(uk)v =
F (uk + �v)� F (uk)

�
:

This allows the action of this Jacobian to be computed on an arbitrary vector v. Unfortu-

nately, there is no similar formula for performing operations with the transpose of J(uk).

7.4.1 CONJUGATE GRADIENT SQUARED

The Conjugate Gradient Squared algorithm was developed by Sonneveld in 1984 [201],

mainly to avoid using the transpose of A in the BCG and to gain faster convergence for

roughly the same computational cost. The main idea is based on the following simple

observation. In the BCG algorithm, the residual vector at step j can be expressed as

rj = �j(A)r0 (7.20)

where �j is a certain polynomial of degree j satisfying the constraint �j(0) = 1. Similarly,

the conjugate-direction polynomial �j(t) is given by

pj = �j(A)r0; (7.21)

in which �j is a polynomial of degree j. From the algorithm, observe that the directions

r�j and p�j are defined through the same recurrences as rj and pj in which A is replaced by

AT and, as a result,

r�j = �j(A
T)r�0 ; p�j = �j(A

T)r�0 :

Also, note that the scalar �j in BCG is given by

�j =
(�j(A)r0; �j(A

T)r�0)

(A�j(A)r0; �j(AT)r�0)
=

(�2j (A)r0; r
�
0)

(A�2j (A)r0; r
�
0)

which indicates that if it is possible to get a recursion for the vectors �2j (A)r0 and �2j (A)r0,

then computing �j and, similarly, �j causes no problem. Hence, the idea of seeking an

algorithm which would give a sequence of iterates whose residual norms r 0j satisfy

r0j = �2j (A)r0: (7.22)

The derivation of the method relies on simple algebra only. To establish the desired

recurrences for the squared polynomials, start with the recurrences that define �j and �j ,

which are,

�j+1(t) = �j(t)� �jt�j(t); (7.23)

�j+1(t) = �j+1(t) + �j�j(t): (7.24)

7.4 TRANSPOSE-FREE VARIANTS 215

If the above relations are squared we get

�2j+1(t) = �2j (t)� 2�jt�j(t)�j(t) + �2j t
2�2j (t);

�2j+1(t) = �2j+1(t) + 2�j�j+1(t)�j(t) + �2j�j(t)
2:

If it were not for the cross terms �j(t)�j(t) and �j+1(t)�j(t) on the right-hand sides, these

equations would form an updatable recurrence system. The solution is to introduce one of

these two cross terms, namely, �j+1(t)�j(t), as a third member of the recurrence. For the

other term, i.e., �j(t)�j(t), we can exploit the relation

�j(t)�j(t) = �j(t) (�j(t) + �j�1�j�1(t)) = �2j (t) + �j�1�j(t)�j�1(t):

By putting these relations together the following recurrences can be derived, in which the

variable (t) is omitted where there is no ambiguity:

�2j+1 = �2j � �jt
�
2�2j + 2�j�1�j�j�1 � �jt �

2
j

�
(7.25)

�j+1�j = �2j + �j�1�j�j�1 � �jt �
2
j (7.26)

�2j+1 = �2j+1 + 2�j�j+1�j + �2j �
2
j : (7.27)

These recurrences are at the basis of the algorithm. If we define

rj = �2j (A)r0; (7.28)

pj = �2j (A)r0; (7.29)

qj = �j+1(A)�j(A)r0; (7.30)

then the above recurrences for the polynomials translate into

rj+1 = rj � �jA (2rj + 2�j�1qj�1 � �jA pj) ; (7.31)

qj = rj + �j�1qj�1 � �jA pj ; (7.32)

pj+1 = rj+1 + 2�jqj + �2j pj : (7.33)

It is convenient to define the auxiliary vector

dj = 2rj + 2�j�1qj�1 � �jApj :

With this we obtain the following sequence of operations to compute the approximate

solution, starting with r0 := b�Ax0, p0 := r0, q0 := 0, �0 := 0.

� �j = (rj ; r
�
0)=(Apj ; r

�
0)

� dj = 2rj + 2�j�1qj�1 � �jApj

� qj = rj + �j�1qj�1 � �jApj

� xj+1 = xj + �jdj

� rj+1 = rj � �jAdj

� �j = (rj+1; r
�
0)=(rj ; r

�
0)

� pj+1 = rj+1 + �j(2qj + �jpj).

A slight simplification to the algorithm can be made by using the auxiliary vector

uj = rj + �j�1qj�1. This definition leads to the relations

dj = uj + qj ;

216 CHAPTER 7 KRYLOV SUBSPACE METHODS PART II

qj = uj � �jApj ;
pj+1 = uj+1 + �j(qj + �jpj);

and as a result the vector dj is no longer needed. The resulting algorithm is given below.

ALGORITHM 7.5: Conjugate Gradient Squared

1. Compute r0 := b�Ax0; r�0 arbitrary.

2. Set p0 := u0 := r0.

3. For j = 0; 1; 2 : : :, until convergence Do:

4. �j = (rj ; r
�
0)=(Apj ; r

�
0)

5. qj = uj � �jApj
6. xj+1 = xj + �j(uj + qj)
7. rj+1 = rj � �jA(uj + qj)
8. �j = (rj+1; r

�
0)=(rj ; r

�
0)

9. uj+1 = rj+1 + �jqj
10. pj+1 = uj+1 + �j(qj + �jpj)
11. EndDo

Observe that there are no matrix-by-vector products with the transpose of A. Instead, two

matrix-by-vector products with the matrix A are now performed at each step. In general,

one should expect the resulting algorithm to converge twice as fast as BCG. Therefore,

what has essentially been accomplished is to replace the matrix-by-vector products with

AT by more useful work.

The Conjugate Gradient Squared algorithm works quite well in many cases. However,

one difficulty is that, since the polynomials are squared, rounding errors tend to be more

damaging than in the standard BCG algorithm. In particular, very high variations of the

residual vectors often cause the residual norms computed from the result of line 7 of the

above algorithm to become inaccurate.

7.4.2 BICGSTAB

The CGS algorithm is based on squaring the residual polynomial, and, in cases of irregular

convergence, this may lead to substantial build-up of rounding errors, or possibly even

overflow. The Biconjugate Gradient Stabilized (BICGSTAB) algorithm is a variation of

CGS which was developed to remedy this difficulty. Instead of seeking a method which

delivers a residual vector of the form r0j defined by (7.22), BICGSTAB produces iterates

whose residual vectors are of the form

r0j = j(A)�j (A)r0; (7.34)

in which, as before, �j(t) is the residual polynomial associated with the BCG algorithm

and j(t) is a new polynomial which is defined recursively at each step with the goal of

“stabilizing” or “smoothing” the convergence behavior of the original algorithm. Specifi-

cally, j(t) is defined by the simple recurrence,

 j+1(t) = (1� !jt) j(t) (7.35)

7.4 TRANSPOSE-FREE VARIANTS 217

in which the scalar !j is to be determined. The derivation of the appropriate recurrence

relations is similar to that of CGS. Ignoring the scalar coefficients at first, we start with a

relation for the residual polynomial j+1�j+1. We immediately obtain

 j+1�j+1 = (1� !jt) j(t)�j+1 (7.36)

= (1� !jt) (j�j � �jt j�j) (7.37)

which is updatable provided a recurrence relation is found for the products j�j . For this,

write

 j�j = j(�j + �j�1�j�1) (7.38)

= j�j + �j�1(1� !j�1t) j�1�j�1: (7.39)

Define,

rj = �j(A) j(A)r0;

pj = j(A)�j(A)r0:

According to the above formulas, these vectors can be updated from a double recurrence

provided the scalars �j and �j were computable. This recurrence is

rj+1 = (I � !jA)(rj � �jApj) (7.40)

pj+1 = rj+1 + �j(I � !jA)pj :
Consider now the computation of the scalars needed in the recurrence. According to

the original BCG algorithm, �j = �j+1=�j with

�j = (�j(A)r0; �j(A
T)r�0) = (�j(A)

2r0; r
�
0)

Unfortunately, �j is not computable from these formulas because none of the vectors

�j(A)r0, �j(A
T)r�0 or �j(A)

2r0 is available. However, �j can be related to the scalar

~�j = (�j(A)r0; j(A
T)r�0)

which is computable via

~�j = (�j(A)r0; j(A
T)r�0) = (j(A)�j (A)r0; r

�
0) = (rj ; r

�
0):

To relate the two scalars �j and ~�j , expand j(A
T)r�0 explicitly in the power basis, to

obtain

~�j =
�
�j(A)r0; �

(j)
1 (AT)jr�0 + �

(j)
2 (AT)j�1r�0 + : : :

�
:

Since �j(A)r0 is orthogonal to all vectors (AT)kr�0 , with k < j, only the leading power is

relevant in the expansion on the right side of the above inner product. In particular, if
(j)
1

is the leading coefficient for the polynomial �j(t), then

~�j =

�j(A)r0;

�
(j)
1

(j)
1

�j(A
T)r0

!
=
�
(j)
1

(j)
1

�j :

When examining the recurrence relations for �j+1 and j+1, leading coefficients for these

polynomials are found to satisfy the relations

�
(j+1)
1 = �!j�(j)1 ;

(j+1)
1 = ��j(j)1 ;

218 CHAPTER 7 KRYLOV SUBSPACE METHODS PART II

and as a result

~�j+1
~�j

=
!j
�j

�j+1
�j

which yields the following relation for �j :

�j =
~�j+1
~�j

� �j
!j
: (7.41)

Similarly, a simple recurrence formula for �j can be derived. By definition,

�j =
(�j(A)r0; �j(A

T)r�0)

(A�j(A)r0; �j(AT)r�0)

and as in the previous case, the polynomials in the right sides of the inner products in both

the numerator and denominator can be replaced by their leading terms. However, in this

case the leading coefficients for �j(A
T)r�0 and �j(A

T)r�0 are identical, and therefore,

�j =
(�j(A)r0; �j(A

T)r�0)

(A�j(A)r0; �j(AT)r�0)

=
(�j(A)r0; j(A

T)r�0)

(A�j(A)r0; j(AT)r�0)

=
(j(A)�j(A)r0; r

�
0)

(A j(A)�j(A)r0; r�0)
:

Since pj = j(A)�j (A)r0, this yields,

�j =
~�j

(Apj ; r�0)
: (7.42)

Next, the parameter !j must be defined. This can be thought of as an additional free

parameter. One of the simplest choices, and perhaps the most natural, is to select !j to

achieve a steepest descent step in the residual direction obtained before multiplying the

residual vector by (I � !jA) in (7.40). In other words, !j is chosen to minimize the 2-

norm of the vector (I � !jA) j(A)�j+1(A)r0. Equation (7.40) can be rewritten as

rj+1 = (I � !jA)sj
in which

sj � rj � �jApj :
Then the optimal value for !j is given by

!j =
(Asj ; sj)

(Asj ; Asj)
: (7.43)

Finally, a formula is needed to update the approximate solution xj+1 from xj . Equa-

tion (7.40) can be rewritten as

rj+1 = sj � !jAsj = rj � �jApj � !jAsj
which yields

xj+1 = xj + �jpj + !jsj :

7.4 TRANSPOSE-FREE VARIANTS 219

After putting these relations together, we obtain the final form of the BICGSTAB

algorithm, due to van der Vorst [210].

ALGORITHM 7.6: BICGSTAB

1. Compute r0 := b�Ax0; r�0 arbitrary;

2. p0 := r0.

3. For j = 0; 1; : : :, until convergence Do:

4. �j := (rj ; r
�
0)=(Apj ; r

�
0)

5. sj := rj � �jApj
6. !j := (Asj ; sj)=(Asj ; Asj)
7. xj+1 := xj + �jpj + !jsj
8. rj+1 := sj � !jAsj

9. �j :=
(rj+1;r

�
0)

(rj ;r�0)
� �j

!j

10. pj+1 := rj+1 + �j(pj � !jApj)
11. EndDo

Example 7.2 Table 7.2 shows the results of applying the BICGSTAB algorithm with no

preconditioning to three of the test problems described in Section 3.7.

Matrix Iters Kflops Residual Error

F2DA 96 2048 0.14E-02 0.77E-04

F3D 64 6407 0.49E-03 0.17E-03

ORS 208 5222 0.22E+00 0.68E-04

Table 7.2 A test run of BICGSTAB with no preconditioning.

See Example 6.1 for the meaning of the column headers in the table. The number of

matrix-by-vector multiplications required to converge is larger than with BCG. Thus, us-

ing the number of matrix-by-vector products as a criterion, BCG is more expensive than

BICGSTAB in all three examples. For problem 3, the number of steps for BCG exceeds

the limit of 300. If the number of steps is used as a criterion, then the two methods come

very close for the second problem [61 steps for BCG versus 64 for BICGSTAB]. However,

BCG is slightly faster for Problem 1. Observe also that the total number of operations fa-

vors BICGSTAB. This illustrates the main weakness of BCG as well as QMR, namely, the

matrix-by-vector products with the transpose are essentially wasted unless a dual system

with AT must be solved simultaneously.

7.4.3 TRANSPOSE-FREE QMR (TFQMR)

The Transpose-Free QMR algorithm of Freund [95] is derived from the CGS algorithm.

Observe that xj can be updated in two half-steps in line 6 of Algorithm 7.5, namely,

xj+ 1
2
= xj + �juj and xj+1 = xj+ 1

2
+ �jqj . This is only natural since the actual up-

date from one iterate to the next involves two matrix-by-vector multiplications, i.e., the

220 CHAPTER 7 KRYLOV SUBSPACE METHODS PART II

degree of the residual polynomial is increased by two. In order to avoid indices that are

multiples of 1
2 , it is convenient when describing TFQMR to double all subscripts in the

CGS algorithm. With this change of notation, the main steps of the Algorithm 7.5 (CGS)

become

�2j = (r2j ; r
�
0)=(Ap2j ; r

�
0) (7.44)

q2j = u2j � �2jAp2j (7.45)

x2j+2 = x2j + �2j(u2j + q2j) (7.46)

r2j+2 = r2j � �2jA(u2j + q2j) (7.47)

�2j = (r2j+2; r
�
0)=(r2j ; r

�
0) (7.48)

u2j+2 = r2j+2 + �2jq2j (7.49)

p2j+2 = u2j+2 + �2j(q2j + �p2j): (7.50)

The initialization is identical with that of Algorithm 7.5. The update of the approxi-

mate solution in (7.46) can now be split into the following two half-steps:

x2j+1 = x2j + �2ju2j (7.51)

x2j+2 = x2j+1 + �2jq2j : (7.52)

This can be simplified by defining the vectors um for odd m as u2j+1 = q2j . Similarly, the

sequence of �m is defined for odd values of m as �2j+1 = �2j . In summary,

for m odd define:

�
um � qm�1
�m � �m�1

: (7.53)

With these definitions, the relations (7.51–7.52) are translated into the single equation

xm = xm�1 + �m�1um�1;

which is valid whether m is even or odd. The intermediate iterates xm, with m odd, which

are now defined do not exist in the original CGS algorithm. For even values of m the

sequence xm represents the original sequence or iterates from the CGS algorithm. It is

convenient to introduce the N �m matrix,

Um = [u0; : : : ; um�1]

and the m-dimensional vector

zm = (�0; �1; : : : ; �m�1)
T :

The general iterate xm satisfies the relation

xm = x0 + Umzm (7.54)

= xm�1 + �m�1um�1: (7.55)

From the above equation, it is clear that the residual vectors rm are related to the u-vectors

by the relations

rm = r0 �AUmzm (7.56)

= rm�1 � �m�1Aum�1: (7.57)

Next, a relation similar to the relation (6.5) seen for FOM and GMRES will be ex-

7.4 TRANSPOSE-FREE VARIANTS 221

tracted using the matrix AUm. As a result of (7.57), the following relation holds:

Aui =
1

�i
(ri � ri+1) :

Translated in matrix form, this relation becomes

AUm = Rm+1
�Bm (7.58)

where

Rk = [r0; r1; : : : ; rk�1] (7.59)

and where �Bm is the (m+ 1)�m matrix,

�Bm =

0
BBBBBBB@

1 0 : : : : : : 0

�1 1
...

0 �1 1 : : :
...

. . .
. . .

...
... �1 1
0 : : : �1

1
CCCCCCCA
� diag

�
1

�0
;
1

�1
; : : :

1

�m�1

�
: (7.60)

The columns of Rm+1 can be rescaled, for example, to make each of them have a 2-norm

equal to one, by multiplying Rm+1 to the right by a diagonal matrix. Let this diagonal

matrix be the inverse of the matrix

�m+1 = diag [�0; �1; : : : ; �m] :

Then,

AUm = Rm+1�
�1
m+1�m+1

�Bm: (7.61)

With this, equation (7.56) becomes

rm = r0 �AUmzm = Rm+1

�
e1 � �Bmzm

�
(7.62)

= Rm+1�
�1
m+1

�
�0e1 ��m+1

�Bmzm
�
: (7.63)

By analogy with the GMRES algorithm, define

�Hm � �m+1
�Bm:

Similarly, define Hm to be the matrix obtained from �Hm by deleting its last row. It is easy

to verify that the CGS iterates xm (now defined for all integers m = 0; 1; 2; : : :) satisfy the

same definition as FOM, i.e.,

xm = x0 + UmH
�1
m (�0e1): (7.64)

It is also possible to extract a GMRES-like solution from the relations (7.61) and

(7.63), similar to DQGMRES. In order to minimize the residual norm over the Krylov

subspace, the 2-norm of the right-hand side of (7.63) would have to be minimized, but

this is not practical since the columns of Rm+1�
�1
m+1 are not orthonormal as in GMRES.

However, the 2-norm of �0e1 ��m+1
�Bmz can be minimized over z, as was done for the

QMR and DQGMRES algorithms.

This defines the TFQMR iterates theoretically. However, it is now necessary to find a

formula for expressing the iterates in a progressive way. There are two ways to proceed.

222 CHAPTER 7 KRYLOV SUBSPACE METHODS PART II

The first follows DQGMRES closely, defining the least-squares solution progressively and

exploiting the structure of the matrix Rm to obtain a formula for xm from xm�1. Because

of the special structure of �Hm, this is equivalent to using the DQGMRES algorithm with

k = 1. The second way to proceed exploits Lemma 6.1 seen in the previous chapter. This

lemma, which was shown for the FOM/GMRES pair, is also valid for the CGS/TFQMR

pair. There is no fundamental difference between the two situations. Thus, the TFQMR

iterates satisfy the relation

xm � xm�1 = c2m (~xm � xm�1) (7.65)

where the tildes are now used to denote the CGS iterate. Setting

dm � 1

�m�1
(~xm � xm�1) =

1

c2m�m�1
(xm � xm�1) (7.66)

�m � c2m�m�1;

the above expression for xm becomes

xm = xm�1 + �mdm: (7.67)

Now observe from (7.55) that the CGS iterates ~xm satisfy the relation

~xm = ~xm�1 + �m�1um�1: (7.68)

From the above equations, a recurrence relation from dm can be extracted. The definition

of dm and the above relations yield

dm =
1

�m�1
(~xm � ~xm�1 + ~xm�1 � xm�1)

= um�1 +
1

�m�1
(~xm�1 � xm�2 � (xm�1 � xm�2))

= um�1 +
1� c2m�1
�m�1

(~xm�1 � xm�2) :

Therefore,

dm = um�1 +
(1� c2m�1)�m�1

c2m�1�m�1
dm�1:

The term (1 � c2m�1)=c
2
m�1 is the squared tangent of the angle used in the (m � 1) � st

rotation. This tangent will be denoted by �m�1, and we have

�m =
sm
cm

; c2m =
1

1 + �2m
; dm+1 = um +

�2m�m
�m

dm:

The angle used in the m-th rotation, or equivalently cm, can be obtained by examining the

7.4 TRANSPOSE-FREE VARIANTS 223

matrix �Hm:

�Hm =

0
BBBBBBB@

�0 0 : : : : : : 0

��1 �1
...

0 ��2 �2 : : :
...

. . .
. . .

...
... ��m �m
0 : : : ��m+1

1
CCCCCCCA
� diag

�
1

�i

�
i=0;:::;m�1

: (7.69)

The diagonal matrix in the right-hand side scales the columns of the matrix. It is easy to see

that it has no effect on the determination of the rotations. Ignoring this scaling, the above

matrix becomes, after j rotations,0
BBBBBBBBBBB@

? ?
? ?

. . .
. . .

�j 0
��j+1 �j+1

. . .
. . .

��m �m
��m+1

1
CCCCCCCCCCCA

:

The next rotation is then determined by,

sj+1 =
��j+1q
�2j + �2j+1

; cj+1 =
�jq

�2j + �2j+1

; �j+1 =
��j+1
�j

:

In addition, after this rotation is applied to the above matrix, the diagonal element �j+1
which is in position (j + 1; j + 1) is transformed into

�j+1 = �j+1 � cj+1 =
�j�j+1q
�2j + �2j+1

= ��jsj+1 = ��j�j+1cj+1: (7.70)

The above relations enable us to update the direction dm and the required quantities cm and

�m. Since only the squares of these scalars are invoked in the update of the direction dm+1,

a recurrence for their absolute values is sufficient. This gives the following recurrences

which will be used in the algorithm:

dm+1 = um + (�2m=�m)�mdm

�m+1 = �m+1=�m

cm+1 =
�
1 + �2m+1

�� 1
2

�m+1 = �m�m+1cm+1

�m+1 = c2m+1�m:

Before writing down the algorithm, a few relations must be exploited. Since the vectors

rm are no longer the actual residuals in the algorithm, we change the notation to wm. These

residual vectors can be updated by the formula

wm = wm�1 � �m�1Aum�1:

224 CHAPTER 7 KRYLOV SUBSPACE METHODS PART II

The vectors Aui can be used to update the vectors

v2j � Ap2j

which are needed in the CGS algorithm. Multiplying (7.50) by A results in

Ap2j = Au2j + �2j�2(Aq2j�2 + �jAp2j�2)

which, upon substituting the relation

q2j = u2j+1

translates into

v2j = Au2j + �2j�2(Au2j�1 + �2j�2v2j�2):

Also, observe that the recurrences in (7.45) and (7.49) for q2j and u2j+2, respectively,

become

u2j+1 = u2j � �2jv2j

u2j+2 = w2j+2 + �2ju2j+1:

The first equation should be used to compute um+1 when m is even, and the second when

m is odd. In the following algorithm, the normalization �m = kwmk2, which normalize

each column of Rm to have 2-norm unity, is used.

ALGORITHM 7.7: Transpose-Free QMR (TFQMR)

1. Compute w0 = u0 = r0 = b�Ax0, v0 = Au0, d0 = 0;

2. �0 = kr0k2, �0 = �0 = 0.

3. Choose r�0 such that �0 � (r�0 ; r0) 6= 0.

4. For m = 0; 1; 2; : : : ; until convergence Do:

5. If m is even then

6. �m+1 = �m = �m=(vm; r
�
0)

7. um+1 = um � �mvm
8. EndIf

9. wm+1 = wm � �mAum
10. dm+1 = um + (�2m=�m)�mdm

11. �m+1 = kwm+1k2=�m; cm+1 =
�
1 + �2m+1

�� 1
2

12. �m+1 = �m�m+1cm+1 ; �m+1 = c2m+1�m
13. xm+1 = xm + �m+1dm+1

14. If m is odd then

15. �m+1 = (rm+1; r
�
0); �m�1 = �m+1=�m�1

16. um+1 = wm+1 + �m�1um
17. vm+1 = Aum+1 + �m�1(Aum + �m�1vm�1)
18. EndIf

19. EndDo

Notice that the quantities in the odd m loop are only defined for even values of m. The

residual norm of the approximate solution xm is not available from the above algorithm

as it is described. However, good estimates can be obtained using similar strategies to

7.4 TRANSPOSE-FREE VARIANTS 225

those used for DQGMRES. Referring to GMRES, an interesting observation is that the

recurrence (6.40) is identical with the recurrence of the scalars �j’s. In addition, these two

sequences start with the same values, �0 for the � ’s and � for the ’s. Therefore,

m+1 = �m:

Recall that m+1 is the residual for the (m+ 1)�m least-squares problem

min
z
k�0e1 � �Hmzk2:

Hence, a relation similar to that for DQGMRES holds, namely,

kb�Axmk �
p
m+ 1�m: (7.71)

This provides a readily computable estimate of the residual norm. Another point that should

be made is that it is possible to use the scalars sm, cm in the recurrence instead of the pair

cm; �m, as was done above. In this case, the proper recurrences are

dm+1 = um + (s2m=�m)�m�1dm

sm+1 = �m+1=
q
�2m + �2m+1

cm+1 = �m=
q
�2m + �2m+1

�m+1 = �msm+1

�m+1 = c2m+1�m:

Example 7.3 Table 7.3 shows the results when TFQMR algorithm without precondi-

tioning is applied to three of the test problems described in Section 3.7.

Matrix Iters Kflops Residual Error

F2DA 112 2736 0.46E-04 0.68E-04

F3D 78 8772 0.52E-04 0.61E-03

ORS 252 7107 0.38E-01 0.19E-03

Table 7.3 A test run of TFQMR with no preconditioning.

See Example 6.1 for the meaning of the column headers in the table. The number of

steps is slightly higher than that of BICGSTAB. Comparing with BCG, we note that each

step of BCG requires two matrix-by-vector products compared with one for TFQMR and

BICGSTAB. Thus, using the number of matrix-by-vector products as a criterion, BCG is

more expensive than TFQMR in all cases, as is shown in the “Iters” columns. If the num-

ber of steps is used as a criterion, then BCG is just slightly better for Problems 1 and 2. A

comparison is not possible for Problem 3, since the number of matrix-by-vector products

required for convergence exceeds the limit of 300. In general, the number of steps required

for convergence is similar for BICGSTAB and TFQMR. A comparison with the methods

seen in the previous chapter indicates that in many cases, GMRES will be faster if the

problem is well conditioned, resulting in a moderate number of steps required to converge.

If many steps (say, in the hundreds) are required, then BICGSTAB and TFQMR may per-

form better. If memory is not an issue, GMRES or DQGMRES, with a large number of

directions, is often the most reliable choice. The issue then is one of trading ribustness for

226 CHAPTER 7 KRYLOV SUBSPACE METHODS PART II

memory usage. In general, a sound strategy is to focus on finding a good preconditioner

rather than the best accelerator.

EXERCISES

1 Consider the following modification of the Lanczos algorithm, Algorithm 7.1. We replace line 6

by

ŵj+1 = ATwj �
jX

i=1

hijwi

where the scalars hij are arbitrary. Lines 5 and 7 through 10 remain the same but line 4 in which

�j is computed must be changed.

a. Show how to modify line 4 to ensure that the vector v̂j+1 is orthogonal against the vectors

wi, for i = 1; : : : ; j.

b. Prove that the vectors vi’s and the matrix Tm do not depend on the choice of the hij ’s.

c. Consider the simplest possible choice, namely, hij � 0 for all i; j. What are the advantages

and potential difficulties with this choice?

2 Assume that the Lanczos algorithm does not break down before step m, i.e., that it is possible

to generate v1; : : : vm+1. Show that Vm+1 and Wm+1 are both of full rank.

3 Develop a modified version of the non-Hermitian Lanczos algorithm that produces a sequence

of vectors vi; wi such that each vi is orthogonal to every wj with j 6= i and kvik2 = kwik2 = 1
for all i. What does the projected problem become?

4 Develop a version of the non-Hermitian Lanczos algorithm that produces a sequence of vectors

vi; wi which satisfy

(vi; wj) = ��ij ;
but such that the matrix Tm is Hermitian tridiagonal. What does the projected problem become

in this situation?

5 Using the notation of Section 7.1.2 prove that qj+k(t) = tkpj(t) is orthogonal to the poly-

nomials p1; p2; : : : ; pj�k, assuming that k � j. Show that if qj+k is orthogonalized against

p1; p2; : : : ; pj�k, the result would be orthogonal to all polynomials of degree < j+ k. Derive a

general Look-Ahead non-Hermitian Lanczos procedure based on this observation.

6 Consider the matrices Vm = [v1; : : : ; vm] and Wm = [w1; : : : ; wm] obtained from the Lanczos

biorthogonalization algorithm. (a) What are the matrix representations of the (oblique) projector

onto Km(A; v1) orthogonal to the subspace Km(AT ; w1), and the projector onto Km(AT ; w1)
orthogonally to the subspace Km(A; v1)? (b) Express a general condition for the existence of

an oblique projector onto K, orthogonal to L. (c) How can this condition be interpreted using

the Lanczos vectors and the Lanczos algorithm?

7 Show a three-term recurrence satisfied by the residual vectors rj of the BCG algorithm. Include

the first two iterates to start the recurrence. Similarly, establish a three-term recurrence for the

conjugate direction vectors pj in BCG.

EXERCISES AND NOTES 227

8 Let �j(t) and �j(t) be the residual polynomial and the conjugate direction polynomial, respec-

tively, for the BCG algorithm, as defined in Section 7.4.1. Let j(t) be any other polynomial

sequence which is defined from the recurrence

 0(t) = 1; 1(t) = (1� �0t) 0(t)

 j+1(t) = (1 + �j � �jt) j(t)� �j j�1(t)

a. Show that the polynomials j are consistent, i.e., j(0) = 1 for all j � 0.

b. Show the following relations

 j+1�j+1 = j�j+1 � �j(j�1 � j)�j+1 � �jt j�j+1

 j�j+1 = j�j � �jt j�j

(j�1 � j)�j+1 = j�1�j � j�j+1 � �jt j�1�j

 j+1�j+1 = j+1�j+1 � �j�j j�1�j + �j(1 + �j) j�j � �j�jt j�j

 j�j+1 = j�j+1 + �j j�j :

c. Defining,

tj = j(A)�j+1(A)r0; yj = (j�1(A)� j(A))�j+1(A)r0;
pj = j(A)�j(A)r0; sj = j�1(A)�j(A)r0

show how the recurrence relations of the previous question translate for these vectors.

d. Find a formula that allows one to update the approximation xj+1 from the vectors xj�1; xj
and tj ; pj ; yj ; sj defined above.

e. Proceeding as in BICGSTAB, find formulas for generating the BCG coefficients �j and �j
from the vectors defined in the previous question.

9 Prove the expression (7.64) for the CGS approximation defined by (7.54–7.55). Is the relation

valid for any choice of scaling �m+1?

10 Prove that the vectors rj and r�i produced by the BCG algorithm are orthogonal to each other

when i 6= j, while the vectors pi and p�j are A-orthogonal, i.e., (Apj ; p
�
i) = 0 for i 6= j.

11 The purpose of this exercise is to develop block variants of the Lanczos algorithm. Consider a

two-sided analogue of the Block-Arnoldi algorithm, in its variant of Algorithm 6.23. Formally,

the general step that defines the biorthogonalization process, for j � p, is as follows:

1. Orthogonalize Avj�p+1 versus w1; w2; : : : ; wj (by subtracting a linear combination

of v1; : : : ; vj from Avj�p+1). Call v the resulting vector.

2. Orthogonalize ATwj�p+1 versus v1; v2; : : : ; vj (by subtracting a linear combination

of w1; : : : ; wj from ATwj�p+1). Call w the resulting vector.

3. Normalize the two vectors v and w so that (v; w) = 1 to get vj+1 and wj+1.

Here, p is the block size and it is assumed that the initial blocks are biorthogonal: (vi; wj) = �ij
for i; j � p.

a. Show that Avj�p+1 needs only to be orthogonalized against the 2p previous wi’s instead of

all of them. Similarly,ATwj�p+1 must be orthogonalized only against the 2p previous vi’s.

b. Write down the algorithm completely. Show the orthogonality relations satisfied by the vec-

tors vi and wj . Show also relations similar to (7.3) and (7.4).

c. We now assume that the two sets of vectors vi and wj have different block sizes. Call q the

block-size for the w’s. Line 2 of the above formal algorithm is changed into:

2a. Orthogonalize ATwj�q+1 versus v1; v2; : : : ; vj (� � �). Call w the resulting vector.

228 CHAPTER 7 KRYLOV SUBSPACE METHODS PART II

and the rest remains unchanged. The initial vectors are again biorthogonal: (vi; wj) = �ij
for i � p and j � q. Show that now Avj�p+1 needs only to be orthogonalized against the

q + p previous wi’s instead of all of them. Show a simlar result for the wj’s.

d. Show how a block version of BCG and QMR can be developed based on the algorithm

resulting from question (c).

NOTES AND REFERENCES. At the time of this writing there is still much activity devoted to the class

of methods covered in this chapter. Two of the starting points in this direction are the papers by Son-

neveld [201] and Freund and Nachtigal [97]. The more recent BICGSTAB [210] has been developed

to cure some of the numerical problems that plague CGS. There have been a few recent additions

and variations to the basic BCG, BICGSTAB, and TFQMR techniques; see [42, 47, 113, 114, 192],

among many others. A number of variations have been developed to cope with the breakdown of

the underlying Lanczos or BCG algorithm; see, for example, [41, 20, 96, 192, 231]. Finally, block

methods have also been developed [5].

Many of the Lanczos-type algorithms developed for solving linear systems are rooted in the

theory of orthogonal polynomials and Padé approximation. Lanczos himself certainly used this view-

point when he wrote his breakthrough papers [140, 142] in the early 1950s. The monogram by

Brezinski [38] gives an excellent coverage of the intimate relations between approximation theory

and the Lanczos-type algorithms. Freund [94] establishes these relations for quasi-minimal resid-

ual methods. A few optimality properties for the class of methods presented in this chapter can be

proved using a variable metric, i.e., an inner product which is different at each step [21]. A recent

survey by Weiss [224] presents a framework for Krylov subspace methods explaining some of these

optimality properties and the interrelationships between Krylov subspace methods. Several authors

discuss a class of techniques known as residual smoothing; see for example [191, 234, 224, 40].

These techniques can be applied to any iterative sequence xk to build a new sequence of iterates yk
by combining yk�1 with the difference xk � yk�1. A remarkable result shown by Zhou and Walker

[234] is that the iterates of the QMR algorithm can be obtained from those of the BCG as a particular

case of residual smoothing.

A number of projection-type methods on Krylov subspaces, other than those seen in this chapter

and the previous one are described in [1]. The group of rank-k update methods discussed by Eirola

and Nevanlinna [79] and Deufflhard et al. [70] is closely related to Krylov subspace methods. In

fact, GMRES can be viewed as a particular example of these methods. Also of interest and not

covered in this book are the vector extrapolation techniques which are discussed, for example, in the

books Brezinski [38], Brezinski and Radivo Zaglia [39] and the articles [199] and [126]. Connections

between these methods and Krylov subspace methods, have been uncovered, and are discussed by

Brezinski [38] and Sidi [195].

C H A P T E R

8

METHODS RELATED TO THE

NORMAL EQUATIONS

There are a number of techniques for converting a non-symmetric linear sys-

tem into a symmetric one. One such technique solves the equivalent linear

system ATAx = AT b, called the normal equations. Often, this approach

is avoided in practice because the coe�cient matrix ATA is much worse

conditioned than A. However, the normal equations approach may be ade-

quate in some situations. Indeed, there are even applications in which it is

preferred to the usual Krylov subspace techniques. This chapter covers it-

erative methods which are either directly or implicitly related to the normal

equations.

THE NORMAL EQUATIONS

8.1

In order to solve the linear system Ax = b when A is nonsymmetric, we can solve the

equivalent system

ATA x = AT b (8.1)

which is Symmetric Positive Definite. This system is known as the system of the normal

equations associated with the least-squares problem,

minimize kb�Axk2: (8.2)

Note that (8.1) is typically used to solve the least-squares problem (8.2) for over-

determined systems, i.e., when A is a rectangular matrix of size n�m, m < n.

A similar well known alternative sets x = ATu and solves the following equation for

u:

AATu = b: (8.3)

229

230 CHAPTER 8 METHODS RELATED TO THE NORMAL EQUATIONS

Once the solution u is computed, the original unknown x could be obtained by multiplying

u by AT . However, most of the algorithms we will see do not invoke the u variable explic-

itly and work with the original variable x instead. The above system of equations can be

used to solve under-determined systems, i.e., those systems involving rectangular matrices

of size n�m, with n < m. It is related to (8.1) in the following way. Assume that n � m
and that A has full rank. Let x� be any solution to the underdetermined system Ax = b.
Then (8.3) represents the normal equations for the least-squares problem,

minimize kx� �ATuk2: (8.4)

Since by definition ATu = x, then (8.4) will find the solution vector x that is closest to

x� in the 2-norm sense. What is interesting is that when n < m there are infinitely many

solutions x� to the system Ax = b, but the minimizer u of (8.4) does not depend on the

particular x� used.

The system (8.1) and methods derived from it are often labeled with NR (N for “Nor-

mal” and R for “Residual”) while (8.3) and related techniques are labeled with NE (N

for “Normal” and E for “Error”). If A is square and nonsingular, the coefficient matrices

of these systems are both Symmetric Positive Definite, and the simpler methods for sym-

metric problems, such as the Conjugate Gradient algorithm, can be applied. Thus, CGNE

denotes the Conjugate Gradient method applied to the system (8.3) and CGNR the Conju-

gate Gradient method applied to (8.1).

There are several alternative ways to formulate symmetric linear systems having the

same solution as the original system. For instance, the symmetric linear system�
I A
AT O

��
r
x

�
=

�
b
0

�
(8.5)

with r = b�Ax, arises from the standard necessary conditions satisfied by the solution of

the constrained optimization problem,

minimize
1

2
kr � bk22 (8.6)

subject to AT r = 0: (8.7)

The solution x to (8.5) is the vector of Lagrange multipliers for the above problem.

Another equivalent symmetric system is of the form�
O A
AT O

��
Ax
x

�
=

�
b

AT b

�
:

The eigenvalues of the coefficient matrix for this system are ��i, where �i is an arbitrary

singular value of A. Indefinite systems of this sort are not easier to solve than the origi-

nal nonsymmetric system in general. Although not obvious immediately, this approach is

similar in nature to the approach (8.1) and the corresponding Conjugate Gradient iterations

applied to them should behave similarly.

A general consensus is that solving the normal equations can be an inefficient approach

in the case when A is poorly conditioned. Indeed, the 2-norm condition number of ATA is

given by

Cond2(A
TA) = kATAk2 k(A

TA)�1k2:

Now observe that kATAk2 = �2max(A) where �max(A) is the largest singular value of A

8.2 ROW PROJECTION METHODS 231

which, incidentally, is also equal to the 2-norm of A. Thus, using a similar argument for

the inverse (ATA)�1 yields

Cond2(A
TA) = kAk22 kA

�1k22 = Cond22(A): (8.8)

The 2-norm condition number for ATA is exactly the square of the condition number of

A, which could cause difficulties. For example, if originally Cond2(A) = 108, then an

iterative method may be able to perform reasonably well. However, a condition number of

1016 can be much more difficult to handle by a standard iterative method. That is because

any progress made in one step of the iterative procedure may be annihilated by the noise

due to numerical errors. On the other hand, if the original matrix has a good 2-norm condi-

tion number, then the normal equation approach should not cause any serious difficulties.

In the extreme case when A is unitary, i.e., when AHA = I , then the normal equations are

clearly the best approach (the Conjugate Gradient method will converge in zero step!).

ROW PROJECTION METHODS

8.2

When implementing a basic relaxation scheme, such as Jacobi or SOR, to solve the linear

system

ATAx = AT b; (8.9)

or

AATu = b; (8.10)

it is possible to exploit the fact that the matrices ATA or AAT need not be formed explic-

itly. As will be seen, only a row or a column of A at a time is needed at a given relaxation

step. These methods are known as row projection methods since they are indeed projection

methods on rows of A or AT . Block row projection methods can also be defined similarly.

8.2.1 GAUSS-SEIDEL ON THE NORMAL EQUATIONS

It was stated above that in order to use relaxation schemes on the normal equations, only

access to one column of A at a time is needed for (8.9) and one row at a time for (8.10).

This is now explained for (8.10) first. Starting from an approximation to the solution of

(8.10), a basic relaxation-based iterative procedure modifies its components in a certain

order using a succession of relaxation steps of the simple form

unew = u+ �iei (8.11)

where ei is the i-th column of the identity matrix. The scalar �i is chosen so that the i-th
component of the residual vector for (8.10) becomes zero. Therefore,

(b�AAT (u+ �iei); ei) = 0 (8.12)

232 CHAPTER 8 METHODS RELATED TO THE NORMAL EQUATIONS

which, setting r = b�AATu, yields,

�i =
(r; ei)

kAT eik22
: (8.13)

Denote by �i the i-th component of b. Then a basic relaxation step consists of taking

�i =
�i � (ATu;AT ei)

kAT eik22
: (8.14)

Also, (8.11) can be rewritten in terms of x-variables as follows:

xnew = x+ �iA
T ei: (8.15)

The auxiliary variable u has now been removed from the scene and is replaced by the

original variable x = ATu.

Consider the implementation of a forward Gauss-Seidel sweep based on (8.15) and

(8.13) for a general sparse matrix. The evaluation of �i from (8.13) requires the inner prod-

uct of the current approximationx = ATu with AT ei, the i-th row of A. This inner product

is inexpensive to compute because AT ei is usually sparse. If an acceleration parameter !
is used, we only need to change �i into !�i. Therefore, a forward SOR sweep would be as

follows.

ALGORITHM 8.1: Forward NE-SOR Sweep

1. Choose an initial x.

2. For i = 1; 2; : : : ; n Do:

3. �i = ! �i�(AT ei;x)
kAT eik22

4. x := x+ �iA
T ei

5. EndDo

Note that AT ei is a vector equal to the transpose of the i-th row of A. All that is needed is

the row data structure for A to implement the above algorithm. Denoting by nzi the number

of nonzero elements in the i-th row of A, then each step of the above sweep requires

2nzi + 2 operations in line 3, and another 2nzi operations in line 4, bringing the total to

4nzi+2. The total for a whole sweep becomes 4nz+2n operations, where nz represents

the total number of nonzero elements of A. Twice as many operations are required for the

Symmetric Gauss-Seidel or the SSOR iteration. Storage consists of the right-hand side, the

vector x, and possibly an additional vector to store the 2-norms of the rows of A. A better

alternative would be to rescale each row by its 2-norm at the start.

Similarly, a Gauss-Seidel sweep for (8.9) would consist of a succession of steps of the

form

xnew = x+ �iei: (8.16)

Again, the scalar �i is to be selected so that the i-th component of the residual vector for

(8.9) becomes zero, which yields

(AT b�ATA(x+ �iei); ei) = 0: (8.17)

8.2 ROW PROJECTION METHODS 233

With r � b�Ax, this becomes (AT (r � �iAei); ei) = 0; which yields

�i =
(r; Aei)

kAeik22
: (8.18)

Then the following algorithm is obtained.

ALGORITHM 8.2: Forward NR-SOR Sweep

1. Choose an initial x, compute r := b�Ax.

2. For i = 1; 2; : : : ; n Do:

3. �i = ! (r;Aei)
kAeik22

4. x := x+ �iei
5. r := r � �iAei
6. EndDo

In contrast with Algorithm 8.1, the column data structure of A is now needed for the imple-

mentation instead of its row data structure. Here, the right-hand side b can be overwritten

by the residual vector r, so the storage requirement is essentially the same as in the previ-

ous case. In the NE version, the scalar �i� (x; ai) is just the i-th component of the current

residual vector r = b� Ax. As a result, stopping criteria can be built for both algorithms

based on either the residual vector or the variation in the solution. Note that the matrices

AAT and ATA can be dense or generally much less sparse than A, yet the cost of the

above implementations depends only on the nonzero structure of A. This is a significant

advantage of relaxation-type preconditioners over incomplete factorization preconditioners

when using Conjugate Gradient methods to solve the normal equations.

One question remains concerning the acceleration of the above relaxation schemes

by under- or over-relaxation. If the usual acceleration parameter ! is introduced, then we

only have to multiply the scalars �i in the previous algorithms by !. One serious difficulty

here is to determine the optimal relaxation factor. If nothing in particular is known about

the matrix AAT , then the method will converge for any ! lying strictly between 0 and

2, as was seen in Chapter 4, because the matrix is positive definite. Moreover, another

unanswered question is how convergence can be affected by various reorderings of the

rows. For general sparse matrices, the answer is not known.

8.2.2 CIMMINO'S METHOD

In a Jacobi iteration for the system (8.9), the components of the new iterate satisfy the

following condition:

(AT b�ATA(x + �iei); ei) = 0: (8.19)

This yields

(b� A(x+ �iei); Aei) = 0 or (r � �iAei; Aei) = 0

234 CHAPTER 8 METHODS RELATED TO THE NORMAL EQUATIONS

in which r is the old residual b�Ax. As a result, the i-component of the new iterate xnew
is given by

xnew;i = xi + �iei; (8.20)

�i =
(r; Aei)

kAeik22
: (8.21)

Here, be aware that these equations do not result in the same approximation as that pro-

duced by Algorithm 8.2, even though the modifications are given by the same formula.

Indeed, the vector x is not updated after each step and therefore the scalars �i are different

for the two algorithms. This algorithm is usually described with an acceleration param-

eter !, i.e., all �i’s are multiplied uniformly by a certain !. If d denotes the vector with

coordinates �i; i = 1; : : : ; n, the following algorithm results.

ALGORITHM 8.3: Cimmino-NR

1. Choose initial guess x0. Set x = x0; r = b�Ax0
2. Until convergence Do:

3. For i = 1; : : : ; n Do:

4. �i = ! (r;Aei)
kAeik22

5. EndDo

6. x := x+ d where d =
Pn

i=1 �iei
7. r := r �Ad
8. EndDo

Notice that all the coordinates will use the same residual vector r to compute the

updates �i. When ! = 1, each instance of the above formulas is mathematically equivalent

to performing a projection step for solving Ax = b with K = spanfeig, and L = AK. It

is also mathematically equivalent to performing an orthogonal projection step for solving

ATAx = AT b with K = spanfeig.

It is interesting to note that when each column Aei is normalized by its 2-norm, i.e., if

kAeik2 = 1; i = 1; : : : ; n, then �i = !(r; Aei) = !(AT r; ei). In this situation,

d = !AT r = !AT (b�Ax)

and the main loop of the algorithm takes the vector form

d := !AT r

x := x+ d

r := r �Ad:

Each iteration is therefore equivalent to a step of the form

xnew = x+ !
�
AT b�ATAx

�
which is nothing but the Richardson iteration applied to the normal equations (8.1). In

particular, as was seen in 4.1, convergence is guaranteed for any ! which satisfies,

0 < ! <
2

�max
(8.22)

8.2 ROW PROJECTION METHODS 235

where �max is the largest eigenvalue of ATA. In addition, the best acceleration parameter

is given by

!opt =
2

�min + �max

in which, similarly, �min is the smallest eigenvalue of ATA. If the columns are not nor-

malized by their 2-norms, then the procedure is equivalent to a preconditioned Richardson

iteration with diagonal preconditioning. The theory regarding convergence is similar but

involves the preconditioned matrix or, equivalently, the matrix A 0 obtained from A by nor-

malizing its columns.

The algorithm can be expressed in terms of projectors. Observe that the new residual

satisfies

rnew = r �

nX
i=1

!
(r; Aei)

kAeik22
Aei: (8.23)

Each of the operators

Pi : r �!
(r; Aei)

kAeik22
Aei � Pir (8.24)

is an orthogonal projector onto Aei, the i-th column of A. Hence, we can write

rnew =

I � !

nX
i=1

Pi

!
r: (8.25)

There are two important variations to the above scheme. First, because the point Jacobi

iteration can be very slow, it may be preferable to work with sets of vectors instead. Let

�1; �2; : : : ; �p be a partition of the set f1; 2; : : : ; ng and, for each �j , let Ej be the matrix

obtained by extracting the columns of the identity matrix whose indices belong to �j .

Going back to the projection framework, define Ai = AEi. If an orthogonal projection

method is used onto Ej to solve (8.1), then the new iterate is given by

xnew = x+ !

pX
i

Eidi (8.26)

di = (ET
i A

TAEi)
�1ET

i A
T r = (AT

i Ai)
�1AT

i r: (8.27)

Each individual block-component di can be obtained by solving a least-squares problem

min
d
kr �Aidk2:

An interpretation of this indicates that each individual substep attempts to reduce the resid-

ual as much as possible by taking linear combinations from specific columns of Ai. Similar

to the scalar iteration, we also have

rnew =

I � !

nX
i=1

Pi

!
r

where Pi now represents an orthogonal projector onto the span of Ai.

Note that A1; A2; : : : ; Ap is a partition of the column-set fAeigi=1;:::;n and this parti-

tion can be arbitrary. Another remark is that the original Cimmino method was formulated

236 CHAPTER 8 METHODS RELATED TO THE NORMAL EQUATIONS

for rows instead of columns, i.e., it was based on (8.1) instead of (8.3). The alternative

algorithm based on columns rather than rows is easy to derive.

CONJUGATE GRADIENT AND NORMAL EQUATIONS

8.3

A popular combination to solve nonsymmetric linear systems applies the Conjugate Gra-

dient algorithm to solve either (8.1) or (8.3). As is shown next, the resulting algorithms can

be rearranged because of the particular nature of the coefficient matrices.

8.3.1 CGNR

We begin with the Conjugate Gradient algorithm applied to (8.1). Applying CG directly

to the system and denoting by zi the residual vector at step i (instead of ri) results in the

following sequence of operations:

� �j := (zj ; zj)=(A
TApj ; pj) = (zj ; zj)=(Apj ; Apj)

� xj+1 := xj + �jpj

� zj+1 := zj � �jA
TApj

� �j := (zj+1; zj+1)=(zj ; zj)

� pj+1 := zj+1 + �jpj .

If the original residual ri = b � Axi must be available at every step, we may compute

the residual zi+1 in two parts: rj+1 := rj � �jApj and then zi+1 = AT ri+1 which is

the residual for the normal equations (8.1). It is also convenient to introduce the vector

wi = Api. With these definitions, the algorithm can be cast in the following form.

ALGORITHM 8.4: CGNR

1. Compute r0 = b�Ax0, z0 = AT r0, p0 = z0.

2. For i = 0; : : :, until convergence Do:

3. wi = Api
4. �i = kzik

2=kwik
2
2

5. xi+1 = xi + �ipi
6. ri+1 = ri � �iwi

7. zi+1 = AT ri+1
8. �i = kzi+1k

2
2=kzik

2
2,

9. pi+1 = zi+1 + �ipi
10. EndDo

In Chapter 6, the approximation xm produced at the m-th step of the Conjugate Gra-

dient algorithm was shown to minimize the energy norm of the error over an affine Krylov

8.3 CONJUGATE GRADIENT AND NORMAL EQUATIONS 237

subspace. In this case, xm minimizes the function

f(x) � (ATA(x� � x); (x� � x))

over all vectors x in the affine Krylov subspace

x0 +Km(ATA;AT r0) = x0 + spanfAT r0; A
TAAT r0; : : : ; (A

TA)m�1AT r0g;

in which r0 = b�Ax0 is the initial residual with respect to the original equations Ax = b,
and AT r0 is the residual with respect to the normal equations ATAx = AT b. However,

observe that

f(x) = (A(x� � x); A(x� � x)) = kb�Axk22:

Therefore, CGNR produces the approximate solution in the above subspace which has the

smallest residual norm with respect to the original linear system Ax = b. The difference

with the GMRES algorithm seen in Chapter 6, is the subspace in which the residual norm

is minimized.

Example 8.1 Table 8.1 shows the results of applying the CGNR algorithm with no pre-

conditioning to three of the test problems described in Section 3.7.

Matrix Iters Kflops Residual Error

F2DA 300 4847 0.23E+02 0.62E+00

F3D 300 23704 0.42E+00 0.15E+00

ORS 300 5981 0.30E+02 0.60E-02

Table 8.1 A test run of CGNR with no preconditioning.

See Example 6.1 for the meaning of the column headers in the table. The method

failed to converge in less than 300 steps for all three problems. Failures of this type, char-

acterized by very slow convergence, are rather common for CGNE and CGNR applied to

problems arising from partial differential equations. Preconditioning should improve per-

formance somewhat but, as will be seen in Chapter 10, normal equations are also difficult

to precondition.

8.3.2 CGNE

A similar reorganization of the CG algorithm is possible for the system (8.3) as well.

Applying the CG algorithm directly to (8.3) and denoting by qi the conjugate directions,

the actual CG iteration for the u variable would be as follows:

� �j := (rj ; rj)=(AAT qj ; qj) = (rj ; rj)=(A
T qj ; A

T qj)

� uj+1 := uj + �jqj

� rj+1 := rj � �jAA
T qj

� �j := (rj+1; rj+1)=(rj ; rj)

238 CHAPTER 8 METHODS RELATED TO THE NORMAL EQUATIONS

� qj+1 := rj+1 + �jqj .

Notice that an iteration can be written with the original variable xi = x0 + AT (ui � u0)
by introducing the vector pi = AT qi. Then, the residual vectors for the vectors xi and

ui are the same. No longer are the qi vectors needed because the pi’s can be obtained as

pj+1 := AT rj+1+�jpj . The resulting algorithm described below, the Conjugate Gradient

for the normal equations (CGNE), is also known as Craig’s method.

ALGORITHM 8.5: CGNE (Craig's Method)

1. Compute r0 = b�Ax0, p0 = AT r0.

2. For i = 0; 1; : : : ; until convergence Do:

3. �i = (ri; ri)=(pi; pi)
4. xi+1 = xi + �ipi
5. ri+1 = ri � �iApi
6. �i = (ri+1; ri+1)=(ri; ri)
7. pi+1 = AT ri+1 + �ipi
8. EndDo

We now explore the optimality properties of this algorithm, as was done for CGNR.

The approximation um related to the variable xm by xm = ATum is the actual m-th CG

approximation for the linear system (8.3). Therefore, it minimizes the energy norm of the

error on the Krylov subspace Km. In this case, um minimizes the function

f(u) � (AAT (u� � u); (u� � u))

over all vectors u in the affine Krylov subspace,

u0 +Km(AAT ; r0) = u0 + spanfr0; AA
T r0; : : : ; (AA

T)m�1r0g:

Notice that r0 = b�AATu0 = b�Ax0. Also, observe that

f(u) = (AT (u� � u); AT (u� � u)) = kx� � xk22;

where x = ATu. Therefore, CGNE produces the approximate solution in the subspace

x0 +ATKm(AAT ; r0) = x0 +Km(ATA;AT r0)

which has the smallest 2-norm of the error. In addition, note that the subspace x0 +
Km(ATA;AT r0) is identical with the subspace found for CGNR. Therefore, the two meth-

ods find approximations from the same subspace which achieve different optimality prop-

erties: minimal residual for CGNR and minimal error for CGNE.

8.4 SADDLE-POINT PROBLEMS 239

SADDLE-POINT PROBLEMS

8.4

Now consider the equivalent system�
I A
AT O

��
r
x

�
=

�
b
0

�
with r = b�Ax. This system can be derived from the necessary conditions applied to the

constrained least-squares problem (8.6–8.7). Thus, the 2-norm of b�r = Ax is minimized

implicitly under the constraint AT r = 0. Note that A does not have to be a square matrix.

This can be extended into a more general constrained quadratic optimization problem

as follows:

minimize f(x) �
1

2
(Ax; x) � (x; b) (8.28)

subject to BTx = c: (8.29)

The necessary conditions for optimality yield the linear system�
A B
BT O

��
x
y

�
=

�
b
c

�
(8.30)

in which the names of the variables r; x are changed into x; y for notational convenience.

It is assumed that the column dimension of B does not exceed its row dimension. The

Lagrangian for the above optimization problem is

L(x; y) =
1

2
(Ax; x) � (x; b) + (y; (BTx� c))

and the solution of (8.30) is the saddle point of the above Lagrangian. Optimization prob-

lems of the form (8.28–8.29) and the corresponding linear systems (8.30) are important and

arise in many applications. Because they are intimately related to the normal equations, we

discuss them briefly here.

In the context of fluid dynamics, a well known iteration technique for solving the linear

system (8.30) is Uzawa’s method, which resembles a relaxed block SOR iteration.

ALGORITHM 8.6: Uzawa's Method

1. Choose x0; y0
2. For k = 0; 1; : : : ; until convergence Do:

3. xk+1 = A�1(b�Byk)
4. yk+1 = yk + !(BTxk+1 � c)
5. EndDo

The algorithm requires the solution of the linear system

Axk+1 = b�Byk (8.31)

at each iteration. By substituting the result of line 3 into line 4, the xk iterates can be

240 CHAPTER 8 METHODS RELATED TO THE NORMAL EQUATIONS

eliminated to obtain the following relation for the yk’s,

yk+1 = yk + !
�
BTA�1(b�Byk)� c

�
which is nothing but a Richardson iteration for solving the linear system

BTA�1By = BTA�1b� c: (8.32)

Apart from a sign, this system is the reduced system resulting from eliminating the x vari-

able from (8.30). Convergence results can be derived from the analysis of the Richardson

iteration.

COROLLARY 8.1 Let A be a Symmetric Positive Definite matrix and B a matrix of

full rank. Then S = BTA�1B is also Symmetric Positive Definite and Uzawa’s algorithm

converges, if and only if

0 < ! <
2

�max(S)
: (8.33)

In addition, the optimal convergence parameter ! is given by

!opt =
2

�min(S) + �max(S)
:

Proof. The proof of this result is straightforward and is based on the results seen in

Example 4.1.

It is interesting to observe that when c = 0 and A is Symmetric Positive Definite, then

the system (8.32) can be regarded as the normal equations for minimizing the A�1-norm

of b�By. Indeed, the optimality conditions are equivalent to the orthogonality conditions

(b�By;Bw)A�1 = 0; 8 w;

which translate into the linear systemBTA�1By = BTA�1b. As a consequence, the prob-

lem will tend to be easier to solve if the columns of B are almost orthogonal with respect

to the A�1 inner product. This is true when solving the Stokes problem where B represents

the discretization of the gradient operator while BT discretizes the divergence operator,

and A is the discretization of a Laplacian. In this case, if it were not for the boundary

conditions, the matrix BTA�1B would be the identity. This feature can be exploited in de-

veloping preconditioners for solving problems of the form (8.30). Another particular case

is when A is the identity matrix and c = 0. Then, the linear system (8.32) becomes the sys-

tem of the normal equations for minimizing the 2-norm of b�By. These relations provide

insight in understanding that the block form (8.30) is actually a form of normal equations

for solving By = b in the least-squares sense. However, a different inner product is used.

In Uzawa’s method, a linear system at each step must be solved, namely, the system

(8.31). Solving this system is equivalent to finding the minimum of the quadratic function

minimize fk(x) �
1

2
(Ax; x) � (x; b�Byk): (8.34)

Apart from constants, fk(x) is the Lagrangian evaluated at the previous y iterate. The

solution of (8.31), or the equivalent optimization problem (8.34), is expensive. A common

alternative replaces the x-variable update (8.31) by taking one step in the gradient direction

8.4 SADDLE-POINT PROBLEMS 241

for the quadratic function (8.34), usually with fixed step-length �. The gradient of fk(x) at

the current iterate is Axk � (b�Byk). This results in the Arrow-Hurwicz Algorithm.

ALGORITHM 8.7: The Arrow-Hurwicz algorithm

1. Select an initial guess x0; y0 to the system (8.30)

2. For k = 0; 1; : : : ; until convergence Do:

3. Compute xk+1 = xk + �(b�Axk �Byk)
4. Compute yk+1 = yk + !(BTxk+1 � c)
5. EndDo

The above algorithm is a block-iteration of the form�
I O

�!BT I

��
xk+1
yk+1

�
=

�
I � �A ��B
O I

��
xk
yk

�
+

�
�b
�!c

�
:

Uzawa’s method, and many similar techniques for solving (8.30), are based on solving

the reduced system (8.32). An important observation here is that the Schur complement

matrix S � BTA�1B need not be formed explicitly. This can be useful if this reduced

system is to be solved by an iterative method. The matrix A is typically factored by a

Cholesky-type factorization. The linear systems with the coefficient matrix A can also be

solved by a preconditioned Conjugate Gradient method. Of course these systems must then

be solved accurately.

Sometimes it is useful to “regularize” the least-squares problem (8.28) by solving the

following problem in its place:

minimize f(x) �
1

2
(Ax; x) � (x; b) + �(Cy; y)

subject to BTx = c

in which � is a scalar parameter. For example, C can be the identity matrix or the matrix

BTB. The matrix resulting from the Lagrange multipliers approach then becomes�
A B
BT �C

�
:

The new Schur complement matrix is

S = �C �BTA�1B:

Example 8.2 In the case where C = BTB, the above matrix takes the form

S = BT (�I �A�1)B:

Assuming that A is SPD, S is also positive definite when

� �
1

�min(A)
:

However, it is also negative definite for

� �
1

�max
(A);

242 CHAPTER 8 METHODS RELATED TO THE NORMAL EQUATIONS

a condition which may be easier to satisfy on practice.

EXERCISES

1 Derive the linear system (8.5) by expressing the standard necessary conditions for the problem

(8.6–8.7).

2 It was stated in Section 8.2.2 that when kAT eik2 = 1 for i = 1; : : : ; n, the vector d defined in

Algorithm 8.3 is equal to !AT r.

a. What does this become in the general situation when kAT eik2 6= 1?

b. Is Cimmino’s method still equivalent to a Richardson iteration?

c. Show convergence results similar to those of the scaled case.

3 In Section 8.2.2, Cimmino’s algorithm was derived based on the Normal Residual formulation,

i.e., on (8.1). Derive an “NE” formulation, i.e., an algorithm based on Jacobi’s method for (8.3).

4 What are the eigenvalues of the matrix (8.5)? Derive a system whose coefficient matrix has the

form

B(�) =

�
2�I A

AT O

�
:

and which is also equivalent to the original system Ax = b. What are the eigenvalues of B(�)?
Plot the spectral norm of B(�) as a function of �.

5 It was argued in Section 8.4 that when c = 0 the system (8.32) is nothing but the normal

equations for minimizing the A�1-norm of the residual r = b�By.

a. Write the associated CGNR approach for solving this problem. Find a variant that requires

only one linear system solution with the matrix A at each CG step [Hint: Write the CG

algorithm for the associated normal equations and see how the resulting procedure can be

reorganized to save operations]. Find also a variant that is suitable for the case where the

Cholesky factorization of A is available.

b. Derive a method for solving the equivalent system (8.30) for the case when c = 0 and then

for the general case wjen c 6= 0. How does this technique compare with Uzawa’s method?

6 Consider the linear system (8.30) in which c = 0 and B is of full rank. Define the matrix

P = I �B(BT
B)�1BT

:

a. Show that P is a projector. Is it an orthogonal projector? What are the range and null spaces

of P ?

b. Show that the unknown x can be found by solving the linear system

PAPx = Pb; (8.35)

in which the coefficient matrix is singular but the system is consistent, i.e., there is a nontriv-

ial solution because the right-hand side is in the range of the matrix (see Chapter 1).

c. What must be done toadapt the Conjugate Gradient Algorithm for solving the above linear

system (which is symmetric, but not positive definite)? In which subspace are the iterates

generated from the CG algorithm applied to (8.35)?

EXERCISES AND NOTES 243

d. Assume that the QR factorization of the matrix B is computed. Write an algorithm based on

the approach of the previous questions for solving the linear system (8.30).

7 Show that Uzawa’s iteration can be formulated as a fixed-point iteration associated with the

splitting C =M �N with

M =

�
A O

�!BT I

�
; N =

�
O �B
O I

�
:

Derive the convergence result of Corollary 8.1 .

8 Show that each new vector iterate in Cimmino’s method is such that

xnew = x+ !A
�1
X
i

Pir;

where Pi is defined by (8.24).

9 In Uzawa’s method a linear system with the matrix A must be solved at each step. Assume that

these systems are solved inaccurately by an iterative process. For each linear system the iterative

process is applied until the norm of the residual rk+1 = (b � Byk) � Axk+1 is less than a

certain threshold �k+1.

a. Assume that ! is chosen so that (8.33) is satisfied and that �k converges to zero as k tends to

infinity. Show that the resulting algorithm converges to the solution.

b. Give an explicit upper bound of the error on yk in the case when �i is chosen of the form

� = �i, where � < 1.

10 Assume kb � Axk2 is to be minimized, in which A is n � m with n > m. Let x� be the

minimizer and r = b � Ax�. What is the minimizer of k(b + �r) � Axk2, where � is an

arbitrary scalar?

NOTES AND REFERENCES. Methods based on the normal equations have been among the first to

be used for solving nonsymmetric linear systems [130, 58] by iterative methods. The work by Bjork

and Elfing [27], and Sameh et al. [131, 37, 36] revived these techniques by showing that they have

some advantages from the implementation point of view, and that they can offer good performance

for a broad class of problems. In addition, they are also attractive for parallel computers. In [174], a

few preconditioning ideas for normal equations were described and these will be covered in Chapter

10. It would be helpful to be able to determine whether or not it is preferable to use the normal

equations approach rather than the “direct equations” for a given system, but this may require an

eigenvalue/singular value analysis.

It is sometimes argued that the normal equations approach is always better, because it has a

robust quality which outweighs the additional cost due to the slowness of the method in the generic

elliptic case. Unfortunately, this is not true. Although variants of the Kaczmarz and Cimmino algo-

rithms deserve a place in any robust iterative solution package, they cannot be viewed as a panacea. In

most realistic examples arising from Partial Differential Equations, the normal equations route gives

rise to much slower convergence than the Krylov subspace approach for the direct equations. For

ill-conditioned problems, these methods will simply fail to converge, unless a good preconditioner is

available.

C H A P T E R

9

PRECONDITIONED

ITERATIONS

Although the methods seen in previous chapters are well founded theoreti-

cally, they are all likely to su�er from slow convergence for problems which

arise from typical applications such as uid dynamics or electronic device

simulation. Preconditioning is a key ingredient for the success of Krylov

subspace methods in these applications. This chapter discusses the precon-

ditioned versions of the iterative methods already seen, but without being

speci�c about the particular preconditioners used. The standard precondi-

tioning techniques will be covered in the next chapter.

INTRODUCTION

9.1

Lack of robustness is a widely recognized weakness of iterative solvers, relative to direct

solvers. This drawback hampers the acceptance of iterative methods in industrial applica-

tions despite their intrinsic appeal for very large linear systems. Both the efficiency and

robustness of iterative techniques can be improved by using preconditioning. A term intro-

duced in Chapter 4, preconditioning is simply a means of transforming the original linear

system into one which has the same solution, but which is likely to be easier to solve with

an iterative solver. In general, the reliability of iterative techniques, when dealing with

various applications, depends much more on the quality of the preconditioner than on the

particular Krylov subspace accelerators used. We will cover some of these precondition-

ers in detail in the next chapter. This chapter discusses the preconditioned versions of the

Krylov subspace algorithms already seen, using a generic preconditioner.

244

9.2 PRECONDITIONED CONJUGATE GRADIENT 245

PRECONDITIONED CONJUGATE GRADIENT

9.2

Consider a matrix A that is symmetric and positive definite and assume that a precondi-

tioner M is available. The preconditioner M is a matrix which approximates A in some

yet-undefined sense. It is assumed that M is also Symmetric Positive Definite. From a

practical point of view, the only requirement for M is that it is inexpensive to solve linear

systems Mx = b. This is because the preconditioned algorithms will all require a linear

system solution with the matrix M at each step. Then, for example, the following precon-

ditioned system could be solved:

M�1Ax =M�1b (9.1)

or

AM�1u = b; x = M�1u: (9.2)

Note that these two systems are no longer symmetric in general. The next section considers

strategies for preserving symmetry. Then, efficient implementations will be described for

particular forms of the preconditioners.

9.2.1 PRESERVING SYMMETRY

When M is available in the form of an incomplete Cholesky factorization, i.e., when

M = LLT ;

then a simple way to preserve symmetry is to “split” the preconditioner between left and

right, i.e., to solve

L�1AL�Tu = L�1b; x = L�Tu; (9.3)

which involves a Symmetric Positive Definite matrix.

However, it is not necessary to split the preconditioner in this manner in order to

preserve symmetry. Observe that M�1A is self-adjoint for the M -inner product,

(x; y)M � (Mx; y) = (x;My)

since

(M�1Ax; y)M = (Ax; y) = (x;Ay) = (x;M(M�1A)y) = (x;M�1Ay)M :

Therefore, an alternative is to replace the usual Euclidean inner product in the Conjugate

Gradient algorithm by the M -inner product.

If the CG algorithm is rewritten for this new inner product, denoting by rj = b�Axj
the original residual and by zj = M�1rj the residual for the preconditioned system, the

following sequence of operations is obtained, ignoring the initial step:

1. �j := (zj ; zj)M=(M�1Apj ; pj)M

2. xj+1 := xj + �jpj

246 CHAPTER 9 PRECONDITIONED ITERATIONS

3. rj+1 := rj � �jApj and zj+1 := M�1rj+1

4. �j := (zj+1; zj+1)M=(zj ; zj)M

5. pj+1 := zj+1 + �jpj

Since (zj ; zj)M = (rj ; zj) and (M�1Apj ; pj)M = (Apj ; pj), the M -inner products do

not have to be computed explicitly. With this observation, the following algorithm is ob-

tained.

ALGORITHM 9.1: Preconditioned Conjugate Gradient

1. Compute r0 := b�Ax0, z0 = M�1r0, and p0 := z0
2. For j = 0; 1; : : :, until convergence Do:

3. �j := (rj ; zj)=(Apj ; pj)
4. xj+1 := xj + �jpj
5. rj+1 := rj � �jApj
6. zj+1 := M�1rj+1
7. �j := (rj+1; zj+1)=(rj ; zj)
8. pj+1 := zj+1 + �jpj
9. EndDo

It is interesting to observe that M�1A is also self-adjoint with respect to the A inner-

product. Indeed,

(M�1Ax; y)A = (AM�1Ax; y) = (x;AM�1Ay) = (x;M�1Ay)A

and a similar algorithm can be written for this dot product (see Exercise 1).

In the case where M is a Cholesky product M = LLT , two options are available,

namely, the split preconditioning option (9.3), or the above algorithm. An immediate ques-

tion arises about the iterates produced by these two options: Is one better than the other?

Surprisingly, the answer is that the iterates are identical. To see this, start from Algorithm

9.1 and define the following auxiliary vectors and matrix from it:

p̂j = LT pj

uj = LTxj

r̂j = LT zj = L�1rj

Â = L�1AL�T :

Observe that

(rj ; zj) = (rj ; L
�TL�1rj) = (L�1rj ; L

�1rj) = (r̂j ; r̂j):

Similarly,

(Apj ; pj) = (AL�T p̂j ; L
�T p̂j)(L

�1AL�T p̂j ; p̂j) = (Âp̂j ; p̂j):

All the steps of the algorithm can be rewritten with the new variables, yielding the follow-

ing sequence of operations:

1. �j := (r̂j ; r̂j)=(Âp̂j ; p̂j)

2. uj+1 := uj + �j p̂j

9.2 PRECONDITIONED CONJUGATE GRADIENT 247

3. r̂j+1 := r̂j � �jÂp̂j

4. �j := (r̂j+1; r̂j+1)=(r̂j ; r̂j)

5. p̂j+1 := r̂j+1 + �j p̂j .

This is precisely the Conjugate Gradient algorithm applied to the preconditioned system

Âu = L�1b

where u = LTx. It is common when implementing algorithms which involve a right pre-

conditioner to avoid the use of the u variable, since the iteration can be written with the

original x variable. If the above steps are rewritten with the original x and p variables, the

following algorithm results.

ALGORITHM 9.2: Split Preconditioner Conjugate Gradient

1. Compute r0 := b�Ax0; r̂0 = L�1r0; and p0 := L�T r̂0.

2. For j = 0; 1; : : :, until convergence Do:

3. �j := (r̂j ; r̂j)=(Apj ; pj)
4. xj+1 := xj + �jpj
5. r̂j+1 := r̂j � �jL

�1Apj
6. �j := (r̂j+1; r̂j+1)=(r̂j ; r̂j)
7. pj+1 := L�T r̂j+1 + �jpj
8. EndDo

The iterates xj produced by the above algorithm and Algorithm 9.1 are identical, provided

the same initial guess is used.

Consider now the right preconditioned system (9.2). The matrix AM�1 is not Hermi-

tian with either the Standard inner product or the M -inner product. However, it is Hermi-

tian with respect to the M�1-inner product. If the CG-algorithm is written with respect to

the u-variable and for this new inner product, the following sequence of operations would

be obtained, ignoring again the initial step:

1. �j := (rj ; rj)M�1=(AM�1pj ; pj)M�1

2. uj+1 := uj + �jpj

3. rj+1 := rj � �jAM
�1pj

4. �j := (rj+1; rj+1)M�1=(rj ; rj)M�1

5. pj+1 := rj+1 + �jpj .

Recall that the u vectors and the x vectors are related by x = M�1u. Since the u vectors

are not actually needed, the update for uj+1 in the second step can be replaced by xj+1 :=
xj + �jM

�1pj . Then observe that the whole algorithm can be recast in terms of qj =
M�1pj and zj = M�1rj .

1. �j := (zj ; rj)=(Aqj ; qj)

2. xj+1 := xj + �jqj

3. rj+1 := rj � �jAqj and zj+1 = M�1rj+1

4. �j := (zj+1; rj+1)=(zj ; rj)

248 CHAPTER 9 PRECONDITIONED ITERATIONS

5. qj+1 := zj+1 + �jqj .

Notice that the same sequence of computations is obtained as with Algorithm 9.1, the

left preconditioned Conjugate Gradient. The implication is that the left preconditioned CG

algorithm with the M -inner product is mathematically equivalent to the right precondi-

tioned CG algorithm with the M�1-inner product.

9.2.2 EFFICIENT IMPLEMENTATIONS

When applying a Krylov subspace procedure to a preconditioned linear system, an opera-

tion of the form

v ! w =M�1Av

or some similar operation is performed at each step. The most natural way to perform this

operation is to multiply the vector v by A and then apply M�1 to the result. However,

since A and M are related, it is sometimes possible to devise procedures that are more

economical than this straightforward approach. For example, it is often the case that

M = A�R

in which the number of nonzero elements in R is much smaller than in A. In this case, the

simplest scheme would be to compute w =M�1Av as

w =M�1Av =M�1(M +R)v = v +M�1Rv:

This requires that R be stored explicitly. In approximate LU factorization techniques, R
is the matrix of the elements that are dropped during the incomplete factorization. An

even more efficient variation of the preconditioned Conjugate Gradient algorithm can be

derived for some common forms of the preconditioner in the special situation where A is

symmetric. Write A in the form

A = D0 �E �ET (9.4)

in which �E is the strict lower triangular part of A and D0 its diagonal. In many cases,

the preconditionerM can be written in the form

M = (D �E)D�1(D �ET) (9.5)

in which E is the same as above and D is some diagonal, not necessarily equal to D0.

For example, in the SSOR preconditioner with ! = 1, D � D0. Also, for certain types

of matrices, the IC(0) preconditioner can be expressed in this manner, where D can be

obtained by a recurrence formula.

Eisenstat’s implementation consists of applying the Conjugate Gradient algorithm to

the linear system

Âu = (D �E)�1b (9.6)

with

Â � (D �E)�1A(D �ET)�1; x = (D �ET)�1u: (9.7)

9.2 PRECONDITIONED CONJUGATE GRADIENT 249

This does not quite correspond to a preconditioning with the matrix (9.5). In order to pro-

duce the same iterates as Algorithm 9.1, the matrix Â must be further preconditioned with

the diagonal matrix D�1. Thus, the preconditioned CG algorithm, Algorithm 9.1, is ac-

tually applied to the system (9.6) in which the preconditioning operation is M�1 = D.

Alternatively, we can initially scale the rows and columns of the linear system and precon-

ditioning to transform the diagonal to the identity. See Exercise 6.

Now note that

Â = (D �E)�1A(D �ET)�1

= (D �E)�1(D0 �E �ET)(D �ET)�1

= (D �E)�1
�
D0 � 2D + (D �E) + (D �ET)

�
(D �ET)�1

� (D �E)�1D1(D �ET)�1 + (D �E)�1 + (D �ET)�1;

in which D1 � D0 � 2D. As a result,

Âv = (D �E)�1
�
v +D1(D �ET)�1v

�
+ (D �ET)�1v:

Thus, the vector w = Âv can be computed by the following procedure:

z := (D �ET)�1v
w := (D �E)�1(v +D1z)
w := w + z.

One product with the diagonal D can be saved if the matrices D�1E and D�1ET

are stored. Indeed, by setting D̂1 = D�1D1 and v̂ = D�1v, the above procedure can be

reformulated as follows.

ALGORITHM 9.3: Computation of w = Âv

1. v̂ := D�1v
2. z := (I �D�1ET)�1v̂

3. w := (I �D�1E)�1(v̂ + D̂1z)
4. w := w + z .

Note that the matrices D�1E and D�1ET are not the transpose of one another, so we

actually need to increase the storage requirement for this formulation if these matrices

are stored. However, there is a more economical variant which works with the matrix

D�1=2ED�1=2 and its transpose. This is left as Exercise 7.

Denoting by Nz(X) the number of nonzero elements of a sparse matrix X , the total

number of operations (additions and multiplications) of this procedure is n for (1), 2Nz(E)
for (2), 2Nz(E

T) + 2n for (3), and n for (4). The cost of the preconditioning operation by

D�1, i.e., n operations, must be added to this, yielding the total number of operations:

Nop = n+ 2Nz(E) + 2Nz(E
T) + 2n+ n+ n

= 3n+ 2(Nz(E) +Nz(E
T) + n)

= 3n+ 2Nz(A):

For the straightforward approach, 2Nz(A) operations are needed for the product with A,

250 CHAPTER 9 PRECONDITIONED ITERATIONS

2Nz(E) for the forward solve, and n+ 2Nz(E
T) for the backward solve giving a total of

2Nz(A) + 2Nz(E) + n+ 2Nz(E
T) = 4Nz(A)� n:

Thus, Eisenstat’s scheme is always more economical, when Nz is large enough, although

the relative gains depend on the total number of nonzero elements in A. One disadvantage

of this scheme is that it is limited to a special form of the preconditioner.

Example 9.1 For a 5-point finite difference matrix, Nz(A) is roughly 5n, so that with

the standard implementation 19n operations are performed, while with Eisenstat’s imple-

mentation only 13n operations would be performed, a savings of about 1
3 . However, if the

other operations of the Conjugate Gradient algorithm are included, for a total of about 10n
operations, the relative savings become smaller. Now the original scheme will require 29n
operations, versus 23n operations for Eisenstat’s implementation.

PRECONDITIONED GMRES

9.3

In the case of GMRES, or other nonsymmetric iterative solvers, the same three options for

applying the preconditioning operation as for the Conjugate Gradient (namely, left, split,

and right preconditioning) are available. However, there will be one fundamental difference

– the right preconditioning versions will give rise to what is called a flexible variant, i.e.,

a variant in which the preconditioner can change at each step. This capability can be very

useful in some applications.

9.3.1 LEFT-PRECONDITIONED GMRES

As before, define the left preconditioned GMRES algorithm, as the GMRES algorithm

applied to the system,

M�1Ax = M�1b: (9.8)

The straightforward application of GMRES to the above linear system yields the following

preconditioned version of GMRES.

ALGORITHM 9.4: GMRES with Left Preconditioning

1. Compute r0 = M�1(b�Ax0), � = kr0k2 and v1 = r0=�
2. For j = 1; : : : ;m Do:

3. Compute w := M�1Avj
4. For i = 1; : : : ; j, Do:

5 . hi;j := (w; vi)
6. w := w � hi;jvi

9.3 PRECONDITIONED GMRES 251

7. EndDo

8. Compute hj+1;j = kwk2 and vj+1 = w=hj+1;j
9. EndDo

10. Define Vm := [v1; : : : ; vm], �Hm = fhi;jg1�i�j+1;1�j�m
11. Compute ym = argminyk�e1 � �Hmyk2, and xm = x0 + Vmym
12. If satisfied Stop, else set x0 := xm and GoTo 1

The Arnoldi loop constructs an orthogonal basis of the left preconditioned Krylov

subspace

Spanfr0;M
�1Ar0; : : : ; (M

�1A)m�1r0g:

It uses a modified Gram-Schmidt process, in which the new vector to be orthogonalized

is obtained from the previous vector in the process. All residual vectors and their norms

that are computed by the algorithm correspond to the preconditioned residuals, namely,

zm = M�1(b � Axm), instead of the original (unpreconditioned) residuals b � Axm. In

addition, there is no easy access to these unpreconditioned residuals, unless they are com-

puted explicitly, e.g., by multiplying the preconditioned residuals by M .This can cause

some difficulties if a stopping criterion based on the actual residuals, instead of the precon-

ditioned ones, is desired.

Sometimes a Symmetric Positive Definite preconditioning M for the nonsymmetric

matrix A may be available. For example, if A is almost SPD, then (9.8) would not take ad-

vantage of this. It would be wiser to compute an approximate factorization to the symmetric

part and use GMRES with split preconditioning. This raises the question as to whether or

not a version of the preconditioned GMRES can be developed, which is similar to Algo-

rithm 9.1, for the CG algorithm. This version would consist of using GMRES with the

M -inner product for the system (9.8).

At step j of the preconditioned GMRES algorithm, the previous vj is multiplied by A
to get a vector

wj = Avj : (9.9)

Then this vector is preconditioned to get

zj = M�1wj : (9.10)

This vector must be M -orthogonalized against all previous vi’s. If the standard Gram-

Schmidt process is used, we first compute the inner products

hij = (zj ; vi)M = (Mzj ; vi) = (wj ; vi); i = 1; : : : ; j; (9.11)

and then modify the vector zj into the new vector

ẑj := zj �

jX
i=1

hijvi: (9.12)

To complete the orthonormalization step, the final ẑj must be normalized. Because of the

orthogonality of ẑj versus all previous vi’s, observe that

(ẑj ; ẑj)M = (zj ; ẑj)M = (M�1wj ; ẑj)M = (wj ; ẑj): (9.13)

252 CHAPTER 9 PRECONDITIONED ITERATIONS

Thus, the desired M -norm could be obtained from (9.13), and then we would set

hj+1;j := (ẑj ; wj)
1=2 and vj+1 = ẑj=hj+1;j : (9.14)

One serious difficulty with the above procedure is that the inner product (ẑj ; ẑj)M as

computed by (9.13) may be negative in the presence of round-off. There are two remedies.

First, thisM -norm can be computed explicitly at the expense of an additional matrix-vector

multiplication with M . Second, the set of vectors Mvi can be saved in order to accumulate

inexpensively both the vector ẑj and the vector Mẑj , via the relation

Mẑj = wj �

jX
i=1

hijMvi:

A modified Gram-Schmidt version of this second approach can be derived easily. The

details of the algorithm are left as Exercise 12.

9.3.2 RIGHT-PRECONDITIONED GMRES

The right preconditioned GMRES algorithm is based on solving

AM�1u = b; u = Mx: (9.15)

As we now show, the new variable u never needs to be invoked explicitly. Indeed, once

the initial residual b � Ax0 = b � AM�1u0 is computed, all subsequent vectors of the

Krylov subspace can be obtained without any reference to the u-variables. Note that u0 is

not needed at all. The initial residual for the preconditioned system can be computed from

r0 = b � Ax0, which is the same as b � AM�1u0. In practice, it is usually x0 that is

available, not u0. At the end, the u-variable approximate solution to (9.15) is given by,

um = u0 +
mX
i=1

vi�i

with u0 = Mx0. Multiplying through by M�1 yields the desired approximation in terms

of the x-variable,

xm = x0 +M�1

"
mX
i=1

vi�i

#
:

Thus, one preconditioning operation is needed at the end of the outer loop, instead of at the

beginning in the case of the left preconditioned version.

ALGORITHM 9.5: GMRES with Right Preconditioning

1. Compute r0 = b�Ax0, � = kr0k2, and v1 = r0=�
2. For j = 1; : : : ;m Do:

3. Compute w := AM�1vj
4. For i = 1; : : : ; j, Do:

5. hi;j := (w; vi)
6. w := w � hi;jvi
7. EndDo

9.3 PRECONDITIONED GMRES 253

8. Compute hj+1;j = kwk2 and vj+1 = w=hj+1;j

9. Define Vm := [v1; : : : ; vm], �Hm = fhi;jg1�i�j+1;1�j�m

10. EndDo

11. Compute ym = argminyk�e1 � �Hmyk2, and xm = x0 +M�1Vmym.

12. If satisfied Stop, else set x0 := xm and GoTo 1.

This time, the Arnoldi loop builds an orthogonal basis of the right preconditioned

Krylov subspace

Spanfr0; AM
�1r0; : : : ; (AM

�1)m�1r0g:

Note that the residual norm is now relative to the initial system, i.e., b � Axm, since the

algorithm obtains the residual b � Axm = b � AM�1um, implicitly. This is an essential

difference with the left preconditioned GMRES algorithm.

9.3.3 SPLIT PRECONDITIONING

In many cases, M is the result of a factorization of the form

M = LU:

Then, there is the option of using GMRES on the split-preconditioned system

L�1AU�1u = L�1b; x = U�1u:

In this situation, it is clear that we need to operate on the initial residual by L�1 at the start

of the algorithm and by U�1 on the linear combination Vmym in forming the approximate

solution. The residual norm available is that of L�1(b�Axm).
A question arises on the differences between the right, left, and split preconditioning

options. The fact that different versions of the residuals are available in each case may

affect the stopping criterion and may cause the algorithm to stop either prematurely or with

delay. This can be particularly damaging in case M is very ill-conditioned. The degree

of symmetry, and therefore performance, can also be affected by the way in which the

preconditioner is applied. For example, a split preconditioner may be much better if A
is nearly symmetric. Other than these two situations, there is little difference generally

between the three options. The next section establishes a theoretical connection between

left and right preconditioned GMRES.

9.3.4 COMPARISON OF RIGHT AND LEFT

PRECONDITIONING

When comparing the left, right, and split preconditioning options, a first observation to

make is that the spectra of the three associated operators M�1A, AM�1, and L�1AU�1

are identical. Therefore, in principle one should expect convergence to be similar, although,

as is known, eigenvalues do not always govern convergence. In this section, we compare

the optimality properties achieved by left- and right preconditioned GMRES.

254 CHAPTER 9 PRECONDITIONED ITERATIONS

For the left preconditioning option, GMRES minimizes the residual norm

kM�1b�M�1Axk2;

among all vectors from the affine subspace

x0 +KLm = x0 + Span fz0;M
�1Az0; : : : ; (M

�1A)m�1z0g (9.16)

in which z0 is the preconditioned initial residual z0 = M�1r0. Thus, the approximate

solution can be expressed as

xm = x0 +M�1sm�1(M
�1A)z0

where sm�1 is the polynomial of degree m� 1 which minimizes the norm

kz0 �M�1A s(M�1A)z0k2

among all polynomials s of degree � m � 1. It is also possible to express this optimality

condition with respect to the original residual vector r0. Indeed,

z0 �M�1A s(M�1A)z0 =M�1
�
r0 �A s(M�1A)M�1r0

�
:

A simple algebraic manipulation shows that for any polynomial s,

s(M�1A)M�1r = M�1s(AM�1)r; (9.17)

from which we obtain the relation

z0 �M�1As(M�1A)z0 =M�1
�
r0 �AM�1s(AM�1)r0

�
: (9.18)

Consider now the situation with the right preconditioned GMRES. Here, it is necessary

to distinguish between the original x variable and the transformed variable u related to x
by x = M�1u. For the u variable, the right preconditioned GMRES process minimizes

the 2-norm of r = b�AM�1u where u belongs to

u0 +KRm = u0 + Span fr0; AM
�1r0; : : : ; (AM

�1)m�1r0g (9.19)

in which r0 is the residual r0 = b � AM�1u0. This residual is identical to the residual

associated with the original x variable since M�1u0 = x0. Multiplying (9.19) through to

the left by M�1 and exploiting again (9.17), observe that the generic variable x associated

with a vector of the subspace (9.19) belongs to the affine subspace

M�1u0 +M�1KRm = x0 + Span fz0;M
�1Az0 : : : ; (M

�1A)m�1z0g:

This is identical to the affine subspace (9.16) invoked in the left preconditioned variant. In

other words, for the right preconditioned GMRES, the approximate x-solution can also be

expressed as

xm = x0 + sm�1(AM
�1)r0:

However, now sm�1 is a polynomial of degree m� 1 which minimizes the norm

kr0 �AM�1 s(AM�1)r0k2 (9.20)

among all polynomials s of degree � m� 1. What is surprising is that the two quantities

which are minimized, namely, (9.18) and (9.20), differ only by a multiplication by M �1.

Specifically, the left preconditioned GMRES minimizes M�1r, whereas the right precon-

ditioned variant minimizes r, where r is taken over the same subspace in both cases.

9.4 FLEXIBLE VARIANTS 255

PROPOSITION 9.1 The approximate solution obtained by left or right preconditioned

GMRES is of the form

xm = x0 + sm�1(M
�1A)z0 = x0 +M�1sm�1(AM

�1)r0

where z0 = M�1r0 and sm�1 is a polynomial of degree m � 1. The polynomial sm�1
minimizes the residual norm kb � Axmk2 in the right preconditioning case, and the pre-

conditioned residual norm kM�1(b� Axm)k2 in the left preconditioning case.

In most practical situations, the difference in the convergence behavior of the two

approaches is not significant. The only exception is when M is ill-conditioned which could

lead to substantial differences.

FLEXIBLE VARIANTS

9.4

In the discussion of preconditioning techniques so far, it is implicitly assumed that the pre-

conditioning matrix M is fixed, i.e., it does not change from step to step. However, in some

cases, no matrix M is available. Instead, the operationM�1x is the result of some unspeci-

fied computation, possibly another iterative process. In such cases, it may well happen that

M�1 is not a constant operator. The previous preconditioned iterative procedures will not

converge if M is not constant. There are a number of variants of iterative procedures devel-

oped in the literature that can accommodate variations in the preconditioner, i.e., that allow

the preconditioner to vary from step to step. Such iterative procedures are called “flexible”

iterations. One of these iterations, a flexible variant of the GMRES algorithm, is described

next.

9.4.1 FLEXIBLE GMRES

We begin by examining the right preconditioned GMRES algorithm. In line 11 of Algo-

rithm 9.5 the approximate solution xm is expressed as a linear combination of the precon-

ditioned vectors zi = M�1vi; i = 1; : : : ;m. These vectors are also computed in line 3,

prior to their multiplication by A to obtain the vector w. They are all obtained by applying

the same preconditioning matrix M�1 to the vi’s. As a result it is not necessary to save

them. Instead, we only need to apply M�1 to the linear combination of the vi’s, i.e., to

Vmym in line 11. Suppose now that the preconditioner could change at every step, i.e., that

zj is given by

zj =M�1
j vj :

Then it would be natural to compute the approximate solution as

xm = x0 + Zmym

256 CHAPTER 9 PRECONDITIONED ITERATIONS

in which Zm = [z1; : : : ; zm], and ym is computed as before, as the solution to the least-

squares problem in line 11. These are the only changes that lead from the right precondi-

tioned algorithm to the flexible variant, described below.

ALGORITHM 9.6: Flexible GMRES (FGMRES)

1. Compute r0 = b�Ax0, � = kr0k2, and v1 = r0=�
2. For j = 1; : : : ;m Do:

3. Compute zj := M�1
j vj

4. Compute w := Azj
5. For i = 1; : : : ; j, Do:

6. hi;j := (w; vi)
7. w := w � hi;jvi
8. EndDo

9. Compute hj+1;j = kwk2 and vj+1 = w=hj+1;j

10. Define Zm := [z1; : : : ; zm], �Hm = fhi;jg1�i�j+1;1�j�m

11. EndDo

12. Compute ym = argminyk�e1 � �Hmyk2, and xm = x0 + Zmym.

13. If satisfied Stop, else set x0 xm and GoTo 1.

As can be seen, the main difference with the right preconditioned version, Algorithm

9.5, is that the preconditioned vectors zj = M�1
j vj must be saved and the solution updated

using these vectors. It is clear that when Mj = M for j = 1; : : : ;m, then this method

is equivalent mathematically to Algorithm 9.5. It is important to observe that zj can be

defined in line 3 without reference to any preconditioner. That is, any given new vector

zj can be chosen. This added flexibility may cause the algorithm some problems. Indeed,

zj may be so poorly selected that a breakdown could occur, as in the worst-case scenario

when zj is zero.

One difference between FGMRES and the usual GMRES algorithm is that the action

of AM�1
j on a vector v of the Krylov subspace is no longer in the span of Vm+1. Instead,

it is easy to show that

AZm = Vm+1
�Hm (9.21)

in replacement of the simpler relation (AM�1)Vm = Vm+1
�Hm which holds for the

standard preconditioned GMRES; see (6.5). As before, Hm denotes the m � m matrix

obtained from �Hm by deleting its last row and v̂j+1 is the vector w which is normalized

in line 9 of Algorithm 9.6 to obtain vj+1. Then, the following alternative formulation of

(9.21) is valid, even when hm+1;m = 0:

AZm = VmHm + v̂m+1e
T
m: (9.22)

An optimality property similar to the one which defines GMRES can be proved.

Consider the residual vector for an arbitrary vector z = x0 + Zmy in the affine space

x0 + spanfZmg. This optimality property is based on the relations

b�Az = b�A(x0 + Zmy)

= r0 �AZmy (9.23)

9.4 FLEXIBLE VARIANTS 257

= �v1 � Vm+1
�Hmy

= Vm+1[�e1 � �Hmy]: (9.24)

If Jm(y) denotes the function

Jm(y) = kb�A[x0 + Zmy]k2;

observe that by (9.24) and the fact that Vm+1 is unitary,

Jm(y) = k�e1 � �Hmyk2: (9.25)

Since the algorithm minimizes this norm over all vectors u in R
m

to yield ym, it is clear

that the approximate solution xm = x0 + Zmym has the smallest residual norm in x0 +
SpanfZmg. Thus, the following result is proved.

PROPOSITION 9.2 The approximate solution xm obtained at step m of FGMRES

minimizes the residual norm kb�Axmk2 over x0 + SpanfZmg.

Next, consider the possibility of breakdown in FGMRES. A breakdown occurs when

the vector vj+1 cannot be computed in line 9 of Algorithm 9.6 because hj+1;j = 0. For

the standard GMRES algorithm, this is not a problem because when this happens then the

approximate solution xj is exact. The situation for FGMRES is slightly different.

PROPOSITION 9.3 Assume that � = kr0k2 6= 0 and that j � 1 steps of FGMRES

have been successfully performed, i.e., that hi+1;i 6= 0 for i < j. In addition, assume that

the matrix Hj is nonsingular. Then xj is exact, if and only if hj+1;j = 0.

Proof. If hj+1;j = 0, then AZj = VjHj , and as a result

Jj(y) = k�v1 �AZjyjk2 = k�v1 � VjHjyjk2 = k�e1 �Hjyjk2:

If Hj is nonsingular, then the above function is minimized for yj = H�1j (�e1) and the

corresponding minimum norm reached is zero, i.e., xj is exact.

Conversely, if xj is exact, then from (9.22) and (9.23),

0 = b�Axj = Vj [�e1 �Hjyj] + v̂j+1e
T
j yj : (9.26)

We must show, by contraction, that v̂j+1 = 0. Assume that v̂j+1 6= 0. Since v̂j+1, v1,

v2, : : :, vm, form an orthogonal system, then it follows from (9.26) that �e1 �Hjyj = 0
and eTj yj = 0. The last component of yj is equal to zero. A simple back-substitution for

the system Hjyj = �e1, starting from the last equation, will show that all components of

yj are zero. Because Hm is nonsingular, this would imply that � = 0 and contradict the

assumption.

The only difference between this result and that of Proposition 6.10 for the GMRES

algorithm is that the additional assumption must be made that Hj is nonsingular since it is

no longer implied by the nonsingularity of A. However, Hm is guaranteed to be nonsingu-

lar when all the zj’s are linearly independent and A is nonsingular. This is a consequence

of a modification of the first part of Proposition 6.9. That same proof shows that the rank of

AZm is equal to the rank of the matrix Rm therein. If Rm is nonsingular and hm+1;m = 0,

then Hm is also nonsingular.

258 CHAPTER 9 PRECONDITIONED ITERATIONS

A consequence of the above proposition is that if Azj = vj , at a certain step, i.e., if

the preconditioning is “exact,” then the approximation xj will be exact provided that Hj

is nonsingular. This is because w = Azj would depend linearly on the previous vi’s (it is

equal to vj), and as a result the orthogonalization process would yield v̂j+1 = 0.

A difficulty with the theory of the new algorithm is that general convergence results,

such as those seen in earlier chapters, cannot be proved. That is because the subspace of

approximants is no longer a standard Krylov subspace. However, the optimality property

of Proposition 9.2 can be exploited in some specific situations. For example, if within each

outer iteration at least one of the vectors zj is chosen to be a steepest descent direction

vector, e.g., for the function F (x) = kb�Axk22, then FGMRES is guaranteed to converge

independently of m.

The additional cost of the flexible variant over the standard algorithm is only in the

extra memory required to save the set of vectors fzjgj=1;:::;m. Yet, the added advantage of

flexibility may be worth this extra cost. A few applications can benefit from this flexibility,

especially in developing robust iterative methods or preconditioners on parallel computers.

Thus, any iterative technique can be used as a preconditioner: block-SOR, SSOR, ADI,

Multi-grid, etc. More interestingly, iterative procedures such as GMRES, CGNR, or CGS

can also be used as preconditioners. Also, it may be useful to mix two or more precondi-

tioners to solve a given problem. For example, two types of preconditioners can be applied

alternatively at each FGMRES step to mix the effects of “local” and “global” couplings in

the PDE context.

9.4.2 DQGMRES

Recall that the DQGMRES algorithm presented in Chapter 6 uses an incomplete orthogo-

nalization process instead of the full Arnoldi orthogonalization. At each step, the current

vector is orthogonalized only against the k previous ones. The vectors thus generated are

“locally” orthogonal to each other, in that (vi; vj) = �ij for ji�jj < k. The matrix �Hm be-

comes banded and upper Hessenberg. Therefore, the approximate solution can be updated

at step j from the approximate solution at step j � 1 via the recurrence

pj =
1

rjj
;

2
4vj � j�1X

i=j�k+1

rijpi

3
5 ; xj = xj�1 + jpj (9.27)

in which the scalars j and rij are obtained recursively from the Hessenberg matrix �Hj .

An advantage of DQGMRES is that it is also flexible. The principle is the same as

in FGMRES. In both cases the vectors zj = M�1
j vj must be computed. In the case of

FGMRES, these vectors must be saved and this requires extra storage. For DQGMRES, it

can be observed that the preconditioned vectors zj only affect the update of the vector pj
in the preconditioned version of the update formula (9.27), yielding

pj =
1

rjj

2
4M�1

j vj �

j�1X
i=j�k+1

rijpi

3
5 :

As a result, M�1
j vj can be discarded immediately after it is used to update pj . The same

9.5 PRECONDITIONED CG FOR THE NORMAL EQUATIONS 259

memory locations can store this vector and the vector pj . This contrasts with FGMRES

which requires additional vectors of storage.

PRECONDITIONED CG FOR THE NORMAL EQUATIONS

9.5

There are several versions of the preconditioned Conjugate Gradient method applied to

the normal equations. Two versions come from the NR/NE options, and three other varia-

tions from the right, left, or split preconditioning options. Here, we consider only the left

preconditioned variants.

The left preconditioned CGNR algorithm is easily derived from Algorithm 9.1. Denote

by rj the residual for the original system, i.e., rj = b � Axj , and by ~rj = AT rj the

residual for the normal equations system. The preconditioned residual zj is zj = M�1~rj .

The scalar �j in Algorithm 9.1 is now given by

�j =
(~rj ; zj)

(ATApj ; pj)
=

(~rj ; zj)

(Apj ; Apj)
:

This suggests employing the auxiliary vector wj = Apj in the algorithm which takes the

following form.

ALGORITHM 9.7: Left-Preconditioned CGNR

1. Compute r0 = b�Ax0, ~r0 = AT r0, z0 = M�1~r0, p0 = z0.

2. For j = 0; : : :, until convergence Do:

3. wj = Apj
4. �j = (zj ; ~rj)=kwjk

2
2

5. xj+1 = xj + �jpj
6. rj+1 = rj � �jwj

7. ~rj+1 = AT rj+1
8. zj+1 = M�1~rj+1
9. �j = (zj+1; ~rj+1)=(zj ; ~rj)

10. pj+1 = zj+1 + �jpj
11. EndDo

Similarly, the linear system AATu = b, with x = ATu, can also be preconditioned

from the left, and solved with the preconditioned Conjugate Gradient algorithm. Here, it is

observed that the update of the u variable, the associated x variable, and two residuals take

the form

�j =
(rj ; zj)

(AAT pj ; pj)
=

(rj ; zj)

(AT pj ; AT pj)

uj+1 = uj + �jpj $ xj+1 = xj + �jA
T pj

rj+1 = rj � �jAA
T pj

zj+1 = M�1rj+1

260 CHAPTER 9 PRECONDITIONED ITERATIONS

Thus, if the algorithm for the unknown x is to be written, then the vectors AT pj can be

used instead of the vectors pj , which are not needed. To update these vectors at the end

of the algorithm the relation pj+1 = zj+1 + �j+1pj in line 8 of Algorithm 9.1 must

be multiplied through by AT . This leads to the left preconditioned version of CGNE, in

which the notation has been changed to denote by pj the vector AT pj invoked in the above

derivation.

ALGORITHM 9.8: Left-Preconditioned CGNE

1. Compute r0 = b�Ax0, z0 = M�1r0, p0 = AT z0.

2. For j = 0; 1; : : : ; until convergence Do:

3. wj = Apj
4. �j = (zj ; rj)=(pj ; pj)
5. xj+1 = xj + �jpj
6. rj+1 = rj � �jwj
7. zj+1 =M�1rj+1
8. �j = (zj+1; rj+1)=(zj ; rj)
9. pj+1 = AT zj+1 + �jpj

10. EndDo

Not shown here are the right and split preconditioned versions which are considered in

Exercise 3.

THE CGW ALGORITHM

9.6

When the matrix is nearly symmetric, we can think of preconditioning the system with the

symmetric part of A. This gives rise to a few variants of a method known as the CGW

method, from the names of the three authors Concus and Golub [60], and Widlund [225]

who proposed this technique in the middle of the 1970s. Originally, the algorithm was not

viewed from the angle of preconditioning. Writing A = M �N , with M = 1
2 (A +AH),

the authors observed that the preconditioned matrix

M�1A = I �M�1N

is equal to the identity matrix, plus a matrix which is skew-Hermitian with respect to the

M -inner product. It is not too difficult to show that the tridiagonal matrix corresponding to

the Lanczos algorithm, applied to A with the M -inner product, has the form

Tm =

0
BBB@

1 ��2
�2 1 ��3

: : :
�m�1 1 ��m

�m 1

1
CCCA : (9.28)

EXERCISES AND NOTES 261

As a result, a three-term recurrence in the Arnoldi process is obtained, which results in a

solution algorithm that resembles the standard preconditioned CG algorithm (Algorithm

9.1).

A version of the algorithm can be derived easily. From the developments in Section

6.7 relating the Lanczos algorithm to the Conjugate Gradient algorithm, it is known that

xj+1 can be expressed as

xj+1 = xj + �jpj :

The preconditioned residual vectors must then satisfy the recurrence

zj+1 = zj � �jM
�1Apj

and if the zj’s are to be M -orthogonal, then we must have (zj � �jM
�1Apj ; zj)M = 0.

As a result,

�j =
(zj ; zj)M

(M�1Apj ; zj)M
=

(rj ; zj)

(Apj ; zj)
:

Also, the next search direction pj+1 is a linear combination of zj+1 and pj ,

pj+1 = zj+1 + �jpj :

Thus, a first consequence is that

(Apj ; zj)M = (M�1Apj ; pj � �j�1pj�1)M = (M�1Apj ; pj)M = (Apj ; pj)

because M�1Apj is orthogonal to all vectors in Kj�1. In addition, writing that pj+1 is

M -orthogonal to M�1Apj yields

�j = �
(zj+1;M

�1Apj)M
(pj ;M�1Apj)M

:

Note that M�1Apj = �
1
�j
(zj+1 � zj) and therefore we have, just as in the standard PCG

algorithm,

�j =
(zj+1; zj+1)M
(zj ; zj)M

=
(zj+1; rj+1)

(zj ; rj)
:

EXERCISES

1 Let a matrix A and its preconditioner M be SPD. Observing that M�1A is self-adjoint with

respect to the A inner-product, write an algorithm similar to Algorithm 9.1 for solving the pre-

conditioned linear system M�1Ax =M�1b, using the A-inner product. The algorithm should

employ only one matrix-by-vector product per CG step.

2 In Section 9.2.1, the split-preconditioned Conjugate Gradient algorithm, Algorithm 9.2, was de-

rived from the Preconditioned Conjugate Gradient Algorithm 9.1. The opposite can also be done.

Derive Algorithm 9.1 starting from Algorithm 9.2, providing a different proof of the equivalence

of the two algorithms.

262 CHAPTER 9 PRECONDITIONED ITERATIONS

3 Six versions of the CG algorithm applied to the normal equations can be defined. Two versions

come from the NR/NE options, each of which can be preconditioned from left, right, or on

two sides. The left preconditioned variants have been given in Section 9.5. Describe the four

other versions: Right P-CGNR, Right P-CGNE, Split P-CGNR, Split P-CGNE. Suitable inner

products may be used to preserve symmetry.

4 When preconditioning the normal equations, whether the NE or NR form, two options are avail-

able in addition to the left, right and split preconditioners. These are “centered” versions:

AM
�1
A
T
u = b; x =M

�1
A
T
u

for the NE form, and

A
T
M
�1
Ax = A

T
M
�1
b

for the NR form. The coefficient matrices in the above systems are all symmetric. Write down

the adapted versions of the CG algorithm for these options.

5 Let a matrix A and its preconditioner M be SPD. The standard result about the rate of conver-

gence of the CG algorithm is not valid for the Preconditioned Conjugate Gradient algorithm,

Algorithm 9.1. Show how to adapt this result by exploiting the M -inner product. Show how to

derive the same result by using the equivalence between Algorithm 9.1 and Algorithm 9.2.

6 In Eisenstat’s implementation of the PCG algorithm, the operation with the diagonal D causes

some difficulties when describing the algorithm. This can be avoided.

a. Assume that the diagonal D of the preconditioning (9.5) is equal to the identity matrix.

What are the number of operations needed to perform one step of the PCG algorithm with

Eisenstat’s implementation? Formulate the PCG scheme for this case carefully.

b. The rows and columns of the preconditioning matrix M can be scaled so that the matrix D

of the transformed preconditioner, written in the form (9.5), is equal to the identity matrix.

What scaling should be used (the resulting M should also be SPD)?

c. Assume that the same scaling of question b is also applied to the original matrix A. Is the

resulting iteration mathematically equivalent to using Algorithm 9.1 to solve the system (9.6)

preconditioned with the diagonal D?

7 In order to save operations, the two matrices D�1E and D�1ET must be stored when comput-

ing Âv by Algorithm 9.3. This exercise considers alternatives.

a. Consider the matrix B � DÂD. Show how to implement an algorithm similar to 9.3 for

multiplying a vector v by B. The requirement is that only ED�1 must be stored.

b. The matrix B in the previous question is not the proper preconditioned version of A by

the preconditioning (9.5). CG is used on an equivalent system involving B but a further

preconditioning by a diagonal must be applied. Which one? How does the resulting algorithm

compare in terms of cost and storage with an Algorithm based on 9.3?

c. It was mentioned in Section 9.2.2 that Â needed to be further preconditioned by D�1. Con-

sider the split-preconditioning option: CG is to be applied to the preconditioned system as-

sociated with C = D1=2ÂD1=2. Defining Ê = D�1=2ED�1=2 show that,

C = (I � Ê)�1D2(I � Ê)�T + (I � Ê)�1 + (I � Ê)�T

where D2 is a certain matrix to be determined. Then write an analogue of Algorithm 9.3

using this formulation. How does the operation count compare with that of Algorithm 9.3?

8 Assume that the number of nonzero elements of a matrix A is parameterized by Nz(Z) = �n.

How small should � be before it does not pay to use Eisenstat’s implementation for the PCG

algorithm? What if the matrix A is initially scaled so that D is the identity matrix?

EXERCISES AND NOTES 263

9 Let M = LU be a preconditioner for a matrix A. Show that the left, right, and split precondi-

tioned matrices all have the same eigenvalues. Does this mean that the corresponding precon-

ditioned iterations will converge in (a) exactly the same number of steps? (b) roughly the same

number of steps for any matrix? (c) roughly the same number of steps, except for ill-conditioned

matrices?

10 Show that the relation (9.17) holds for any polynomial s and any vector r.

11 Write the equivalent of Algorithm 9.1 for the Conjugate Residual method.

12 Assume that a Symmetric Positive Definite matrix M is used to precondition GMRES for solv-

ing a nonsymmetric linear system. The main features of the P-GMRES algorithm exploiting

this were given in Section 9.2.1. Give a formal description of the algorithm. In particular give a

Modified Gram-Schimdt implementation. [Hint: The vectors Mvi’s must be saved in addition to

the vi’s.] What optimality property does the approximate solution satisfy? What happens if the

original matrix A is also symmetric? What is a potential advantage of the resulting algorithm?

NOTES AND REFERENCES. The preconditioned version of CG described in Algorithm 9.1 is due

to Meijerink and van der Vorst [149]. Eisenstat’s implementation was developed in [80] and is of-

ten referred to as Eisenstat’s trick. A number of other similar ideas are described in [153]. Several

flexible variants of nonsymmetric Krylov subspace methods have been developed by several authors

simultaneously; see, e.g., [18], [181], and [211]. There does not seem to exist a similar technique

for left preconditioned variants of the Krylov subspace methods. This is because the preconditioned

operatorM�1
j A now changes at each step. Similarly, no flexible variants have been developed for the

BCG-based methods, because the short recurrences of these algorithms rely on the preconditioned

operator being constant.

The CGW algorithm can be useful in some instances, such as when the symmetric part ofA can

be inverted easily, e.g., using fast Poisson solvers. Otherwise, its weakness is that linear systems with

the symmetric part must be solved exactly. Inner-outer variations that do not require exact solutions

have been described by Golub and Overton [109].

C H A P T E R

10

PRECONDITIONING

TECHNIQUES

Finding a good preconditioner to solve a given sparse linear system is often

viewed as a combination of art and science. Theoretical results are rare

and some methods work surprisingly well, often despite expectations. A

preconditioner can be de�ned as any subsidiary approximate solver which

is combined with an outer iteration technique, typically one of the Krylov

subspace iterations seen in previous chapters. This chapter covers some of

the most successful techniques used to precondition a general sparse linear

system. Note at the outset that there are virtually no limits to available

options for obtaining good preconditioners. For example, preconditioners

can be derived from knowledge of the original physical problems from which

the linear system arises. However, a common feature of the preconditioners

discussed in this chapter is that they are built from the original coe�cient

matrix.

INTRODUCTION

10.1

Roughly speaking, a preconditioner is any form of implicit or explicit modification of an

original linear system which makes it “easier” to solve by a given iterative method. For

example, scaling all rows of a linear system to make the diagonal elements equal to one

is an explicit form of preconditioning. The resulting system can be solved by a Krylov

subspace method and may require fewer steps to converge than with the original system

(although this is not guaranteed). As another example, solving the linear system

M�1Ax =M�1b

where M�1 is some complicated mapping that may involve FFT transforms, integral cal-

culations, and subsidiary linear system solutions, may be another form of preconditioning.

Here, it is unlikely that the matrix M and M�1A can be computed explicitly. Instead,

264

10.2 JACOBI, SOR, AND SSOR PRECONDITIONERS 265

the iterative processes operate with A and with M�1 whenever needed. In practice, the

preconditioning operationM�1 should be inexpensive to apply to an arbitrary vector.

One of the simplest ways of defining a preconditioner is to perform an incomplete fac-

torization of the original matrix A. This entails a decomposition of the formA = LU �R
where L and U have the same nonzero structure as the lower and upper parts of A respec-

tively, and R is the residual or error of the factorization. This incomplete factorization

known as ILU(0) is rather easy and inexpensive to compute. On the other hand, it of-

ten leads to a crude approximation which may result in the Krylov subspace accelerator

requiring many iterations to converge. To remedy this, several alternative incomplete fac-

torizations have been developed by allowing more fill-in in L and U . In general, the more

accurate ILU factorizations require fewer iterations to converge, but the preprocessing cost

to compute the factors is higher. However, if only because of the improved robustness,

these trade-offs generally favor the more accurate factorizations. This is especially true

when several systems with the same matrix must be solved because the preprocessing cost

can be amortized.

This chapter considers the most common preconditioners used for solving large sparse

matrices and compares their performance. It begins with the simplest preconditioners (SOR

and SSOR) and then discusses the more accurate variants such as ILUT.

JACOBI, SOR, AND SSOR PRECONDITIONERS

10.2

As was seen in Chapter 4, a fixed-point iteration for solving a linear system

Ax = b

takes the general form

xk+1 =M�1Nxk +M�1b (10.1)

where M and N realize the splitting of A into

A =M �N: (10.2)

The above iteration is of the form

xk+1 = Gxk + f (10.3)

where f =M�1b and

G =M�1N =M�1(M �A)

= I �M�1A: (10.4)

Thus, for Jacobi and Gauss Seidel it has been shown that

GJA(A) = I �D�1A (10.5)

GGS(A) = I � (D �E)�1A; (10.6)

where A = D �E � F is the splitting defined in Chapter 4.

266 CHAPTER 10 PRECONDITIONING TECHNIQUES

The iteration (10.3) is attempting to solve

(I �G)x = f (10.7)

which, because of the expression (10.4) for G, can be rewritten as

M�1Ax =M�1b: (10.8)

The above system is the preconditioned system associated with the splitting A = M �N ,

and the iteration (10.3) is nothing but a fixed-point iteration on this preconditioned system.

Similarly, a Krylov subspace method, e.g., GMRES, can be used to solve (10.8), leading

to a preconditioned version of the Krylov subspace method, e.g., preconditioned GMRES.

The preconditioned versions of some Krylov subspace methods have been discussed in the

previous chapter with a generic preconditionerM . In theory, any general splitting in which

M is nonsingular can be used. Ideally, M should be close to A in some sense. However,

note that a linear system with the matrix M must be solved at each step of the iterative

procedure. Therefore, a practical and admittedly somewhat vague requirement is that these

solutions steps should be inexpensive.

As was seen in Chapter 4, the SSOR preconditioner is defined by

MSSOR = (D � !E)D�1(D � !F):

Typically, when this matrix is used as a preconditioner, it is not necessary to choose ! as

carefully as for the underlying fixed-point iteration. Taking ! = 1 leads to the Symmetric

Gauss-Seidel (SGS) iteration,

MSGS = (D �E)D�1(D � F): (10.9)

An interesting observation is that D�E is the lower part ofA, including the diagonal, and

D � F is, similarly, the upper part of A. Thus,

MSGS = LU;

with

L � (D �E)D�1 = I �ED�1; U = D � F:

The matrixL is unit lower triangular andU is upper triangular. One question that may arise

concerns the implementation of the preconditioning operation. To compute w = M �1
SGSx,

proceed as follows:

solve (I �ED�1)z = x;

solve (D � F)w = z:

A FORTRAN implementation of this preconditioning operation is illustrated in the follow-

ing code, for matrices stored in the MSR format described in Chapter 3.

FORTRAN CODE

subroutine lusol (n,rhs,sol,luval,lucol,luptr,uptr)
real*8 sol(n), rhs(n), luval(*)
integer n, luptr(*), uptr(n)

c---
c Performs a forward and a backward solve for an ILU or
c SSOR factorization, i.e., solves (LU) sol = rhs where LU
c is the ILU or the SSOR factorization. For SSOR, L and U

10.2 JACOBI, SOR, AND SSOR PRECONDITIONERS 267

c should contain the matrices L = I - omega E inv(D), and U
c = D - omega F, respectively with -E = strict lower
c triangular part of A, -F = strict upper triangular part
c of A, and D = diagonal of A.
c---
c PARAMETERS:
c n = Dimension of problem
c rhs = Right hand side; rhs is unchanged on return
c sol = Solution of (LU) sol = rhs.
c luval = Values of the LU matrix. L and U are stored
c together in CSR format. The diagonal elements of
c U are inverted. In each row, the L values are
c followed by the diagonal element (inverted) and
c then the other U values.
c lucol = Column indices of corresponding elements in luval
c luptr = Contains pointers to the beginning of each row in
c the LU matrix.
c uptr = pointer to the diagonal elements in luval, lucol
c--

integer i,k
c
c FORWARD SOLVE. Solve L . sol = rhs
c

do i = 1, n
c
c compute sol(i) := rhs(i) - sum L(i,j) x sol(j)
c

sol(i) = rhs(i)
do k=luptr(i),uptr(i)-1

sol(i) = sol(i) - luval(k)* sol(lucol(k))
enddo

enddo
c
c BACKWARD SOLVE. Compute sol := inv(U) sol
c

do i = n, 1, -1
c
c compute sol(i) := sol(i) - sum U(i,j) x sol(j)
c

do k=uptr(i)+1, luptr(i+1)-1
sol(i) = sol(i) - luval(k)*sol(lucol(k))

enddo
c
c compute sol(i) := sol(i)/ U(i,i)
c

sol(i) = luval(uptr(i))*sol(i)
enddo
return
end

As was seen above, the SSOR or SGS preconditioning matrix is of the formM = LU
whereL andU have the same pattern as the L-part and the U -part ofA, respectively. Here,

L-part means lower triangular part and, similarly, the U -part is the upper triangular part. If

the error matrix A� LU is computed, then for SGS, for example, we would find

A� LU = D �E � F � (I �ED�1)(D � F) = �ED�1F:

If L is restricted to have the same structure as the L-part of A and U is to have the same

268 CHAPTER 10 PRECONDITIONING TECHNIQUES

structure as the U -part of A, the question is whether or not it is possible to find L and U
that yield an error that is smaller in some sense than the one above. We can, for example,

try to find such an incomplete factorization in which the residual matrix A� LU has zero

elements in locations where A has nonzero entries. This turns out to be possible in general

and yields the ILU(0) factorization to be discussed later. Generally, a pattern for L and U
can be specified and L and U may be sought so that they satisfy certain conditions. This

leads to the general class of incomplete factorization techniques which are discussed in the

next section.

Example 10.1 Table 10.1 shows the results of applying the GMRES algorithm with

SGS (SSOR with ! = 1) preconditioning to the five test problems described in Section

3.7.

Matrix Iters Kflops Residual Error

F2DA 38 1986 0.76E-03 0.82E-04

F3D 20 4870 0.14E-02 0.30E-03

ORS 110 6755 0.31E+00 0.68E-04

F2DB 300 15907 0.23E+02 0.66E+00

FID 300 99070 0.26E+02 0.51E-01

Table 10.1 A test run of GMRES with SGS preconditioning.

See Example 6.1 for the meaning of the column headers in the table. Notice here that the

method did not converge in 300 steps for the last two problems. The number of iterations

for the first three problems is reduced substantially from those required by GMRES with-

out preconditioning shown in Table 6.2. The total number of operations required is also

reduced, but not proportionally because each step now costs more due to the precondition-

ing operation.

ILU FACTORIZATION PRECONDITIONERS

10.3

Consider a general sparse matrix A whose elements are aij ; i; j = 1; : : : ; n. A general

Incomplete LU (ILU) factorization process computes a sparse lower triangular matrix L
and a sparse upper triangular matrix U so the residual matrix R = LU � A satisfies cer-

tain constraints, such as having zero entries in some locations. We first describe a general

ILU preconditioner geared toward M -matrices. Then we discuss the ILU(0) factorization,

the simplest form of the ILU preconditioners. Finally, we will show how to obtain more

accurate factorizations.

10.3 ILU FACTORIZATION PRECONDITIONERS 269

10.3.1 INCOMPLETE LU FACTORIZATIONS

A general algorithm for building Incomplete LU factorizations can be derived by perform-

ing Gaussian elimination and dropping some elements in predetermined nondiagonal posi-

tions. To analyze this process and establish existence for M -matrices, the following result

of Ky-Fan [86] is needed.

THEOREM 10.1 Let A be an M -matrix and let A1 be the matrix obtained from the

first step of Gaussian elimination. Then A1 is an M -matrix.

Proof. Theorem 1.17 will be used to establish that properties 1, 2, and 3 therein are

satisfied. First, consider the off-diagonal elements of A1:

a1ij = aij �
ai1a1j
a11

:

Since aij ; ai1; a1j are nonpositive and a11 is positive, it follows that a1ij � 0 for i 6= j.

Second, the fact that A1 is nonsingular is a trivial consequence of the following stan-

dard relation of Gaussian elimination

A = L1A1 where L1 =

�
A�;1
a11

; e2; e3; : : : en

�
: (10.10)

Finally, we establish that A�1
1 is nonnegative by examining A�11 ej for j = 1; : : : ; n.

For j = 1, it is clear that A�11 e1 = 1
a11

e1 because of the structure of A1. For the case

j 6= 1, (10.10) can be exploited to yield

A�11 ej = A�1L�1
1 ej = A�1ej � 0:

Therefore, all the columns of A�11 are nonnegative by assumption and this completes the

proof.

Clearly, the (n� 1)� (n� 1) matrix obtained from A1 by removing its first row and first

column is also an M -matrix.

Assume now that some elements are dropped from the result of Gaussian Elimination

outside of the main diagonal. Any element that is dropped is a nonpositive element which

is transformed into a zero. Therefore, the resulting matrix ~A1 is such that

~A1 = A1 +R;

where the elements of R are such that rii = 0; rij � 0. Thus,

A1 � ~A1

and the off-diagonal elements of ~A1 are nonpositive. Since A1 is an M -matrix, theorem

1.18 shows that ~A1 is also an M -matrix. The process can now be repeated on the matrix
~A(2 : n; 2 : n), and then continued until the incomplete factorization of A is obtained. The

above arguments shows that at each step of this construction, we obtain an M -matrix and

that the process does not break down.

The elements to drop at each step have not yet been specified. This can be done stat-

ically, by choosing some non-zero pattern in advance. The only restriction on the zero

pattern is that it should exclude diagonal elements because this assumption was used in the

270 CHAPTER 10 PRECONDITIONING TECHNIQUES

above proof. Therefore, for any zero pattern set P , such that

P � f(i; j) j i 6= j; 1 � i; j � ng; (10.11)

an Incomplete LU factorization, ILUP , can be computed as follows.

ALGORITHM 10.1: General Static Pattern ILU

1. For k = 1; : : : ; n� 1 Do:

2. For i = k + 1; n and if (i; k) =2 P Do:

3. aik := aik=akk
4. For j = k + 1; : : : ; n and for (i; j) =2 P Do:

5. aij := aij � aik � akj
6. EndDo

7. EndDo

8. EndDo

The For loop in line 4 should be interpreted as follows: For j = k + 1; : : : ; n and only for

those indices j that are not in P execute the next line. In practice, it is wasteful to scan j
from k+1 to n because there is an inexpensive mechanism for identifying those in this set

that are in the complement of P .

Using the above arguments, the following result can be proved.

THEOREM 10.2 Let A be an M -matrix and P a given zero pattern defined as in

(10.11). Then Algorithm 10.1 is feasible and produces an incomplete factorization,

A = LU �R (10.12)

which is a regular splitting of A.

Proof. At each step of the process, we have

~Ak = Ak +Rk; Ak = Lk
~Ak�1

where, using Ok to denote a zero vector of dimension k, and Am:n;j to denote the vector

of components ai;j ; i = m; : : : ; n,

Lk = I �
1

a
(k)
kk

�
Ok

A(k + 1 : n; k)

�
eTk :

From this follow the relations

~Ak = Ak +Rk = Lk
~Ak�1 +Rk:

Applying this relation recursively, starting from k = n� 1 up to k = 1, it is found that

~An�1 = Ln�1 : : : L1A+ Ln�1 : : : L2R1 + : : :+ Ln�1Rn�2 +Rn�1: (10.13)

Now define

L = (Ln�1 : : : L1)
�1; U = ~An�1:

10.3 ILU FACTORIZATION PRECONDITIONERS 271

Then,

U = L�1A+ S

with

S = Ln�1 : : : L2R1 + : : :+ Ln�1Rn�2 +Rn�1:

Observe that at stage k, elements are dropped only in the (n� k)� (n� k) lower part of

Ak. Hence, the first k rows and columns of Rk are zero and as a result

Ln�1 : : : Lk+1Rk = Ln�1 : : : L1Rk

so that S can be rewritten as

S = Ln�1 : : : L2(R1 +R2 + : : :+Rn�1):

If R denotes the matrix

R = R1 +R2 + : : :+Rn�1;

then we obtain the factorization

A = LU �R;

where (LU)�1 = U�1L�1 is a nonnegative matrix, R is nonnegative. This completes the

proof.

Now consider a few practical aspects. An ILU factorization based on the form of Al-

gorithm 10.1 is difficult to implement because at each step k, all rows k+1 to n are being

modified. However, ILU factorizations depend on the implementation of Gaussian elimi-

nation which is used. Several variants of Gaussian elimination are known which depend on

the order of the three loops associated with the control variables i, j, and k in the algorithm.

Thus, Algorithm 10.1 is derived from what is known as the k; i; j variant. In the context of

Incomplete LU factorization, the variant that is most commonly used for a row-contiguous

data structure is the i; k; j variant, described next for dense matrices.

ALGORITHM 10.2: Gaussian Elimination { IKJ Variant

1. For i = 2; : : : ; n Do:

2. For k = 1; : : : ; i� 1 Do:

3. aik := aik=akk
4. For j = k + 1; : : : ; n Do:

5. aij := aij � aik � akj
6. EndDo

7. EndDo

8. EndDo

The above algorithm is in place meaning that the i-th row of A can be overwritten by

the i-th rows of the L and U matrices of the factorization (since L is unit lower triangular,

its diagonal entries need not be stored). Each step i of the algorithm generates the i-th row

272 CHAPTER 10 PRECONDITIONING TECHNIQUES

of L and the i-th row of U at the same time. The previous rows 1; 2; : : : ; i� 1 of L and U
are accessed at step i but they are not modified. This is illustrated in Figure 10.1.

Not accessed

Accessed but not

Accessed and
modified

modified

Figure 10.1 IKJvariant of the LU factorization.

Adapting this version for sparse matrices is easy because the rows of L and U are

generated in succession. These rows can be computed one at a time and accumulated in a

row-oriented data structure such as the CSR format. This constitutes an important advan-

tage. Based on this, the general ILU factorization takes the following form.

ALGORITHM 10.3: General ILU Factorization, IKJVersion

1. For i = 2; : : : ; n Do:

2. For k = 1; : : : ; i� 1 and if (i; k) =2 P Do:

3. aik := aik=akk
4. For j = k + 1; : : : ; n and for (i; j) =2 P , Do:

5. aij := aij � aikakj .

6. EndDo

7. EndDo

8. EndDo

It is not difficult to see that this more practical IKJvariant of ILU is equivalent to the

KIJversion which can be defined from Algorithm 10.1.

PROPOSITION 10.1 Let P be a zero pattern satisfying the condition (10.11). Then

the ILU factors produced by the KIJ-based Algorithm 10.1 and the IKJ-based Algorithm

10.3 are identical if they can both be computed.

Proof. Algorithm (10.3) is obtained from Algorithm 10.1 by switching the order of the

loops k and i. To see that this gives indeed the same result, reformulate the first two loops

of Algorithm 10.1 as

10.3 ILU FACTORIZATION PRECONDITIONERS 273

For k = 1; n Do:

For i = 1; n Do:

if k < i and for (i; k) =2 P Do:

ope(row(i),row(k))

: : : : : :

in which ope(row(i),row(k)) is the operation represented by lines 3 through 6 of both

Algorithm 10.1 and Algorithm 10.3. In this form, it is clear that the k and i loops can be

safely permuted. Then the resulting algorithm can be reformulated to yield exactly Algo-

rithm 10.3.

Note that this is only true for a static pattern ILU. If the pattern is dynamically determined

as the Gaussian elimination algorithm proceeds, then the patterns obtained with different

versions of GE may be different.

It is helpful to interpret the result of one incomplete elimination step. Denoting by li�,

ui�, and ai� the i-th rows of L, U , and A, respectively, then the k-loop starting at line 2

of Algorithm 10.3 can be interpreted as follows. Initially, we have ui� = ai�. Then, each

elimination step is an operation of the form

ui� := ui� � likuk�:

However, this operation is performed only on the nonzero pattern, i.e., the complement of

P . This means that, in reality, the elimination step takes the form

ui� := ui� � likuk� + r
(k)
i� ;

in which r
(k)
ij is zero when (i; j) =2 P and equals likukj when (i; j) 2 P . Thus, the row

r
(k)
i� cancels out the terms likukj that would otherwise be introduced in the zero pattern. In

the end the following relation is obtained:

ui� = ai� �

i�1X
k=1

�
likuk� � r

(k)
i�

�
:

Note that lik = 0 for (i; k) 2 P . We now sum up all the r
(k)
i� ’s and define

ri� =
i�1X
k=1

r
(k)
i� : (10.14)

The row ri� contains the elements that fall inside the P pattern at the completion of the

k-loop. Using the fact that lii = 1, we obtain the relation,

ai� =

iX
k=1

likuk� � ri�: (10.15)

Therefore, the following simple property can be stated.

PROPOSITION 10.2 Algorithm (10.3) produces factors L and U such that

A = LU �R

in which�R is the matrix of the elements that are dropped during the incomplete elimina-

tion process. When (i; j) 2 P , an entry rij of R is equal to the value of �aij obtained at

274 CHAPTER 10 PRECONDITIONING TECHNIQUES

the completion of the k loop in Algorithm 10.3. Otherwise, rij is zero.

10.3.2 ZERO FILL-IN ILU (ILU(0))

The Incomplete LU factorization technique with no fill-in, denoted by ILU(0), consists of

taking the zero pattern P to be precisely the zero pattern of A. In the following, we denote

by bi;� the i-th row of a given matrixB, and byNZ(B), the set of pairs (i; j); 1 � i; j � n
such that bi;j 6= 0.

A

L U

LU

Figure 10.2 The ILU(0) factorization for a five-point matrix.

The incomplete factorization ILU(0) factorization is best illustrated by the case for

which it was discovered originally, namely, for 5-point and 7-point matrices related to finite

difference discretization of PDEs. Consider one such matrix A as illustrated in the bottom

left corner of Figure 10.2. The A matrix represented in this figure is a 5-point matrix of

size n = 32 corresponding to an nx�ny = 8�4 mesh. Consider now any lower triangular

matrix L which has the same structure as the lower part of A, and any matrix U which has

the same structure as that of the upper part of A. Two such matrices are shown at the top of

Figure 10.2. If the productLU were performed, the resulting matrix would have the pattern

shown in the bottom right part of the figure. It is impossible in general to match A with

this product for any L and U . This is due to the extra diagonals in the product, namely, the

10.3 ILU FACTORIZATION PRECONDITIONERS 275

diagonals with offsets nx � 1 and�nx + 1. The entries in these extra diagonals are called

fill-in elements. However, if these fill-in elements are ignored, then it is possible to find L
and U so that their product is equal to A in the other diagonals. This defines the ILU(0)

factorization in general terms: Any pair of matrices L (unit lower triangular) and U (upper

triangular) so that the elements of A � LU are zero in the locations of NZ(A). These

constraints do not define the ILU(0) factors uniquely since there are, in general, infinitely

many pairs of matrices L and U which satisfy these requirements. However, the standard

ILU(0) is defined constructively using Algorithm 10.3 with the pattern P equal to the zero

pattern of A.

ALGORITHM 10.4: ILU(0)

1. For i = 2; : : : ; n Do:

2. For k = 1; : : : ; i� 1 and for (i; k) 2 NZ(A) Do:

3. Compute aik = aik=akk
4. For j = k + 1; : : : ; n and for (i; j) 2 NZ(A), Do:

5. Compute aij := aij � aikakj .

6. EndDo

7. EndDo

8. EndDo

In some cases, it is possible to write the ILU(0) factorization in the form

M = (D �E)D�1(D � F); (10.16)

where �E and �F are the strict lower and strict upper triangular parts of A, and D is a

certain diagonal matrix, different from the diagonal of A, in general. In these cases it is

sufficient to find a recursive formula for determining the elements in D. A clear advantage

is that only an extra diagonal of storage is required. This form of the ILU(0) factorization is

equivalent to the incomplete factorizations obtained from Algorithm 10.4 when the product

of the strict-lower part and the strict-upper part of A consists only of diagonal elements

and fill-in elements. This is true, for example, for standard 5-point difference approxima-

tions to second order partial differential operators; see Exercise 4. In these instances, both

the SSOR preconditioner with ! = 1 and the ILU(0) preconditioner can be cast in the form

(10.16), but they differ in the way the diagonal matrix D is defined. For SSOR(! = 1),

D is the diagonal of the matrix A itself. For ILU(0), it is defined by a recursion so that

the diagonal of the product of matrices (10.16) equals the diagonal of A. By definition,

together the L and U matrices in ILU(0) have the same number of nonzero elements as the

original matrix A.

Example 10.2 Table 10.2 shows the results of applying the GMRES algorithm with

ILU(0) preconditioning to the five test problems described in Section 3.7.

276 CHAPTER 10 PRECONDITIONING TECHNIQUES

Matrix Iters Kflops Residual Error

F2DA 28 1456 0.12E-02 0.12E-03

F3D 17 4004 0.52E-03 0.30E-03

ORS 20 1228 0.18E+00 0.67E-04

F2DB 300 15907 0.23E+02 0.67E+00

FID 206 67970 0.19E+00 0.11E-03

Table 10.2 A test run of GMRES with ILU(0) precondition-

ing.

See Example 6.1 for the meaning of the column headers in the table. Observe that for the

first two problems, the gains compared with the performance of the SSOR preconditioner in

Table 10.1 are rather small. For the other three problems, which are a little harder, the gains

are more substantial. For the last problem, the algorithm achieves convergence in 205 steps

whereas SSOR did not convergence in the 300 steps allowed. The fourth problem (F2DB)

is still not solvable by ILU(0) within the maximum number of steps allowed.

For the purpose of illustration, below is a sample FORTRAN code for computing the

incompleteL andU factors for general sparse matrices stored in the usual CSR format. The

real values of the resulting L;U factors are stored in the array luval, except that entries of

ones of the main diagonal of the unit lower triangular matrix L are not stored. Thus, one

matrix is needed to store these factors together. This matrix is denoted by L=U . Note that

since the pattern of L=U is identical with that of A, the other integer arrays of the CSR

representation for the LU factors are not needed. Thus, ja(k), which is the column position

of the element a(k) in the input matrix, is also the column position of the element luval(k)
in the L=U matrix. The code below assumes that the nonzero elements in the input matrix

A are sorted by increasing column numbers in each row.

FORTRAN CODE

subroutine ilu0 (n, a, ja, ia, luval, uptr, iw, icode)
integer n, ja(*), ia(n+1), uptr(n), iw(n)
real*8 a(*), luval(*)

c---
c Set-up routine for ILU(0) preconditioner. This routine
c computes the L and U factors of the ILU(0) factorization
c of a general sparse matrix A stored in CSR format. Since
c L is unit triangular, the L and U factors can be stored
c as a single matrix which occupies the same storage as A.
c The ja and ia arrays are not needed for the LU matrix
c since the pattern of the LU matrix is identical with
c that of A.
c---
c INPUT:
c ------
c n = dimension of matrix
c a, ja, ia = sparse matrix in general sparse storage format
c iw = integer work array of length n
c OUTPUT:
c -------
c luval = L/U matrices stored together. On return luval,
c ja, ia is the combined CSR data structure for
c the LU factors

10.3 ILU FACTORIZATION PRECONDITIONERS 277

c uptr = pointer to the diagonal elements in the CSR
c data structure luval, ja, ia
c icode = integer indicating error code on return
c icode = 0: normal return
c icode = k: encountered a zero pivot at step k
c
c---
c initialize work array iw to zero and luval array to a

do 30 i = 1, ia(n+1)-1
luval(i) = a(i)

30 continue
do 31 i=1, n

iw(i) = 0
31 continue
c----------------------- Main loop

do 500 k = 1, n
j1 = ia(k)
j2 = ia(k+1)-1
do 100 j=j1, j2

iw(ja(j)) = j
100 continue

j=j1
150 jrow = ja(j)

c----------------------- Exit if diagonal element is reached
if (jrow .ge. k) goto 200

c----------------------- Compute the multiplier for jrow.
tl = luval(j)*luval(uptr(jrow))
luval(j) = tl

c----------------------- Perform linear combination
do 140 jj = uptr(jrow)+1, ia(jrow+1)-1

jw = iw(ja(jj))
if (jw .ne. 0) luval(jw)=luval(jw)-tl*luval(jj)

140 continue
j=j+1
if (j .le. j2) goto 150

c----------------------- Store pointer to diagonal element
200 uptr(k) = j

if (jrow .ne. k .or. luval(j) .eq. 0.0d0) goto 600
luval(j) = 1.0d0/luval(j)

c----------------------- Refresh all entries of iw to zero.
do 201 i = j1, j2

iw(ja(i)) = 0
201 continue
500 continue

c----------------------- Normal return
icode = 0
return

c----------------------- Error: zero pivot
600 icode = k

return
end

10.3.3 LEVEL OF FILL AND ILU(P)

The accuracy of the ILU(0) incomplete factorization may be insufficient to yield an ade-

quate rate of convergence as shown in Example 10.2. More accurate Incomplete LU fac-

torizations are often more efficient as well as more reliable. These more accurate factoriza-

278 CHAPTER 10 PRECONDITIONING TECHNIQUES

tions will differ from ILU(0) by allowing some fill-in. Thus, ILU(1) keeps the “first order

fill-ins,” a term which will be explained shortly.

To illustrate ILU(p) with the same example as before, the ILU(1) factorization results

from taking P to be the zero pattern of the product LU of the factors L;U obtained from

ILU(0). This pattern is shown at the bottom right of Figure 10.2. Pretend that the original

matrix has this “augmented” pattern NZ1(A). In other words, the fill-in positions created

in this product belong to the augmented pattern NZ1(A), but their actual values are zero.

The new pattern of the matrixA is shown at the bottom left part of Figure 10.3. The factors

L1 and U1 of the ILU(1) factorization are obtained by performing an ILU(0) factorization

on this “augmented pattern” matrix. The patterns of L1 and U1 are illustrated at the top

of Figure 10.3. The new LU matrix shown at the bottom right of the figure has now two

additional diagonals in the lower and upper parts.

Augmented A

L1 U1

L1U1

Figure 10.3 The ILU(1) factorization.

One problem with the construction defined in this illustration is that it does not extend

to general sparse matrices. It can be generalized by introducing the concept of level of

fill. A level of fill is attributed to each element that is processed by Gaussian elimination,

and dropping will be based on the value of the level of fill. Algorithm 10.2 will be used

as a model, although any other form of GE can be used. The rationale is that the level of

fill should be indicative of the size: the higher the level, the smaller the elements. A very

simple model is employed to justify the definition: A size of �k is attributed to any element

whose level of fill is k, where � < 1. Initially, a nonzero element has a level of fill of one

10.3 ILU FACTORIZATION PRECONDITIONERS 279

(this will be changed later) and a zero element has a level of fill of 1. An element aij is

updated in line 5 of Algorithm 10.2 by the formula

aij = aij � aik � akj : (10.17)

If levij is the current level of the element aij , then our model tells us that the size of the

updated element should be

aij := �levij � �levik � �levkj = �levij � �levik+levkj :

Therefore, roughly speaking, the size of aij will be the maximum of the two sizes �levij

and �levik+levkj , and it is natural to define the new level of fill as,

levij := minflevij ; levik + levkjg:

In the common definition used in the literature, all the levels of fill are actually shifted

by �1 from the definition used above. This is purely for convenience of notation and to

conform with the definition used for ILU(0). Thus, initially levij = 0 if aij 6= 0, and

levij =1 otherwise. Thereafter, define recursively

levij = minflevij ; levik + levkj + 1g:

DEFINITION 10.1 The initial level of fill of an element aij of a sparse matrix A is

defined by

levij =

�
0 if aij 6= 0; or i = j
1 otherwise:

Each time this element is modified in line 5 of Algorithm 10.2, its level of fill must be

updated by

levij = minflevij ; levik + levkj + 1g: (10.18)

Observe that the level of fill of an element will never increase during the elimination. Thus,

if aij 6= 0 in the original matrix A, then the element in location i; j will have a level of

fill equal to zero throughout the elimination process. The above systematic definition gives

rise to a natural strategy for discarding elements. In ILU(p), all fill-in elements whose level

of fill does not exceed p are kept. So using the definition of zero patterns introduced earlier,

the zero pattern for ILU(p) is the set

Pp = f(i; j) j levij > pg;

where levij is the level of fill value after all updates (10.18) have been performed. The case

p = 0 coincides with the ILU(0) factorization and is consistent with the earlier definition.

In practical implementations of the ILU(p) factorization it is common to separate the

symbolic phase (where the structure of the L and U factors are determined) from the nu-

merical factorization, when the numerical values are computed. Here, a variant is described

which does not separate these two phases. In the following description, ai� denotes the i-th
row of the matrix A, and aij the (i; j)-th entry of A.

ALGORITHM 10.5: ILU(p)

1. For all nonzero elements aij define lev(aij) = 0
2. For i = 2; : : : ; n Do:

280 CHAPTER 10 PRECONDITIONING TECHNIQUES

3. For each k = 1; : : : ; i� 1 and for lev(aik) � p Do:

4. Compute aik := aik=akk
5. Compute ai� := ai� � aikak�.

6. Update the levels of fill of the nonzero ai;j’s using (10.18)

7. EndDo

8. Replace any element in row i with lev(aij) > p by zero

9. EndDo

There are a number of drawbacks to the above algorithm. First, the amount of fill-in and

computational work for obtaining the ILU(p) factorization is not predictable for p > 0.

Second, the cost of updating the levels can be quite high. Most importantly, the level of

fill-in for indefinite matrices may not be a good indicator of the size of the elements that

are being dropped. Thus, the algorithm may drop large elements and result in an inaccurate

incomplete factorization, in the sense that R = LU � A is not small. Experience reveals

that on the average this will lead to a larger number of iterations to achieve convergence,

although there are certainly instances where this is not the case. The techniques which will

be described in Section 10.4 have been developed to remedy these three difficulties, by

producing incomplete factorizations with small error R and a controlled number of fill-ins.

�1 2 'm+1

�2 �2 3

�3 �3

�m+1

�i �i �i i+1 'i+m

'n

�n �n �n

n

Figure 10.4 Matrix resulting from the discretization of an el-

liptic problem on a rectangle.

10.3.4 MATRICES WITH REGULAR STRUCTURE

Often, the original matrix has a regular structure which can be exploited to formulate the

ILU preconditioners in a simpler way. Historically, incomplete factorization precondition-

ers were developed first for such matrices, rather than for general sparse matrices. Here, we

call a regularly structured matrix a matrix consisting of a small number of diagonals. As an

10.3 ILU FACTORIZATION PRECONDITIONERS 281

example, consider the diffusion-convection equation, with Dirichlet boundary conditions

��u+~b:ru = f in

u = 0 on @

where
 is simply a rectangle. As seen in Chapter 2, if the above problem is discretized

using centered differences, a linear system is obtained whose coefficient matrix has the

structure shown in Figure 10.4. In terms of the stencils seen in Chapter 4, the representation

of this matrix is rather simple. Each row expresses the coupling between unknown i and

unknowns i+1, i� 1 which are in the horizontal, or x direction, and the unknowns i+m
and i�mwhich are in the vertical, or y direction. This stencil is represented in Figure 10.5.

i+1�i�i

�i

'i+m

Figure 10.5 Stencil associated with the 5-point matrix shown

in Figure 10.4.

The desired L and U matrices in the ILU(0) factorization are shown in Figure 10.6.

1
b2

bn 1

em+1

en

d1 g2

dn

gn

fm+1

fn

L U

Figure 10.6 L and U factors of the ILU(0) factorization for

the 5-point matrix shown in Figure 10.4.

Now the respective stencils of these L and U matrices can be represented at a mesh

point i as shown in Figure 10.7.

282 CHAPTER 10 PRECONDITIONING TECHNIQUES

ei

1bi

fi+m

di gi+1

Figure 10.7 Stencils associated with the L and U factors

shown in Figure 10.6.

The stencil of the product LU can be obtained easily by manipulating stencils directly

rather than working with the matrices they represent. Indeed, the i-th row of LU is obtained

by performing the following operation:

rowi(LU) = 1� rowi(U) + bi � rowi�1(U) + ei � rowi�m(U):

This translates into a combination of the stencils associated with the rows:

stencili(LU) = 1� stencili(U) + bi � stencili�1(U) + ei � stencili�m(U)

in which stencilj(X) represents the stencil of the matrix X based at the mesh point labeled

j. This gives the stencil for the LU matrix represented in Figure 10.8.

gi+1

di + bigi + eifi
	

bidi�1

fi+m

eidi�m

bifi+m�1

eigi�m+1

Figure 10.8 Stencil associated with the product of the L and

U factors shown in Figure 10.6.

In the figure, the fill-in elements are represented by squares and all other nonzero elements

of the stencil are filled circles. The ILU(0) process consists of identifying LU with A in

locations where the original aij ’s are nonzero. In the Gaussian eliminations process, this

is done from i = 1 to i = n. This provides the following equations obtained directly from

comparing the stencils of LU and A (going from lowest to highest indices)

eidi�m = �i

10.3 ILU FACTORIZATION PRECONDITIONERS 283

bidi�1 = �i

di + bigi + eifi = �i

gi+1 = i+1

fi+m = 'i+m:

Observe that the elements gi+1 and fi+m are identical with the corresponding elements of

the A matrix. The other values are obtained from the following recurrence:

ei =
�i

di�m

bi =
�i
di�1

di = �i � bigi � eifi:

The above recurrence can be simplified further by making the observation that the quan-

tities �i=di�m and �i=di�1 need not be saved since they are scaled versions of the corre-

sponding elements in A. With this observation, only a recurrence for the diagonal elements

di is needed. This recurrence is:

di = �i �
�ii
di�1

�
�i'i
di�m

; i = 1; : : : ; n; (10.19)

with the convention that any dj with a non-positive index j is replaced by 1 and any other

element with a negative index is zero. The factorization obtained takes the form

M = (D �E)D�1(D � F) (10.20)

in which �E is the strict lower diagonal of A, �F is the strict upper triangular part of A,

and D is the diagonal obtained with the above recurrence. Note that an ILU(0) based on

the IKJversion of Gaussian elimination would give the same result.

For a general sparse matrix A with irregular structure, one can also determine a pre-

conditioner in the form (10.20) by requiring only that the diagonal elements of M match

those of A (see Exercise 10). However, this will not give the same ILU factorization as the

one based on the IKJvariant of Gaussian elimination seen earlier. Why the ILU(0) factor-

ization gives rise to the same factorization as that of (10.20) is simple to understand: The

product of L and U does not change the values of the existing elements in the upper part,

except for the diagonal. This also can be interpreted on the adjacency graph of the matrix.

This approach can now be extended to determine the ILU(1) factorization as well as

factorizations with higher levels of fill. The stencils of the L and U matrices in the ILU(1)

factorization are the stencils of the lower part and upper parts of the LU matrix obtained

from ILU(0). These are shown in Figure 10.9. In the illustration, the meaning of a given

stencil is not in the usual graph theory sense. Instead, all the marked nodes at a stencil

based at node i represent those nodes coupled with unknown i by an equation. Thus, all

the filled circles in the picture are adjacent to the central node. Proceeding as before and

combining stencils to form the stencil associated with the LU matrix, we obtain the stencil

shown in Figure 10.10.

284 CHAPTER 10 PRECONDITIONING TECHNIQUES

ei

1bi

ci

fi+m

di gi+1

hi+m�1

Figure 10.9 Stencils associated with the L and U factors of

the ILU(0) factorization for the matrix associated with the sten-

cil of Figure 10.8.

bihi+m�2
hi+m�1 + bifi+m�1

? fi+m

bidi�1 + eihi�1

di + bigi + eifi + cihi

� gi+1 + cifi+1

eidi�m
eigi�m+1 + cidi�m+1

6 cigi�m+1

Figure 10.10 Stencil associated with the product of the L
and U matrices whose stencils are shown in Figure 10.9.

As before, the fill-in elements are represented by squares and all other elements are

filled circles. A typical row of the matrix associated with the above stencil has nine nonzero

elements. Two of these are fill-ins, i.e., elements that fall outside the original structure of

the L and U matrices. It is now possible to determine a recurrence relation for obtaining

the entries of L and U . There are seven equations in all which, starting from the bottom,

are

eidi�m = �i

eigi�m+1 + cidi�m+1 = 0

bidi�1 + eihi�1 = �i

di + bigi + eifi + cihi = �i

gi+1 + cifi+1 = i+1

hi+m�1 + bifi+m�1 = 0

fi+m = 'i+m:

10.3 ILU FACTORIZATION PRECONDITIONERS 285

This immediately yields the following recurrence relation for the entries of the L and U
factors:

ei = �i=di�m

ci = �eigi�m+1=di�m+1

bi = (�i � eihi�1) =di�1

di = �i � bigi � eifi � cihi

gi+1 = i+1 � cifi+1

hi+m�1 = �bifi+m�1

fi+m = 'i+m:

In proceeding from the nodes of smallest index to those of largest index, we are in effect

performing implicitly the IKJversion of Gaussian elimination. The result of the ILU(1)

obtained in this manner is therefore identical with that obtained by using Algorithms 10.1

and 10.3.

10.3.5 MODIFIED ILU (MILU)

In all the techniques thus far, the elements that were dropped out during the incomplete

elimination process are simply discarded. There are also techniques which attempt to re-

duce the effect of dropping by compensating for the discarded entries. For example, a

popular strategy is to add up all the elements that have been dropped at the completion of

the k-loop of Algorithm 10.3. Then this sum is subtracted from the diagonal entry in U .

This diagonal compensation strategy gives rise to the Modified ILU (MILU) factorization.

Thus, in equation (10.14), the final row ui� obtained after completion of the k-loop of

Algorithm 10.3 undergoes one more modification, namely,

uii := uii � (ri�e)

in which e � (1; 1; : : : ; 1)T . Note that ri� is a row and ri�e is the sum of the elements

in this row, i.e., its row sum. The above equation can be rewritten in row form as ui� :=
ui� � (ri�e)e

T
i and equation (10.15) becomes

ai� =

iX
k=1

likuk� + (ri�e)e
T
i � ri�: (10.21)

Observe that

ai�e =

iX
k=1

likuk�e+ (ri�e)e
T
i e� ri�e =

i�1X
k=1

likuk�e = LU e:

This establishes that Ae = LUe. As a result, this strategy guarantees that the row sums of

A are equal to those of LU . For PDEs, the vector of all ones represents the discretization

of a constant function. This additional constraint forces the ILU factorization to be exact

for constant functions in some sense. Therefore, it is not surprising that often the algorithm

does well for such problems. For other problems or problems with discontinuous coeffi-

cients, MILU algorithms usually are not better than their ILU counterparts, in general.

286 CHAPTER 10 PRECONDITIONING TECHNIQUES

Example 10.3 For regularly structured matrices there are two elements dropped at the

i-th step of ILU(0). These are bifi+m�1 and eigi�m+1 located on the north-west and south-

east corners of the stencil, respectively. Thus, the row sum ri;�e associated with step i is

si =
�i�i+m�1

di�1
+

�im�i+1
di�m

and the MILU variant of the recurrence (10.19) is

si =
�i�i+m�1

di�1
+

�im�i+1

di�m

di = �i �
�ii
di�1

�
�i'i
di�m

� si:

The new ILU factorization is now such that A = LU � R in which according to (10.21)

the i-th row of the new remainder matrix R is given by

r
(new)
i;� = (ri�e)e

T
i � ri�

whose row sum is zero.

This generic idea of lumping together all the elements dropped in the elimination pro-

cess and adding them to the diagonal of U can be used for any form of ILU factorization.

In addition, there are variants of diagonal compensation in which only a fraction of the

dropped elements are added to the diagonal. Thus, the term si in the above example would

be replaced by !si before being added to uii, where ! is typically between 0 and 1. Other

strategies distribute the sum si among nonzero elements of L and U , other than the diago-

nal.

THRESHOLD STRATEGIES AND ILUT

10.4

Incomplete factorizations which rely on the levels of fill are blind to numerical values be-

cause elements that are dropped depend only on the structure of A. This can cause some

difficulties for realistic problems that arise in many applications. A few alternative methods

are available which are based on dropping elements in the Gaussian elimination process

according to their magnitude rather than their locations. With these techniques, the zero

pattern P is determined dynamically. The simplest way to obtain an incomplete factor-

ization of this type is to take a sparse direct solver and modify it by adding lines of code

which will ignore “small” elements. However, most direct solvers have a complex imple-

mentation which involves several layers of data structures that may make this approach

ineffective. It is desirable to develop a strategy which is more akin to the ILU(0) approach.

This section describes one such technique.

10.4 THRESHOLD STRATEGIES AND ILUT 287

10.4.1 THE ILUT APPROACH

A generic ILU algorithm with threshold can be derived from the IKJversion of Gaussian

elimination, Algorithm 10.2, by including a set of rules for dropping small elements. In

what follows, applying a dropping rule to an element will only mean replacing the element

by zero if it satisfies a set of criteria. A dropping rule can be applied to a whole row by

applying the same rule to all the elements of the row. In the following algorithm, w is a

full-length working row which is used to accumulate linear combinations of sparse rows in

the elimination and wk is the k-th entry of this row. As usual, ai� denotes the i-th row of

A.

ALGORITHM 10.6: ILUT

1. For i = 1; : : : ; n Do:

2. w := ai�

3. For k = 1; : : : ; i� 1 and when wk 6= 0 Do:

4. wk := wk=akk

5. Apply a dropping rule to wk

6. If wk 6= 0 then

7. w := w � wk � uk�

8. EndIf

9. EndDo

10. Apply a dropping rule to row w
11. li;j := wj for j = 1; : : : ; i� 1
12. ui;j := wj for j = i; : : : ; n
13. w := 0
14. EndDo

Now consider the operations involved in the above algorithm. Line 7 is a sparse update

operation. A common implementation of this is to use a full vector for w and a companion

pointer which points to the positions of its nonzero elements. Similarly, lines 11 and 12 are

sparse-vector copy operations. The vector w is filled with a few nonzero elements after the

completion of each outer loop i, and therefore it is necessary to zero out those elements at

the end of the Gaussian elimination loop as is done in line 13. This is a sparse set-to-zero

operation.

ILU(0) can be viewed as a particular case of the above algorithm. The dropping rule

for ILU(0) is to drop elements that are in positions not belonging to the original structure

of the matrix.

In the factorization ILUT(p; �), the following rule is used.

1. In line 5, an element wk is dropped (i.e., replaced by zero) if it is less than the

relative tolerance �i obtained by multiplying � by the original norm of the i-th row

(e.g., the 2-norm).

2. In line 10, a dropping rule of a different type is applied. First, drop again any

element in the row with a magnitude that is below the relative tolerance �i. Then,

288 CHAPTER 10 PRECONDITIONING TECHNIQUES

keep only the p largest elements in the L part of the row and the p largest elements

in the U part of the row in addition to the diagonal element, which is always kept.

The goal of the second dropping step is to control the number of elements per row. Roughly

speaking, p can be viewed as a parameter that helps control memory usage, while � helps

to reduce computational cost. There are several possible variations on the implementation

of dropping step 2. For example we can keep a number of elements equal to nu(i) + p in

the upper part and nl(i) + p in the lower part of the row, where nl(i) and nu(i) are the

number of nonzero elements in the L part and the U part of the i-th row of A, respectively.

This variant is adopted in the ILUT code used in the examples.

Note that no pivoting is performed. Partial (column) pivoting may be incorporated at

little extra cost and will be discussed later. It is also possible to combine ILUT with one of

the many standard reorderings, such as the ordering and the nested dissection ordering, or

the reverse Cuthill-McKee ordering. Reordering in the context of incomplete factorizations

can also be helpful for improving robustness, provided enough accuracy is used. For ex-

ample, when a red-black ordering is used, ILU(0) may lead to poor performance compared

with the natural ordering ILU(0). On the other hand, if ILUT is used by allowing gradually

more fill-in, then the performance starts improving again. In fact, in some examples, the

performance of ILUT for the red-black ordering eventually outperforms that of ILUT for

the natural ordering using the same parameters p and � .

10.4.2 ANALYSIS

Existence theorems for the ILUT factorization are similar to those of other incomplete

factorizations. If the diagonal elements of the original matrix are positive while the off-

diagonal elements are negative, then under certain conditions of diagonal dominance the

matrices generated during the elimination will have the same property. If the original ma-

trix is diagonally dominant, then the transformed matrices will also have the property of

being diagonally dominant under certain conditions. These properties are analyzed in detail

in this section.

The row vector w resulting from line 4 of Algorithm 10.6 will be denoted by uk+1
i;� .

Note that uk+1
i;j = 0 for j � k. Lines 3 to 10 in the algorithm involve a sequence of

operations of the form

lik := uk
ik=ukk (10.22)

if jlikj small enough set lik = 0

else:

uk+1
i;j := uk

i;j � likuk;j � rkij j = k + 1; : : : ; n (10.23)

for k = 1; : : : ; i� 1, in which initially u1i;� := ai;� and where rkij is an element subtracted

from a fill-in element which is being dropped. It should be equal either to zero (no drop-

ping) or to uk
ij � likukj when the element uk+1

i;j is being dropped. At the end of the i-th
step of Gaussian elimination (outer loop in Algorithm 10.6), we obtain the i-th row of U ,

ui;� � ui
i�1;� (10.24)

10.4 THRESHOLD STRATEGIES AND ILUT 289

and the following relation is satisfied:

ai;� =
iX

k=1

lk;ju
k
i;� + ri;�;

where ri;� is the row containing all the fill-ins.

The existence result which will be proved is valid only for certain modifications of

the basic ILUT(p; �) strategy. We consider an ILUT strategy which uses the following

modification:

� Drop Strategy Modification. For any i < n, let ai;ji be the element of largest

modulus among the elements ai;j ; j = i + 1; : : : n, in the original matrix. Then

elements generated in position (i; ji) during the ILUT procedure are not subject to

the dropping rule.

This modification prevents elements generated in position (i; ji) from ever being dropped.

Of course, there are many alternative strategies that can lead to the same effect.

A matrix H whose entries hij satisfy the following three conditions:

hii > 0 for 1 � i < n and hnn � 0 (10.25)

hij � 0 for i; j = 1; : : : ; n and i 6= j; (10.26)
nX

j=i+1

hij < 0; for 1 � i < n (10.27)

will be referred to as an M̂ matrix. The third condition is a requirement that there be at

least one nonzero element to the right of the diagonal element, in each row except the last.

The row sum for the i-th row is defined by

rs(hi;�) = hi;�e =

nX
j=1

hi;j :

A given row of an M̂ matrix H is diagonally dominant, if its row sum is nonnegative. An

M̂ matrix H is said to be diagonally dominant if all its rows are diagonally dominant. The

following theorem is an existence result for ILUT. The underlying assumption is that an

ILUT strategy is used with the modification mentioned above.

THEOREM 10.3 If the matrix A is a diagonally dominant M̂ matrix, then the rows

uk
i;�; k = 0; 1; 2; : : : ; i defined by (10.23) starting with u0i;� = 0 and u1i;� = ai;� satisfy the

following relations for k = 1; : : : ; l

uk
ij � 0 j 6= i (10.28)

rs(uk
i;�) � rs(uk�1

i;�) � 0; (10.29)

uk
ii > 0 when i < n and uk

nn � 0: (10.30)

Proof. The result can be proved by induction on k. It is trivially true for k = 0. To prove

that the relation (10.28) is satisfied, start from the relation

uk+1
i;� := uk

i;� � likuk;� � rki�

290 CHAPTER 10 PRECONDITIONING TECHNIQUES

in which lik � 0; uk;j � 0. Either rkij is zero which yields uk+1
ij � uk

ij � 0, or rkij
is nonzero which means that uk+1

ij is being dropped, i.e., replaced by zero, and therefore

again uk+1
ij � 0. This establishes (10.28). Note that by this argument rkij = 0 except when

the j-th element in the row is dropped, in which case uk+1
ij = 0 and rkij = uk

ij�likuk;j � 0.

Therefore, rkij � 0, always. Moreover, when an element in position (i; j) is not dropped,

then

uk+1
i;j := uk

i;j � likuk;j � uk
i;j

and in particular by the rule in the modification of the basic scheme described above, for

i < n, we will always have for j = ji,

uk+1
i;ji

� uk
i;ji (10.31)

in which ji is defined in the statement of the modification.

Consider the row sum of uk+1
i� . We have

rs(uk+1
i;�) = rs(uk

i;�)� lik rs(uk;�)� rs(rki�)

� rs(uk
i;�)� lik rs(uk;�) (10.32)

� rs(uk
i;�) (10.33)

which establishes (10.29) for k + 1.

It remains to prove (10.30). From (10.29) we have, for i < n,

uk+1
ii �

X
j=k+1;n

� uk+1
i;j =

X
j=k+1;n

juk+1
i;j j (10.34)

� juk+1
i;ji

j � juk
i;ji j � : : : (10.35)

� ju1i;ji j = jai;ji j: (10.36)

Note that the inequalities in (10.35) are true because uk
i;ji is never dropped by assumption

and, as a result, (10.31) applies. By the condition (10.27), which defines M̂ matrices, jai;ji j
is positive for i < n. Clearly, when i = n, we have by (10.34) unn � 0. This completes

the proof.

The theorem does not mean that the factorization is effective only when its conditions are

satisfied. In practice, the preconditioner is efficient under fairly general conditions.

10.4.3 IMPLEMENTATION DETAILS

A poor implementation of ILUT may well lead to an expensive factorization phase, and

possibly an impractical algorithm. The following is a list of the potential difficulties that

may cause inefficiencies in the implementation of ILUT.

1. Generation of the linear combination of rows of A (Line 7 in Algorithm 10.6).

2. Selection of the p largest elements in L and U .

3. Need to access the elements of L in increasing order of columns (in line 3 of

Algorithm 10.6).

10.4 THRESHOLD STRATEGIES AND ILUT 291

For (1), the usual technique is to generate a full row and accumulate the linear combination

of the previous rows in it. The row is zeroed again after the whole loop is finished using

a sparse set-to-zero operation. A variation on this technique uses only a full integer array

jr(1 : n), the values of which are zero except when there is a nonzero element. With this

full row, a short real vector w(1 : maxw) must be maintained which contains the real

values of the row, as well as a corresponding short integer array jw(1 : maxw) which

points to the column position of the real values in the row. When a nonzero element resides

in position j of the row, then jr(j) is set to the address k in w; jw where the nonzero

element is stored. Thus, jw(k) points to jr(j), and jr(j) points to jw(k) and w(k). This

is illustrated in Figure 10.11.

1

2

0 0 2

4

0 0 3

7

0 4

9

0 0 0 0

x x x x w: real values

jw: pointer to nonzero elements

jr: nonzero
indicator

Figure 10.11 Illustration of data structure used for the work-

ing row in ILUT.

Note that jr holds the information on the row consisting of both the L part and the

U part of the LU factorization. When the linear combinations of the rows are performed,

first determine the pivot. Then, unless it is small enough to be dropped according to the

dropping rule being used, proceed with the elimination. If a new element in the linear

combination is not a fill-in, i.e., if jr(j) = k 6= 0, then update the real value w(k). If it is a

fill-in (jr(j) = 0), then append an element to the arrays w; jw and update jr accordingly.

For (2), the natural technique is to employ a heap-sort strategy. The cost of this imple-

mentation would beO(m+p�log2m), i.e.,O(m) for the heap construction andO(log2m)
for each extraction. Another implementation is to use a modified quick-sort strategy based

on the fact that sorting the array is not necessary. Only the largest p elements must be ex-

tracted. This is a quick-split technique to distinguish it from the full quick-sort. The method

consists of choosing an element, e.g., x = w(1), in the array w(1 : m), then permuting

the data so that jw(k)j � jxj if k � mid and jw(k)j � jxj if k � mid, where mid is

some split point. If mid = p, then exit. Otherwise, split one of the left or right sub-arrays

recursively, depending on whether mid is smaller or larger than p. The cost of this strategy

on the average is O(m). The savings relative to the simpler bubble sort or insertion sort

schemes are small for small values of p, but they become rather significant for large p and

m.

The next implementation difficulty is that the elements in the L part of the row being

built are not in an increasing order of columns. Since these elements must be accessed from

left to right in the elimination process, all elements in the row after those already elimi-

292 CHAPTER 10 PRECONDITIONING TECHNIQUES

nated must be scanned. The one with smallest column number is then picked as the next

element to eliminate. This operation can be efficiently organized as a binary search tree

which allows easy insertions and searches. However, this improvement is rather complex

to implement and is likely to yield moderate gains.

Example 10.4 Tables 10.3 and 10.4 show the results of applying GMRES(10) precon-

ditioned with ILUT(1; 10�4) and ILUT(5; 10�4), respectively, to the five test problems

described in Section 3.7. See Example 6.1 for the meaning of the column headers in the ta-

ble. As shown, all linear systems are now solved in a relatively small number of iterations,

with the exception of F2DB which still takes 130 steps to converge with lfil = 1 (but only

10 with lfil = 5.) In addition, observe a marked improvement in the operation count and

error norms. Note that the operation counts shown in the column Kflops do not account for

the operations required in the set-up phase to build the preconditioners. For large values of

lfil , this may be large.

Matrix Iters Kflops Residual Error

F2DA 18 964 0.47E-03 0.41E-04

F3D 14 3414 0.11E-02 0.39E-03

ORS 6 341 0.13E+00 0.60E-04

F2DB 130 7167 0.45E-02 0.51E-03

FID 59 19112 0.19E+00 0.11E-03

Table 10.3 A test run of GMRES(10)-ILUT(1; 10�4) precon-

ditioning.

If the total time to solve one linear system with A is considered, a typical curve of

the total time required to solve a linear system when the lfil parameter varies would look

like the plot shown in Figure 10.12. As lfil increases, a critical value is reached where

the preprocessing time and the iteration time are equal. Beyond this critical point, the

preprocessing time dominates the total time. If there are several linear systems to solve

with the same matrix A, then it is advantageous to use a more accurate factorization, since

the cost of the factorization will be amortized. Otherwise, a smaller value of lfil will be

more efficient.

Matrix Iters Kflops Residual Error

F2DA 7 478 0.13E-02 0.90E-04

F3D 9 2855 0.58E-03 0.35E-03

ORS 4 270 0.92E-01 0.43E-04

F2DB 10 724 0.62E-03 0.26E-03

FID 40 14862 0.11E+00 0.11E-03

Table 10.4 A test run of GMRES(10)-ILUT(5; 10�4) precon-

ditioning.

10.4 THRESHOLD STRATEGIES AND ILUT 293

level of fill-in

C
P
U

T
i
m
e

3.0 5.0 7.0 9.0 11. 13. 15.

0.

2.0

4.0

6.0

8.0

10.

12.

Figure 10.12 Typical CPU time as a function of lfil The

dashed line is the ILUT time, the dotted line is the GMRES time,

and the solid line shows the total.

10.4.4 THE ILUTP APPROACH

The ILUT approach may fail for many of the matrices that arise from real applications, for

one of the following reasons.

1. The ILUT procedure encounters a zero pivot;

2. The ILUT procedure encounters an overflow or underflow condition, because of an

exponential growth of the entries of the factors;

3. The ILUT preconditioner terminates normally but the incomplete factorization pre-

conditioner which is computed is unstable.

An unstable ILU factorization is one for which M�1 = U�1L�1 has a very large norm

leading to poor convergence or divergence of the outer iteration. The case (1) can be over-

come to a certain degree by assigning an arbitrary nonzero value to a zero diagonal element

that is encountered. Clearly, this is not a satisfactory remedy because of the loss in accuracy

in the preconditioner. The ideal solution in this case is to use pivoting. However, a form of

pivoting is desired which leads to an algorithm with similar cost and complexity to ILUT.

Because of the data structure used in ILUT, row pivoting is not practical. Instead, column

pivoting can be implemented rather easily.

Here are a few of the features that characterize the new algorithm which is termed

ILUTP (“P” stands for pivoting). ILUTP uses a permutation array perm to hold the new

orderings of the variables, along with the reverse permutation array. At step i of the elim-

ination process the largest entry in a row is selected and is defined to be the new i-th
variable. The two permutation arrays are then updated accordingly. The matrix elements

of L and U are kept in their original numbering. However, when expanding the L-U row

which corresponds to the i-th outer step of Gaussian elimination, the elements are loaded

with respect to the new labeling, using the array perm for the translation. At the end of

the process, there are two options. The first is to leave all elements labeled with respect

294 CHAPTER 10 PRECONDITIONING TECHNIQUES

to the original labeling. No additional work is required since the variables are already in

this form in the algorithm, but the variables must then be permuted at each preconditioning

step. The second solution is to apply the permutation to all elements of A as well as L=U .

This does not require applying a permutation at each step, but rather produces a permuted

solution which must be permuted back at the end of the iteration phase. The complexity

of the ILUTP procedure is virtually identical to that of ILUT. A few additional options

can be provided. A tolerance parameter called permtol may be included to help determine

whether or not to permute variables: A nondiagonal element aij is candidate for a per-

mutation only when tol � jaij j > jaiij. Furthermore, pivoting may be restricted to take

place only within diagonal blocks of a fixed size. The size mbloc of these blocks must be

provided. A value of mbloc � n indicates that there are no restrictions on the pivoting.

For difficult matrices, the following strategy seems to work well:

1. Always apply a scaling to all the rows (or columns) e.g., so that their 1-norms are

all equal to 1; then apply a scaling of the columns (or rows).

2. Use a small drop tolerance (e.g., � = 10�4 or � = 10�5).

3. Take a large fill-in parameter (e.g., lfil = 20).

4. Do not take a small value for permtol. Reasonable values are between 0:5 and

0:01, with 0:5 being the best in many cases.

5. Take mbloc = n unless there are reasons why a given block size is justifiable.

Example 10.5 Table 10.5 shows the results of applying the GMRES algorithm with

ILUTP(1; 10�4) preconditioning to the five test problems described in Section 3.7. The

permtol parameter is set to 1.0 in this case.

Matrix Iters Kflops Residual Error

F2DA 18 964 0.47E-03 0.41E-04

F3D 14 3414 0.11E-02 0.39E-03

ORS 6 341 0.13E+00 0.61E-04

F2DB 130 7167 0.45E-02 0.51E-03

FID 50 16224 0.17E+00 0.18E-03

Table 10.5 A test run of GMRES with ILUTP(1) precondi-

tioning.

See Example 6.1 for the meaning of the column headers in the table. The results are identi-

cal with those of ILUT(1; 10�4) shown in Table 10.3, for the first four problems, but there

is an improvement for the fifth problem.

10.4.5 THE ILUS APPROACH

The ILU preconditioners discussed so far are based mainly on the the IKJvariant of Gaus-

sian elimination. Different types of ILUs can be derived using other forms of Gaussian

10.4 THRESHOLD STRATEGIES AND ILUT 295

elimination. The main motivation for the version to be described next is that ILUT does

not take advantage of symmetry. IfA is symmetric, then the resultingM = LU is nonsym-

metric in general. Another motivation is that in many applications including computational

fluid dynamics and structural engineering, the resulting matrices are stored in a sparse

skyline (SSK) format rather than the standard Compressed Sparse Row format.

sparse row!

 sparse column

Figure 10.13 Illustration of the sparse skyline format.

In this format, the matrix A is decomposed as

A = D + L1 + LT2

in which D is a diagonal of A and L1; L2 are strictly lower triangular matrices. Then a

sparse representation of L1 and L2 is used in which, typically, L1 and L2 are stored in the

CSR format and D is stored separately.

Incomplete Factorization techniques may be developed for matrices in this format

without having to convert them into the CSR format. Two notable advantages of this ap-

proach are (1) the savings in storage for structurally symmetric matrices, and (2) the fact

that the algorithm gives a symmetric preconditioner when the original matrix is symmetric.

Consider the sequence of matrices

Ak+1 =

�
Ak vk
wk �k+1

�
;

where An = A. If Ak is nonsingular and its LDU factorization

Ak = LkDkUk

is already available, then the LDU factorization of Ak+1 is

Ak+1 =

�
Lk 0
yk 1

��
Dk 0
0 dk+1

��
Uk zk
0 1

�
in which

zk = D�1k L�1k vk (10.37)

yk = wkU
�1
k D�1k (10.38)

296 CHAPTER 10 PRECONDITIONING TECHNIQUES

dk+1 = �k+1 � ykDkzk: (10.39)

Hence, the last row/column pairs of the factorization can be obtained by solving two unit

lower triangular systems and computing a scaled dot product. This can be exploited for

sparse matrices provided an appropriate data structure is used to take advantage of the

sparsity of the matrices Lk, Uk as well as the vectors vk, wk , yk, and zk. A convenient data

structure for this is to store the rows/columns pairs wk; v
T
k as a single row in sparse mode.

All these pairs are stored in sequence. The diagonal elements are stored separately. This is

called the Unsymmetric Sparse Skyline (USS) format. Each step of the ILU factorization

based on this approach will consist of two approximate sparse linear system solutions and

a sparse dot product. The question that arises is: How can a sparse triangular system be

solved inexpensively? It would seem natural to solve the triangular systems (10.37) and

(10.38) exactly and then drop small terms at the end, using a numerical dropping strategy.

However, the total cost of computing the ILU factorization with this strategy would be

O(n2) operations at least, which is not acceptable for very large problems. Since only an

approximate solution is required, the first idea that comes to mind is the truncated Neumann

series,

zk = D�1k L�1k vk = D�1k (I +Ek +E2
k + : : :+Ep

k)vk (10.40)

in which Ek � I � Lk. In fact, by analogy with ILU(p), it is interesting to note that the

powers of Ek will also tend to become smaller as p increases. A close look at the structure

of Ep
kvk shows that there is indeed a strong relation between this approach and ILU(p) in

the symmetric case. Now we make another important observation, namely, that the vector

Ej
kvk can be computed in sparse-sparse mode, i.e., in terms of operations involving prod-

ucts of sparse matrices by sparse vectors. Without exploiting this, the total cost would still

be O(n2). When multiplying a sparse matrix A by a sparse vector v, the operation can

best be done by accumulating the linear combinations of the columns of A. A sketch of the

resulting ILUS algorithm is as follows.

ALGORITHM 10.7: ILUS(�; p)

1. Set A1 = D1 = a11, L1 = U1 = 1
2. For i = 1; : : : ; n� 1 Do:

3. Compute zk by (10.40) in sparse-sparse mode

4. Compute yk in a similar way

5. Apply numerical dropping to yk and zk
6. Compute dk+1 via (10.39)

7. EndDo

If there are only i nonzero components in the vector v and an average of � nonzero elements

per column, then the total cost per step will be 2 � i � � on the average. Note that the

computation of dk via (10.39) involves the inner product of two sparse vectors which is

often implemented by expanding one of the vectors into a full vector and computing the

inner product of a sparse vector by this full vector. As mentioned before, in the symmetric

case ILUS yields the Incomplete Cholesky factorization. Here, the work can be halved

since the generation of yk is not necessary.

10.5 APPROXIMATE INVERSE PRECONDITIONERS 297

Also note that a simple iterative procedure such as MR or GMRES(m) can be used

to solve the triangular systems in sparse-sparse mode. Similar techniques will be seen

in Section 10.5. Experience shows that these alternatives are not much better than the

Neumann series approach [53].

APPROXIMATE INVERSE PRECONDITIONERS

10.5

The Incomplete LU factorization techniques were developed originally for M -matrices

which arise from the discretization of Partial Differential Equations of elliptic type, usu-

ally in one variable. For the common situation where A is indefinite, standard ILU fac-

torizations may face several difficulties, and the best known is the fatal breakdown due to

the encounter of a zero pivot. However, there are other problems that are just as serious.

Consider an incomplete factorization of the form

A = LU +E (10.41)

where E is the error. The preconditioned matrices associated with the different forms of

preconditioning are similar to

L�1AU�1 = I + L�1EU�1: (10.42)

What is sometimes missed is the fact that the error matrix E in (10.41) is not as important

as the “preconditioned” error matrix L�1EU�1 shown in (10.42) above. When the matrix

A is diagonally dominant, thenL andU are well conditioned, and the size ofL�1EU�1 re-

mains confined within reasonable limits, typically with a nice clustering of its eigenvalues

around the origin. On the other hand, when the original matrix is not diagonally dominant,

L�1 or U�1 may have very large norms, causing the error L�1EU�1 to be very large and

thus adding large perturbations to the identity matrix. It can be observed experimentally

that ILU preconditioners can be very poor in these situations which often arise when the

matrices are indefinite, or have large nonsymmetric parts.

One possible remedy is to try to find a preconditioner that does not require solving

a linear system. For example, the original system can be preconditioned by a matrix M
which is a direct approximation to the inverse of A.

10.5.1 APPROXIMATING THE INVERSE OF A SPARSE

MATRIX

A simple technique for finding approximate inverses of arbitrary sparse matrices is to at-

tempt to find a sparse matrixM which minimizes the Frobenius norm of the residual matrix

I �AM ,

F (M) = kI �AMk2F : (10.43)

298 CHAPTER 10 PRECONDITIONING TECHNIQUES

A matrix M whose value F (M) is small would be a right-approximate inverse of A. Sim-

ilarly, a left-approximate inverse can be defined by using the objective function

kI �MAk2F : (10.44)

Finally, a left-right pair L;U can be sought to minimize

kI � LAUk2F : (10.45)

In the following, only (10.43) and(10.45) are considered. The case (10.44) is very

similar to the right preconditioner case (10.43). The objective function (10.43) decouples

into the sum of the squares of the 2-norms of the individual columns of the residual matrix

I �AM ,

F (M) = kI �AMk2F =

nX
j=1

kej �Amjk
2
2 (10.46)

in which ej and mj are the j-th columns of the identity matrix and of the matrix M ,

respectively. There are two different ways to proceed in order to minimize (10.46). The

function (10.43) can be minimized globally as a function of the sparse matrix M , e.g., by

a gradient-type method. Alternatively, the individual functions

fj(m) = kej �Amk22; j = 1; 2; : : : ; n (10.47)

can be minimized. The second approach is appealing for parallel computers, although there

is also parallelism to be exploited in the first approach. These two approaches will be

discussed in turn.

10.5.2 GLOBAL ITERATION

The global iteration approach consists of treating M as an unknown sparse matrix and

using a descent-type method to minimize the objective function (10.43). This function is a

quadratic function on the space of n � n matrices, viewed as objects in R
n2

. The proper

inner product on the space of matrices, to which the squared norm (10.46) is associated, is

hX;Y i = tr(Y TX): (10.48)

In the following, an array representation of an n2 vectorX means the n�nmatrix whose

column vectors are the successive n-vectors of X .

In a descent algorithm, a new iterateMnew is defined by taking a step along a selected

direction G, i.e.,

Mnew =M + �G

in which � is selected to minimize the objective function F (Mnew). From results seen

in Chapter 5, minimizing the residual norm is equivalent to imposing the condition that

R � �AG be orthogonal to AG with respect to the h�; �i inner product. Thus, the optimal

� is given by

� =
hR;AGi

hAG;AGi
=

tr(RTAG)

tr ((AG)TAG)
: (10.49)

10.5 APPROXIMATE INVERSE PRECONDITIONERS 299

The denominator may be computed as kAGk2F . The resulting matrix M will tend to be-

come denser after each descent step and it is therefore essential to apply a numerical drop-

ping strategy to the resulting M . However, the descent property of the step is now lost,

i.e., it is no longer guaranteed that F (Mnew) � F (M). An alternative would be to apply

numerical dropping to the direction of search G before taking the descent step. In this case,

the amount of fill-in in the matrix M cannot be controlled.

The simplest choice for the descent direction G is to take it to be equal to the residual

matrix R = I �AM , where M is the new iterate. Except for the numerical dropping step,

the corresponding descent algorithm is nothing but the Minimal Residual (MR) algorithm,

seen in Section 5.3.2, on the n2�n2 linear system AM = I . The global Minimal Residual

algorithm will have the following form.

ALGORITHM 10.8: Global Minimal Residual Descent Algorithm

1. Select an initial M
2. Until convergence Do:

3. Compute C := AM and G := I � C
4. Compute � = tr(GTAG)=kCk2F
5. Compute M :=M + �G
6. Apply numerical dropping to M
7. EndDo

A second choice is to take G to be equal to the direction of steepest descent, i.e., the

direction opposite to the gradient of the function (10.43) with respect to M . If all vectors

as represented as 2-dimensional n� n arrays, then the gradient can be viewed as a matrix

G, which satisfies the following relation for small perturbations E,

F (M +E) = F (M) + hG;Ei+ o(kEk): (10.50)

This provides a way of expressing the gradient as an operator on arrays, rather than n2

vectors.

PROPOSITION 10.3 The array representation of the gradient of F with respect to M
is the matrix

G = �2ATR

in which R is the residual matrix R = I �AM .

Proof. For any matrix E we have

F (M +E)� F (M) = tr
�
(I �A(M +E))T (I �A(M +E))

�
�tr

�
(I �A(M)T (I �A(M)

�
= tr

�
(R�AE)T (R�AE)�RTR

�
= �tr

�
(AE)TR +RTAE � (AE)T (AE)

�
= �2tr(RTAE) + tr

�
(AE)T (AE)

�
= �2

ATR;E

�
+ hAE;AEi :

300 CHAPTER 10 PRECONDITIONING TECHNIQUES

Comparing this with (10.50) yields the desired result.

Thus, the steepest descent algorithm will consist of replacingG in line 3 of Algorithm

10.8 by G = ATR = AT (I � AM). As is expected with steepest descent techniques, the

algorithm can be quite slow.

ALGORITHM 10.9: Global Steepest Descent Algorithm

1. Select an initial M
2. Until convergence Do:

3. Compute R = I �AM , and G := ATR ;

4. Compute � = kGk2F =kAGk
2
F

5. Compute M :=M + �G
6. Apply numerical dropping to M
7. EndDo

In either steepest descent or minimal residual, the G matrix must be stored explicitly.

The scalars kAGk2F and tr(GTAG) needed to obtain � in these algorithms can be com-

puted from the successive columns of AG, which can be generated, used, and discarded.

As a result, the matrix AG need not be stored.

10.5.3 COLUMN-ORIENTED ALGORITHMS

Column-oriented algorithms consist of minimizing the individual objective functions

(10.47) separately. Each minimization can be performed by taking a sparse initial guess

and solving approximately the n parallel linear subproblems

Amj = ej ; j = 1; 2; : : : ; n (10.51)

with a few steps of a nonsymmetric descent-type method, such as MR or GMRES. If these

linear systems were solved (approximately) without taking advantage of sparsity, the cost

of constructing the preconditioner would be of order n2. That is because each of the n
columns would requireO(n) operations. Such a cost would become unacceptable for large

linear systems. To avoid this, the iterations must be performed in sparse-sparse mode, a

term which was already introduced in Section 10.4.5. The column mj and the subsequent

iterates in the MR algorithm must be stored and operated on as sparse vectors. The Arnoldi

basis in the GMRES algorithm are now to be kept in sparse format. Inner products and

vector updates involve pairs of sparse vectors.

In the following MR algorithm, ni iterations are used to solve (10.51) approximately

for each column, giving an approximation to the j-th column of the inverse of A. Each

initial mj is taken from the columns of an initial guess, M0.

10.5 APPROXIMATE INVERSE PRECONDITIONERS 301

ALGORITHM 10.10: Approximate Inverse via MR Iteration

1. Start: set M = M0

2. For each column j = 1; : : : ; n Do:

3. Define mj =Mej
4. For i = 1; : : : ; ni Do:

5. rj := ej �Amj

6. �j :=
(rj ;Arj)
(Arj ;Arj)

7. mj := mj + �jrj
8. Apply numerical dropping to mj

9. EndDo

10. EndDo

The algorithm computes the current residual rj and then minimizes the residual norm

kej �A(mj +�rj)k2, with respect to �. The resulting column is then pruned by applying

the numerical dropping step in line 8.

In the sparse implementation of MR and GMRES, the matrix-vector product, SAXPY,

and dot product kernels now all involve sparse vectors. The matrix-vector product is much

more efficient if the sparse matrix is stored by columns, since all the entries do not need

to be traversed. Efficient codes for all these kernels may be constructed which utilize a full

n-length work vector.

Columns from an initial guess M0 for the approximate inverse are used as the initial

guesses for the iterative solution of the linear subproblems. There are two obvious choices:

M0 = �I andM0 = �AT . The scale factor � is chosen to minimize the norm of I�AM0.

Thus, the initial guess is of the form M0 = �G where G is either the identity or AT . The

optimal � can be computed using the formula (10.49), in which R is to be replaced by

the identity, so � = tr(AG)=tr(AG(AG)T). The identity initial guess is less expensive to

use but M0 = �AT is sometimes a much better initial guess. For this choice, the initial

preconditioned system AM0 is SPD.

The linear systems needed to solve when generating each column of the approximate

inverse may themselves be preconditioned with the most recent version of the precondi-

tioning matrix M . Thus, each system (10.51) for approximating column j may be pre-

conditioned with M 0
0 where the first j � 1 columns of M 0

0 are the mk that already have

been computed, 1 � k < j, and the remaining columns are the initial guesses for the mk,

j � k � n. Thus, outer iterations can be defined which sweep over the matrix, as well as

inner iterations which compute each column. At each outer iteration, the initial guess for

each column is taken to be the previous result for that column.

10.5.4 THEORETICAL CONSIDERATIONS

The first theoretical question which arises is whether or not the approximate inverses ob-

tained by the approximations described earlier can be singular. It cannot be proved that M
is nonsingular unless the approximation is accurate enough. This requirement may be in

conflict with the requirement of keeping the approximation sparse.

302 CHAPTER 10 PRECONDITIONING TECHNIQUES

PROPOSITION 10.4 Assume that A is nonsingular and that the residual of the ap-

proximate inverse M satisfies the relation

kI �AMk < 1 (10.52)

where k:k is any consistent matrix norm. Then M is nonsingular.

Proof. The result follows immediately from the equality

AM = I � (I �AM) � I �N: (10.53)

Since kNk < 1, Theorem 1.5 seen in Chapter 1 implies that I �N is nonsingular.

The result is true in particular for the Frobenius norm which is consistent (see Chapter 1).

It may sometimes be the case that AM is poorly balanced and as a result R can be

large. Then balancing AM can yield a smaller norm and possibly a less restrictive condi-

tion for the nonsingularity of M . It is easy to extend the previous result as follows. If A is

nonsingular and two nonsingular diagonal matrices D1; D2 exist such that

kI �D1AMD2k < 1 (10.54)

where k:k is any consistent matrix norm, then M is nonsingular.

Each column is obtained independently by requiring a condition on the residual norm

of the form

kej �Amjk � �; (10.55)

for some vector norm k:k. From a practical point of view the 2-norm is preferable since it is

related to the objective function which is used, namely, the Frobenius norm of the residual

I �AM . However, the 1-norm is of particular interest since it leads to a number of simple

theoretical results. In the following, it is assumed that a condition of the form

kej �Amjk1 � �j (10.56)

is required for each column.

The above proposition does not reveal anything about the degree of sparsity of the

resulting approximate inverseM . It may well be the case that in order to guarantee nonsin-

gularity,M must be dense, or nearly dense. In fact, in the particular case where the norm in

the proposition is the 1-norm, it is known that the approximate inverse may be structurally

dense, in that it is always possible to find a sparse matrix A for which M will be dense if

kI �AMk1 < 1.

Next, we examine the sparsity of M and prove a simple result for the case where an

assumption of the form (10.56) is made.

PROPOSITION 10.5 LetB = A�1 and assume that a given element bij ofB satisfies

the inequality

jbij j > �j max
k=1;n

jbikj; (10.57)

then the element mij is nonzero.

10.5 APPROXIMATE INVERSE PRECONDITIONERS 303

Proof. From the equality AM = I �R we have M = A�1 �A�1R, and hence

mij = bij �

nX
k=1

bikrkj :

Therefore,

jmij j � jbij j �

nX
k=1

jbikrkj j

� jbij j � max
k=1;n

jbikj krjk1

� jbij j � max
k=1;n

jbikj�j :

Now the condition (10.57) implies that jmij j > 0.

The proposition implies that if R is small enough, then the nonzero elements of M are

located in positions corresponding to the larger elements in the inverse of A. The following

negative result is an immediate corollary.

COROLLARY 10.1 Let � = maxj=1;:::;n �j . If the nonzero elements of B = A�1 are

� -equimodular in that

jbij j > � max
k=1;n; l=1;n

jblkj;

then the nonzero sparsity pattern of M includes the nonzero sparsity pattern of A�1. In

particular, if A�1 is dense and its elements are � -equimodular, then M is also dense.

The smaller the value of � , the more likely the condition of the corollary will be satisfied.

Another way of stating the corollary is that accurate and sparse approximate inverses may

be computed only if the elements of the actual inverse have variations in size. Unfortu-

nately, this is difficult to verify in advance and it is known to be true only for certain types

of matrices.

10.5.5 CONVERGENCE OF SELF PRECONDITIONED MR

We now examine the convergence of the MR algorithm in the case where self precon-

ditioning is used, but no numerical dropping is applied. The column-oriented algorithm is

considered first. Let M be the current approximate inverse at a given substep. The self pre-

conditioned MR iteration for computing the j-th column of the next approximate inverse

is obtained by the following sequence of operations:

1. rj := ej �Amj = ej �AMej
2. tj :=Mrj

3. �j :=
(rj ;Atj)
(Atj ;Atj)

4. mj := mj + �jtj .

304 CHAPTER 10 PRECONDITIONING TECHNIQUES

Note that �j can be written as

�j =
(rj ; AMrj)

(AMrj ; AMrj)
�

(rj ; Crj)

(Crj ; Crj)

where

C = AM

is the preconditioned matrix at the given substep. The subscript j is now dropped to sim-

plify the notation. The new residual associated with the current column is given by

rnew = r � �At = r � �AMr � r � �Cr:

The orthogonality of the new residual against AMr can be used to obtain

krnewk22 = krk22 � �2kCrk22:

Replacing � by its value defined above we get

krnewk22 = krk22

"
1�

�
(Cr; r)

kCrk2krk2

�2#
:

Thus, at each inner iteration, the residual norm for the j-th column is reduced according to

the formula

krnewk2 = krk2 sin 6 (r; Cr) (10.58)

in which 6 (u; v) denotes the acute angle between the vectors u and v. Assume that each

column converges. Then, the preconditioned matrix C converges to the identity. As a result

of this, the angle 6 (r; Cr) will tend to 6 (r; r) = 0, and therefore the convergence ratio

sin 6 (r; Cr) will also tend to zero, showing superlinear convergence.

Now consider equation (10.58) more carefully. Denote by R the residual matrix R =
I �AM and observe that

sin 6 (r; Cr) = min
�

kr � � Crk2
krk2

�
kr � Crk2
krk2

�
kRrk2
krk2

� kRk2:

This results in the following statement.

PROPOSITION 10.6 Assume that the self preconditioned MR algorithm is employed

with one inner step per iteration and no numerical dropping. Then the 2-norm of each

residual ej �Amj of the j-th column is reduced by a factor of at least kI �AMk2, where

M is the approximate inverse before the current step, i.e.,

krnewj k2 � kI �AMk2 krjk2: (10.59)

In addition, the residual matrices Rk = I�AMk obtained after each outer iteration satisfy

kRk+1kF � kRkk
2
F : (10.60)

As a result, when the algorithm converges, it does so quadratically.

10.5 APPROXIMATE INVERSE PRECONDITIONERS 305

Proof. Inequality (10.59) was proved above. To prove quadratic convergence, first use

the inequality kXk2 � kXkF and (10.59) to obtain

krnewj k2 � kRk;jkF krjk2:

Here, the k index corresponds to the outer iteration and the j-index to the column. Note that

the Frobenius norm is reduced for each of the inner steps corresponding to the columns,

and therefore,

kRk;jkF � kRkkF :

This yields

krnewj k22 � kRkk
2
F krjk

2
2

which, upon summation over j, gives

kRk+1kF � kRkk
2
F :

This completes the proof.

Note that the above theorem does not prove convergence. It only states that when the al-

gorithm converges, it does so quadratically at the limit. In addition, the result ceases to be

valid in the presence of dropping.

Consider now the case of the global iteration. When self preconditioning is incor-

porated into the global MR algorithm (Algorithm 10.8), the search direction becomes

Zk = MkRk, where Rk is the current residual matrix. Then, the main steps of the al-

gorithm (without dropping) are as follows.

1. Rk := I �AMk

2. Zk :=MkRk

3. �k := hRk;AZki
hAZk;AZki

4. Mk+1 :=Mk + �kZk

At each step the new residual matrix Rk+1 satisfies the relation

Rk+1 = I �AMk+1 = I �A(Mk + �kZk) = Rk � �kAZk:

An important observation is that Rk is a polynomial in R0. This is because, from the above

relation,

Rk+1 = Rk � �kAMkRk = Rk � �k(I �Rk)Rk = (1� �k)Rk + �kR
2
k: (10.61)

Therefore, induction shows that Rk+1 = p2k (R0) where pj is a polynomial of degree j.

Now define the preconditioned matrices,

Bk � AMk = I �Rk: (10.62)

Then, the following recurrence follows from (10.61),

Bk+1 = Bk + �kBk(I �Bk) (10.63)

and shows that Bk+1 is also a polynomial of degree 2k in B0. In particular, if the initial

B0 is symmetric, then so are all subsequent Bk’s. This is achieved when the initial M is a

multiple of AT , namely if M0 = �0A
T .

306 CHAPTER 10 PRECONDITIONING TECHNIQUES

Similar to the column oriented case, when the algorithm converges it does so quadrat-

ically.

PROPOSITION 10.7 Assume that the self preconditioned global MR algorithm is

used without dropping. Then, the residual matrices obtained at each iteration satisfy

kRk+1kF � kR
2
kkF : (10.64)

As a result, when the algorithm converges, then it does so quadratically.

Proof. Define for any �,

R(�) = (1� �)Rk + �R2
k

Recall that �k achieves the minimum of kR(�)kF over all �’s. In particular,

kRk+1kF = min
�
kR(�)kF

� kR(1)kF = kR2
kkF (10.65)

� kRkk
2
F :

This proves quadratic convergence at the limit.

For further properties see Exercise 16.

10.5.6 FACTORED APPROXIMATE INVERSES

A notable disadvantage of the right or left preconditioning approach method is that it is

difficult to assess in advance whether or not the resulting approximate inverse M is non-

singular. An alternative would be to seek a two-sided approximation, i.e., a pair L, U , with

L lower triangular and U upper triangular, which attempts to minimize the objective func-

tion (10.45). The techniques developed in the previous sections can be exploited for this

purpose.

In the factored approach, two matrices L and U which are unit lower and upper trian-

gular matrices are sought such that

LAU � D

where D is some unknown diagonal matrix. When D is nonsingular and LAU = D, then

L;U are called inverse LU factors of A since in this case A�1 = UD�1L. Once more, the

matrices are built one column or row at a time. Assume as in Section 10.4.5 that we have

the sequence of matrices

Ak+1 =

�
Ak vk
wk �k+1

�
in which An � A. If the inverse factors Lk; Uk are available for Ak, i.e.,

LkAkUk = Dk;

10.5 APPROXIMATE INVERSE PRECONDITIONERS 307

then the inverse factors Lk+1; Uk+1 for Ak+1 are easily obtained by writing�
Lk 0
�yk 1

��
Ak vk
wk �k+1

��
Uk �zk
0 1

�
=

�
Dk 0
0 �k+1

�
(10.66)

in which zk, yk, and �k+1 are such that

Akzk = vk (10.67)

ykAk = wk (10.68)

�k+1 = �k+1 � wkzk = �k+1 � ykvk: (10.69)

Note that the formula (10.69) exploits the fact that either the system (10.67) is solved

exactly (middle expression) or the system (10.68) is solved exactly (second expression) or

both systems are solved exactly (either expression). In the realistic situation where neither

of these two systems is solved exactly, then this formula should be replaced by

�k+1 = �k+1 � wkzk � ykvk + ykAkzk: (10.70)

The last row/column pairs of the approximate factored inverse can be obtained by solving

two sparse systems and computing a few dot products. It is interesting to note that the only

difference with the ILUS factorization seen in Section 10.4.5 is that the coefficient matrices

for these systems are not the triangular factors of Ak, but the matrix Ak itself.

To obtain an approximate factorization, simply exploit the fact that theAk matrices are

sparse and then employ iterative solvers in sparse-sparse mode. In this situation, formula

(10.70) should be used for �k+1. The algorithm would be as follows.

ALGORITHM 10.11: Approximate Inverse Factors Algorithm

1. For k = 1; : : : ; n Do:

2. Solve (10.67) approximately;

3. Solve (10.68) approximately;

4. Compute �k+1 = �k+1 � wkzk � ykvk + ykAkzk
5. EndDo

A linear system must be solved with Ak in line 2 and a linear system with AT
k in line 3.

This is a good scenario for the Biconjugate Gradient algorithm or its equivalent two-sided

Lanczos algorithm. In addition, the most current approximate inverse factors can be used

to precondition the linear systems to be solved in steps 2 and 3. This was termed “self

preconditioning” earlier. All the linear systems in the above algorithm can be solved in

parallel since they are independent of one another. The diagonal D can then be obtained at

the end of the process.

This approach is particularly suitable in the symmetric case. Since there is only one

factor, the amount of work is halved. In addition, there is no problem with the existence

in the positive definite case as is shown in the following lemma which states that �k+1 is

always > 0 when A is SPD, independently of the accuracy with which the system (10.67)

is solved.

LEMMA 10.1 Let A be SPD. Then, the scalar �k+1 as computed by (10.70) is positive.

308 CHAPTER 10 PRECONDITIONING TECHNIQUES

Proof. In the symmetric case, wk = vTk . Note that �k+1 as computed by formula (10.70)

is the (k + 1; k+ 1) element of the matrix Lk+1Ak+1L
T
k+1. It is positive because Ak+1 is

SPD. This is independent of the accuracy for solving the system to obtain zk.

In the general nonsymmetric case, there is no guarantee that �k+1 will be nonzero,

unless the systems (10.67) and (10.68) are solved accurately enough. There is no practical

problem here, since �k+1 is computable. The only question remaining is a theoretical one:

Can �k+1 be guaranteed to be nonzero if the systems are solved with enough accuracy?

Intuitively, if the system is solved exactly, then the D matrix must be nonzero since it is

equal to the D matrix of the exact inverse factors in this case. The minimal assumption to

make is that eachAk is nonsingular. Let ��k+1 be the value that would be obtained if at least

one of the systems (10.67) or (10.68) is solved exactly. According to equation (10.69), in

this situation this value is given by

��k+1 = �k+1 � wkA
�1
k vk: (10.71)

If Ak+1 is nonsingular, then ��k+1 6= 0. To see this refer to the defining equation (10.66)

and compute the productLk+1Ak+1Uk+1 in the general case. Let rk and sk be the residuals

obtained for these linear systems, i.e.,

rk = vk �Akzk; sk = wk � ykAk: (10.72)

Then a little calculation yields

Lk+1Ak+1Uk+1 =

�
LkAkUk Lkrk
skUk �k+1

�
: (10.73)

If one of rk or sk is zero, then it is clear that the term �k+1 in the above relation be-

comes ��k+1 and it must be nonzero since the matrix on the left-hand side is nonsingular.

Incidentally, this relation shows the structure of the last matrix LnAnUn � LAU . The

components 1 to j � 1 of column j consist of the vector Ljrj , the components 1 to j � 1
of row i make up the vector skUk, and the diagonal elements are the �i’s. Consider now

the expression for �k+1 from (10.70).

�k+1 = �k+1 � wkzk � ykvk + ykAkzk

= �k+1 � wkA
�1
k (vk � rk)� (wk � sk)A

�1
k vk + (vk � rk)A

�1
k (wk � sk)

= �k+1 � vkA
�1
k wk + rkA

�1
k sk

= ��k+1 + rkA
�1
k sk:

This perturbation formula is of a second order in the sense that j�k+1 � ��k+1j =
O(krkk kskk). It guarantees that �k+1 is nonzero whenever jrkA

�1
k skj < j��k+1j.

10.5.7 IMPROVING A PRECONDITIONER

After a computed ILU factorization results in an unsatisfactory convergence, it is difficult

to improve it by modifying the L and U factors. One solution would be to discard this

factorization and attempt to recompute a fresh one possibly with more fill-in. Clearly, this

may be a wasteful process. A better alternative is to use approximate inverse techniques.

Assume a (sparse) matrix M is a preconditioner to the original matrix A, so the precondi-

10.6 BLOCK PRECONDITIONERS 309

tioned matrix is

C =M�1A:

A sparse matrix S is sought to approximate the inverse ofM�1A. This matrix is then to be

used as a preconditioner toM�1A. Unfortunately, the matrixC is usually dense. However,

observe that all that is needed is a matrix S such that

AS �M:

Recall that the columns ofA andM are sparse. One approach is to compute a least-squares

approximation in the Frobenius norm sense. This approach was used already in Section

10.5.1 when M is the identity matrix. Then the columns of S were obtained by approxi-

mately solving the linear systems Asi � ei. The same idea can be applied here. Now, the

systems

Asi = mi

must be solved instead, where mi is the i-th column of M which is sparse. Thus, the

coefficient matrix and the right-hand side are sparse, as before.

BLOCK PRECONDITIONERS

10.6

Block preconditioning is a popular technique for block-tridiagonal matrices arising from

the discretization of elliptic problems. It can also be generalized to other sparse matrices.

We begin with a discussion of the block-tridiagonal case.

10.6.1 BLOCK-TRIDIAGONAL MATRICES

Consider a block-tridiagonal matrix blocked in the form

A =

0
BBBB@
D1 E2

F2 D2 E3
. . .

. . .
. . .

Fm�1 Dm�1 Em
Fm Dm

1
CCCCA : (10.74)

One of the most popular block preconditioners used in the context of PDEs is based on

this block-tridiagonal form of the coefficient matrixA. Let D be the block-diagonal matrix

consisting of the diagonal blocksDi,L the block strictly-lower triangular matrix consisting

of the sub-diagonal blocks Fi, and U the block strictly-upper triangular matrix consisting

of the super-diagonal blocks Ei. Then, the above matrix has the form

A = L+D + U:

310 CHAPTER 10 PRECONDITIONING TECHNIQUES

A block ILU preconditioner is defined by

M = (L+�)��1(� + U); (10.75)

where L and U are the same as above, and � is a block-diagonal matrix whose blocks �i

are defined by the recurrence:

�i = Di � Fi
i�1Ei; (10.76)

in which
j is some sparse approximation to ��1
j . Thus, to obtain a block factorization,

approximations to the inverses of the blocks �i must be found. This clearly will lead to

difficulties if explicit inverses are used.

An important particular case is when the diagonal blocks Di of the original matrix are

tridiagonal, while the co-diagonal blocks Ei and Fi are diagonal. Then, a simple recur-

rence formula for computing the inverse of a tridiagonal matrix can be exploited. Only the

tridiagonal part of the inverse must be kept in the recurrence (10.76). Thus,

�1 = D1; (10.77)

�i = Di � Fi

(3)
i�1Ei; i = 1; : : : ;m; (10.78)

where

(3)
k is the tridiagonal part of ��1

k .

(

(3)
k)i;j = (��1

k)i;j for ji� jj � 1:

The following theorem can be shown.

THEOREM 10.4 Let A be Symmetric Positive Definite and such that

� aii > 0; i = 1; : : : ; n, and aij � 0 for all j 6= i.

� The matrices Di are all (strict) diagonally dominant.

Then each block�i computed by the recurrence (10.77), (10.78) is a symmetricM -matrix.

In particular, M is also a positive definite matrix.

We now show how the inverse of a tridiagonal matrix can be obtained. Let a tridiagonal

matrix � of dimension l be given in the form

� =

0
BBBB@

�1 ��2
��2 �2 ��3

. . .
. . .

. . .

��l�1 �l�1 ��l

��l �l

1
CCCCA ;

and let its Cholesky factorization be

� = LDLT ;

with

D = diag f�ig

10.7 PRECONDITIONERS FOR THE NORMAL EQUATIONS 311

and

L =

0
BBBB@

1
�2 1

. . .
. . .

�l�1 1
�l 1

1
CCCCA :

The inverse of � is L�TD�1L�1. Start by observing that the inverse of LT is a unit upper

triangular matrix whose coefficients uij are given by

uij = i+1i+2 : : : j�1j for 1 � i < j < l:

As a result, the j-th column cj of L�T is related to the (j � 1)-st column cj�1 by the very

simple recurrence,

cj = ej + jcj�1; for j � 2

starting with the first column c1 = e1. The inverse of � becomes

��1 = L�TD�1L�1 =
lX

j=1

1

�j
cjc

T
j : (10.79)

See Exercise 12 for a proof of the above equality. As noted, the recurrence formulas for

computing��1 can be unstable and lead to numerical difficulties for large values of l.

10.6.2 GENERAL MATRICES

A general sparse matrix can often be put in the form (10.74) where the blocking is ei-

ther natural as provided by the physical problem, or artificial when obtained as a result of

RCMK ordering and some block partitioning. In such cases, a recurrence such as (10.76)

can still be used to obtain a block factorization defined by (10.75). A 2-level precondi-

tioner can be defined by using sparse inverse approximate techniques to approximate
i.

These are sometimes termed implicit-explicit preconditioners, the implicit part referring to

the block-factorization and the explicit part to the approximate inverses used to explicitly

approximate��1i .

PRECONDITIONERS FOR THE NORMAL EQUATIONS

10.7

When the original matrix is strongly indefinite, i.e., when it has eigenvalues spread on both

sides of the imaginary axis, the usual Krylov subspace methods may fail. The Conjugate

Gradient approach applied to the normal equations may then become a good alternative.

Choosing to use this alternative over the standard methods may involve inspecting the spec-

trum of a Hessenberg matrix obtained from a small run of an unpreconditioned GMRES

algorithm.

312 CHAPTER 10 PRECONDITIONING TECHNIQUES

If the normal equations approach is chosen, the question becomes how to precondition

the resulting iteration. An ILU preconditioner can be computed for A and the precondi-

tioned normal equations,

AT (LU)�T (LU)�1Ax = AT (LU)�T (LU)�1b;

can be solved. However, when A is not diagonally dominant the ILU factorization pro-

cess may encounter a zero pivot. Even when this does not happen, the resulting precon-

ditioner may be of poor quality. An incomplete factorization routine with pivoting, such

as ILUTP, may constitute a good choice. ILUTP can be used to precondition either the

original equations or the normal equations shown above. This section explores a few other

options available for preconditioning the normal equations.

10.7.1 JACOBI, SOR, AND VARIANTS

There are several ways to exploit the relaxation schemes for the Normal Equations seen in

Chapter 8 as preconditioners for the CG method applied to either (8.1) or (8.3). Consider

(8.3), for example, which requires a procedure delivering an approximation to (AAT)�1v
for any vector v. One such procedure is to perform one step of SSOR to solve the system

(AAT)w = v. Denote by M�1 the linear operator that transforms v into the vector result-

ing from this procedure, then the usual Conjugate Gradient method applied to (8.3) can

be recast in the same form as Algorithm 8.5. This algorithm is known as CGNE/SSOR.

Similarly, it is possible to incorporate the SSOR preconditioning in Algorithm 8.4, which

is associated with the Normal Equations (8.1), by defining M�1 to be the linear transfor-

mation that maps a vector v into a vectorw resulting from the forward sweep of Algorithm

8.2 followed by a backward sweep. We will refer to this algorithm as CGNR/SSOR.

The CGNE/SSOR and CGNR/SSOR algorithms will not break down if A is nonsin-

gular, since then the matrices AAT and ATA are Symmetric Positive Definite, as are the

preconditioning matrices M . There are several variations to these algorithms. The standard

alternatives based on the same formulation (8.1) are either to use the preconditioner on the

right, solving the system ATAM�1y = b, or to split the preconditioner into a forward

SOR sweep on the left and a backward SOR sweep on the right of the matrix ATA. Sim-

ilar options can also be written for the Normal Equations (8.3) again with three different

ways of preconditioning. Thus, at least six different algorithms can be defined.

10.7.2 IC(0) FOR THE NORMAL EQUATIONS

The Incomplete Cholesky IC(0) factorization can be used to precondition the Normal

Equations (8.1) or (8.3). This approach may seem attractive because of the success of

incomplete factorization preconditioners. However, a major problem is that the Incom-

plete Cholesky factorization is not guaranteed to exist for an arbitrary Symmetric Pos-

itive Definite matrix B. All the results that guarantee existence rely on some form of

diagonal dominance. One of the first ideas suggested to handle this difficulty was to

use an Incomplete Cholesky factorization on the “shifted” matrix B + �I . We refer to

IC(0) applied to B = ATA as ICNR(0), and likewise IC(0) applied to B = AAT

10.7 PRECONDITIONERS FOR THE NORMAL EQUATIONS 313

as ICNE(0). Shifted variants correspond to applying IC(0) to the shifted B matrix.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
150

160

170

180

190

200

210

220

alpha

ite
ra

tio
ns

Figure 10.14 Iteration count as a function of the shift �.

One issue often debated is how to find good values for the shift �. There is no easy and

well-founded solution to this problem for irregularly structured symmetric sparse matrices.

One idea is to select the smallest possible � that makes the shifted matrix diagonally dom-

inant. However, this shift tends to be too large in general because IC(0) may exist for much

smaller values of �. Another approach is to determine the smallest � for which the IC(0)

factorization exists. Unfortunately, this is not a viable alternative. As is often observed,

the number of steps required for convergence starts decreasing as � increases, and then

increases again. An illustration of this is shown in Figure 10.14. This plot suggests that

there is an optimal value for � which is far from the smallest admissible one. For small �,

the diagonal dominance of B + �I is weak and, as a result, the computed IC factorization

is a poor approximation to the matrix B(�) � B + �I . In other words, B(�) is close to

the original matrix B, but the IC(0) factorization is far from B(�). For large �, the oppo-

site is true. The matrix B(�) has a large deviation from B(0), but its IC(0) factorization

may be quite good. Therefore, the general shape of the curve shown in the figure is not too

surprising.

To implement the algorithm, the matrix B = AAT need not be formed explicitly. All

that is required is to be able to access one row of B at a time. This row can be computed,

used, and then discarded. In the following, the i-th row eTi A of A is denoted by ai. The

algorithm is row-oriented and all vectors denote row vectors. It is adapted from the ILU(0)

factorization of a sparse matrix, i.e., Algorithm 10.4, but it actually computes the LDLT

factorization instead of an LU or LLT factorization. The main difference with Algorithm

10.4 is that the loop in line 7 is now restricted to j � i because of symmetry. If only the lij
elements are stored row-wise, then the rows of U = LT which are needed in this loop are

not directly available. Denote the j-th row of U = LT by uj . These rows are accessible by

adding a column data structure for the L matrix which is updated dynamically. A linked

list data structure can be used for this purpose. With this in mind, the IC(0) algorithm will

have the following structure.

ALGORITHM 10.12: Shifted ICNE(0)

314 CHAPTER 10 PRECONDITIONING TECHNIQUES

1. Initial step: Set d1 := a11 , l11 = 1
2. For i = 2; 3; : : : ; n Do:

3. Obtain all the nonzero inner products

4. lij = (aj ; ai); j = 1; 2; : : : ; i� 1, and lii := kaik
2 + �

5. Set NZ(i) � fj j lij 6= 0g
6. For k = 1; : : : ; i� 1 and if k 2 NZ(i) Do:

7. Extract row uk = (Lek)
T

8. Compute lik := lik=dk
9. For j = k + 1; : : : ; i and if (i; j) 2 NZ(i) Do:

10. Compute lik := lik � lijukj
11. EndDo

12. EndDo

13. Set di := lii, lii := 1
14. EndDo

Note that initially the row u1 in the algorithm is defined as the first row of A. All vectors

in the algorithm are row vectors.

The step represented by lines 3 and 4, which computes the inner products of row

number i with all previous rows, needs particular attention. If the inner products

aT1 ai; a
T
2 ai; : : : ; a

T
i�1ai

are computed separately, the total cost of the incomplete factorization would be of the

order of n2 steps and the algorithm would be of little practical value. However, most of

these inner products are equal to zero because of sparsity. This indicates that it may be

possible to compute only those nonzero inner products at a much lower cost. Indeed, if c is

the column of the i�1 inner products cij , then c is the product of the rectangular (i�1)�n
matrix Ai�1 whose rows are aT1 ; : : : ; a

T
i�1 by the vector ai, i.e.,

c = Ai�1ai: (10.80)

This is a sparse matrix-by-sparse vector product which was discussed in Section 10.5. It

is best performed as a linear combination of the columns of Ai�1 which are sparse. The

only difficulty with this implementation is that it requires both the row data structure of A
and of its transpose. A standard way to handle this problem is by building a linked-list data

structure for the transpose. There is a similar problem for accessing the transpose of L,

as mentioned earlier. Therefore, two linked lists are needed: one for the L matrix and the

other for the A matrix. These linked lists avoid the storage of an additional real array for

the matrices involved and simplify the process of updating the matrix A when new rows

are obtained. It is important to note that these linked lists are used only in the preprocessing

phase and are discarded once the incomplete factorization terminates.

10.7 PRECONDITIONERS FOR THE NORMAL EQUATIONS 315

10.7.3 INCOMPLETE GRAM-SCHMIDT AND ILQ

Consider a general sparse matrix A and denote its rows by a1; a2; : : : ; an . The (complete)

LQ factorization of A is defined by

A = LQ;

where L is a lower triangular matrix and Q is unitary, i.e., QTQ = I . The L factor in the

above factorization is identical with the Cholesky factor of the matrix B = AAT . Indeed,

if A = LQ where L is a lower triangular matrix having positive diagonal elements, then

B = AAT = LQQTLT = LLT :

The uniqueness of the Cholesky factorization with a factor L having positive diagonal ele-

ments shows that L is equal to the Cholesky factor of B. This relationship can be exploited

to obtain preconditioners for the Normal Equations.

Thus, there are two ways to obtain the matrix L. The first is to form the matrix B
explicitly and use a sparse Cholesky factorization. This requires forming the data structure

of the matrix AAT , which may be much denser than A. However, reordering techniques

can be used to reduce the amount of work required to compute L. This approach is known

as symmetric squaring.

A second approach is to use the Gram-Schmidt process. This idea may seem undesir-

able at first because of its poor numerical properties when orthogonalizing a large number

of vectors. However, because the rows remain very sparse in the incomplete LQ factoriza-

tion (to be described shortly), any given row ofA will be orthogonal typically to most of the

previous rows of Q. As a result, the Gram-Schmidt process is much less prone to numerical

difficulties. From the data structure point of view, Gram-Schmidt is optimal because it does

not require allocating more space than is necessary, as is the case with approaches based

on symmetric squaring. Another advantage over symmetric squaring is the simplicity of

the orthogonalization process and its strong similarity with the LU factorization. At every

step, a given row is combined with previous rows and then normalized. The incomplete

Gram-Schmidt procedure is modeled after the following algorithm.

ALGORITHM 10.13: LQ Factorization of A

1. For i = 1; : : : ; n Do:

2. Compute lij := (ai; qj) , for j = 1; 2; : : : ; i� 1;

3. Compute qi := ai �
Pi�1

j=1 lijqj , and lii = kqik2
4. If lii := 0 then Stop; else Compute qi := qi=lii.
5. EndDo

If the algorithm completes, then it will result in the factorization A = LQ where the rows

of Q and L are the rows defined in the algorithm. To define an incomplete factorization, a

dropping strategy similar to those defined for Incomplete LU factorizations must be incor-

porated. This can be done in very general terms as follows. Let PL and PQ be the chosen

zero patterns for the matrices L, and Q, respectively. The only restriction on PL is that

PL � f(i; j) j i 6= jg:

316 CHAPTER 10 PRECONDITIONING TECHNIQUES

As for PQ, for each row there must be at least one nonzero element, i.e.,

fj j(i; j) 2 PQg 6= f1; 2; : : : ; ng; for i = 1; : : : ; n:

These two sets can be selected in various ways. For example, similar to ILUT, they can be

determined dynamically by using a drop strategy based on the magnitude of the elements

generated. As before, xi denotes the i-th row of a matrix X and xij its (i; j)-th entry.

ALGORITHM 10.14: Incomplete Gram-Schmidt

1. For i = 1; : : : ; n Do:

2. Compute lij := (ai; qj) , for j = 1; 2; : : : ; i� 1;
3. Replace lij by zero if (i; j) 2 PL
4. Compute qi := ai �

Pi�1
j=1 lijqj ,

5. Replace each qij ; j = 1; : : : ; n by zero if (i; j) 2 PQ
6. lii := kqik2
7. If lii = 0 then Stop; else compute qi := qi=lii.
8. EndDo

We recognize in line 2 the same practical problem encountered in the previous section

for IC(0) for the Normal Equations. It can be handled in the same manner. Therefore, the

row structures of A, L, and Q are needed, as well as a linked list for the column structure

of Q.

After the i-th step is performed, the following relation holds:

qi = liiqi + ri = ai �

j�1X
j=1

lijqj

or

ai =

jX
j=1

lijqj + ri (10.81)

where ri is the row of elements that have been dropped from the row qi in line 5. The above

equation translates into

A = LQ+R (10.82)

where R is the matrix whose i-th row is ri, and the notation for L and Q is as before.

The case where the elements in Q are not dropped, i.e., the case when PQ is the empty

set, is of particular interest. Indeed, in this situation, R = 0 and we have the exact relation

A = LQ. However, Q is not unitary in general because elements are dropped from L. If

at a given step lii = 0, then (10.81) implies that ai is a linear combination of the rows q1,

: : :, qj�1. Each of these qk is, inductively, a linear combination of a1; : : : ak. Therefore, ai
would be a linear combination of the previous rows, a1; : : : ; ai�1 which cannot be true if

A is nonsingular. As a result, the following proposition can be stated.

PROPOSITION 10.8 If A is nonsingular and PQ = �, then the Algorithm 10.14 com-

pletes and computes an incomplete LQ factorization A = LQ, in which Q is nonsingular

and L is a lower triangular matrix with positive elements.

10.7 PRECONDITIONERS FOR THE NORMAL EQUATIONS 317

A major problem with the decomposition (10.82) is that the matrix Q is not orthogonal in

general. In fact, nothing guarantees that it is even nonsingular unless Q is not dropped or

the dropping strategy is made tight enough.

Because the matrix L of the complete LQ factorization of A is identical with the

Cholesky factor of B, one might wonder why the IC(0) factorization of B does not always

exist while the ILQ factorization seems to always exist. In fact, the relationship between

ILQ and ICNE, i.e., the Incomplete Cholesky for B = AAT , can lead to a more rigorous

way of choosing a good pattern for ICNE, as is explained next.

We turn our attention to Modified Gram-Schmidt. The only difference is that the row

qj is updated immediately after an inner product is computed. The algorithm is described

without dropping for Q for simplicity.

ALGORITHM 10.15: Incomplete Modi�ed Gram-Schmidt

1. For i = 1; : : : ; n Do:

2. qi := ai
3. For j = 1; : : : ; i� 1, Do:

4. Compute lij :=

�
0 if (i; j) 2 PL
(qi; qj) otherwise

5. Compute qi := qi � lijqj .

6. EndDo

7. lii := kqik2
8. If lii = 0 then Stop; else Compute qi := qi=lii.
9. EndDo

When A is nonsingular, the same result as before is obtained if no dropping is used on

Q, namely, that the factorization will exist and be exact in that A = LQ. Regarding the

implementation, if the zero pattern PL is known in advance, the computation of the inner

products in line 4 does not pose a particular problem. Without any dropping in Q, this

algorithm may be too costly in terms of storage. It is interesting to see that this algorithm

has a connection with ICNE, the incomplete Cholesky applied to the matrix AAT . The

following result is stated without proof.

THEOREM 10.5 Let A be an n�m matrix and let B = AAT . Consider a zero-pattern

set PL which is such that for any 1 � i; j; k � n, with i < j and i < k, the following

holds:

(i; j) 2 PL and (i; k) =2 PL ! (j; k) 2 PL:

Then the matrix L obtained from Algorithm 10.15 with the zero-pattern set PL is identi-

cal with the L factor that would be obtained from the Incomplete Cholesky factorization

applied to B with the zero-pattern set PL.

For a proof, see [222]. This result shows how a zero-pattern can be defined which guaran-

tees the existence of an Incomplete Cholesky factorization on AAT .

318 CHAPTER 10 PRECONDITIONING TECHNIQUES

EXERCISES

1 Assume that A is the Symmetric Positive Definite matrix arising from the 5-point finite differ-

ence discretization of the Laplacean on a given mesh. We reorder the matrix using the red-black

ordering and obtain the reordered matrix

B =

�
D1 E

ET D2

�
:

We then form the Incomplete Cholesky factorization on this matrix.

a. Show the fill-in pattern for the IC(0) factorization for a matrix of size n = 12 associated

with a 4� 3 mesh.

b. Show the nodes associated with these fill-ins on the 5-point stencil in the finite difference

mesh.

c. Give an approximate count of the total number of fill-ins when the original mesh is square,

with the same number of mesh points in each direction. How does this compare with the

natural ordering? Any conclusions?

2 Consider a 6� 6 tridiagonal nonsingular matrix A.

a. What can be said about its ILU(0) factorization (when it exists)?

b. Suppose that the matrix is permuted (symmetrically, i.e., both rows and columns) using the

permutation

� = [1; 3; 5; 2; 4; 6]:

i. Show the pattern of the permuted matrix.

ii. Show the locations of the fill-in elements in the ILU(0) factorization.

iii. Show the pattern of the ILU(1) factorization as well as the fill-ins generated.

iv. Show the level of fill of each element at the end of the ILU(1) process (including the

fill-ins).

v. What can be said of the ILU(2) factorization for this permuted matrix?

3 Assume that A is the matrix arising from the 5-point finite difference discretization of an elliptic

operator on a given mesh. We reorder the original linear system using the red-black ordering and

obtain the reordered linear system�
D1 E

F D2

� �
x1
x2

�
=

�
b1
b2

�
:

a. Show how to obtain a system (called the reduced system) which involves the variable x2
only.

b. Show that this reduced system is also a sparse matrix. Show the stencil associated with

the reduced system matrix on the original finite difference mesh and give a graph-theory

interpretation of the reduction process. What is the maximum number of nonzero elements

in each row of the reduced system.

4 It was stated in Section 10.3.2 that for some specific matrices the ILU(0) factorization of A can

be put in the form

M = (D �E)D�1(D � F)

in which �E and �F are the strict-lower and -upper parts of A, respectively.

EXERCISES AND NOTES 319

a. Characterize these matrices carefully and give an interpretation with respect to their adja-

cency graphs.

b. Verify that this is true for standard 5-point matrices associated with any domain
.

c. Is it true for 9-point matrices?

d. Is it true for the higher level ILU factorizations?

5 Let A be a pentadiagonal matrix having diagonals in offset positions �m;�1; 0; 1;m. The

coefficients in these diagonals are all constants: a for the main diagonal and -1 for all others. It

is assumed that a � p8. Consider the ILU(0) factorization of A as given in the form (10.20).

The elements di of the diagonal D are determined by a recurrence of the form (10.19).

a. Show that a
2
� di � a for i = 1; : : : ; n.

b. Show that di is a decreasing sequence. [Hint: Use induction].

c. Prove that the formal (infinite) sequence defined by the recurrence converges. What is its

limit?

6 Consider a matrix A which is split in the form A = D0 � E � F , where D0 is a block diag-

onal matrix whose block-diagonal entries are the same as those of A, and where �E is strictly

lower triangular and �F is strictly upper triangular. In some cases the block form of the ILU(0)

factorization can be put in the form (Section 10.3.2):

M = (D �E)D�1(D � F):

The block entries of D can be defined by a simple matrix recurrence. Find this recurrence rela-

tion. The algorithm may be expressed in terms of the block entries the matrix A.

7 Generalize the formulas developed at the end of Section 10.6.1 for the inverses of symmetric

tridiagonal matrices, to the nonsymmetric case.

8 Develop recurrence relations for Incomplete Cholesky with no fill-in (IC(0)), for 5-point matri-

ces, similar to those seen in Section 10.3.4 for ILU(0). Same question for IC(1).

9 What becomes of the formulas seen in Section 10.3.4 in the case of a 7-point matrix (for three-

dimensional problems)? In particular, can the ILU(0) factorization be cast in the form (10.20) in

which �E is the strict-lower diagonal of A and �F is the strict upper triangular part of A, and

D is a certain diagonal?

10 Consider an arbitrary matrix Awhich is split in the usual manner as A = D0�E�F , in which

�E and�F are the strict-lower and -upper parts of A, respectively, and define, for any diagonal

matrix D, the approximate factorization of A given by

M = (D �E)D�1(D � F):

Show how a diagonal D can be determined such thatA and M have the same diagonal elements.

Find a recurrence relation for the elements of D. Consider now the symmetric case and assume

that the matrix D which is positive can be found. Write M in the form

M = (D1=2 �ED
�1=2)(D1=2 �ED

�1=2)T � L1L
T
1 :

What is the relation between this matrix and the matrix of the SSOR(!) preconditioning, in the

particular case when D�1=2 = !I? Conclude that this form of ILU factorization is in effect an

SSOR preconditioning with a different relaxation factor ! for each equation.

11 Consider a general sparse matrix A (irregularly structured). We seek an approximate LU factor-

ization of the form

M = (D �E)D�1(D � F)

320 CHAPTER 10 PRECONDITIONING TECHNIQUES

in which �E and �F are the strict-lower and -upper parts of A, respectively. It is assumed that

A is such that

aii > 0; aijaji � 0 for i; j = 1; : : : ; n:

a. By identifying the diagonal elements of A with those of M , derive an algorithm for generat-

ing the elements of the diagonal matrix D recursively.

b. Establish that if dj > 0 for j < i then di � aii. Is it true in general that dj > 0 for all j?

c. Assume that for i = 1; : : : ; j � 1 we have di � � > 0. Show a sufficient condition under

which dj � �. Are there cases in which this condition cannot be satisfied for any �?

d. Assume now that all diagonal elements of A are equal to a constant, i.e., ajj = a for j =
1; : : : ; n. Define � � a

2
and let

Sj �
j�1X
i=1

aijaji; � � max
j=1;:::;n

Sj :

Show a condition on � under which dj � �; j = 1; 2; : : : ; n:

12 Show the second part of (10.79). [Hint: Exploit the formula ABT =
Pn

j=1
ajb

T
j where aj ; bj

are the j-th columns of A and B, respectively].

13 Let a preconditioning matrix M be related to the original matrix A by M = A+ E, in which

E is a matrix of rank k.

a. Assume that both A and M are Symmetric Positive Definite. How many steps at most are

required for the preconditioned Conjugate Gradient method to converge when M is used as

a preconditioner?

b. Answer the same question for the case when A and M are nonsymmetric and the full GM-

RES is used on the preconditioned system.

14 Formulate the problem for finding an approximate inverse M to a matrix A as a large n2 � n2

linear system. What is the Frobenius norm in the space in which you formulate this problem?

15 The concept of mask is useful in the global iteration technique. For a sparsity pattern S, i.e., a set

of pairs (i; j) and a matrixB, we define the product C = B�S to be the matrix whose elements

cij are zero if (i; j) does not belong to S, and bij otherwise. This is called a mask operation

since its effect is to ignore every value not in the pattern S. Consider a global minimization of

the function FS(M) � kS � (I �AM)kF .

a. What does the result of Proposition 10.3 become for this new objective function?

b. Formulate an algorithm based on a global masked iteration, in which the mask is fixed and

equal to the pattern of A.

c. Formulate an algorithm in which the mask is adapted at each outer step. What criteria would

you use to select the mask?

16 Consider the global self preconditioned MR iteration algorithm seen in Section 10.5.5. Define

the acute angle between two matrices as

cos 6 (X;Y) � hX;Y i
kXkF kY kF :

a. Following what was done for the (standard) Minimal Residual algorithm seen in Chapter 5,

establish that the matrices Bk = AMk and Rk = I � Bk produced by global MR without

dropping are such that

kRk+1kF � kRkkF sin 6 (Rk; BkRk):

EXERCISES AND NOTES 321

b. Let now M0 = �AT so that Bk is symmetric for all k (see Section 10.5.5). Assume that, at

a given step k the matrix Bk is positive definite. Show that

cos 6 (Rk; BkRk) � �min(Bk)

�max(Bk)

in which �min(Bk) and �max(Bk) are, respectively, the smallest and largest eigenvalues of

Bk.

17 In the two-sided version of approximate inverse preconditioners, the option of minimizing

f(L; U) = kI � LAUk2F
was mentioned, where L is unit lower triangular and U is upper triangular.

a. What is the gradient of f(L;U)?

b. Formulate an algorithm based on minimizing this function globally.

18 Consider the two-sided version of approximate inverse preconditioners, in which a unit lower

triangular L and an upper triangular U are sought so that LAU � I . One idea is to use an

alternating procedure in which the first half-step computes a right approximate inverse U to LA,

which is restricted to be upper triangular, and the second half-step computes a left approximate

inverse L to AU , which is restricted to be lower triangular.

a. Consider the first half-step. Since the candidate matrix U is restricted to be upper trian-

gular, special care must be exercised when writing a column-oriented approximate inverse

algorithm. What are the differences with the standard MR approach described by Algorithm

10.10?

b. Now consider seeking an upper triangular matrix U such that the matrix (LA)U is close to

the identity only in its upper triangular part. A similar approach is to be taken for the second

half-step. Formulate an algorithm based on this approach.

19 Write all six variants of the preconditioned Conjugate Gradient algorithm applied to the Normal

Equations, mentioned at the end of Section 10.7.1.

20 With the standard splitting A = D � E � F , in which D is the diagonal of A and �E;�F
its lower- and upper triangular parts, respectively, we associate the factored approximate inverse

factorization,

(I +ED
�1)A(I +D

�1
F) = D +R: (10.83)

a. Determine R and show that it consists of second order terms, i.e., terms involving products

of at least two matrices from the pair E;F .

b. Now use the previous approximation for D +R � D1 �E1 � F1,

(I +E1D
�1
1)(D +R)(I +D

�1
1 F1) = D1 +R1:

Show how the approximate inverse factorization (10.83) can be improved using this new

approximation. What is the order of the resulting approximation?

NOTES AND REFERENCES. A breakthrough paper on preconditioners is the article [149] by Mei-

jerink and van der Vorst who established existence of the incomplete factorization for M -matrices

and showed that preconditioning the Conjugate Gradient by using an ILU factorization can result in

an extremely efficient combination. The idea of preconditioning was exploited in many earlier papers.

For example, in [11, 12] Axelsson discusses SSOR iteration, “accelerated” by either the Conjugate

322 CHAPTER 10 PRECONDITIONING TECHNIQUES

Gradient or Chebyshev acceleration. Incomplete factorizations were also discussed in early papers,

for example, by Varga [212] and Buleev [45]. Thus, Meijerink and van der Vorst’s paper played an

essential role in directing the attention of researchers and practitioners to a rather important topic and

marked a turning point. Many of the early techniques were developed for regularly structured matri-

ces. The generalization, using the definition of level of fill for high-order Incomplete LU factoriza-

tions for unstructured matrices, was introduced by Watts [223] for petroleum engineering problems.

Recent research on iterative techniques has been devoted in great part to the development of

better iterative accelerators, while “robust” preconditioners have by and large been neglected. This

is certainly caused by the inherent lack of theory to support such methods. Yet these techniques

are vital to the success of iterative methods in real-life applications. A general approach based on

modifying a given direct solver by including a drop-off rule was one of the first in this category

[151, 157, 235, 98]. More economical alternatives, akin to ILU(p), were developed later [179, 183,

68, 67, 226, 233]. ILUT and ILUTP, are inexpensive general purpose preconditioners which are

fairly robust and efficient. However, many of these preconditioners, including ILUT and ILUTP, can

fail. Occasionally, a more accurate ILUT factorization leads to a larger number of steps needed

for convergence. One source of failure is the instability of the preconditioning operation. These

phenomena of instability have been studied by Elman [81] who proposed a detailed analysis of ILU

and MILU preconditioners for model problems. The theoretical analysis on ILUT stated as Theorem

10.3 is modeled after Theorem 1.14 in Axelsson and Barker [16] for ILU(0).

Some theory for block preconditioners is discussed in Axelsson’s book [15]. Different forms of

block preconditioners were developed independently by Axelsson, Brinkkemper, and Il’in [17] and

by Concus, Golub, and Meurant [61], initially for block matrices arising from PDEs in two dimen-

sions. Later, some generalizations were proposed [137]. Thus, the 2-level implicit-explicit precon-

ditioning introduced in [137] consists of using sparse inverse approximations to ��1i for obtaining

i.

The current rebirth of approximate inverse preconditioners [112, 62, 137, 54] is spurred by both

parallel processing and robustness considerations. Other preconditioners which are not covered here

are those based on domain decomposition techniques. Some of these techniques will be reviewed in

Chapter 13.

On another front, there is also increased interest in methods that utilize Normal Equations in

one way or another. Earlier, ideas revolved around shifting the matrixB = ATA before applying the

IC(0) factorization as was suggested by Kershaw [134] in 1977. Manteuffel [148] also made some

suggestions on how to select a good � in the context of the CGW algorithm. Currently, new ways

of exploiting the relationship with the QR (or LQ) factorization to define IC(0) more rigorously are

being explored; see the recent work in [222].

C H A P T E R

11

PARALLEL IMPLEMENTATIONS

Parallel computing is fast becoming an inexpensive alternative to the stan-

dard supercomputer approach for solving large scale problems that arise in

scienti�c and engineering applications. Since iterative methods are appeal-

ing for large linear systems of equations, it is no surprise that they are the

prime candidates for implementations on parallel architectures. There have

been two traditional approaches for developing parallel iterative techniques

thus far. The �rst extracts parallelism whenever possible from standard al-

gorithms. The advantage of this viewpoint is that it is easier to understand

in general since the underlying method has not changed from its sequential

equivalent. The second approach is to develop alternative algorithms which

have enhanced parallelism. This chapter will give an overview of implemen-

tations and will emphasize methods in the �rst category. The later chapters

will consider alternative algorithms that have been developed speci�cally for

parallel computing environments.

INTRODUCTION

11.1

The remaining chapters of this book will examine the impact of high performance com-

puting on the design of iterative methods for solving large linear systems of equations.

Because of the increased importance of three-dimensional models combined with the high

cost associated with sparse direct methods for solving these problems, iterative techniques

are starting to play a major role in many application areas. The main appeal of iterative

methods is their low storage requirement. Another advantage is that they are far easier to

implement on parallel computers than sparse direct methods because they only require a

rather small set of computational kernels. Increasingly, direct solvers are being used in

conjunction with iterative solvers to develop robust preconditioners.

The first considerations for high-performance implementations of iterative methods in-

volved implementations on vector computers. These efforts started in the mid 1970s when

the first vector computers appeared. Currently, there is a larger effort to develop new prac-

323

324 CHAPTER 11 PARALLEL IMPLEMENTATIONS

tical iterative methods that are not only efficient in a parallel environment, but also robust.

Often, however, these two requirements seem to be in conflict.

This chapter begins with a short overview of the various ways in which parallelism has

been exploited in the past and a description of the current architectural models for existing

commercial parallel computers. Then, the basic computations required in Krylov subspace

methods will be discussed along with their implementations.

FORMS OF PARALLELISM

11.2

Parallelism has been exploited in a number of different forms since the first computers were

built. The six major forms of parallelism are: (1) multiple functional units; (2) pipelining;

(3) vector processing; (4) multiple vector pipelines; (5) multiprocessing; and (6) distributed

computing. Next is a brief description of each of these approaches.

11.2.1 MULTIPLE FUNCTIONAL UNITS

This is one of the earliest forms of parallelism. It consists of multiplying the number of

functional units such as adders and multipliers. Thus, the control units and the registers

are shared by the functional units. The detection of parallelism is done at compilation time

with a “Dependence Analysis Graph,” an example of which is shown in Figure 11.1.

+

+ +

a b * *

c d e f

Figure 11.1 Dependence analysis for arithmetic expression:

(a+ b) + (c � d+ d � e).

In the example of Figure 11.1, the two multiplications can be performed simultaneously,

then the two additions in the middle are performed simultaneously. Finally, the addition at

the root is performed.

11.2 FORMS OF PARALLELISM 325

11.2.2 PIPELINING

The pipelining concept is essentially the same as that of an assembly line used in car

manufacturing. Assume that an operation takes s stages to complete. Then the operands

can be passed through the s stages instead of waiting for all stages to be completed for the

first two operands.

-

-
xi�3

yi�3
-

stage 1

xi�2

yi�2
-

stage 2

xi�1

yi�1
-

stage 3

xi

yi
-

stage 4

If each stage takes a time � to complete, then an operation with n numbers will take

the time s� + (n � 1)� = (n + s � 1)� . The speed-up would be the ratio of the time to

complete the s stages in a non-pipelined unit versus, i.e., s�n�� , over the above obtained

time,

S =
ns

n+ s� 1
:

For large n, this would be close to s.

11.2.3 VECTOR PROCESSORS

Vector computers appeared in the beginning of the 1970s with the CDC Star 100 and

then the CRAY-1 and Cyber 205. These are computers which are equipped with vector

pipelines, i.e., pipelined functional units, such as a pipelined floating-point adder, or a

pipelined floating-point multiplier. In addition, they incorporate vector instructions explic-

itly as part of their instruction sets. Typical vector instructions are, for example:

VLOAD To load a vector from memory to a vector register

VADD To add the content of two vector registers

VMUL To multiply the content of two vector registers.

Similar to the case of multiple functional units for scalar machines, vector pipelines

can be duplicated to take advantage of any fine grain parallelism available in loops. For

example, the Fujitsu and NEC computers tend to obtain a substantial portion of their per-

formance in this fashion. There are many vector operations that can take advantage of

multiple vector pipelines.

11.2.4 MULTIPROCESSING AND DISTRIBUTED COMPUTING

A multiprocessor system is a computer, or a set of several computers, consisting of several

processing elements (PEs), each consisting of a CPU, a memory, an I/O subsystem, etc.

These PEs are connected to one another with some communication medium, either a bus

or some multistage network. There are numerous possible configurations, some of which

will be covered in the next section.

326 CHAPTER 11 PARALLEL IMPLEMENTATIONS

Distributed computing is a more general form of multiprocessing, in which the pro-

cessors are actually computers linked by some Local Area Network. Currently, there are a

number of libraries that offer communication mechanisms for exchanging messages be-

tween Unix-based systems. The best known of these are the Parallel Virtual Machine

(PVM) and the Message Passing Interface (MPI). In heterogeneous networks of computers,

the processors are separated by relatively large distances and that has a negative impact on

the performance of distributed applications. In fact, this approach is cost-effective only for

large applications, in which a high volume of computation can be performed before more

data is to be exchanged.

TYPES OF PARALLEL ARCHITECTURES

11.3

There are currently three leading architecture models. These are:

� The shared memory model.

� SIMD or data parallel models.

� The distributed memory message passing model.

A brief overview of the characteristics of each of the three groups follows. Emphasis is on

the possible effects these characteristics have on the implementations of iterative methods.

11.3.1 SHARED MEMORY COMPUTERS

A shared memory computer has the processors connected to a large global memory with

the same global view, meaning the address space is the same for all processors. One of

the main benefits of shared memory models is that access to data depends very little on its

location in memory. In a shared memory environment, transparent data access facilitates

programming to a great extent. From the user’s point of view, data are stored in a large

global memory that is readily accessible to any processor. However, memory conflicts

as well as the necessity to maintain data coherence can lead to degraded performance.

In addition, shared memory computers cannot easily take advantage of data locality in

problems which have an intrinsically local nature, as is the case with most discretized

PDEs. Some current machines have a physically distributed memory but they are logically

shared, i.e., each processor has the same view of the global address space.

There are two possible implementations of shared memory machines: (1) bus-based

architectures, and (2) switch-based architecture. These two model architectures are illus-

trated in Figure 11.2 and Figure 11.3, respectively. So far, shared memory computers have

been implemented more often with buses than with switching networks.

11.3 TYPES OF PARALLEL ARCHITECTURES 327

P P P P P

SHARED MEMORY

HIGH SPEED BUS
? ? ? ? ?
6 6 6 6 6

6 6 6 6 6
? ? ? ? ?

Figure 11.2 A bus-based shared memory computer.

P P P P P P P P

SWITCHING NETWORK

M M M M M M M M

Figure 11.3 A switch-based shared memory computer.

Buses are the backbone for communication between the different units of most computers.

Physically, a bus is nothing but a bundle of wires, made of either fiber or copper. These

wires carry information consisting of data, control signals, and error correction bits. The

speed of a bus, often measured in Megabytes per second and called the bandwidth of the

bus, is determined by the number of lines in the bus and the clock rate. Often, the limiting

factor for parallel computers based on bus architectures is the bus bandwidth rather than

the CPU speed.

The primary reason why bus-based multiprocessors are more common than switch-

based ones is that the hardware involved in such implementations is simple. On the other

hand, the difficulty with bus-based machines is that the number of processors which can

be connected to the memory will be small in general. Typically, the bus is timeshared,

meaning slices of time are allocated to the different clients (processors, IO processors,

etc.) that request its use.

In a multiprocessor environment, the bus can easily be saturated. Several remedies are

possible. The first, and most common, remedy is to attempt to reduce traffic by adding

local memories or caches attached to each processor. Since a data item used by a given

processor is likely to be reused by the same processor in the next instructions, storing

the data item in local memory will help reduce traffic in general. However, this strategy

causes some difficulties due to the requirement to maintain data coherence. If Processor

(A) reads some data from the shared memory, and Processor (B) modifies the same data

in shared memory, immediately after, the result is two copies of the same data that have

different values. A mechanism should be put in place to ensure that the most recent update

of the data is always used. The additional overhead incurred by such memory coherence

328 CHAPTER 11 PARALLEL IMPLEMENTATIONS

operations may well offset the savings involving memory traffic.

The main features here are the switching network and the fact that a global memory

is shared by all processors through the switch. There can be p processors on one side

connected to p memory units or banks on the other side. Alternative designs based on

switches connect p processors to each other instead of p memory banks. The switching

network can be a crossbar switch when the number of processors is small. A crossbar

switch is analogous to a telephone switch board and allows p inputs to be connected to

m outputs without conflict. Since crossbar switches for large numbers of processors are

typically expensive they are replaced by multistage networks. Signals travel across a small

number of stages consisting of an array of elementary switches, e.g., 2�2 or 4�4 switches.

There have been two ways of exploiting multistage networks. In circuit switching

networks, the elementary switches are set up by sending electronic signals across all of

the switches. The circuit is set up once in much the same way that telephone circuits are

switched in a switchboard. Once the switch has been set up, communication between pro-

cessors P1; : : : ; Pn is open to the memories

M�1 ;M�2 ; : : : ;M�n ;

in which � represents the desired permutation. This communication will remain functional

for as long as it is not reset. Setting up the switch can be costly, but once it is done, com-

munication can be quite fast. In packet switching networks, a packet of data will be given

an address token and the switching within the different stages will be determined based

on this address token. The elementary switches have to provide for buffering capabilities,

since messages may have to be queued at different stages.

11.3.2 DISTRIBUTED MEMORY ARCHITECTURES

The distributed memory model refers to the distributed memory message passing archi-

tectures as well as to distributed memory SIMD computers. A typical distributed memory

system consists of a large number of identical processors which have their own memories

and which are interconnected in a regular topology. Examples are depicted in Figures 11.4

and 11.5. In these diagrams, each processor unit can be viewed actually as a complete pro-

cessor with its own memory, CPU, I/O subsystem, control unit, etc. These processors are

linked to a number of “neighboring” processors which in turn are linked to other neighbor-

ing processors, etc. In “Message Passing” models there is no global synchronization of the

parallel tasks. Instead, computations are data driven because a processor performs a given

task only when the operands it requires become available. The programmer must program

all the data exchanges explicitly between processors.

In SIMD designs, a different approach is used. A host processor stores the program

and each slave processor holds different data. The host then broadcasts instructions to pro-

cessors which execute them simultaneously. One advantage of this approach is that there

is no need for large memories in each node to store large programs since the instructions

are broadcast one by one to all processors.

11.3 TYPES OF PARALLEL ARCHITECTURES 329

P1

P2

P3

P4

P5

P6

P7

P8

Figure 11.4 An eight-processor ring (left) and a 4� 4 multi-

processor mesh (right).

An important advantage of distributed memory computers is their ability to exploit lo-

cality of data in order to keep communication costs to a minimum. Thus, a two-dimensional

processor grid such as the one depicted in Figure 11.4 is perfectly suitable for solving

discretized elliptic Partial Differential Equations (e.g., by assigning each grid point to a

corresponding processor) because some iterative methods for solving the resulting linear

systems will require only interchange of data between adjacent grid points.

A good general purpose multiprocessor must have powerful mapping capabilities be-

cause it should be capable of easily emulating many of the common topologies such as 2-D

and 3-D grids or linear arrays, FFT-butterflies, finite element meshes, etc.

Three-dimensional configurations are also popular. A massively parallel commercial

computer based on a 3-D mesh, called T3D, is marketed by CRAY Research, Inc. For

2-D and 3-D grids of processors, it is common that processors on each side of the grid

are connected to those on the opposite side. When these “wrap-around” connections are

included, the topology is sometimes referred to as a torus.

10 11

010010

101

111
110

100

010 011

001000

Figure 11.5 The n-cubes of dimensions n = 1; 2; 3.

Hypercubes are highly concurrent multiprocessors based on the binary n-cube topol-

ogy which is well known for its rich interconnection capabilities. A parallel processor

based on the n-cube topology, called a hypercube hereafter, consists of 2n identical pro-

cessors, interconnected with n neighbors. A 3-cube can be represented as an ordinary cube

330 CHAPTER 11 PARALLEL IMPLEMENTATIONS

in three dimensions where the vertices are the 8 = 23 nodes of the 3-cube; see Figure 11.5.

More generally, one can construct an n-cube as follows: First, the 2n nodes are labeled by

the 2n binary numbers from 0 to 2n � 1. Then a link between two nodes is drawn if and

only if their binary numbers differ by one (and only one) bit.

The first property of an n-cube graph is that it can be constructed recursively from

lower dimensional cubes. More precisely, consider two identical (n � 1)-cubes whose

vertices are labeled likewise from 0 to 2n�1. By joining every vertex of the first (n � 1)-
cube to the vertex of the second having the same number, one obtains an n-cube. Indeed, it

suffices to renumber the nodes of the first cube as 0^ ai and those of the second as 1 ^ ai
where ai is a binary number representing the two similar nodes of the (n � 1)-cubes and

where ^ denotes the concatenation of binary numbers.

Separating an n-cube into the subgraph of all the nodes whose leading bit is 0 and

the subgraph of all the nodes whose leading bit is 1, the two subgraphs are such that each

node of the first is connected to one node of the second. If the edges between these two

graphs is removed, the result is 2 disjoint (n � 1)-cubes. Moreover, generally, for a given

numbering, the graph can be separated into two subgraphs obtained by considering all the

nodes whose ith bit is 0 and those whose ith bit is 1. This will be called tearing along the

ith direction. Since there are n bits, there are n directions. One important consequence of

this is that arbitrary meshes with dimension� n can be mapped on hypercubes. However,

the hardware cost for building a hypercube is high, because each node becomes difficult

to design for larger dimensions. For this reason, recent commercial vendors have tended to

prefer simpler solutions based on two- or three-dimensional meshes.

Distributed memory computers come in two different designs, namely, SIMD and

MIMD. Many of the early projects have adopted the SIMD organization. For example,

the historical ILLIAC IV Project of the University of Illinois was a machine based on a

mesh topology where all processors execute the same instructions.

SIMD distributed processors are sometimes called array processors because of the

regular arrays that they constitute. In this category, systolic arrays can be classified as an

example of distributed computing. Systolic arrays are distributed memory computers in

which each processor is a cell which is programmed (possibly micro-coded) to perform

only one of a few operations. All the cells are synchronized and perform the same task.

Systolic arrays are designed in VLSI technology and are meant to be used for special

purpose applications, primarily in signal processing.

TYPES OF OPERATIONS

11.4

Now consider two prototype Krylov subspace techniques, namely, the preconditioned Con-

jugate Gradient method for the symmetric case and the preconditioned GMRES algorithm

for the nonsymmetric case. For each of these two techniques, we analyze the types of oper-

ations that are performed. It should be emphasized that other Krylov subspace techniques

require similar operations.

11.4 TYPES OF OPERATIONS 331

11.4.1 PRECONDITIONED CG

Consider Algorithm 9.1. The first step when implementing this algorithm on a high-

performance computer is identifying the main operations that it requires. We distinguish

five types of operations, which are:

1. Preconditioner setup.

2. Matrix vector multiplications.

3. Vector updates.

4. Dot products.

5. Preconditioning operations.

In the above list the potential bottlenecks are (1), setting up the preconditioner and (5),

solving linear systems with M , i.e., the preconditioning operation. Section 11.6 discusses

the implementation of traditional preconditioners, and the last two chapters are devoted

to preconditioners that are specialized to parallel environments. Next come the matrix-

by-vector products which deserve particular attention. The rest of the algorithm consists

essentially of dot products and vector updates which do not cause significant difficulties in

parallel machines, although inner products can lead to some loss of efficiency on certain

types of computers with large numbers of processors.

11.4.2 GMRES

The only new operation here with respect to the Conjugate Gradient method is the orthog-

onalization of the vector Avi against the previous v’s. The usual way to accomplish this is

via the modified Gram-Schmidt process, which is basically a sequence of subprocesses of

the form:

� Compute � = (y; v).

� Compute ŷ := y � �v.

This orthogonalizes a vector y against another vector v of norm one. Thus, the outer loop of

the modified Gram-Schmidt is sequential, but the inner loop, i.e., each subprocess, can be

parallelized by dividing the inner product and SAXPY operations among processors. Al-

though this constitutes a perfectly acceptable approach for a small number of processors,

the elementary subtasks may be too small to be efficient on a large number of processors.

An alternative for this case is to use a standard Gram-Schmidt process with reorthogonal-

ization. This replaces the previous sequential orthogonalization process by a matrix opera-

tion of the form ŷ = y � V V T y, i.e., BLAS-1 kernels are replaced by BLAS-2 kernels.

Recall that the next level of BLAS, i.e., level 3 BLAS, exploits blocking in dense

matrix operations in order to obtain performance on machines with hierarchical memories.

Unfortunately, level 3 BLAS kernels cannot be exploited here because at every step, there

is only one vector to orthogonalize against all previous ones. This may be remedied by

using block Krylov methods.

332 CHAPTER 11 PARALLEL IMPLEMENTATIONS

11.4.3 VECTOR OPERATIONS

These are usually the simplest operations to implement on any computer. In many cases,

compilers are capable of recognizing them and invoking the appropriate machine instruc-

tions, possibly vector instructions. In the specific case of CG-like algorithms, there are two

types of operations: vector updates and dot products.

Vector Updates Operations of the form

y(1:n) = y(1:n) + a * x(1:n),

where a is a scalar and y and x two vectors, are known as vector updates or SAXPY

operations. They are typically straightforward to implement in all three machine models

discussed earlier. On an SIMD computer, the above code segment can be used on many

of the recent systems and the compiler will translate it into the proper parallel version.

The above line of code is written in FORTRAN 90, which is the prototype programming

language for this type of computers. On shared memory computers, we can simply write

the usual FORTRAN loop, possibly in the above FORTRAN 90 style on some computers,

and the compiler will translate it again in the appropriate parallel executable code.

On distributed memory computers, some assumptions must be made about the way

in which the vectors are distributed. The main assumption is that the vectors x and y are

distributed in the same manner among the processors, meaning the indices of the compo-

nents of any vector that are mapped to a given processor are the same. In this case, the

vector-update operation will be translated into p independent vector updates, requiring no

communication. Specifically, if nloc is the number of variables local to a given processor,

this processor will simply execute a vector loop of the form

y(1:nloc) = y(1:nloc) + a * x(1:nloc)

and all processors will execute a similar operation simultaneously.

Dot products A number of operations use all the components of a given vector to com-

pute a single floating-point result which is then needed by all processors. These are termed

Reduction Operations and the dot product is the prototype example. A distributed version

of the dot-product is needed to compute the inner product of two vectors x and y that are

distributed the same way across the processors. In fact, to be more specific, this distributed

dot-product operation should compute the inner product t = xT y of these two vectors and

then make the result t available in each processor. Typically, this result is needed to per-

form vector updates or other operations in each node. For a large number of processors, this

sort of operation can be demanding in terms of communication costs. On the other hand,

parallel computer designers have become aware of their importance and are starting to pro-

vide hardware and software support for performing global reduction operations efficiently.

Reduction operations that can be useful include global sums, global max/min calculations,

etc. A commonly adopted convention provides a single subroutine for all these operations,

and passes the type of operation to be performed (add, max, min, multiply,. . .) as one of

the arguments. With this in mind, a distributed dot-product function can be programmed

roughly as follows.

11.4 TYPES OF OPERATIONS 333

function distdot(nloc, x, incx, y, incy)

integer nloc

real*8 x(nloc), y(nloc)

tloc = DDOT (nloc, x, incx, y, incy)

distdot = REDUCE(tloc,'add')

end

The function DDOT performs the usual BLAS-1 dot product of x and y with strides

incx and incy, respectively. The REDUCE operation, which is called with “add” as the

operation-type parameter, sums all the variables “tloc” from each processor and put the

resulting global sum in the variable distdot in each processor.

11.4.4 REVERSE COMMUNICATION

To conclude this section, the following important observation can be made regarding the

practical implementation of Krylov subspace accelerators, such as PCG or GMRES. The

only operations that involve communication are the dot product, the matrix-by-vector prod-

uct, and, potentially, the preconditioning operation. There is a mechanism for delegating

the last two operations to a calling program, outside of the Krylov accelerator. The result of

this is that the Krylov acceleration routine will be free of any matrix data structures as well

as communication calls. This makes the Krylov routines portable, except for the possible

redefinition of the inner product distdot.

This mechanism, particular to FORTRAN programming, is known as reverse commu-

nication. Whenever a matrix-by-vector product or a preconditioning operation is needed,

the subroutine is exited and the calling program unit performs the desired operation. Then

the subroutine is called again, after placing the desired result in one of its vector arguments.

A typical execution of a flexible GMRES routine with reverse communication is

shown in the code segment below. The integer parameter icode indicates the type of oper-

ation needed by the subroutine. When icode is set to one, then a preconditioning operation

must be applied to the vector wk1. The result is copied in wk2 and FGMRES is called

again. If it is equal to two, then the vector wk1 must be multiplied by the matrix A. The

result is then copied in wk2 and FGMRES is called again.

icode = 0

1 continue

call fgmres (n,im,rhs,sol,i,vv,w,wk1, wk2,eps,

* maxits,iout,icode)

if (icode .eq. 1) then

call precon(n, wk1, wk2) ! user's preconditioner

goto 1

else if (icode .eq. 2) then

call matvec (n,wk1, wk2) ! user's matvec

goto 1

endif

Reverse communication enhances the flexibility of the FGMRES routine substantially.

For example, when changing preconditioners, we can iterate on a coarse mesh and do the

334 CHAPTER 11 PARALLEL IMPLEMENTATIONS

necessary interpolations to get the result in wk2 in a given step and then iterate on the fine

mesh in the following step. This can be done without having to pass any data regarding the

matrix or the preconditioner to the FGMRES accelerator.

Note that the purpose of reverse communication simply is to avoid passing data struc-

tures related to the matrices, to the accelerator FGMRES. The problem is that these data

structures are not fixed. For example, it may be desirable to use different storage formats

for different architectures. A more elegant solution to this problem is Object-Oriented

Programming. In Object-Oriented Programming languages such as C++, a class can be

declared, e.g., a class of sparse matrices, and operators can be defined on them. Data struc-

tures are not passed to these operators. Instead, the implementation will recognize the types

of the operands and invoke the proper functions. This is similar to what exists currently for

arithmetic. For operation s = z + y, the compiler will recognize what type of operand is

involved and invoke the proper operation, either integer, double real, or complex, etc.

MATRIX-BY-VECTOR PRODUCTS

11.5

Matrix-by-vector multiplications (sometimes called “Matvecs” for short) are relatively

easy to implement efficiently on high performance computers. For a description of storage

formats for sparse matrices, see Chapter 3. We will first discuss matrix-by-vector algo-

rithms without consideration of sparsity. Then we will cover sparse Matvec operations for

a few different storage formats.

11.5.1 THE CASE OF DENSE MATRICES

The computational kernels for performing sparse matrix operations such as matrix-by-

-vector products are intimately associated with the data structures used. However, there

are a few general approaches that are common to different algorithms for matrix-by-vector

products which can be described for dense matrices. Two popular ways of performing these

operations are (1) the inner product form described in Algorithm 11.1, and (2) the SAXPY

form described by Algorithm 11.2.

ALGORITHM 11.1: Dot Product Form { Dense Case

1. Do i = 1, n

2. y(i) = dotproduct(a(i,1:n),x(1:n))

3. EndDo

The dot product operation dotproduct(v(1:n),w(1:n)) computes the dot product of the two

vectors v and w of length n each. If there is no ambiguity on the bounds, we simply write

dotproduct(v,w). The above algorithm proceeds by rows. It computes the dot-product of

row i of the matrix A with the vector x and assigns the result to y(i). The next algorithm

11.5 MATRIX-BY-VECTOR PRODUCTS 335

uses columns instead and results in the use of the SAXPY operations.

ALGORITHM 11.2: SAXPY Form { Dense Case

1. y(1:n) = 0.0

2. Do j = 1, n

3. y(1:n) = y(1:n) + x(j) * a(1:n,j)

4. EndDo

The SAXPY form of the Matvec operation computes the result y = Ax as a linear com-

bination of the columns of the matrix A. A third possibility consists of performing the

product by diagonals. This option bears no interest in the dense case, but it is at the basis

of many important matrix-by-vector algorithms in the sparse case.

ALGORITHM 11.3: DIA Form { Dense Case

1. y(1:n) = 0

2. Do k = – n+1, n – 1

3. Do i = 1 – min(k,0), n – max(k,0)

4. y(i) = y(i) + a(i,k+i)*x(k+i)

5. EndDo

6. EndDo

The product is performed by diagonals, starting from the leftmost diagonal whose offset is

�n+ 1 to the rightmost diagonal whose offset is n� 1.

11.5.2 THE CSR AND CSC FORMATS

One of the most general schemes for storing sparse matrices is the Compressed Sparse Row

storage format described in Chapter 3. Recall that the data structure consists of three arrays:

a real array A(1:nnz) to store the nonzero elements of the matrix row-wise, an integer array

JA(1:nnz) to store the column positions of the elements in the real array A, and, finally, a

pointer array IA(1:n+1), the i-th entry of which points to the beginning of the i-th row in

the arrays A and JA. To perform the matrix-by-vector product y = Ax in parallel using this

format, note that each component of the resulting vector y can be computed independently

as the dot product of the i-th row of the matrix with the vector x. This yields the following

sparse version of Algorithm 11.1 for the case where the matrix is stored in CSR format.

ALGORITHM 11.4: CSR Format { Dot Product Form

1. Do i = 1, n

2. k1 = ia(i)

3. k2 = ia(i+1)-1

4. y(i) = dotproduct(a(k1:k2),x(ja(k1:k2)))

5. EndDo

336 CHAPTER 11 PARALLEL IMPLEMENTATIONS

Line 4 of the above algorithm computes the dot product of the vector with components

a(k1), a(k1+1), � � �, a(k2) with the vector with components x(ja(k1)), x(ja(k1+1)), � � �,
x(ja(k2)).

The fact that the outer loop can be performed in parallel can be exploited on any par-

allel platform. On some shared-memory machines, the synchronization of this outer loop

is inexpensive and the performance of the above program can be excellent. On distributed

memory machines, the outer loop can be split in a number of steps to be executed on each

processor. Thus, each processor will handle a few rows that are assigned to it. It is common

to assign a certain number of rows (often contiguous) to each processor and to also assign

the component of each of the vectors similarly. The part of the matrix that is needed is

loaded in each processor initially. When performing a matrix-by-vector product, interpro-

cessor communication will be necessary to get the needed components of the vector x that

do not reside in a given processor. This important case will return in Section 11.5.6.

+

+

+

+

DotProduct

Gather

*

x(*) a(i,*)

x(1:n)

y(i)

Figure 11.6 Illustration of the row-oriented matrix-by-

vector multiplication.

The indirect addressing involved in the second vector in the dot product is called a

gather operation. The vector x(ja(k1:k2)) is first “gathered” from memory into a vector of

contiguous elements. The dot product is then carried out as a standard dot-product opera-

tion between two dense vectors. This is illustrated in Figure 11.6.

Example 11.1 This example illustrates the use of scientific libraries for performing

sparse matrix operations. If the pseudo-code for Algorithm 11.4 is compiled as it is on

the Connection Machine, in CM-FORTRAN (Thinking Machine’s early version of FOR-

TRAN 90), the resulting computations will be executed on the front-end host of the CM-2

or the Control Processor (CP) of the CM-5, rather than on the PEs. This is due to the fact

that the code does not involve any vector constructs. The scientific library (CMSSL) pro-

vides gather and scatter operations as well as scan add operations which can be exploited

to implement this algorithm more efficiently as is show in the following code segment:

y = 0.0

call sparse util gather (tmp, x, gather trace, : : :)
tmp = a*tmp

call cmf scan add (tmp, tmp, cmf upward, cmf inclusive, : : :)

11.5 MATRIX-BY-VECTOR PRODUCTS 337

call sparse util scatter (y, scatter pointer, tmp,

scatter trace, : : :)

The sparse util gather routine is first called to gather the corresponding entries from the

vector x into a temporary array tmp, then the multiplications are carried out element-by-

element in parallel. The cmf scan add routine from the CM Fortran Utility Library is used

to perform the summation for each row. Finally, the call to sparse util scatter copies the

results. Segmented scan-adds are particularly useful for implementing sparse matrix-by-

vector products when they are provided as part of the libraries. Note that the sparse util-

gather setup and sparse util scatter setup routines must be called to compute the com-

munication patterns, gather trace and scatter trace, before this algorithm is called. These

tend to be expensive operations.

Now assume that the matrix is stored by columns (CSC format). The matrix-by-vector

product can be performed by the following algorithm which is a sparse version of Algo-

rithm 11.2.

ALGORITHM 11.5: CSC Format { SAXPY Form

1. y(1:n) = 0.0

2. Do i = 1, n

3. k1 = ia(i)

4. k2 = ia(i + 1)-1

5. y(ja(k1:k2)) = y(ja(k1:k2)) + x(j) * a(k1:k2)

6. EndDo

The above code initializes y to zero and then adds the vectors x(j) � a(1 : n; j) for

j = 1; : : : ; n to it. It can also be used to compute the product of the transpose of a matrix

by a vector, when the matrix is stored (row-wise) in the CSR format. Normally, the vector

y(ja(k1:k2)) is gathered and the SAXPY operation is performed in vector mode. Then the

resulting vector is “scattered” back into the positions ja(*), by what is called a Scatter

operation. This is illustrated in Figure 11.7.

A major difficulty with the above FORTRAN program is that it is intrinsically sequen-

tial. First, the outer loop is not parallelizable as it is, but this may be remedied as will be

seen shortly. Second, the inner loop involves writing back results of the right-hand side

into memory positions that are determined by the indirect address function ja. To be cor-

rect, y(ja(1)) must be copied first, followed by y(ja(2)), etc. However, if it is known that

the mapping ja(i) is one-to-one, then the order of the assignments no longer matters. Since

compilers are not capable of deciding whether this is the case, a compiler directive from

the user is necessary for the Scatter to be invoked.

338 CHAPTER 11 PARALLEL IMPLEMENTATIONS

+

+

+

+

+

+

+

+

Gather

+ x(j)*

y(1:n)

y(*)

y(1:n)

=

Scatter

y(*) a(*,j)

Figure 11.7 Illustration of the column-oriented matrix-by-

vector multiplication.

Going back to the outer loop, p subsums can be computed (independently) into p
separate temporary vectors and then these p subsums can be added at the completion of

all these partial sums to obtain the final result. For example, an optimized version of the

previous algorithm can be implemented as follows:

ALGORITHM 11.6: CSC Format { Split SAXPY Form

1. tmp(1:n,1:p) = 0.0

2. Do m=1, p

3. Do j = m, n, p

4. k1 = ia(j)

5. k2 = ia(j + 1)-1

6. tmp(ja(k1:k2),j) = tmp(ja(k1:k2),j) + x(j) * a(k1:k2)

7. EndDo

8. EndDo

9. y(1:n) = SUM(tmp,dim=2)

The SUM across the second dimension at the end of the algorithm constitutes additional

work, but it is highly vectorizable and parallelizable.

11.5.3 MATVECS IN THE DIAGONAL FORMAT

The above storage schemes are general but they do not exploit any special structure of the

matrix. The diagonal storage format was one of the first data structures used in the context

of high performance computing to take advantage of special sparse structures. Often, sparse

matrices consist of a small number of diagonals in which case the matrix-by-vector product

can be performed by diagonals as in Algorithm 11.3. For sparse matrices, most of the 2n�1
diagonals invoked in the outer loop of Algorithm 11.3 are zero. There are again different

variants of Matvec algorithms for the diagonal format, related to different orderings of the

loops in the basic FORTRAN program. Recall that the matrix is stored in a rectangular

array diag(1:n,1:ndiag) and the offsets of these diagonals from the main diagonal may be

stored in a small integer array offset(1:ndiag). Consider a “dot-product” variant first.

11.5 MATRIX-BY-VECTOR PRODUCTS 339

ALGORITHM 11.7: DIA Format { Dot Product Form

1. Do i = 1, n

2. tmp = 0.0d0

3. Do j = 1, ndiag

4. tmp = tmp + diag(i,j)*x(i+offset(j))

5. EndDo

6. y(i) = tmp

7. EndDo

In a second variant, the vector y is initialized to zero, and then x is multiplied by each of the

diagonals and the separate results are added to y. The innermost loop in this computation

is sometimes called a Triad operation.

ALGORITHM 11.8: Matvec in Triad Form

1. y = 0.0d0

2. Do j = 1, ndiag

3. joff = offset(j)

4. i1 = max(1, 1-offset(j))

5. i2 = min(n, n-offset(j))

6. y(i1:i2) = y(i1:i2) + diag(i1:i2,j)*x(i1+joff:i2+joff)

7. EndDo

Good speeds can be reached on vector machines when the matrix is large enough.

One drawback with diagonal storage is that it is not general enough. For general sparse

matrices, we can either generalize the diagonal storage scheme or reorder the matrix in or-

der to obtain a diagonal structure. The simplest generalization is the Ellpack-Itpack Format.

11.5.4 THE ELLPACK-ITPACK FORMAT

The Ellpack-Itpack (or Ellpack) format is of interest only for matrices whose maximum

number of nonzeros per row, jmax, is small. The nonzero entries are stored in a real array

ae(1:n,1:jmax). Along with this is integer array jae(1:n,1:jmax) which stores the column

indices of each corresponding entry in ae. Similar to the diagonal scheme, there are also

two basic ways of implementing a matrix-by-vector product when using the Ellpack for-

mat. We begin with an analogue of Algorithm 11.7.

ALGORITHM 11.9: Ellpack Format { Dot-Product Form

1. Do i = 1, n

2. yi = 0

3. Do j = 1, ncol

4. yi = yi + ae(j,i) * x(jae(j,i))

5. EndDo

340 CHAPTER 11 PARALLEL IMPLEMENTATIONS

6. y(i) = yi

7. EndDo

In data-parallel mode, the above algorithm can be implemented by using a temporary

two-dimensional array to store the values x(ja(j; i)), and then performing a pointwise

array product of a and this two-dimensional array. The result is then summed along the

rows

forall (i=1:n, j=1:ncol) tmp(i,j) = x(jae(i,j))

y = SUM(ae*tmp, dim=2).

The FORTRAN forall construct performs the operations as controlled by the loop

heading, in parallel. Alternatively, use of the temporary array can be avoided by recoding

the above lines as follows:

forall (i = 1:n) y(i) = SUM(ae(i,1:ncol)*x(jae(i,1:ncol))) .

The main difference between these loops and the previous ones for the diagonal format is

the presence of indirect addressing in the innermost computation. A disadvantage of the

Ellpack format is that if the number of nonzero elements per row varies substantially, many

zero elements must be stored unnecessarily. Then the scheme becomes inefficient. As an

extreme example, if all rows are very sparse except for one of them which is full, then the

arrays ae, jae must be full n � n arrays, containing mostly zeros. This is remedied by a

variant of the format which is called the jagged diagonal format.

11.5.5 THE JAGGED DIAGONAL FORMAT

A more general alternative to the diagonal or Ellpack format is the Jagged Diagonal (JAD)

format. This can be viewed as a generalization of the Ellpack-Itpack format which removes

the assumption on the fixed length rows. To build the jagged diagonal structure, start from

the CSR data structure and sort the rows of the matrix by decreasing number of nonzero

elements. To build the first “jagged diagonal” (j-diagonal), extract the first element from

each row of the CSR data structure. The second jagged diagonal consists of the second

elements of each row in the CSR data structure. The third, fourth, : : :, jagged diagonals can

then be extracted in the same fashion. The lengths of the successive j-diagonals decreases.

The number of j-diagonals that can be extracted is equal to the number of nonzero elements

of the first row of the permuted matrix, i.e., to the largest number of nonzero elements per

row. To store this data structure, three arrays are needed: a real array DJ to store the values

of the jagged diagonals, the associated array JDIAG which stores the column positions of

these values, and a pointer array IDIAG which points to the beginning of each j-diagonal

in the DJ, JDIAG arrays.

11.5 MATRIX-BY-VECTOR PRODUCTS 341

Example 11.2 Consider the following matrix and its sorted version PA:

A =

0
BBBB@

1: 0: 2: 0: 0:
3: 4: 0: 5: 0:
0: 6: 7: 0: 8:
0: 0: 9: 10: 0:
0: 0: 0: 11: 12:

1
CCCCA ! PA =

0
BBBB@

3: 4: 0: 5: 0:
0: 6: 7: 0: 8:
1: 0: 2: 0: 0:
0: 0: 9: 10: 0:
0: 0: 0: 11: 12:

1
CCCCA

The rows of PA have been obtained from those ofA by sorting them by number of nonzero

elements, from the largest to the smallest number. Then the JAD data structure for A is as

follows:

DJ 3. 6. 1. 9. 11. 4. 7. 2. 10. 12. 5. 8.

JDIAG 1 2 1 3 4 2 3 3 4 5 4 5

IDIAG 1 6 11 13

Thus, there are two j-diagonals of full length (five) and one of length two.

A matrix-by-vector product with this storage scheme can be performed by the follow-

ing code segment.

1. Do j=1, ndiag

2. k1 = idiag(j)

3. k2 = idiag(j+1) – 1

4. len = idiag(j+1) – k1

5. y(1:len) = y(1:len) + dj(k1:k2)*x(jdiag(k1:k2))

6. EndDo

Since the rows of the matrix A have been permuted, the above code will compute

PAx, a permutation of the vector Ax, rather than the desired Ax. It is possible to permute

the result back to the original ordering after the execution of the above program. This

operation can also be performed until the final solution has been computed, so that only

two permutations on the solution vector are needed, one at the beginning and one at the

end. For preconditioning operations, it may be necessary to perform a permutation before

or within each call to the preconditioning subroutines. There are many possible variants

of the jagged diagonal format. One variant which does not require permuting the rows is

described in Exercise 8.

11.5.6 THE CASE OF DISTRIBUTED SPARSE MATRICES

Given a sparse linear system to be solved on a distributed memory environment, it is natural

to map pairs of equations-unknowns to the same processor in a certain predetermined way.

This mapping can be determined automatically by a graph partitioner or it can be assigned

ad hoc from knowledge of the problem. Assume that there is a convenient partitioning of

the adjacency graph. Without any loss of generality, the matrix under consideration can be

viewed as originating from the discretization of a Partial Differential Equation on a certain

domain. This is illustrated in Figure 11.8. Initially, assume that each subgraph (or subdo-

main, in the PDE literature) is assigned to a different processor, although this restriction

342 CHAPTER 11 PARALLEL IMPLEMENTATIONS

can be relaxed, i.e., a processor can hold several subgraphs to increase parallelism.

Internal

points

External interface

points

points

Internal interface

Figure 11.8 Decomposition of physical domain or adjacency

graph and the local data structure.

A local data structure must be set up in each processor (or subdomain, or subgraph)

which will allow the basic operations such as (global) matrix-by-vector products and pre-

conditioning operations to be performed efficiently. The only assumption to make regard-

ing the mapping is that if row number i is mapped into processor p, then so is the unknown

i, i.e., the matrix is distributed row-wise across the processors according to the distribution

of the variables. The graph is assumed to be undirected, i.e., the matrix has a symmetric

pattern.

It is important to “preprocess the data” in order to facilitate the implementation of the

communication tasks and to gain efficiency during the iterative process. The preprocessing

requires setting up the following: information in each processor.

1. List of processors with which communication will take place. These are called

“neighboring processors” although they may not be physically nearest neighbors.

2. List of local nodes that are coupled with external nodes. These are the local inter-

face nodes.

3. Local representation of the distributed matrix in each processor.

11.5 MATRIX-BY-VECTOR PRODUCTS 343

In order to perform a matrix-by-vector product with a distributed sparse matrix, the matrix

consisting of rows that are local to a given processor must be multiplied by some global

vector v. Some components of this vector will be local, and some components must be

brought from external processors. These external variables correspond to interface points

belonging to adjacent subdomains. When performing a matrix-by-vector product, neigh-

boring processors must exchange values of their adjacent interface nodes.

Bext

Bloc

Local interface points (xbnd)

Internal points (xint)

External interface matrix

Internal points

Figure 11.9 The local matrices and data structure associ-

ated with each subdomain.

Let Aloc be the local part of the matrix, i.e., the (rectangular) matrix consisting of all

the rows that are mapped to myproc. Call Bloc the “diagonal block” of A located in Aloc,

i.e., the submatrix of Aloc whose nonzero elements aij are such that j is a local variable.

Similarly, call Bext the “offdiagonal” block, i.e., the submatrix of Aloc whose nonzero

elements aij are such that j is not a local variable. To perform a matrix-by-vector product,

start multiplying the diagonal block Bloc by the local variables. Then, multiply the external

variables by the sparse matrix Bext. Notice that since the external interface points are not

coupled with local internal points, only the rows nint + 1 to nnloc in the matrix Bext

will have nonzero elements. Thus, the matrix-by-vector product can be separated into two

such operations, one involving only the local variables and the other involving external

variables. It is necessary to construct these two matrices and define a local numbering of

the local variables in order to perform the two matrix-by-vector products efficiently each

time.

To perform a global matrix-by-vector product, with the distributed data structure de-

scribed above, each processor must perform the following operations. First, multiply the

local variables by the matrix Bloc. Second, obtain the external variables from the neigh-

boring processors in a certain order. Third, multiply these by the matrix Bext and add the

resulting vector to the one obtained from the first multiplication by Bloc. Note that the

first and second steps can be done in parallel. With this decomposition, the global matrix-

by-vector product can be implemented as indicated in Algorithm 11.10 below. In what

follows, xloc is a vector of variables that are local to a given processor. The components

corresponding to the local interface points (ordered to be the last components in x loc for

convenience) are called xbnd. The external interface points, listed in a certain order, con-

stitute a vector which is called xext. The matrix Bloc is a sparse nloc� nloc matrix which

represents the restriction of A to the local variables xloc. The matrix Bext operates on the

344 CHAPTER 11 PARALLEL IMPLEMENTATIONS

external variables xext to give the correction which must be added to the vector Blocxloc
in order to obtain the desired result (Ax)loc.

ALGORITHM 11.10: Distributed Sparse Matrix Product Kernel

1. Exchange interface data, i.e.,

2. Scatter xbnd to neighbors and

3. Gather xext from neighbors

4. Do Local Matvec: y = Blocxloc
5. Do External Matvec: y = y +Bextxext

An important observation is that the matrix-by-vector products in lines 4 and 5 can use any

convenient data structure that will improve efficiency by exploiting knowledge on the local

architecture. An example of the implementation of this operation is illustrated next:

call bdxchg(nloc,x,y,nproc,proc,ix,ipr,type,xlen,iout)

y(1:nloc) = 0.0

call amux1 (nloc,x,y,aloc,jaloc,ialoc)

nrow = nloc – nbnd + 1

call amux1(nrow,x,y(nbnd),aloc,jaloc,ialoc(nloc+1))

In the above code segment, bdxchg is the only routine requiring communication. Its

purpose is to exchange interface values between nearest neighbor processors. The first call

to amux1 performs the operation y := y + Blocxloc, where y has been initialized to zero

prior to the call. The second call to amux1 performs y := y + Bextxext. Notice that the

data for the matrix Bext is simply appended to that of Bloc, a standard technique used for

storing a succession of sparse matrices. The Bext matrix acts only on the subvector of x
which starts at location nbnd of x. The size of the Bext matrix is nrow = nloc�nbnd+1.

STANDARD PRECONDITIONING OPERATIONS

11.6

Each step of a preconditioned iterative method requires the solution of a linear system of

equations

Mz = y:

This section only considers those traditional preconditioners, such as ILU or SOR or

SSOR, in which the solution with M is the result of solving triangular systems. Since

these are commonly used, it is important to explore ways to implement them efficiently in

a parallel environment. We only consider lower triangular systems of the form

Lx = b: (11.1)

Without loss of generality, it is assumed that L is unit lower triangular.

11.6 STANDARD PRECONDITIONING OPERATIONS 345

11.6.1 PARALLELISM IN FORWARD SWEEPS

Typically in solving a lower triangular system, the solution is overwritten onto the right-

hand side on return. In other words, there is one array x for both the solution and the

right-hand side. Therefore, the forward sweep for solving a lower triangular system with

coefficients al(i; j) and right-hand-side x is as follows.

ALGORITHM 11.11: Sparse Forward Elimination

1. Do i=2, n

2. For (all j such that al(i,j) is nonzero) Do:

3. x(i) := x(i) – al(i,j) * x(j)

4. EndDo

5. EndDo

Assume that the matrix is stored row wise in the general Compressed Sparse Row (CSR)

format, except that the diagonal elements (ones) are not stored. Then the above algorithm

translates into the following code segment:

1. Do i=2, n

2. Do j=ial(i), ial(i+1) – 1

3. x(i)=x(i) – al(j) * x(jal(j))

4. EndDo

5. EndDo

The outer loop corresponding to the variable i is sequential. The j loop is a sparse dot

product of the ith row of L and the (dense) vector x. This dot product may be split among

the processors and the partial results may be added at the end. However, the length of the

vector involved in the dot product is typically short. So, this approach is quite inefficient

in general. We examine next a few alternative approaches. The regularly structured and the

irregularly structured cases are treated separately.

11.6.2 LEVEL SCHEDULING: THE CASE OF 5-POINT

MATRICES

First, consider an example which consists of a 5-point matrix associated with a 4� 3 mesh

as represented in Figure 11.10. The lower triangular matrix associated with this mesh is

represented in the left side of Figure 11.10. The stencil represented in the right side of

Figure 11.10 establishes the data dependence between the unknowns in the lower triangular

system solution when considered from the point of view of a grid of unknowns. It tells us

that in order to compute the unknown in position (i; j), only the two unknowns in positions

(i � 1; j) and (i; j � 1) are needed . The unknown x11 does not depend on any other

variable and can be computed first. Then the value of x11 can be used to get x1;2 and x2;1
simultaneously. Then these two values will in turn enable x3;1; x2;2 and x1;3 to be obtained

simultaneously, and so on. Thus, the computation can proceed in wavefronts. The steps for

this wavefront algorithm are shown with dashed lines in Figure 11.10. Observe that the

346 CHAPTER 11 PARALLEL IMPLEMENTATIONS

maximum degree of parallelism (or vector length, in the case of vector processing) that can

be reached is the minimum of nx, ny, the number of mesh points in the x and y directions,

respectively, for 2-D problems. For 3-D problems, the parallelism is of the order of the

maximum size of the sets of domain points xi;j;k, where i+ j + k = lev, a constant level

lev. It is important to note that there is little parallelism or vectorization at the beginning

and at the end of the sweep. The degree of parallelism is equal to one initially, and then

increases by one for each wave reaching its maximum, and then decreasing back down to

one at the end of the sweep. For example, for a 4� 3 grid, the levels (sets of equations that

can be solved in parallel) are f1g, f2; 5g, f3; 6; 9g, f4; 7; 10g, f8; 11g, and finally f12g.

The first and last few steps may take a heavy toll on achievable speed-ups.

1 2 3 4

5 6 7 8

9 10 11 12

1 2 3 4

5

6

(i; j)

(i� 1; j)

(i; j � 1)
-

6

Stencil

Figure 11.10 Level scheduling for a 4� 3 grid problem.

The idea of proceeding by levels or wavefronts is a natural one for finite difference

matrices on rectangles. Discussed next is the more general case of irregular matrices, a

textbook example of scheduling, or topological sorting, and is well known in different

forms to computer scientists.

11.6.3 LEVEL SCHEDULING FOR IRREGULAR GRAPHS

The simple scheme described above can be generalized for irregular grids. The objective

of the technique, called level scheduling, is to group the unknowns in subsets so that they

can be determined simultaneously. To explain the idea, consider again Algorithm 11.11 for

solving a unit lower triangular system. The i-th unknown can be determined once all the

other ones that participate in equation i become available. In the i-th step, all unknowns j
that al(i; j) 6= 0 must be known. To use graph terminology, these unknowns are adjacent

to unknown number i. Since L is lower triangular, the adjacency graph is a directed acyclic

graph. The edge j ! i in the graph simply indicates that xj must be known before xi can

be determined. It is possible and quite easy to find a labeling of the nodes that satisfy the

property that if label(j) < label(i), then task j must be executed before task i. This is

called a topological sorting of the unknowns.

The first step computesx1 and any other unknowns for which there are no predecessors

11.6 STANDARD PRECONDITIONING OPERATIONS 347

in the graph, i.e., all those unknowns xi for which the offdiagonal elements of row i are

zero. These unknowns will constitute the elements of the first level. The next step computes

in parallel all those unknowns that will have the nodes of the first level as their (only)

predecessors in the graph. The following steps can be defined similarly: The unknowns

that can be determined at step l are all those that have as predecessors equations that have

been determined in steps 1; 2; : : : ; l � 1. This leads naturally to the definition of a depth

for each unknown. The depth of a vertex is defined by performing the following loop for

= 1; 2; : : : ; n, after initializing depth(j) to zero for all j.

depth(i) = 1 +max
j
fdepth(j); for all j such that al(i; j) 6= 0g:

By definition, a level of the graph is the set of nodes with the same depth. A data struc-

ture for the levels can be defined: A permutation q(1 : n) defines the new ordering and

level(i); i = 1; � � � ; nlev + 1 points to the beginning of the i-th level in that array.

Natural ordering Wavefront ordering

Figure 11.11 Lower triangular matrix associated with mesh

of Figure 11.10.

Once these level sets are found, there are two different ways to proceed. The permu-

tation vector q can be used to permute the matrix according to the new order. In the 4� 3
example mentioned in the previous subsection, this means renumbering the variables f1g,

f2; 5g, f3; 6; 9g; : : :, consecutively, i.e., as f1; 2; 3; : : :g. The resulting matrix after the per-

mutation is shown in the right side of Figure 11.11. An alternative is simply to keep the

permutation array and use it to identify unknowns that correspond to a given level in the

solution. Then the algorithm for solving the triangular systems can be written as follows,

assuming that the matrix is stored in the usual row sparse matrix format.

ALGORITHM 11.12: Forward Elimination with Level Scheduling

1. Do lev=1, nlev

2. j1 = level(lev)

3. j2 = level(lev+1) – 1

4. Do k = j1, j2

5. i = q(k)

6. Do j= ial(i), ial(i+1) – 1

348 CHAPTER 11 PARALLEL IMPLEMENTATIONS

7. x(i) = x(i) – al(j) * x(jal(j))

8. EndDo

9. EndDo

10. EndDo

An important observation here is that the outer loop, which corresponds to a level,

performs an operation of the form

x := x�Bx

where B is a submatrix consisting only of the rows of level lev, and excluding the diagonal

elements. This operation can in turn be optimized by using a proper data structure for these

submatrices. For example, the JAD data structure can be used. The resulting performance

can be quite good. On the other hand, implementation can be quite involved since two

embedded data structures are required.

Natural ordering Level-Scheduling ordering

Figure 11.12 Lower-triangular matrix associated with a fi-

nite element matrix and its level-ordered version.

Example 11.3 Consider a finite element matrix obtained from the example shown in

Figure 3.1. After an additional level of refinement, done in the same way as was described

in Chapter 3, the resulting matrix, shown in the left part of Figure 11.12, is of size n = 145.

In this case, 8 levels are obtained. If the matrix is reordered by levels, the matrix shown in

the right side of the figure results. The last level consists of only one element.

EXERCISES AND NOTES 349

EXERCISES

1 Give a short answer to each of the following questions:

a. What is the main disadvantage of shared memory computers based on a bus architecture?

b. What is the main factor in yielding the speed-up in pipelined processors?

c. Related to the previous question: What is the main limitation of pipelined processors in

regards to their potential for providing high speed-ups?

2 Show that the number of edges in a binary n-cube is n2n�1.

3 Show that a binary 4-cube is identical with a torus which is a 4 � 4 mesh with wrap-around

connections. Are there hypercubes of any other dimensions that are equivalent topologically to

toruses?

4 A Gray code of length k = 2n is a sequence a0; : : : ; ak�1 of n-bit binary numbers such that (a)

any two successive numbers in the sequence differ by one and only one bit; (b) all n-bit binary

numbers are represented in the sequence; and (c) a0 and ak�1 differ by one bit.

a. Find a Gray code sequence of length k = 8 and show the (closed) path defined by the

sequence of nodes of a 3-cube, whose labels are the elements of the Gray code sequence.

What type of paths does a Gray code define in a hypercube?

b. To build a “binary reflected” Gray code, start with the trivial Gray code sequence consisting

of the two one-bit numbers 0 and 1. To build a two-bit Gray code, take the same sequence

and insert a zero in front of each number, then take the sequence in reverse order and insert a

one in front of each number. This gives G2 = f00; 01; 11; 10g. The process is repeated until

an n-bit sequence is generated. Show the binary reflected Gray code sequences of length 2,

4, 8, and 16. Prove (by induction) that this process does indeed produce a valid Gray code

sequence.

c. Let an n-bit Gray code be given and consider the sub-sequence of all elements whose first

bit is constant (e.g., zero). Is this an n� 1 bit Gray code sequence? Generalize this to any of

the n-bit positions. Generalize further to any set of k < n bit positions.

d. Use the previous question to find a strategy to map a 2n1 � 2n2 mesh into an (n1+n2)-cube.

5 Consider a ring of k processors which are characterized by the following communication perfor-

mance characteristics. Each processor can communicate with its two neighbors simultaneously,

i.e., it can send or receive a message while sending or receiving another message. The time for

a message of length m to be transmitted between two nearest neighbors is of the form

� +m�:

a. A message of length m is “broadcast” to all processors by sending it from P1 to P2 and then

from P2 to P3, etc., until it reaches all destinations, i.e., until it reaches Pk . How much time

does it take for the message to complete this process?

b. Now split the message into packets of equal size and pipeline the data transfer. Typically,

each processor will receive packet number i from the previous processor, while sending

packet i � 1 it has already received to the next processor. The packets will travel in chain

from P1 to P2, : : :, to Pk. In other words, each processor executes a program that is described

roughly as follows:

Do i=1, Num_packets

350 CHAPTER 11 PARALLEL IMPLEMENTATIONS

Receive Packet number i from Previous Processor

Send Packet number i to Next Processor

EndDo

There are a few additional conditionals. Assume that the number of packets is equal to k�1.

How much time does it take for all packets to reach all k processors? How does this compare

with the simple method in (a)?

6 (a) Write a short FORTRAN routine (or C function) which sets up the level number of each

unknown of an upper triangular matrix. The input matrix is in CSR format and the output should

be an array of length n containing the level number of each node. (b) What data structure should

be used to represent levels? Without writing the code, show how to determine this data structure

from the output of your routine. (c) Assuming the data structure of the levels has been deter-

mined, write a short FORTRAN routine (or C function) to solve an upper triangular system

using the data structure resulting in the previous question. Show clearly which loop should be

executed in parallel.

7 In the jagged diagonal format described in Section 11.5.5, it is necessary to preprocess the matrix

by sorting its rows by decreasing number of rows. What type of sorting should be used for this

purpose?

8 In the jagged diagonal format described in Section 11.5.5, the matrix had to be preprocessed by

sorting it by rows of decreasing number of elements.

a. What is the main reason it is necessary to reorder the rows?

b. Assume that the same process of extracting one element per row is used. At some point the

extraction process will come to a stop and the remainder of the matrix can be put into a

CSR data structure. Write down a good data structure to store the two pieces of data and a

corresponding algorithm for matrix-by-vector products.

c. This scheme is efficient in many situations but can lead to problems if the first row is very

short. Suggest how to remedy the situation by padding with zero elements, as is done for the

Ellpack format.

9 Many matrices that arise in PDE applications have a structure that consists of a few diagonals

and a small number of nonzero elements scattered irregularly in the matrix. In such cases, it is

advantageous to extract the diagonal part and put the rest in a general sparse (e.g., CSR) format.

Write a pseudo-code to extract the main diagonals and the sparse part. As input parameter, the

number of diagonals desired must be specified.

NOTES AND REFERENCES. Kai Hwang’s book [124] is recommended for an overview of parallel

architectures. More general recommended reading on parallel computing are the book by Bertsekas

and Tsitsiklis [25] and a more recent volume by Kumar et al. [139]. One characteristic of high-

performance architectures is that trends come and go rapidly. A few years ago, it seemed that mas-

sive parallelism was synonymous with distributed memory computing, specifically of the hypercube

type. Currently, many computer vendors are mixing message-passing paradigms with “global address

space,” i.e., shared memory viewpoint. This is illustrated in the recent T3D machine built by CRAY

Research. This machine is configured as a three-dimensional torus and allows all three programming

paradigms discussed in this chapter, namely, data-parallel, shared memory, and message-passing. It

is likely that the T3D will set a certain trend. However, another recent development is the advent of

network supercomputing which is motivated by astounding gains both in workstation performance

and in high-speed networks. It is possible to solve large problems on clusters of workstations and to

EXERCISES AND NOTES 351

obtain excellent performance at a fraction of the cost of a massively parallel computer.

Regarding parallel algorithms, the survey paper of Ortega and Voigt [156] gives an exhaustive

bibliography for research done before 1985 in the general area of solution of Partial Differential

Equations on supercomputers. An updated bibliography by Ortega, Voigt, and Romine is available in

[99]. See also the survey [178] and the monograph [71]. Until the advent of supercomputing in the

mid 1970s, storage schemes for sparse matrices were chosen mostly for convenience as performance

was not an issue, in general. The first paper showing the advantage of diagonal storage schemes in

sparse matrix computations is probably [133]. The first discovery by supercomputer manufacturers of

the specificity of sparse matrix computations was the painful realization that without hardware sup-

port, vector computers could be inefficient. Indeed, the early CRAY machines did not have hardware

instructions for gather and scatter operations but this was soon remedied in the second-generation

machines. For a detailed account of the beneficial impact of hardware for “scatter” and “gather” on

vector machines, see [146].

Level scheduling is a textbook example of topological sorting in graph theory and was discussed

from this viewpoint in, e.g., [8, 190, 228]. For the special case of finite difference matrices on rectan-

gular domains, the idea was suggested by several authors independently, [208, 209, 111, 186, 10]. In

fact, the level scheduling approach described in this chapter is a “greedy” approach and is unlikely

to be optimal. There is no reason why an equation should be solved as soon as it is possible. For

example, it may be preferable to use a backward scheduling [7] which consists of defining the levels

from bottom up in the graph. Thus, the last level consists of the leaves of the graph, the previous level

consists of their predecessors, etc. Dynamic scheduling can also be used as opposed to static schedul-

ing. The main difference is that the level structure is not preset; rather, the order of the computation is

determined at run-time. The advantage over pre-scheduled triangular solutions is that it allows pro-

cessors to always execute a task as soon as its predecessors have been completed, which reduces idle

time. On loosely coupled distributed memory machines, this approach may be the most viable since

it will adjust dynamically to irregularities in the execution and communication times that can cause

a lock-step technique to become inefficient. However, for those shared memory machines in which

hardware synchronization is available and inexpensive, dynamic scheduling would have some dis-

advantages since it requires managing queues and generates explicitly busy waits. Both approaches

have been tested and compared in [22, 189] where it was concluded that on the Encore Multimax

dynamic scheduling is usually preferable except for problems with few synchronization points and a

large degree of parallelism. In [118], a combination of prescheduling and dynamic scheduling was

found to be the best approach on a Sequent balance 21000. There seems to have been no comparison

of these two approaches on distributed memory machines or on shared memory machines with mi-

crotasking or hardware synchronization features. In [22, 24] and [7, 8], a number of experiments are

presented to study the performance of level scheduling within the context of preconditioned Conju-

gate Gradient methods. Experiments on an Alliant FX-8 indicated that a speed-up of around 4 to 5

can be achieved easily. These techniques have also been tested for problems in Computational Fluid

Dynamics [214, 216].

C H A P T E R

12

PARALLEL PRECONDITIONERS

This chapter covers a few alternative methods for preconditioning a linear

system. These methods are suitable when the desired goal is to maximize

parallelism. The simplest approach is the diagonal (or Jacobi) precondi-

tioning. Often, this preconditioner is not very useful, since the number of

iterations of the resulting iteration tends to be much larger than the more

standard variants, such as ILU or SSOR. When developing parallel precondi-

tioners, one should beware that the bene�ts of increased parallelism are not

outweighed by the increased amount of computations. The main question

to ask is whether or not it is possible to �nd preconditioning techniques

that have a high degree of parallelism, as well as good intrinsic qualities.

INTRODUCTION

12.1

As seen in the previous chapter, a limited amount of parallelism can be extracted from

the standard preconditioners such as ILU and SSOR. Fortunately, a number of alternative

techniques can be developed that are specifically targeted at parallel environments. These

are preconditioning techniques that would normally not be used on a standard machine,

but only for parallel computers. There are at least three such types of techniques discussed

in this chapter. The simplest approach is to use a Jacobi or, even better, a block Jacobi

approach. In the simplest case, a Jacobi preconditioner may consist of the diagonal or a

block-diagonal of A. To enhance performance, these preconditioners can themselves be

accelerated by polynomial iterations, i.e., a second level of preconditioning called polyno-

mial preconditioning.

A different strategy altogether is to enhance parallelism by using graph theory algo-

rithms, such as graph-coloring techniques. These consist of coloring nodes such that two

adjacent nodes have different colors. The gist of this approach is that all unknowns associ-

ated with the same color can be determined simultaneously in the forward and backward

sweeps of the ILU preconditioning operation.

Finally, a third strategy uses generalizations of “partitioning” techniques, which can

352

12.2 BLOCK-JACOBI PRECONDITIONERS 353

be put in the general framework of “domain decomposition” approaches. These will be

covered in detail in the next chapter.

Algorithms are emphasized rather than implementations. There are essentially two

types of algorithms, namely, those which can be termed coarse-grain and those which can

be termed fine-grain. In coarse-grain algorithms, the parallel tasks are relatively big and

may, for example, involve the solution of small linear systems. In fine-grain parallelism, the

subtasks can be elementary floating-point operations or consist of a few such operations.

As always, the dividing line between the two classes of algorithms is somewhat blurred.

BLOCK-JACOBI PRECONDITIONERS

12.2

Overlapping block-Jacobi preconditioning consists of a general block-Jacobi approach as

described in Chapter 4, in which the sets Si overlap. Thus, we define the index sets

Si = fj j li � j � rig

with

l1 = 1

rp = n

ri > li+1; 1 � i � p� 1

where p is the number of blocks. Now use the block-Jacobi method with this particular

partitioning, or employ the general framework of additive projection processes of Chapter

5, and use an additive projection method onto the sequence of subspaces

Ki = spanfVig; Vi = [eli ; eli+1; : : : ; eri]:

Each of the blocks will give rise to a correction of the form

�
(k+1)
i = �

(k)
i +A�1i V T

i (b�Ax(k)): (12.1)

One problem with the above formula is related to the overlapping portions of the x vari-

ables. The overlapping sections will receive two different corrections in general. According

to the definition of “additive projection processes” seen in Chapter 5, the next iterate can

be defined as

xk+1 = xk +

pX
i=1

ViA
�1
i V T

i rk

where rk = b� Axk is the residual vector at the previous iteration. Thus, the corrections

for the overlapping regions simply are added together. It is also possible to weigh these

contributions before adding them up. This is equivalent to redefining (12.1) into

�
(k+1)
i = �

(k)
i +DiA

�1
i V T

i (b�Axk)

in which Di is a nonnegative diagonal matrix of weights. It is typical to weigh a nonover-

lapping contribution by one and an overlapping contribution by 1=k where k is the number

354 CHAPTER 12 PARALLEL PRECONDITIONERS

of times the unknown is represented in the partitioning.

A1

A3

A5

A7

A2

A4

A6

Figure 12.1 The block-Jacobi matrix with overlapping

blocks.

The block-Jacobi iteration is often over- or under-relaxed, using a relaxation parameter

!. The iteration can be defined in the form

xk+1 = xk +

pX
i=1

!iViA
�1
i V T

i rk:

Recall that the residual at step k + 1 is then related to that at step k by

rk+1 =

"
I �

pX
i=1

!iAVi
�
V T
i AVi

��1
V T
i

#
rk:

The solution of a sparse linear system is required at each projection step. These systems

can be solved by direct methods if the subblocks are small enough. Otherwise, iterative

methods may be used. The outer loop accelerator should then be a flexible variant, such as

FGMRES, which can accommodate variations in the preconditioners.

12.3 POLYNOMIAL PRECONDITIONERS 355

POLYNOMIAL PRECONDITIONERS

12.3

In polynomial preconditioning the matrix M is defined by

M�1 = s(A)

where s is a polynomial, typically of low degree. Thus, the original system is replaced by

the preconditioned system

s(A)Ax = s(A)b (12.2)

which is then solved by a conjugate gradient-type technique. Note that s(A) and A com-

mute and, as a result, the preconditioned matrix is the same for right or left preconditioning.

In addition, the matrix s(A) or As(A) does not need to be formed explicitly since As(A)v
can be computed for any vector v from a sequence of matrix-by-vector products.

Initially, this approach was motivated by the good performance of matrix-vector oper-

ations on vector computers for long vectors, e.g., the Cyber 205. However, the idea itself is

an old one and has been suggested by Stiefel [204] for eigenvalue calculations in the mid

1950s. Next, some of the popular choices for the polynomial s are described.

12.3.1 NEUMANN POLYNOMIALS

The simplest polynomial s which has been used is the polynomial of the Neumann series

expansion

I +N +N2 + � � �+Ns

in which

N = I � !A

and ! is a scaling parameter. The above series comes from expanding the inverse of !A
using the splitting

!A = I � (I � !A):

This approach can also be generalized by using a splitting of the form

!A = D � (D � !A)

where D can be the diagonal of A or, more appropriately, a block diagonal of A. Then,

(!A)�1 =
�
D(I � (I � !D�1A))

��1
=

�
I � (I � !D�1A)

��1
D�1:

Thus, setting

N = I � !D�1A

356 CHAPTER 12 PARALLEL PRECONDITIONERS

results in the approximate s-term expansion

(!A)�1 �M�1 � [I +N + � � �+Ns]D�1: (12.3)

Since D�1A = !�1 [I �N] ; note that

M�1A = [I +N + � � �+Ns]D�1A

=
1

!
[I +N + � � �+Ns] (I �N)

=
1

!
(I �Ns+1):

The matrix operation with the preconditioned matrix can be difficult numerically for large

s. If the original matrix is Symmetric Positive Definite, then M�1A is not symmetric, but

it is self-adjoint with respect to the D-inner product; see Exercise 1.

12.3.2 CHEBYSHEV POLYNOMIALS

The polynomial s can be selected to be optimal in some sense, and this leads to the use of

Chebyshev polynomials. The criterion that is used makes the preconditioned matrix s(A)A
as close as possible to the identity matrix in some sense. For example, the spectrum of the

preconditioned matrix can be made as close as possible to that of the identity. Denoting by

�(A) the spectrum of A, and by Pk the space of polynomials of degree not exceeding k,

the following may be solved.

Find s 2 Pk which minimizes:

max
�2�(A)

j1� �s(�)j: (12.4)

Unfortunately, this problem involves all the eigenvalues of A and is harder to solve than

the original problem. Usually, problem (12.4) is replaced by the problem

Find s 2 Pk which minimizes:

max
�2E

j1� �s(�)j; (12.5)

which is obtained from replacing the set �(A) by some continuous set E that encloses it.

Thus, a rough idea of the spectrum of the matrix A is needed. Consider first the particular

case whereA is Symmetric Positive Definite, in which caseE can be taken to be an interval

[�; �] containing the eigenvalues of A.

A variation of Theorem 6.4 is that for any real scalar such with � �, the minimum

min
p2Pk;p()=1

max
t2[�;�]

jp(t)j

is reached for the shifted and scaled Chebyshev polynomial of the first kind,

Ĉk(t) �
Ck

�
1 + 2 ��t

���

�
Ck

�
1 + 2�����

� :

12.3 POLYNOMIAL PRECONDITIONERS 357

Of interest is the case where = 0 which gives the polynomial

Tk(t) �
1

�k
Ck

�
� + �� 2t

� � �

�
with �k � Ck

�
� + �

� � �

�
:

Denote the center and mid-width of the interval [�; �], respectively, by

� �
� + �

2
; � �

� � �

2
:

Using these parameters instead of �; �, the above expressions then become

Tk(t) �
1

�k
Ck

�
� � t

�

�
with �k � Ck

�
�

�

�
:

The three-term recurrence for the Chebyshev polynomials results in the following three-

term recurrences:

�k+1 = 2
�

�
�k � �k�1; k = 1; 2 : : : ;

with

�1 =
�

�
; �0 = 1;

and

Tk+1(t) �
1

�k+1

�
2
� � t

�
�kTk(t)� �k�1Tk�1(t)

�

=
�k
�k+1

�
2
� � t

�
Tk(t)�

�k�1
�k

Tk�1(t)

�
; k � 1;

with

T1(t) = 1�
t

�
; T0(t) = 1:

Define

�k �
�k
�k+1

; k = 1; 2; : : : : (12.6)

Note that the above recurrences can be put together as

�k =
1

2�1 � �k�1
(12.7)

Tk+1(t) = �k

�
2(�1 �

t

�
)Tk(t)� �k�1Tk�1(t)

�
; k � 1: (12.8)

Observe that formulas (12.7–12.8) can be started at k = 0 provided we set T�1 � 0 and

��1 � 0, so that �0 = 1=(2�1).
The goal is to obtain an iteration that produces a residual vector of the form rk+1 =

Tk+1(A)r0 where Tk is the polynomial defined by the above recurrence. The difference

between two successive residual vectors is given by

rk+1 � rk = (Tk+1(A)� Tk(A))r0:

The identity 1 = (2�1 � �k�1)�k and the relations (12.8) yield

Tk+1(t)� Tk(t) = Tk+1(t)� (2�1 � �k�1)�kTk(t)

358 CHAPTER 12 PARALLEL PRECONDITIONERS

= �k

�
�
2t

�
Tk(t) + �k�1(Tk(t)� Tk�1(t))

�
:

As a result,

Tk+1(t)� Tk(t)

t
= �k

�
�k�1

Tk(t)� Tk�1(t)

t
�

2

�
Tk(t)

�
: (12.9)

Define

dk � xk+1 � xk;

and note that rk+1 � rk = Adk. If xk+1 = x0 + sk(A)r0, then rk+1 = (I � Ask(A))r0,

and dk = A�1(Tk+1(A) � Tk(A))r0. Therefore the relation (12.9) translates into the

recurrence,

dk = �k

�
�k�1dk�1 �

2

�
rk

�
:

Finally, the following algorithm is obtained.

ALGORITHM 12.1: Chebyshev Acceleration

1. r0 = b�Ax0; �1 = �=�;

2. �0 = 1=�1; d0 =
1
� r0;

3. For k = 0; : : : ; until convergence Do:

4. xk+1 = xk + dk
5. rk+1 = rk �Adk
6. �k+1 = (2�1 � �k)

�1;

7. dk+1 = �k+1�kdk �
2�k+1
� rk+1

8. EndDo

Lines 7 and 4 can also be recast into one single update of the form

xk+1 = xk + �k

�
�k�1(xk � xk�1)�

2

�
(b�Axk)

�
:

It can be shown that when � = �1 and � = �N , the resulting preconditioned matrix

minimizes the condition number of the preconditioned matrices of the form As(A) over all

polynomials s of degree � k � 1. However, when used in conjunction with the Conjugate

Gradient method, it is observed that the polynomial which minimizes the total number

of Conjugate Gradient iterations is far from being the one which minimizes the condition

number. If instead of taking � = �1 and � = �N , the interval [�; �] is chosen to be

slightly inside the interval [�1; �N], a much faster convergence might be achieved. The true

optimal parameters, i.e., those that minimize the number of iterations of the polynomial

preconditioned Conjugate Gradient method, are difficult to determine in practice.

There is a slight disadvantage to the approaches described above. The parameters �
and �, which approximate the smallest and largest eigenvalues of A, are usually not avail-

able beforehand and must be obtained in some dynamic way. This may be a problem mainly

because a software code based on Chebyshev acceleration could become quite complex.

12.3 POLYNOMIAL PRECONDITIONERS 359

To remedy this, one may ask whether the values provided by an application of Gersh-

gorin’s theorem can be used for � and �. Thus, in the symmetric case, the parameter

�, which estimates the smallest eigenvalue of A, may be nonpositive even when A is a

positive definite matrix. However, when � � 0, the problem of minimizing (12.5) is not

well defined, since it does not have a unique solution due to the non strict-convexity of

the uniform norm. An alternative uses the L2-norm on [�; �] with respect to some weight

function w(�). This “least-squares” polynomials approach is considered next.

12.3.3 LEAST-SQUARES POLYNOMIALS

Consider the inner product on the space Pk:

hp; qi =

Z �

�

p(�)q(�)w(�)d� (12.10)

where w(�) is some non-negative weight function on (�; �). Denote by kpkw and call

w-norm, the 2-norm induced by this inner product.

We seek the polynomial sk�1 which minimizes

k1� �s(�)kw (12.11)

over all polynomials s of degree� k�1. Call sk�1 the least-squares iteration polynomial,

or simply the least-squares polynomial, and refer to Rk(�) � 1 � �sk�1(�) as the least-

squares residual polynomial. A crucial observation is that the least squares polynomial is

well defined for arbitrary values of � and �. Computing the polynomial sk�1(�) is not a

difficult task when the weight function w is suitably chosen.

Computation of the least-squares polynomials There are three ways to compute the

least-squares polynomial sk defined in the previous section. The first approach is to use an

explicit formula for Rk, known as the kernel polynomials formula,

Rk(�) =

Pk
i=0 qi(0)qi(�)Pk
i=0 qi(0)

2
(12.12)

in which the qi’s represent a sequence of polynomials orthogonal with respect to the weight

function w(�). The second approach generates a three-term recurrence satisfied by the

residual polynomials Rk(�). These polynomials are orthogonal with respect to the weight

function �w(�). From this three-term recurrence, we can proceed exactly as for the Cheby-

shev iteration to obtain a recurrence formula for the sequence of approximate solutions xk .

Finally, a third approach solves the Normal Equations associated with the minimization of

(12.11), namely,

h1� �sk�1(�); �Qj(�)i = 0; j = 0; 1; 2; : : : ; k � 1

where Qj ; j = 1; : : : ; k � 1 is any basis of the space Pk�1 of polynomials of degree

� k � 1.

These three approaches can all be useful in different situations. For example, the first

approach can be useful for computing least-squares polynomials of low degree explicitly.

For high-degree polynomials, the last two approaches are preferable for their better numer-

360 CHAPTER 12 PARALLEL PRECONDITIONERS

ical behavior. The second approach is restricted to the case where � � 0, while the third is

more general.

Since the degrees of the polynomial preconditioners are often low, e.g., not exceeding

5 or 10, we will give some details on the first formulation. Let qi(�); i = 0; 1; : : : ; n; : : :,
be the orthonormal polynomials with respect to w(�). It is known that the least-squares

residual polynomial Rk(�) of degree k is determined by the kernel polynomials formula

(12.12). To obtain sk�1(�), simply notice that

sk�1(�) =
1�Rk(�)

�

=

Pk
i=0 qi(0)ti(�)Pk

i=0 qi(0)
2

; with (12.13)

ti(�) =
qi(0)� qi(�)

�
: (12.14)

This allows sk�1 to be computed as a linear combination of the polynomials ti(�). Thus,

we can obtain the desired least-squares polynomials from the sequence of orthogonal poly-

nomials qi which satisfy a three-term recurrence of the form:

�i+1qi+1(�) = (� � �i)qi(�) � �iqi�1(�); i = 1; 2; : : : :

From this, the following recurrence for the ti’s can be derived:

�i+1ti+1(�) = (�� �i)ti(�)� �iti�1(�) + qi(0); i = 1; 2; : : : :

The weight function w is chosen so that the three-term recurrence of the orthogonal

polynomials qi is known explicitly and/or is easy to generate. An interesting class of weight

functions that satisfy this requirement is considered next.

Choice of the weight functions This section assumes that � = 0 and � = 1. Consider

the Jacobi weights

w(�) = ���1(1� �)� ;where � > 0 and � � �
1

2
: (12.15)

For these weight functions, the recurrence relations are known explicitly for the polyno-

mials that are orthogonal with respect to w(�), �w(�), or �2w(�). This allows the use of

any of the three methods described in the previous section for computing sk�1(�). More-

over, it has been shown [129] that the preconditioned matrixAsk(A) is Symmetric Positive

Definite when A is Symmetric Positive Definite, provided that �� 1 � � � � 1
2 .

The following explicit formula for Rk(�) can be derived easily from the explicit ex-

pression of the Jacobi polynomials and the fact that fRkg is orthogonal with respect to the

weight �w(�):

Rk(�) =
kX

j=0

�
(k)
j (1� �)k�j (��)j (12.16)

�
(k)
j =

�
k
j

� j�1Y
i=0

k � i+ �

i+ 1 + �
:

Using (12.13), the polynomial sk�1(�) = (1�Rk(�))=� can be derived easily “by hand”

for small degrees; see Exercise 4.

12.3 POLYNOMIAL PRECONDITIONERS 361

Example 12.1 As an illustration, we list the least-squares polynomials sk for k = 1, : : :,
8, obtained for the Jacobi weights with � = 1

2 and � = � 1
2 . The polynomials listed are for

the interval [0; 4] as this leads to integer coefficients. For a general interval [0; �], the best

polynomial of degree k is sk(4�=�). Also, each polynomial sk is rescaled by (3+2k)=4 to

simplify the expressions. However, this scaling factor is unimportant if these polynomials

are used for preconditioning.

1 � �2 �3 �4 �5 �6 �7 �8

s1 5 � 1

s2 14 �7 1

s3 30 � 27 9 � 1

s4 55 � 77 44 � 11 1

s5 91 � 182 156 � 65 13 � 1

s6 140 � 378 450 � 275 90 � 15 1

s7 204 � 714 1122 � 935 442 � 119 17 � 1

s8 285 � 1254 2508 � 2717 1729 � 665 152 � 19 1

We selected � = 1
2 and � = � 1

2 only because these choices lead to a very simple re-

currence for the polynomials qi, which are the Chebyshev polynomials of the first kind.

Theoretical considerations An interesting theoretical question is whether the least-

squares residual polynomial becomes small in some sense as its degree increases. Consider

first the case 0 < � < �. Since the residual polynomial Rk minimizes the norm kRkw as-

sociated with the weight w, over all polynomials R of degree� k such that R(0) = 1, the

polynomial (1� (�=�))k with � = (�+ �)=2 satisfies

kRkkw �

�
1�

�

c

�k

w

�

�
b� a

b+ a

�k
w

= �

�
� � �

� + �

�k

where � is the w-norm of the function unity on the interval [�; �]. The norm of Rk will

tend to zero geometrically as k tends to infinity, provided � > 0.

Consider now the case � = 0, � = 1 and the Jacobi weight (12.15). For this choice

of the weight function, the least-squares residual polynomial is known to be pk(�)=pk(0)
where pk is the kth degree Jacobi polynomial associated with the weight function w0(�) =
��(1� �)� . It can be shown that the 2-norm of such a residual polynomial with respect to

this weight is given by

kpk=pk(0)k
2
w0 =

�2(�+ 1)�(k + � + 1)

(2k + �+ � + 1)(�(k + �+ � + 1)

�(k + 1)

�(k + �+ 1)

in which � is the Gamma function. For the case � = 1
2 and � = � 1

2 , this becomes

kpk=pk(0)k
2
w0 =

[�(32)]
2

(2k + 1)(k + 1
2)

=
�

2(2k + 1)2
:

Therefore, the w0-norm of the least-squares residual polynomial converges to zero like 1=k
as the degree k increases (a much slower rate than when � > 0). However, note that the

condition p(0) = 1 implies that the polynomial must be large in some interval around the

362 CHAPTER 12 PARALLEL PRECONDITIONERS

origin.

12.3.4 THE NONSYMMETRIC CASE

Given a set of approximate eigenvalues of a nonsymmetric matrixA, a simple regionE can

be constructed in the complex plane, e.g., a disk, an ellipse, or a polygon, which encloses

the spectrum of the matrix A. There are several choices for E. The first idea uses an ellipse

E that encloses an approximate convex hull of the spectrum. Consider an ellipse centered

at �, and with focal distance �. Then as seen in Chapter 6, the shifted and scaled Chebyshev

polynomials defined by

Tk(�) =
Ck

�
���
�

�
Ck

�
�
�

�
are nearly optimal. The use of these polynomials leads again to an attractive three-term

recurrence and to an algorithm similar to Algorithm 12.1. In fact, the recurrence is identi-

cal, except that the scalars involved can now be complex to accommodate cases where the

ellipse has foci not necessarily located on the real axis. However, when A is real, then the

symmetry of the foci with respect to the real axis can be exploited. The algorithm can still

be written in real arithmetic.

An alternative to Chebyshev polynomials over ellipses employs a polygon H that

contains �(A). Polygonal regions may better represent the shape of an arbitrary spectrum.

The best polynomial for the infinity norm is not known explicitly but it may be computed

by an algorithm known in approximation theory as the Remez algorithm. It may be simpler

to use anL2-norm instead of the infinity norm, i.e., to solve (12.11) wherew is some weight

function defined on the boundary of the polygon H .

Now here is a sketch of an algorithm based on this approach. We use an L2-norm as-

sociated with Chebyshev weights on the edges of the polygon. If the contour of H consists

of k edges each with center �i and half-length �i, then the weight on each edge is defined

by

wi(�) =
2

�
j�i � (� � �i)

2j�1=2; i = 1; : : : ; k: (12.17)

Using the power basis to express the best polynomial is not a safe practice. It is preferable to

use the Chebyshev polynomials associated with the ellipse of smallest area containing H .

With the above weights or any other Jacobi weights on the edges, there is a finite procedure

which does not require numerical integration to compute the best polynomial. To do this,

each of the polynomials of the basis (namely, the Chebyshev polynomials associated with

the ellipse of smallest area containing H) must be expressed as a linear combination of

the Chebyshev polynomials associated with the different intervals [�i � �i; �i + �i]. This

redundancy allows exact expressions for the integrals involved in computing the least-

squares solution to (12.11).

Next, the main lines of a preconditioned GMRES algorithm are described based on

least-squares polynomials. Eigenvalue estimates are obtained from a GMRES step at the

beginning of the outer loop. This GMRES adaptive corrects the current solution and the

eigenvalue estimates are used to update the current polygon H . Correcting the solution

at this stage is particularly important since it often results in a few orders of magnitude

12.3 POLYNOMIAL PRECONDITIONERS 363

improvement. This is because the polygon H may be inaccurate and the residual vector is

dominated by components in one or two eigenvectors. The GMRES step will immediately

annihilate those dominating components. In addition, the eigenvalues associated with these

components will now be accurately represented by eigenvalues of the Hessenberg matrix.

ALGORITHM 12.2: Polynomial Preconditioned GMRES

1. Start or Restart:

2. Compute current residual vector r := b�Ax.

3. Adaptive GMRES step:

4. Run m1 steps of GMRES for solving Ad = r.

5. Update x by x := x+ d.

6. Get eigenvalue estimates from the eigenvalues of the

7. Hessenberg matrix.

8. Compute new polynomial:

9. Refine H from previous hull H and new eigenvalue estimates.

10. Get new best polynomial sk.

11. Polynomial Iteration:

12. Compute the current residual vector r = b�Ax.

13. Run m2 steps of GMRES applied to sk(A)Ad = sk(A)r.

14. Update x by x := x+ d.

15. Test for convergence.

16. If solution converged then Stop; else GoTo 1.

Example 12.2 Table 12.1 shows the results of applying GMRES(20) with polynomial

preconditioning to the first four test problems described in Section 3.7.

Matrix Iters Kflops Residual Error

F2DA 56 2774 0.22E-05 0.51E-06

F3D 22 7203 0.18E-05 0.22E-05

ORS 78 4454 0.16E-05 0.32E-08

F2DB 100 4432 0.47E-05 0.19E-05

Table 12.1 A test run of ILU(0)-GMRES accelerated with

polynomial preconditioning.

See Example 6.1 for the meaning of the column headers in the table. In fact, the system

is preconditioned by ILU(0) before polynomial preconditioning is applied to it. Degree 10

polynomials (maximum) are used. The tolerance for stopping is 10�7. Recall that Iters

is the number of matrix-by-vector products rather than the number of GMRES iterations.

Notice that, for most cases, the method does not compare well with the simpler ILU(0)

example seen in Chapter 10. The notable exception is example F2DB for which the method

converges fairly fast in contrast with the simple ILU(0)-GMRES; see Example 10.2. An

attempt to use the method for the fifth matrix in the test set, namely, the FIDAP matrix

FID, failed because the matrix has eigenvalues on both sides of the imaginary axis and the

code tested does not handle this situation.

364 CHAPTER 12 PARALLEL PRECONDITIONERS

It is interesting to follow the progress of the algorithm in the above examples. For the

first example, the coordinates of the vertices of the upper part of the first polygon H are

<e(ci) =m(ci)
0.06492 0.00000

0.17641 0.02035

0.29340 0.03545

0.62858 0.04977

1.18052 0.00000

This hull is computed from the 20 eigenvalues of the 20 � 20 Hessenberg matrix result-

ing from the first run of GMRES(20). In the ensuing GMRES loop, the outer iteration

converges in three steps, each using a polynomial of degree 10, i.e., there is no further

adaptation required. For the second problem, the method converges in the 20 first steps of

GMRES, so polynomial acceleration was never invoked. For the third example, the initial

convex hull found is the interval [0:06319; 1:67243] of the real line. The polynomial pre-

conditioned GMRES then convergences in five iterations. Finally, the initial convex hull

found for the last example is

<e(ci) =m(ci)
0.17131 0.00000

0.39337 0.10758

1.43826 0.00000

and the outer loop converges again without another adaptation step, this time in seven steps.

MULTICOLORING

12.4

The general idea of multicoloring, or graph coloring, has been used for a long time by

numerical analysts. It was exploited, in particular, in the context of relaxation techniques

both for understanding their theory and for deriving efficient algorithms. More recently,

these techniques were found to be useful in improving parallelism in iterative solution

techniques. This discussion begins with the 2-color case, called red-black ordering.

12.4.1 RED-BLACK ORDERING

The problem addressed by multicoloring is to determine a coloring of the nodes of the

adjacency graph of a matrix such that any two adjacent nodes have different colors. For

a 2-dimensional finite difference grid (5-point operator), this can be achieved with two

12.4 MULTICOLORING 365

colors, typically referred to as “red” and “black.” This red-black coloring is illustrated in

Figure 12.2 for a 6� 4 mesh where the black nodes are represented by filled circles.

1 3 5

8 10 12

13 15 17

20 22 24

2 4 6

7 9 11

14 16 18

19 21 23

Figure 12.2 Red-black coloring of a 6 � 4 grid. Natural la-

beling of the nodes.

Assume that the unknowns are labeled by listing the red unknowns first together, fol-

lowed by the black ones. The new labeling of the unknowns is shown in Figure 12.3.

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

22 23 24

Figure 12.3 Red-black coloring of a 6 � 4 grid. Red-black

labeling of the nodes.

Since the red nodes are not coupled with other red nodes and, similarly, the black

nodes are not coupled with other black nodes, the system that results from this reordering

will have the structure �
D1 F
E D2

��
x1
x2

�
=

�
b1
b2

�
; (12.18)

in which D1 and D2 are diagonal matrices. The reordered matrix associated with this new

labeling is shown in Figure 12.4.

Two issues will be explored regarding red-black ordering. The first is how to exploit

this structure for solving linear systems. The second is how to generalize this approach for

systems whose graphs are not necessarily 2-colorable.

366 CHAPTER 12 PARALLEL PRECONDITIONERS

Figure 12.4 Matrix associated with the red-black reordering

of Figure 12.3.

12.4.2 SOLUTION OF RED-BLACK SYSTEMS

The easiest way to exploit the red-black ordering is to use the standard SSOR or ILU(0)

preconditioners for solving the block system (12.18) which is derived from the original sys-

tem. The resulting preconditioning operations are highly parallel. For example, the linear

system that arises from the forward solve in SSOR will have the form�
D1 O
E D2

��
x1
x2

�
=

�
b1
b2

�
:

This system can be solved by performing the following sequence of operations:

1. Solve D1x1 = b1.

2. Compute b̂2 := b2 �Ex1.

3. Solve D2x2 = b̂2.

This consists of two diagonal scalings (operations 1 and 3) and a sparse matrix-by-

vector product. Therefore, the degree of parallelism, is at least n=2 if an atomic task is

considered to be any arithmetic operation. The situation is identical with the ILU(0) pre-

conditioning. However, since the matrix has been reordered before ILU(0) is applied to it,

the resulting LU factors are not related in any simple way to those associated with the orig-

inal matrix. In fact, a simple look at the structure of the ILU factors reveals that many more

elements are dropped with the red-black ordering than with the natural ordering. The result

is that the number of iterations to achieve convergence can be much higher with red-black

ordering than with the natural ordering.

A second method that has been used in connection with the red-black ordering solves

the reduced system which involves only the black unknowns. Eliminating the red un-

knowns from (12.18) results in the reduced system:

(D2 �ED�11 F)x2 = b2 �ED�11 b1:

12.4 MULTICOLORING 367

Note that this new system is again a sparse linear system with about half as many un-

knowns. In addition, it has been observed that for “easy problems,” the reduced system

can often be solved efficiently with only diagonal preconditioning. The computation of the

reduced system is a highly parallel and inexpensive process. Note that it is not necessary

to form the reduced system. This strategy is more often employed when D1 is not diag-

onal, such as in domain decomposition methods, but it can also have some uses in other

situations. For example, applying the matrix to a given vector x can be performed using

nearest-neighbor communication, and this can be more efficient than the standard approach

of multiplying the vector by the Schur complement matrix D2�ED�11 F . In addition, this

can save storage, which may be more critical in some cases.

12.4.3 MULTICOLORING FOR GENERAL SPARSE MATRICES

Chapter 3 discussed a general greedy approach for multicoloring a graph. Given a general

sparse matrix A, this inexpensive technique allows us to reorder it into a block form where

the diagonal blocks are diagonal matrices. The number of blocks is the number of colors.

For example, for six colors, a matrix would result with the structure shown in Figure 12.5

where the Di’s are diagonal and E, F are general sparse. This structure is obviously a

generalization of the red-black ordering.

D1

D2

D3

D4

D5

D6

F

E

Figure 12.5 A six-color ordering of a general sparse matrix.

Just as for the red-black ordering, ILU(0), SOR, or SSOR preconditioning can be used

on this reordered system. The parallelism of SOR/SSOR is now of order n=p where p is

the number of colors. A loss in efficiency may occur since the number of iterations is likely

to increase.

A Gauss-Seidel sweep will essentially consist of p scalings and p�1 matrix-by-vector

products, where p is the number of colors. Specifically, assume that the matrix is stored in

the well known Ellpack-Itpack format and that the block structure of the permuted matrix

is defined by a pointer array iptr. The index iptr(j) is the index of the first row in the j-th

block. Thus, the pair A(n1 : n2; �); JA(n1 : n2; �) represents the sparse matrix consisting

of the rows n1 to n2 in the Ellpack-Itpack format. The main diagonal of A is assumed to

368 CHAPTER 12 PARALLEL PRECONDITIONERS

be stored separately in inverted form in a one-dimensional array diag. One single step of

the multicolor SOR iteration will then take the following form.

ALGORITHM 12.3: Multicolor SOR Sweep in the Ellpack Format

1. Do col = 1, ncol

2. n1 = iptr(col)

3. n2 = iptr(col+1) – 1

4. y(n1:n2) = rhs(n1:n2)

5. Do j = 1, ndiag

6. Do i = n1, n2

7. y(i) = y(i) – a(i,j)*y(ja(i,j))

8. EndDo

9. EndDo

10. y(n1:n2) = diag(n1:n2) * y(n1:n2)

11. EndDo

In the above algorithm, ncol is the number of colors. The integers n1 and n2 set in lines

2 and 3 represent the beginning and the end of block col. In line 10, y(n1 : n2) is mul-

tiplied by the diagonal D�1 which is kept in inverted form in the array diag. The outer

loop, i.e., the loop starting in line 1, is sequential. The loop starting in line 6 is vectoriz-

able/parallelizable. There is additional parallelism which can be extracted in the combina-

tion of the two loops starting in lines 5 and 6.

MULTI-ELIMINATION ILU

12.5

The discussion in this section begins with the Gaussian elimination algorithm for a general

sparse linear system. Parallelism in sparse Gaussian elimination can be obtained by find-

ing unknowns that are independent at a given stage of the elimination, i.e., unknowns that

do not depend on each other according to the binary relation defined by the graph of the

matrix. A set of unknowns of a linear system which are independent is called an indepen-

dent set. Thus, independent set orderings can be viewed as permutations to put the original

matrix in the form �
D E
F C

�
(12.19)

in which D is diagonal, but C can be arbitrary. This amounts to a less restrictive form of

multicoloring, in which a set of vertices in the adjacency graph is found so that no equation

in the set involves unknowns from the same set. A few algorithms for finding independent

set orderings of a general sparse graph were discussed in Chapter 3.

The rows associated with an independent set can be used as pivots simultaneously.

When such rows are eliminated, a smaller linear system results, which is again sparse.

Then we can find an independent set for this reduced system and repeat the process of

12.5 MULTI-ELIMINATION ILU 369

reduction. The resulting second reduced system is called the second-level reduced system.

The process can be repeated recursively a few times. As the level of the reduction increases,

the reduced systems gradually lose their sparsity. A direct solution method would continue

the reduction until the reduced system is small enough or dense enough to switch to a dense

Gaussian elimination to solve it. This process is illustrated in Figure 12.6. There exists a

number of sparse direct solution techniques based on this approach.

Figure 12.6 Illustration of two levels of multi-elimination for

sparse linear systems.

After a brief review of the direct solution method based on independent set orderings,

we will explain how to exploit this approach for deriving incomplete LU factorizations by

incorporating drop tolerance strategies.

12.5.1 MULTI-ELIMINATION

We start by a discussion of an exact reduction step. Let Aj be the matrix obtained at the

j-th step of the reduction, j = 0; : : : ; nlev with A0 = A. Assume that an independent set

ordering is applied to Aj and that the matrix is permuted accordingly as follows:

PjAjP
T
j =

�
Dj Fj

Ej Cj

�
(12.20)

where Dj is a diagonal matrix. Now eliminate the unknowns of the independent set to get

the next reduced matrix,

Aj+1 = Cj �EjD
�1
j Fj : (12.21)

This results, implicitly, in a block LU factorization

PjAjP
T
j =

�
Dj Fj

Ej Cj

�
=

�
I O

EjD
�1
j I

�
�

�
Dj Fj

O Aj+1

�
with Aj+1 defined above. Thus, in order to solve a system with the matrix Aj , both a

forward and a backward substitution need to be performed with the block matrices on the

right-hand side of the above system. The backward solution involves solving a system with

the matrix Aj+1.

This block factorization approach can be used recursively until a system results that is

small enough to be solved with a standard method. The transformations used in the elimina-

tion process, i.e., the matrices EjD
�1
j and the matrices Fj must be saved. The permutation

370 CHAPTER 12 PARALLEL PRECONDITIONERS

matrices Pj can also be saved. Alternatively, the matrices involved in the factorization at

each new reordering step can be permuted explicitly.

12.5.2 ILUM

The successive reduction steps described above will give rise to matrices that become more

and more dense due to the fill-ins introduced by the elimination process. In iterative meth-

ods, a common cure for this is to neglect some of the fill-ins introduced by using a simple

dropping strategy as the reduced systems are formed. For example, any fill-in element in-

troduced is dropped, whenever its size is less than a given tolerance times the 2-norm of

the original row. Thus, an “approximate” version of the successive reduction steps can be

used to provide an approximate solutionM�1v to A�1v for any given v. This can be used

to precondition the original linear system. Conceptually, the modification leading to an

“incomplete” factorization replaces (12.21) by

Aj+1 = (Cj �EjD
�1
j Fj)�Rj (12.22)

in which Rj is the matrix of the elements that are dropped in this reduction step. Globally,

the algorithm can be viewed as a form of incomplete block LU with permutations.

Thus, there is a succession of block ILU factorizations of the form

PjAjP
T
j =

�
Dj Fj

Ej Cj

�

=

�
I O

EjD
�1
j I

�
�

�
Dj Fj

O Aj+1

�
+

�
O O
O Rj

�
with Aj+1 defined by (12.22). An independent set ordering for the new matrix Aj+1 will

then be found and this matrix is reduced again in the same manner. It is not necessary to

save the successive Aj matrices, but only the last one that is generated. We need also to

save the sequence of sparse matrices

Bj+1 =

�
Dj Fj

EjD
�1
j O

�
(12.23)

which contain the transformation needed at level j of the reduction. The successive per-

mutation matrices Pj can be discarded if they are applied to the previous Bi matrices as

soon as these permutation matrices are known. Then only the global permutation is needed,

which is the product of all these successive permutations.

An illustration of the matrices obtained after three reduction steps is shown in Figure

12.7. The original matrix is a 5-point matrix associated with a 15�15 grid and is therefore

of size N = 225. Here, the successive matrices Bi (with permutations applied) are shown

together with the last Aj matrix which occupies the location of the O block in (12.23).

12.5 MULTI-ELIMINATION ILU 371

Figure 12.7 Illustration of the processed matrices obtained

from three steps of independent set ordering and reductions.

We refer to this incomplete factorization as ILUM (ILU with Multi-Elimination). The

preprocessing phase consists of a succession of nlev applications of the following three

steps: (1) finding the independent set ordering, (2) permuting the matrix, and (3) reducing

it.

ALGORITHM 12.4: ILUM: Preprocessing Phase

1. Set A0 = A.

2. For j = 0; 1; : : : ; nlev � 1 Do:

3. Find an independent set ordering permutation Pj for Aj ;

4. Apply Pj to Aj to permute it into the form (12.20);

5. Apply Pj to B1; : : : ; Bj ;

6. Apply Pj to P0; : : : ; Pj�1;

7. Compute the matrices Aj+1 and Bj+1 defined by (12.22) and (12.23).

8. EndDo

In the backward and forward solution phases, the last reduced system must be solved but

not necessarily with high accuracy. For example, we can solve it according to the level of

tolerance allowed in the dropping strategy during the preprocessing phase. Observe that

if the linear system is solved inaccurately, only an accelerator that allows variations in

the preconditioning should be used. Such algorithms have been discussed in Chapter 9.

Alternatively, we can use a fixed number of multicolor SOR or SSOR steps or a fixed

polynomial iteration. The implementation of the ILUM preconditioner corresponding to

372 CHAPTER 12 PARALLEL PRECONDITIONERS

this strategy is rather complicated and involves several parameters.

In order to describe the forward and backward solution, we introduce some notation.

We start by applying the “global permutation,” i.e., the product

Pnlev�1; Pnlev�2 : : : ; P0

to the right-hand side. We overwrite the result on the current solution vector, an N -vector

called x0. Now partition this vector into

x0 =

�
y0
x1

�
according to the partitioning (12.20). The forward step consists of transforming the second

component of the right-hand side as

x1 := x1 �E0D
�1
0 y0:

Now x1 is partitioned in the same manner as x0 and the forward elimination is continued

the same way. Thus, at each step, each xj is partitioned as

xj =

�
yj

xj+1

�
:

A forward elimination step defines the new xj+1 using the old xj+1 and yj for j =
0; : : : ; nlev � 1 while a backward step defines yj using the old yj and xj+1, for j =
nlev � 1; : : : ; 0. Algorithm 12.5 describes the general structure of the forward and back-

ward solution sweeps. Because the global permutation was applied at the beginning, the

successive permutations need not be applied. However, the final result obtained must be

permuted back into the original ordering.

ALGORITHM 12.5: ILUM: Forward and Backward Solutions

1. Apply global permutation to right-hand-side b and copy into x0.

2. For j = 0; 1; : : : ; nlev � 1 Do: [Forward sweep]

3. xj+1 := xj+1 �EjD
�1
j yj

4. EndDo

5. Solve with a relative tolerance �:
6. Anlevxnlev := xnlev .

7. For j = nlev � 1; : : : ; 1; 0 Do: [Backward sweep]

8. yj := D�1j (yj � Fjxj+1).

9. EndDo

10. Permute the resulting solution vector back to the original

11. ordering to obtain the solution x.

Computer implementations of ILUM can be rather tedious. The implementation issues

are similar to those of parallel direct-solution methods for sparse linear systems.

12.6 DISTRIBUTED ILU AND SSOR 373

DISTRIBUTED ILU AND SSOR

12.6

This section describes parallel variants of the block Successive Over-Relaxation (BSOR)

and ILU(0) preconditioners which are suitable for distributed memory environments.

Chapter 11 briefly discussed distributed sparse matrices.. A distributed matrix is a ma-

trix whose entries are located in the memories of different processors in a multiprocessor

system. These types of data structures are very convenient for distributed memory com-

puters and it is useful to discuss implementations of preconditioners that are specifically

developed for them. Refer to Section 11.5.6 for the terminology used here. In particular, the

term subdomain is used in the very general sense of subgraph. For both ILU and SOR, mul-

ticoloring or level scheduling can be used at the macro level, to extract parallelism. Here,

macro level means the level of parallelism corresponding to the processors, or blocks, or

subdomains.

12.6.1 DISTRIBUTED SPARSE MATRICES

In the ILU(0) factorization, the LU factors have the same nonzero patterns as the original

matrix A, so that the references of the entries belonging to the external subdomains in

the ILU(0) factorization are identical with those of the matrix-by-vector product operation

with the matrix A. This is not the case for the more accurate ILU(p) factorization, with

p > 0. If an attempt is made to implement a wavefront ILU preconditioner on a distributed

memory computer, a difficulty arises because the natural ordering for the original sparse

problem may put an unnecessary limit on the amount of parallelism available. Instead, a

two-level ordering is used. First, define a “global” ordering which is a wavefront ordering

for the subdomains. This is based on the graph which describes the coupling between

the subdomains: Two subdomains are coupled if and only if they contain at least a pair

of coupled unknowns, one from each subdomain. Then, within each subdomain, define a

local ordering.

To describe the possible parallel implementations of these ILU(0) preconditioners, it is

sufficient to consider a local view of the distributed sparse matrix, illustrated in Figure 12.8.

The problem is partitioned into p subdomains or subgraphs using some graph partitioning

technique. This results in a mapping of the matrix into processors where it is assumed that

the i-th equation (row) and the i-th unknown are mapped to the same processor. We dis-

tinguish between interior points and interface points. The interior points are those nodes

that are not coupled with nodes belonging to other processors. Interface nodes are those

local nodes that are coupled with at least one node which belongs to another processor.

Thus, processor number 10 in the figure holds a certain number of rows that are local rows.

Consider the rows associated with the interior nodes. The unknowns associated with these

nodes are not coupled with variables from other processors. As a result, the rows associ-

ated with these nodes can be eliminated independently in the ILU(0) process. The rows

associated with the nodes on the interface of the subdomain will require more attention.

Recall that an ILU(0) factorization is determined entirely by the order in which the rows

are processed. The interior nodes can be eliminated first. Once this is done, the interface

374 CHAPTER 12 PARALLEL PRECONDITIONERS

rows can be eliminated in a certain order. There are two natural choices for this order.

The first would be to impose a global order based on the labels of the processors. Thus,

in the illustration, the interface rows belonging to Processors 2, 4, and 6 are processed be-

fore those in Processor 10. The interface rows in Processor 10 must in turn be processed

before those of Processors 13 and 14. The local order, i.e., the order in which we process

the interface rows in the same processor (e.g. Processor 10), may not be as important. This

global order based on PE-number defines a natural priority graph and parallelism can be

exploited easily in a data-driven implementation.

Internal interface points

External interface points

Proc. 2
Proc. 4

Proc. 6

Proc. 14

Proc. 13

Proc. 10

Figure 12.8 A local view of the distributed ILU(0).

It is somewhat unnatural to base the ordering just on the processor labeling. Observe

that a proper order can also be defined for performing the elimination by replacing the PE-

numbers with any labels, provided that any two neighboring processors have a different

label. The most natural way to do this is by performing a multicoloring of the subdomains,

and using the colors in exactly the same way as before to define an order of the tasks.

The algorithms will be written in this general form, i.e., with a label associated with each

processor. Thus, the simplest valid labels are the PE numbers, which lead to the PE-label-

based order. In the following, we define Labj as the label of Processor number j.

ALGORITHM 12.6: Distributed ILU(0) factorization

1. In each processor Pi; i = 1; : : : ; p Do:

2. Perform the ILU(0) factorization for interior local rows.

3. Receive the factored rows from the adjacent processors j with

4. Labj < Labi.
5. Perform the ILU(0) factorization for the interface rows with

6. pivots received from the external processors in step 3.

7. Perform the ILU(0) factorization for the boundary nodes, with

8. pivots from the interior rows completed in step 2.

9. Send the completed interface rows to adjacent processors j with

12.7 OTHER TECHNIQUES 375

10. Labj > Labi.
11. EndDo

Step 2 of the above algorithm can be performed in parallel because it does not depend on

data from other subdomains. Once this distributed ILU(0) factorization is completed, the

preconditioned Krylov subspace algorithm will require a forward and backward sweep at

each step. The distributed forward/backward solution based on this factorization can be

implemented as follows.

ALGORITHM 12.7: Distributed Forward and Backward Sweep

1. In each processor Pi; i = 1; : : : ; p Do:

2. Forward solve:

3. Perform the forward solve for the interior nodes.

4. Receive the updated values from the adjacent processors j
5. with Labj < Labi.
6. Perform the forward solve for the interface nodes.

7. Send the updated values of boundary nodes to the adjacent

8. processors j with Labj > Labi.
9. Backward solve:

10. Receive the updated values from the adjacent processors j
11. with Labj > Labi.
12. Perform the backward solve for the boundary nodes.

13. Send the updated values of boundary nodes to the adjacent

14. processors, j with Labj < Labi.
15. Perform the backward solve for the interior nodes.

16. EndDo

As in the ILU(0) factorization, the interior nodes do not depend on the nodes from the

external processors and can be computed in parallel in lines 3 and 15. In the forward solve,

the solution of the interior nodes is followed by an exchange of data and the solution on

the interface. The backward solve works in reverse in that the boundary nodes are first

computed, then they are sent to adjacent processors. Finally, interior nodes are updated.

OTHER TECHNIQUES

12.7

This section gives a brief account of other parallel preconditioning techniques which are

sometimes used. The next chapter also examines another important class of methods, which

were briefly mentioned before, namely, the class of Domain Decomposition methods.

376 CHAPTER 12 PARALLEL PRECONDITIONERS

12.7.1 APPROXIMATE INVERSES

Another class of preconditioners that require only matrix-by-vector products, is the class

of approximate inverse preconditioners. Discussed in Chapter 10, these can be used in

many different ways. Besides being simple to implement, both their preprocessing phase

and iteration phase allow a large degree of parallelism. Their disadvantage is similar to

polynomial preconditioners, namely, the number of steps required for convergence may be

large, possibly substantially larger than with the standard techniques. On the positive side,

they are fairly robust techniques which can work well where standard methods may fail.

12.7.2 ELEMENT-BY-ELEMENT TECHNIQUES

A somewhat specialized set of techniques is the class of Element-By-Element (EBE) pre-

conditioners which are geared toward finite element problems and are motivated by the

desire to avoid assembling finite element matrices. Many finite element codes keep the

data related to the linear system in unassembled form. The element matrices associated

with each element are stored and never added together. This is convenient when using di-

rect methods since there are techniques, known as frontal methods, that allow Gaussian

elimination to be performed by using a few elements at a time.

It was seen in Chapter 2 that the global stiffness matrix A is the sum of matrices A[e]

associated with each element, i.e.,

A =

NelX
e=1

A[e]:

Here, the matrix A[e] is an n� n matrix defined as

A[e] = PeAKe
P T
e

in which AKe
is the element matrix and Pe is a Boolean connectivity matrix which maps

the coordinates of the small AKe
matrix into those of the full matrix A. Chapter 2 showed

how matrix-by-vector products can be performed in unassembled form. To perform this

product in parallel, note that the only potential obstacle to performing the matrix-by-vector

product in parallel, i.e., across all elements, is in the last phase, i.e., when the contributions

are summed to the resulting vector y. In order to add the contributions A [e]x in paral-

lel, group elements that do not have nodes in common. Referring to Equation (2.35), the

contributions

ye = AKe
(P T

e x)

can all be computed in parallel and do not depend on one another. The operations

y := y + Peye

can be processed in parallel for any group of elements that do not share any vertices. This

grouping can be found by performing a multicoloring of the elements. Any two elements

which have a node in common receive a different color. Using this idea, good performance

can be achieved on vector computers.

12.7 OTHER TECHNIQUES 377

EBE preconditioners are based on similar principles and many different variants have

been developed. They are defined by first normalizing each of the element matrices. In the

sequel, assume that A is a Symmetric Positive Definite matrix. Typically, a diagonal, or

block diagonal, scaling is first applied to A to obtain a scaled matrix ~A,

~A = D�1=2AD�1=2: (12.24)

This results in each matrix A[e] and element matrix AKe
being transformed similarly:

~A[e] = D�1=2A[e]D�1=2

= D�1=2PeAKe
D�1=2

= Pe(P
T
e D

�1=2Pe)A
[e](PeD

�1=2P T
e)

� Pe ~AKe
P T
e :

The second step in defining an EBE preconditioner is to regularize each of these trans-

formed matrices. Indeed, each of the matrices A[e] is of rank pe at most, where pe is the

size of the element matrix AKe
, i.e., the number of nodes which constitute the e-th ele-

ment. In the so-called Winget regularization, the diagonal of each A[e] is forced to be the

identity matrix. In other words, the regularized matrix is defined as

�A[e] = I + ~A[e] � diag(~A[e]): (12.25)

These matrices are positive definite; see Exercise 8.

The third and final step in defining an EBE preconditioner is to choose the factorization

itself. In the EBE Cholesky factorization, the Cholesky (or Crout) factorization of each

regularized matrix �A[e] is performed,

�A[e] = LeDeL
T
e : (12.26)

The preconditioner from it is defined as

M =

nelY
e=1

Le �

nelY
e=1

De �

1Y
e=nel

LTe : (12.27)

Note that to ensure symmetry, the last product is in reverse order of the first one. The fac-

torization (12.26) consists of a factorization of the small pe � pe matrix �AKe
. Performing

the preconditioning operations will therefore consist of a sequence of small pe � pe back-

ward or forward solves. The gather and scatter matrices Pe defined in Chapter 2 must also

be applied for each element. These solves are applied to the right-hand side in sequence. In

addition, the same multicoloring idea as for the matrix-by-vector product can be exploited

to perform these sweeps in parallel.

One of the drawbacks of the EBE Cholesky preconditioner is that an additional set of

element matrices must be stored. That is because the factorizations (12.26) must be stored

for each element. In EBE/SSOR, this is avoided. Instead of factoring each �A[e], the usual

splitting of each �A[e] is exploited. Assuming the Winget regularization, we have

�A[e] = I �Ee �ET
e (12.28)

in which �Ee is the strict-lower part of �A[e]. By analogy with the SSOR preconditioner,

378 CHAPTER 12 PARALLEL PRECONDITIONERS

the EBE-SSOR preconditioner is defined by

M =
nelY
e=1

(I � !Ee)�
nelY
e=1

De �
1Y

e=nel

(I � !ET
e): (12.29)

12.7.3 PARALLEL ROW PROJECTION PRECONDITIONERS

One of the attractions of row-projection methods seen in Chapter 8 is their high degree of

parallelism. In Cimmino’s method, the scalars �i as well as the new residual vector can

be computed in parallel. In the Gauss-Seidel-NE (respectively Gauss-Seidel-NR), it is also

possible to group the unknowns in such a way that any pair of rows (respectively columns)

have disjointed nonzero patterns. Updates of components in the same group can then be

performed in parallel. This approach essentially requires finding a multicolor ordering for

the matrix B = AAT (respectively B = ATA).

It is necessary to first identify a partition of the set f1; 2; : : : ; Ng into subsets S1, : : :,
Sk such that the rows (respectively columns) whose indices belong to the same set Si are

structurally orthogonal to each other, i.e., have no nonzero elements in the same column

locations. When implementing a block SOR scheme where the blocking is identical with

that defined by the partition, all of the unknowns belonging to the same set Sj can be

updated in parallel. To be more specific, the rows are reordered by scanning those in S1
followed by those in S2, etc.. Denote by Ai the matrix consisting of the rows belonging to

the i-th block. We assume that all rows of the same set are orthogonal to each other and

that they have been normalized so that their 2-norm is unity. Then a block Gauss-Seidel

sweep, which generalizes Algorithm 8.1, follows.

ALGORITHM 12.8: Forward Block NE-Gauss-Seidel Sweep

1. Select an initial x0.

2. For i = 1; 2; : : : ; k Do:

3. di = bi �Aix
4. x := x+AT

i di
5. EndDo

Here, xi and bi are subvectors corresponding to the blocking and di is a vector of length

the size of the block, which replaces the scalar �i of Algorithm 8.1. There is parallelism in

each of the steps 3 and 4.

The question that arises is how to find good partitions Si. In simple cases, such as

block-tridiagonal matrices, this can easily be done; see Exercise 7. For general sparse ma-

trices, a multicoloring algorithm on the graph of AAT (respectively ATA) can be em-

ployed. However, these matrices are never stored explicitly. Their rows can be generated,

used, and then discarded.

EXERCISES AND NOTES 379

EXERCISES

1 Let A be a Symmetric Positive Definite matrix and consider N = I�D�1A where D is a block

diagonal of A.

a. Show that D is a Symmetric Positive Definite matrix. Denote by (:; :)D the associated inner

product.

b. Show that N is self-adjoint with respect to to (:; :)D .

c. Show that Nk is self-adjoint with respect to to (:; :)D for any integer k.

d. Show that the Neumann series expansion preconditioner defined by the right-hand side of

(12.3) leads to a preconditioned matrix that is self-adjoint with respect to the D-inner prod-

uct.

e. Describe an implementation of the preconditioned CG algorithm using this preconditioner.

2 The development of the Chebyshev iteration algorithm seen in Section 12.3.2 can be exploited to

derive yet another formulation of the conjugate algorithm from the Lanczos algorithm. Observe

that the recurrence relation (12.8) is not restricted to scaled Chebyshev polynomials.

a. The scaled Lanczos polynomials, i.e., the polynomials pk(t)=pk(0), in which pk(t) is the

polynomial such that vk+1 = pk(A)v1 in the Lanczos algorithm, satisfy a relation of the

form (12.8). What are the coefficients �k and � in this case?

b. Proceed in the same manner as in Section 12.3.2 to derive a version of the Conjugate Gradient

algorithm.

3 Show that �k as defined by (12.7) has a limit �. What is this limit? Assume that Algorithm 12.1

is to be executed with the �k’s all replaced by this limit �. Will the method converge? What is

the asymptotic rate of convergence of this modified method?

4 Derive the least-squares polynomials for� = �1
2
; � = 1

2
for the interval [0; 1] for k = 1; 2; 3; 4.

Check that these results agree with those of the table shown at the end of Section 12.3.3.

5 Consider the mesh shown below. Assume that the objective is to solve the Poisson equation with

Dirichlet boundary conditions.

a. Consider the resulting matrix obtained (before boundary conditions are applied) from order-

ing the nodes from bottom up, and left to right (thus, the bottom left vertex is labeled 1 and

the top right vertex is labeled 13). What is the bandwidth of the linear system? How many

memory locations would be needed to store the matrix in Skyline format? (Assume that the

matrix is nonsymmetric so both upper and lower triangular parts must be stored).

380 CHAPTER 12 PARALLEL PRECONDITIONERS

b. Is it possible to find a 2-color ordering of the mesh points? If so, show the ordering, or

otherwise prove that it is not possible.

c. Find an independent set of size 5. Show the pattern of the matrix associated with this inde-

pendent set ordering.

d. Find a multicolor ordering of the mesh by using the greedy multicolor algorithm. Can you

find a better coloring (i.e., a coloring with fewer colors)? If so, show the coloring [use letters

to represent each color].

6 A linear system Ax = b where A is a 5-point matrix, is reordered using red-black ordering as�
D1 F
E D2

��
x
y

�
=

�
f
g

�
:

a. Write the block Gauss-Seidel iteration associated with the above partitioned system (where

the blocking in block Gauss-Seidel is the same as the above blocking).

b. Express the y iterates, independently of the x iterates, i.e., find an iteration which involves

only y-iterates. What type of iteration is the resulting scheme?

7 Consider a tridiagonal matrix T = tridiag (ai; bi; ci). Find a grouping of the rows such that

rows in each group are structurally orthogonal, i.e., orthogonal regardless of the values of the en-

try. Find a set of three groups at most. How can this be generalized to block tridiagonal matrices

such as those arising from 2-D and 3-D centered difference matrices?

8 Why are the Winget regularized matrices �A[e] defined by (12.25) positive definite when the

matrix ~A is obtained from A by a diagonal scaling from A?

NOTES AND REFERENCES. As vector processing appeared in the middle to late 1970s, a number

of efforts were made to change algorithms, or implementations of standard methods, to exploit the

new architectures. One of the first ideas in this context was to perform matrix-by-vector products

by diagonals [133]. Matrix-by-vector products using this format can yield excellent performance.

Hence, came the idea of using polynomial preconditioning. Polynomial preconditioning was ex-

ploited independently of supercomputing, as early as 1952 in a paper by Lanczos [141], and later

for eigenvalue problems by Stiefel who employed least-squares polynomials [204], and Rutishauser

[171] who combined the QD algorithm with Chebyshev acceleration. Dubois et al. [75] suggested us-

ing polynomial preconditioning, specifically, the Neumann series expansion, for solving Symmetric

Positive Definite linear systems on vector computers. Johnson et al. [129] later extended the idea by

exploiting Chebyshev polynomials, and other orthogonal polynomials. It was observed in [129] that

least-squares polynomials tend to perform better than those based on the uniform norm, in that they

lead to a better overall clustering of the spectrum. Moreover, as was already observed by Rutishauser

[171], in the symmetric case there is no need for accurate eigenvalue estimates: It suffices to use the

simple bounds that are provided by Gershgorin’s theorem. In [175] it was also observed that in some

cases the least-squares polynomial approach which requires less information than the Chebyshev

approach tends to perform better.

The use of least-squares polynomials over polygons was first advocated by Smolarski and Saylor

[200] and later by Saad [176]. The application to the indefinite case was examined in detail in [174].

Still in the context of using polygons instead of ellipses, yet another attractive possibility proposed

by Fischer and Reichel [91] avoids the problem of best approximation altogether. The polygon can

be conformally transformed into a circle and the theory of Faber polynomials yields a simple way of

deriving good polynomials from exploiting specific points on the circle.

Although only approaches based on the formulation (12.5) and (12.11) have been discussed,

there are other lesser known possibilities based on minimizing k1=� � s(�)k1. There has been

EXERCISES AND NOTES 381

very little work on polynomial preconditioning or Krylov subspace methods for highly non-normal

matrices; see, however, the recent analysis in [207]. Another important point is that polynomial

preconditioning can be combined with a subsidiary relaxation-type preconditioning such as SSOR

[2, 153]. Finally, polynomial preconditionings can be useful in some special situations such as that

of complex linear systems arising from the Helmholtz equation [93].

Multicoloring has been known for a long time in the numerical analysis literature and was used

in particular for understanding the theory of relaxation techniques [232, 213] as well as for deriving

efficient alternative formulations of some relaxation algorithms [213, 110]. More recently, it became

an essential ingredient in parallelizing iterative algorithms, see for example [4, 2, 82, 155, 154, 164].

It is also commonly used in a slightly different form — coloring elements as opposed to nodes —

in finite elements techniques [23, 217]. In [182] and [69], it was observed that k-step SOR pre-

conditioning was very competitive relative to the standard ILU preconditioners. Combined with

multicolor ordering, multiple-step SOR can perform quite well on supercomputers. Multicoloring

is especially useful in Element-By-Element techniques when forming the residual, i.e., when multi-

plying an unassembled matrix by a vector [123, 88, 194]. The contributions of the elements of the

same color can all be evaluated and applied simultaneously to the resulting vector. In addition to the

parallelization aspects, reduced systems can sometimes be much better conditioned than the original

system, see [83].

Independent set orderings have been used mainly in the context of parallel direct solution tech-

niques for sparse matrices [66, 144, 145] and multifrontal techniques [77] can be viewed as a par-

ticular case. The gist of all these techniques is that it is possible to reorder the system in groups of

equations which can be solved simultaneously. A parallel direct solution sparse solver based on per-

forming several successive levels of independent set orderings and reduction was suggested in [144]

and in a more general form in [65].

C H A P T E R

13

DOMAIN DECOMPOSITION

METHODS

As multiprocessing technology is steadily gaining ground, new classes of nu-

merical methods that can take better advantage of parallelism are emerging.

Among these techniques, domain decomposition methods are undoubtedly

the best known and perhaps the most promising for certain types of prob-

lems. These methods combine ideas from Partial Di�erential Equations,

linear algebra, mathematical analysis, and techniques from graph theory.

This chapter is devoted to \decomposition" methods, which are based on

the general concepts of graph partitionings.

INTRODUCTION

13.1

Domain decomposition methods refer to a collection of techniques which revolve around

the principle of divide-and-conquer. Such methods have been primarily developed for solv-

ing Partial Differential Equations over regions in two or three dimensions. However, similar

principles have been exploited in other contexts of science and engineering. In fact, one of

the earliest practical uses for domain decomposition approaches was in structural engi-

neering, a discipline which is not dominated by Partial Differential Equations. Although

this chapter considers these techniques from a purely linear algebra view-point, the ba-

sic concepts, as well as the terminology, are introduced from a model Partial Differential

Equation.

382

13.1 INTRODUCTION 383

1
2

3

�12

�13

Figure 13.1 An L-shaped domain subdivided into three sub-

domains.

Consider the problem of solving the Laplace Equation on an L-shaped domain
 parti-

tioned as shown in Figure 13.1. Domain decomposition or substructuring methods attempt

to solve the problem on the entire domain

 =

s[
i=1

i;

from problem solutions on the subdomains
i. There are several reasons why such tech-

niques can be advantageous. In the case of the above picture, one obvious reason is that the

subproblems are much simpler because of their rectangular geometry. For example, fast

solvers can be used on each subdomain in this case. A second reason is that the physical

problem can sometimes be split naturally into a small number of subregions where the

modeling equations are different (e.g., Euler’s equations on one region and Navier-Stokes

in another). Substructuring can also be used to develop “out-of-core” solution techniques.

As already mentioned, such techniques were often used in the past to analyze very large

mechanical structures. The original structure is partitioned into s pieces, each of which

is small enough to fit into memory. Then a form of block-Gaussian elimination is used

to solve the global linear system from a sequence of solutions using s subsystems. More

recent interest in domain decomposition techniques has been motivated by parallel pro-

cessing.

13.1.1 NOTATION

In order to review the issues and techniques in use and to introduce some notation, assume

that the following problem is to be solved:

�u = f in

384 CHAPTER 13 DOMAIN DECOMPOSITION METHODS

u = u� on � = @
:

Domain decomposition methods are all implicitly or explicitly based on different ways

of handling the unknown at the interfaces. From the PDE point of view, if the value of the

solution is known at the interfaces between the different regions, these values could be used

in Dirichlet-type boundary conditions and we will obtain s uncoupled Poisson equations.

We can then solve these equations to obtain the value of the solution at the interior points.

If the whole domain is discretized by either finite elements or finite difference techniques,

then this is easily translated into the resulting linear system.

Now some terminology and notation will be introduced for use throughout this chapter.

Assume that the problem associated with domain shown in Figure 13.1 is discretized with

centered differences. We can label the nodes by subdomain as shown in Figure 13.3. Note

that the interface nodes are labeled last. As a result, the matrix associated with this problem

will have the structure shown in Figure 13.4. For a general partitioning into s subdomains,

the linear system associated with the problem has the following structure:0
BBBB@
B1 E1

B2 E2
. . .

...

Bs Es

F1 F2 � � � Fs C

1
CCCCA

0
BBBB@
x1
x2
...

xs

y

1
CCCCA =

0
BBBB@
f1
f2
...

fs
g

1
CCCCA (13.1)

where each xi represents the subvector of unknowns that are interior to subdomain
i and

y represents the vector of all interface unknowns. It is useful to express the above system

in the simpler form,

A

�
x
y

�
=

�
f
g

�
with A =

�
B E
F C

�
: (13.2)

Thus, E represents the subdomain to interface coupling seen from the subdomains, while

F represents the interface to subdomain coupling seen from the interface nodes.

13.1.2 TYPES OF PARTITIONINGS

When partitioning a problem, it is common to use graph representations. Since the sub-

problems obtained from a given partitioning will eventually be mapped into distinct pro-

cessors, there are some restrictions regarding the type of partitioning needed. For example,

in Element-By-Element finite element techniques, it may be desirable to map elements into

processors instead of vertices. In this case, the restriction means no element should be split

between two subdomains, i.e., all information related to a given element is mapped to the

same processor. These partitionings are termed element-based. A somewhat less restric-

tive class of partitionings are the edge-based partitionings, which do not allow edges to be

split between two subdomains. These may be useful for finite volume techniques where

computations are expressed in terms of fluxes across edges in two dimensions. Finally,

vertex-based partitionings work by dividing the origin vertex set into subsets of vertices

and have no restrictions on the edges, i.e., they allow edges or elements to straddle be-

tween subdomains. See Figure 13.2, (a), (b), and (c).

13.1 INTRODUCTION 385

1 2 3 4

5 6 7 8

9 10 11 12

(a)

1 2 3 4

5 6 7 8

9 10 11 12

1

2

(b)

1 2 3 4

5 6 7 8

9 10 11 12

1

2

(c)

Figure 13.2 (a) Vertex-based, (b) edge-based, and (c)

element-based partitioning of a 4�3mesh into two subregions.

13.1.3 TYPES OF TECHNIQUES

The interface values can be obtained by employing a form of block-Gaussian elimination

which may be too expensive for large problems. In some simple cases, using FFT’s, it is

possible to explicitly obtain the solution of the problem on the interfaces inexpensively.

Other methods alternate between the subdomains, solving a new problem each time,

with boundary conditions updated from the most recent subdomain solutions. These meth-

ods are called Schwarz Alternating Procedures, after the Swiss mathematician who used

the idea to prove the existence for a solution of the Dirichlet problem on irregular regions.

The subdomains may be allowed to overlap. This means that the
i’s are such that

 =
[

i=1;s

i;
i \
j 6= �:

For a discretized problem, it is typical to quantify the extent of overlapping by the number

of mesh-lines that are common to the two subdomains. In the particular case of Figure

13.3, the overlap is of order one.

386 CHAPTER 13 DOMAIN DECOMPOSITION METHODS

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

22 23 24 25

26 27 28 29

30 31 32 33

34

35

36

37383940

Figure 13.3 Discretization of problem shown in Figure 13.1.

Figure 13.4 Matrix associated with the finite difference mesh

of Figure 13.3.

The various domain decomposition techniques are distinguished by four features:

1. Type of Partitioning. For example, should partitioning occur along edges, or along

13.2 DIRECT SOLUTION AND THE SCHUR COMPLEMENT 387

vertices, or by elements? Is the union of the subdomains equal to the original do-

main or a superset of it (fictitious domain methods)?

2. Overlap. Should sub-domains overlap or not, and by how much?

3. Processing of interface values. For example, is the Schur complement approach

used? Should there be successive updates to the interface values?

4. Subdomain solution. Should the subdomain problems be solved exactly or approx-

imately by an iterative method?

The methods to be discussed in this chapter will be classified in four distinct groups. First,

direct methods and the substructuring approach are useful for introducing some definitions

and for providing practical insight. Second, among the simplest and oldest techniques are

the Schwarz Alternating Procedures. Then, there are methods based on preconditioning

the Schur complement system. The last category groups all the methods based on solving

the linear system with the matrix A, by using a preconditioning derived from Domain

Decomposition concepts.

DIRECT SOLUTION AND THE SCHUR COMPLEMENT

13.2

One of the first divide-and-conquer ideas used in structural analysis exploited the partition-

ing (13.1) in a direct solution framework. This approach, which is covered in this section,

introduces the Schur complement and explains some of its properties.

13.2.1 BLOCK GAUSSIAN ELIMINATION

Consider the linear system written in the form (13.2), in which B is assumed to be nonsin-

gular. From the first equation the unknown x can be expressed as

x = B�1(f �Ey): (13.3)

Upon substituting this into the second equation, the following reduced system is obtained:

(C � FB�1E)y = g � FB�1f: (13.4)

The matrix

S = C � FB�1E (13.5)

is called the Schur complement matrix associated with the y variable. If this matrix can be

formed and the linear system (13.4) can be solved, all the interface variables y will become

available. Once these variables are known, the remaining unknowns can be computed, via

(13.3). Because of the particular structure of B, observe that any linear system solution

with it decouples in s separate systems. The parallelism in this situation arises from this

natural decoupling.

A solution method based on this approach involves four steps:

388 CHAPTER 13 DOMAIN DECOMPOSITION METHODS

1. Obtain the right-hand side of the reduced system (13.4).

2. Form the Schur complement matrix (13.5).

3. Solve the reduced system (13.4).

4. Back-substitute using (13.3) to obtain the other unknowns.

One linear system solution with the matrix B can be saved by reformulating the algorithm

in a more elegant form. Define

E0 = B�1E and f 0 = B�1f:

The matrix E 0 and the vector f 0 are needed in steps (1) and (2). Then rewrite step (4) as

x = B�1f �B�1Ey = f 0 �E0y;

which gives the following algorithm.

ALGORITHM 13.1: Block-Gaussian Elimination

1. Solve BE0 = B, and Bf 0 = f for E 0 and f 0, respectively

2. Compute g0 = g � Ff 0

3. Compute S = C � FE 0

4. Solve Sy = g0

5. Compute x = f 0 �E0y.

In a practical implementation, all the Bi matrices are factored and then the systems

BiE
0

i = Ei and Bif
0

i = fi are solved. In general, many columns in Ei will be zero. These

zero columns correspond to interfaces that are not adjacent to subdomain i. Therefore,

any efficient code based on the above algorithm should start by identifying the nonzero

columns.

13.2.2 PROPERTIES OF THE SCHUR COMPLEMENT

Now the connections between the Schur complement and standard Gaussian elimination

will be explored and a few simple properties will be established. Start with the block-LU

factorization of A, �
B E
F C

�
=

�
I O

FB�1 I

��
B E
O S

�
(13.6)

which is readily verified. The Schur complement can therefore be regarded as the (2,2)

block in the U part of the block-LU factorization of A. From the above relation, note that

if A is nonsingular, then so is S. Taking the inverse of A with the help of the above equality

yields �
B E
F C

��1

=

�
B�1 �B�1ES�1

O S�1

��
I O

�FB�1 I

�

=

�
B�1 +B�1ES�1FB�1 �B�1ES�1

�S�1FB�1 S�1

�
: (13.7)

13.2 DIRECT SOLUTION AND THE SCHUR COMPLEMENT 389

Observe that S�1 is the (2,2) block in the block-inverse of A. In particular, if the original

matrix A is Symmetric Positive Definite, then so is A�1. As a result, S is also Symmetric

Positive Definite in this case.

Although simple to prove, the above properties are nonetheless important. They are

summarized in the following proposition.

PROPOSITION 13.1 Let A be a nonsingular matrix partitioned as in (13.2) and such

that the submatrixB is nonsingular and let Ry be the restriction operator onto the interface

variables, i.e, the linear operator defined by

Ry

�
x
y

�
= y:

Then the following properties are true.

1. The Schur complement matrix S is nonsingular.

2. If A is SPD, then so is S.

3. For any y, S�1y = RyA
�1
�
0
y

�
.

The first property indicates that a method that uses the above block Gaussian elimi-

nation algorithm is feasible since S is nonsingular. A consequence of the second property

is that when A is positive definite, an algorithm such as the Conjugate Gradient algorithm

can be used to solve the reduced system (13.4). Finally, the third property establishes a

relation which may allow preconditioners for S to be defined based on solution techniques

with the matrix A.

13.2.3 SCHUR COMPLEMENT FOR VERTEX-BASED

PARTITIONINGS

The partitioning used in Figure 13.3 is edge-based, meaning that a given edge in the graph

does not straddle two subdomains. If two vertices are coupled, then they must belong to the

same subdomain. From the graph theory point of view, this is perhaps less common than

vertex-based partitionings in which a vertex is not shared by two partitions (except when

domains overlap). A vertex-based partitioning is illustrated in Figure 13.5.

We will call interface edges all edges that link vertices that do not belong to the same

subdomain. In the case of overlapping, this needs clarification. An overlapping edge or

vertex belongs to the same subdomain. Interface edges are only those that link a vertex

to another vertex which is not in the same subdomain already, whether in the overlapping

portion or elsewhere. Interface vertices are those vertices in a given subdomain that are

adjacent to an interface edge. For the example of the figure, the interface vertices for sub-

domain one (bottom, left subsquare) are the vertices labeled 10 to 16. The matrix shown

at the bottom of Figure 13.5 differs from the one of Figure 13.4, because here the inter-

face nodes are not relabeled the last in the global labeling as was done in Figure 13.3.

Instead, the interface nodes are labeled as the last nodes in each subdomain. The number

of interface nodes is about twice that of the edge-based partitioning.

390 CHAPTER 13 DOMAIN DECOMPOSITION METHODS

1 2 3

4 5 6

7 8 9

10

11

12

13141516

17 18 19

20 21 22

23 24 25

26 27 28

29

30

31

32

33 34 35 36

37 38 39 40

41 42 43 44

45 46 47 48

Figure 13.5 Discretization of problem shown in Figure 13.1

and associated matrix.

Consider the Schur complement system obtained with this new labeling. It can be

written similar to the edge-based case using a reordering in which all interface variables

are listed last. The matrix associated with the domain partitioning of the variables will have

13.2 DIRECT SOLUTION AND THE SCHUR COMPLEMENT 391

a natural s-block structure where s is the number of subdomains. For example, when s = 3
(as is the case in the above illustration), the matrix has the block structure defined by the

solid lines in the figure, i.e.,

A =

0
@ A1 A12 A13

A21 A2 A23

A31 A32 A3

1
A : (13.8)

In each subdomain, the variables are of the form

zi =

�
xi
yi

�
;

where xi denotes interior nodes while yi denotes the interface nodes associated with sub-

domain i. Each matrix Ai will be called the local matrix. The structure of Ai is as follows:

Ai =

�
Bi Ei

Fi Ci

�
(13.9)

in which, as before, Bi represents the matrix associated with the internal nodes of subdo-

main i and Ei and Fi represent the couplings to/from external nodes. The matrix Ci is the

local part of the interface matrix C defined before, and represents the coupling between

local interface points. A careful look at the matrix in Figure 13.5 reveals an additional

structure for the blocks Aij j 6= i. Each of these blocks contains a zero sub-block in the

part that acts on the variable xj . This is expected since xi and xj are not coupled. There-

fore,

Aij =

�
0

Eij

�
: (13.10)

In addition, most of the Eij matrices are zero since only those indices j of the subdomains

that have couplings with subdomain i will yield a nonzero Eij .

Now write the part of the linear system that is local to subdomain i, as

Bixi + Eiyi = fi
Fixi + Ciyi +

P
j2Ni

Eijyj = gi
: (13.11)

The termEijyj is the contribution to the equation from the neighboring subdomain number

j, and Ni is the set of subdomains that are adjacent to subdomain i. Assuming that Bi is

nonsingular, the variable xi can be eliminated from this system by extracting from the first

equation xi = B�1i (fi �Eiyi) which yields, upon substitution in the second equation,

Siyi +
X
j2Ni

Eijyj = gi � FiB
�1
i fi; i = 1; : : : ; s (13.12)

in which Si is the “local” Schur complement

Si = Ci � FiB
�1
i Ei: (13.13)

When written for all subdomains i, the equations (13.12) yield a system of equations which

involves only the interface points yj , j = 1; 2; : : : ; s and which has a natural block structure

392 CHAPTER 13 DOMAIN DECOMPOSITION METHODS

associated with these vector variables

S =

0
BBBBB@

S1 E12 E13 � � � E1s

E21 S2 E23 � � � E2s
...

. . .
...

...
. . .

...

Es1 Es2 Es3 � � � Ss

1
CCCCCA : (13.14)

The diagonal blocks in this system, namely, the matrices Si, are dense in general, but the

offdiagonal blocks Eij are sparse and most of them are zero. Specifically, Eij 6= 0 only if

subdomains i and j have at least one equation that couples them.

A structure of the global Schur complement S has been unraveled which has the fol-

lowing important implication: For vertex-based partitionings, the Schur complement ma-

trix can be assembled from local Schur complement matrices (the Si’s) and interface-to-

interface information (the Eij ’s). The term “assembled” was used on purpose because a

similar idea will be exploited for finite element partitionings.

13.2.4 SCHUR COMPLEMENT FOR FINITE-ELEMENT

PARTITIONINGS

In finite-element partitionings, the original discrete set
 is subdivided into s subsets
i,

each consisting of a distinct set of elements. Given a finite element discretization of the

domain
, a finite dimensional space Vh of functions over
 is defined, e.g., functions

that are piecewise linear and continuous on
, and that vanish on the boundary � of
.

Consider now the Dirichlet problem on
 and recall that its weak formulation on the finite

element discretization can be stated as follows (see Section 2.3):

Find u 2 Vh such that a(u; v) = (f; v); 8 v 2 Vh;

where the bilinear form a(:; :) is defined by

a(u; v) =

Z

ru:rv dx =

Z

�
@u

@x1

@v

@x1
+

@u

@x2

@u

@x2

�
dx:

It is interesting to observe that since the set of the elements of the different
i’s are disjoint,

a(:; :) can be decomposed as

a(u; v) =

sX
i=1

ai(u; v);

where

ai(u; v) =

Z

i

ru:rv dx:

In fact, this is a generalization of the technique used to assemble the stiffness matrix from

element matrices, which corresponds to the extreme case where each
i consists of exactly

one element.

If the unknowns are ordered again by subdomains and the interface nodes are placed

13.2 DIRECT SOLUTION AND THE SCHUR COMPLEMENT 393

last as was done in Section 13.1, immediately the system shows the same structure,0
BBBB@
B1 E1

B2 E2
. . .

...

Bs Es

F1 F2 � � � Fs C

1
CCCCA

0
BBBB@
x1
x2
...

xs
y

1
CCCCA =

0
BBBB@
f1
f2
...

fs
g

1
CCCCA (13.15)

where each Bi represents the coupling between interior nodes and Ei and Fi represent the

coupling between the interface nodes and the nodes interior to
i. Note that each of these

matrices has been assembled from element matrices and can therefore be obtained from

contributions over all subdomain
j that contain any node of
i.

In particular, assume that the assembly is considered only with respect to
i. Then the

assembled matrix will have the structure

Ai =

�
Bi Ei

Fi Ci

�
;

where Ci contains only contributions from local elements, i.e., elements that are in
i.

Clearly, C is the sum of the Ci’s,

C =
sX

i=1

Ci:

The Schur complement associated with the interface variables is such that

S = C � FB�1E

= C �
sX

i=1

FiB
�1
i Ei

=

sX
i=1

Ci �

sX
i=1

FiB
�1
i Ei

=

sX
i=1

�
Ci � FiB

�1
i Ei

�
:

Therefore, if Si denotes the local Schur complement

Si = Ci � FiB
�1
i Ei;

then the above proves that,

S =

sX
i=1

Si; (13.16)

showing again that the Schur complement can be obtained easily from smaller Schur com-

plement matrices.

Another important observation is that the stiffness matrix Ak, defined above by re-

stricting the assembly to
k, solves a Neumann-Dirichlet problem on
k. Indeed, consider

the problem �
Bk Ek

Fk Ck

� �
xk
yk

�
=

�
bk
gk

�
: (13.17)

394 CHAPTER 13 DOMAIN DECOMPOSITION METHODS

The elements of the submatrix Ck are the terms ak(�i; �j) where �i; �j are the basis func-

tions associated with nodes belonging to the interface �k. As was stated above, the matrix

C is the sum of these submatrices. Consider the problem of solving the Poisson equa-

tion on
k with boundary conditions defined as follows: On �k0, the part of the boundary

which belongs to �k, use the original boundary conditions; on the interfaces �kj with

other subdomains, use a Neumann boundary condition. According to Equation (2.36) seen

in Section 2.3, the j-th equation will be of the form,Z

k

ru:r�j dx =

Z

k

f�jdx+

Z
�k

�j
@u

@~n
ds: (13.18)

This gives rise to a system of the form (13.17) in which the gk part of the right-hand side

incorporates the Neumann data related to the second integral on the right-hand side of

(13.18).

It is interesting to note that if a problem were to be solved with all-Dirichlet conditions,

i.e., if the Neumann conditions at the interfaces were replaced by Dirichlet conditions, the

resulting matrix problem would be of the form,�
Bk Ek

0 I

� �
xk

yk

�
=

�
bk
gk

�
(13.19)

where gk represents precisely the Dirichlet data. Indeed, according to what was seen in

Section 2.3, Dirichlet conditions are handled simply by replacing equations associated with

boundary points by identity equations.

SCHWARZ ALTERNATING PROCEDURES

13.3

The original alternating procedure described by Schwarz in 1870 consisted of three parts:

alternating between two overlapping domains, solving the Dirichlet problem on one do-

main at each iteration, and taking boundary conditions based on the most recent solution

obtained from the other domain. This procedure is called the Multiplicative Schwarz pro-

cedure. In matrix terms, this is very reminiscent of the block Gauss-Seidel iteration with

overlap defined with the help of projectors, as seen in Chapter 5. The analogue of the

block-Jacobi procedure is known as the Additive Schwarz procedure.

13.3.1 MULTIPLICATIVE SCHWARZ PROCEDURE

In the following, assume that each pair of neighboring subdomains has a nonvoid overlap-

ping region. The boundary of subdomain
i that is included in subdomain j is denoted by

�i;j .

13.3 SCHWARZ ALTERNATING PROCEDURES 395

1

3

2

�1;3

�3;1

�2;1 �1;2�1;0 �2;0

�1;3

Figure 13.6 An L-shaped domain subdivided into three over-

lapping subdomains.

This is illustrated in Figure 13.6 for the L-shaped domain example. Each subdomain ex-

tends beyond its initial boundary into neighboring subdomains. Call �i the boundary of
i

consisting of its original boundary (which is denoted by �i;0) and the �i;j’s, and denote

by uji the restriction of the solution u to the boundary �ji. Then the Schwarz Alternating

Procedure can be described as follows.

ALGORITHM 13.2: SAP

1. Choose an initial guess u to the solution

2. Until convergence Do:

3. For i = 1; � � � ; s Do:

4. Solve �u = f in
i with u = uij in �ij

5. Update u values on �ji; 8j
6. EndDo

7. EndDo

The algorithm sweeps through the s subdomains and solves the original equation in each

of them by using boundary conditions that are updated from the most recent values of u.

Since each of the subproblems is likely to be solved by some iterative method, we can take

advantage of a good initial guess. It is natural to take as initial guess for a given subproblem

the most recent approximation. Going back to the expression (13.11) of the local problems,

observe that each of the solutions in line 4 of the algorithm will be translated into an update

of the form

ui := ui + �i;

396 CHAPTER 13 DOMAIN DECOMPOSITION METHODS

where the correction �i solves the system

Ai�i = ri:

Here, ri is the local part of the most recent global residual vector b � Ax, and the above

system represents the system associated with the problem in line 4 of the algorithm when

a nonzero initial guess is used in some iterative procedure. The matrix Ai has the block

structure (13.9). Writing

ui =

�
xi

yi

�
; �i =

�
�x;i
�y;i

�
; ri =

�
rx;i
ry;i

�
;

the correction to the current solution step in the algorithm leads to�
xi

yi

�
:=

�
xi

yi

�
+

�
Bi Ei

Fi Ci

��1�
rx;i
ry;i

�
: (13.20)

After this step is taken, normally a residual vector r would have to be computed again to

get the components associated with domain i + 1 and to proceed with a similar step for

the next subdomain. However, only those residual components that have been affected by

the change of the solution need to be updated. Specifically, employing the same notation

used in equation (13.11), we can simply update the residual ry;j for each subdomain j for

which i 2 Nj as

ry;j := ry;j �Eji�y;i:

This amounts implicitly to performing Step 5 of the above algorithm. Note that since the

matrix pattern is assumed to be symmetric, then the set of all indices j such that i 2 Nj ,

i.e., N�

i = fj ji 2 Nig, is identical to Ni. Now the loop starting in line 3 of Algorithm

13.2 and called domain sweep can be restated as follows.

ALGORITHM 13.3: Multiplicative Schwarz Sweep { Matrix Form

1. For i = 1; � � � ; s Do:

2. Solve Ai�i = ri
3. Compute xi := xi + �x;i, yi := yi + �y;i, and set ri := 0
4. For each j 2 Ni Compute ry;j := ry;j �Eji�y;i
5. EndDo

Considering only the y iterates, the above iteration would resemble a form of Gauss-Seidel

procedure on the Schur complement matrix (13.14). In fact, it is mathematically equivalent,

provided a consistent initial guess is taken. This is stated in the next result established by

Chan and Goovaerts [48]:

THEOREM 13.1 Let the guess

�
x
(0)
i

y
(0)

i

�
for the Schwarz procedure in each subdomain

be chosen such that

x
(0)
i = B�1

i [fi �Eiy
(0)
i]: (13.21)

Then the y iterates produced by the Algorithm 13.3 are identical to those of a Gauss-Seidel

sweep applied to the Schur complement system (13.12).

13.3 SCHWARZ ALTERNATING PROCEDURES 397

Proof. We start by showing that with the choice (13.21), the y components of the initial

residuals produced by the algorithm are identical to those of the Schur complement system

(13.12). Refer to Section 13.2.3 and the relation (13.10) which defines the E ij ’s from

the block structure (13.8) of the global matrix. Observe that Aijuj = Eijyj and note

from (13.11) that for the global system the y components of the initial residual vectors are

r
(0)
y;i = gi � Fix

(0)
i � Ciy

(0)
i �
X
j2Ni

Eijy
(0)
j

= gi � FiB
�1[fi �Eiy

(0)
i]� Ciy

(0)
i �
X
j2Ni

Eijy
(0)
j

= gi � FiB
�1fi � Siy

(0)
i �
X
j2Ni

Eijy
(0)
j :

This is precisely the expression of the residual vector associated with the Schur comple-

ment system (13.12) with the initial guess y
(0)
i .

Now observe that the initial guess has been selected so that r
(0)
x;i = 0 for all i. Because

only the y components of the residual vector are modified, according to line 4 of Algorithm

13.3, this property remains valid throughout the iterative process. By the updating equation

(13.20) and the relation (13.7), we have

yi := yi + S�1i ry;i;

which is precisely a Gauss-Seidel step associated with the system (13.14). Note that the

update of the residual vector in the algorithm results in the same update for the y compo-

nents as in the Gauss-Seidel iteration for (13.14).

It is interesting to interpret Algorithm 13.2, or rather its discrete version, in terms of

projectors. For this we follow the model of the overlapping block-Jacobi technique seen in

the previous chapter. Let Si be an index set

Si = fj1; j2; : : : ; jni
g;

where the indices jk are those associated with the ni mesh points of the interior of the

discrete subdomain
i. Note that as before, the Si’s form a collection of index sets such

that [
i=1;:::;s

Si = f1; : : : ; ng;

and the Si’s are not necessarily disjoint. Let Ri be a restriction operator from
 to
i.

By definition, Rix belongs to
i and keeps only those components of an arbitrary vector

x that are in
i. It is represented by an ni � n matrix of zeros and ones. The matrices

Ri associated with the partitioning of Figure 13.4 are represented in the three diagrams of

Figure 13.7, where each square represents a nonzero element (equal to one) and every other

element is a zero. These matrices depend on the ordering chosen for the local problem.

Here, boundary nodes are labeled last, for simplicity. Observe that each row of each Ri has

exactly one nonzero element (equal to one). Boundary points such as the nodes 36 and 37

are represented several times in the matrices R1; R2, and R3 because of the overlapping

of the boundary points. Thus, node 36 is represented in matrices R1 and R2, while 37 is

represented in all three matrices.

398 CHAPTER 13 DOMAIN DECOMPOSITION METHODS

R1 =

R2 =

R3 =

Figure 13.7 Patterns of the three matrices Ri associated

with the partitioning of Figure 13.4.

From the linear algebra point of view, the restriction operatorRi is an ni�n matrix formed

by the transposes of columns ej of the n� n identity matrix, where j belongs to the index

set Si. The transpose RT
i of this matrix is a prolongation operator which takes a variable

from
i and extends it to the equivalent variable in
. The matrix

Ai = RiART
i

of dimension ni � ni defines a restriction of A to
i. Now a problem associated with Ai

can be solved which would update the unknowns in the domain
i. With this notation, the

multiplicative Schwarz procedure can be described as follows:

1. For i = 1; : : : ; s Do

2. x := x+RT
i A

�1
i Ri(b� Ax)

3. EndDo

We change notation and rewrite step 2 as

xnew = x+RT
i A

�1
i Ri(b�Ax): (13.22)

If the errors d = x� � x are considered where x� is the exact solution, then notice that

b � Ax = A(x� � x) and, at each iteration the following equation relates the new error

dnew and the previous error d,

dnew = d�RT
i A

�1
i RiAd:

13.3 SCHWARZ ALTERNATING PROCEDURES 399

Starting from a given x0 whose error vector is d0 = x� � x, each sub-iteration produces

an error vector which satisfies the relation

di = di�1 �RT
i A

�1
i RiAdi�1;

for i = 1; : : : ; s. As a result,

di = (I � Pi)di�1

in which

Pi = RT
i A

�1
i RiA: (13.23)

Observe that the operator Pi � RT
i A

�1
i RiA is a projector since

(RT
i A

�1
i RiA)

2 = RT
i A

�1
i (RiAR

T
i)A

�1
i RiA = RT

i A
�1
i RiA:

Thus, one sweep produces an error which satisfies the relation

ds = (I � Ps)(I � Ps�1) : : : (I � P1)d0: (13.24)

In the following, we use the notation

Qs � (I � Ps)(I � Ps�1) : : : (I � P1): (13.25)

13.3.2 MULTIPLICATIVE SCHWARZ PRECONDITIONING

Because of the equivalence of the multiplicative Schwarz procedure and a block Gauss-

Seidel iteration, it is possible to recast one Multiplicative Schwarz sweep in the form of a

global fixed-point iteration of the form xnew = Gx + f . Recall that this is a fixed-point

iteration for solving the preconditioned system M�1Ax =M�1b where the precondition-

ing matrix M and the matrix G are related by G = I �M�1A. To interpret the operation

associated with M�1, it is helpful to identify the result of the error vector produced by this

iteration with that of (13.24), which is xnew � x� = Qs(x� x�). This comparison yields,

xnew = Qsx+ (I �Qs)x�;

and therefore,

G = Qs f = (I �Qs)x�:

Hence, the preconditioned matrix is M�1A = I �Qs. This result is restated as follows.

PROPOSITION 13.2 The multiplicative Schwarz procedure is equivalent to a fixed-

point iteration for the “preconditioned” problem

M�1Ax =M�1b;

in which

M�1A = I �Qs (13.26)

M�1b = (I �Qs)x� = (I �Qs)A
�1b: (13.27)

400 CHAPTER 13 DOMAIN DECOMPOSITION METHODS

The transformed right-hand side in the proposition is not known explicitly since it is ex-

pressed in terms of the exact solution. However, a procedure can be found to compute

it. In other words, it is possible to operate with M�1 without invoking A�1. Note that

M�1 = (I � Qs)A
�1. As the next lemma indicates, M�1, as well as M�1A, can be

computed recursively.

LEMMA 13.1 Define the matrices

Zi = I �Qi (13.28)

Mi = ZiA
�1 (13.29)

Ti = PiA
�1 = RT

i A
�1
i Ri (13.30)

for i = 1; : : : ; s. Then M�1 = Ms, M�1A = Zs, and the matrices Zi and Mi satisfy the

recurrence relations

Z1 = P1;

Zi = Zi�1 + Pi(I � Zi�1); i = 2; : : : ; s (13.31)

and

M1 = T1;

Mi = Mi�1 + Ti(I �AMi�1); i = 2; : : : ; s: (13.32)

Proof. It is clear by the definitions (13.28) and (13.29) that Ms = M�1 and that M1 =
T1, Z1 = P1. For the cases i > 1, by definition of Qi and Qi�1

Zi = I � (I � Pi)(I � Zi�1) = Pi + Zi�1 � PiZi�1; (13.33)

which gives the relation (13.31). Multiplying (13.33) to the right by A�1 yields,

Mi = Ti +Mi�1 � PiMi�1:

Rewriting the term Pi as TiA above yields the desired formula (13.32).

Note that (13.31) yields immediately the important relation

Zi =

iX
j=1

PjQj�1: (13.34)

If the relation (13.32) is multiplied to the right by a vector v and if the vector MiA
�1v is

denoted by zi, then the following recurrence results.

zi = zi�1 + Ti(v �Azi�1):

Since zs = (I �Qs)A
�1v = M�1v, the end result is that M�1v can be computed for an

arbitrary vector v, by the following procedure.

ALGORITHM 13.4: Multiplicative Schwarz Preconditioner

1. Input: v; Output: z =M�1v.

2. z := T1v
3. For i = 2; : : : ; s Do:

13.3 SCHWARZ ALTERNATING PROCEDURES 401

4. z := z + Ti(v �Az)
5. EndDo

By a similar argument, a procedure can be found to compute vectors of the form

z = M�1Av. In this case, the following algorithm results:

ALGORITHM 13.5: Multiplicative Schwarz Preconditioned Operator

1. Input: v, Output: z = M�1Av.

2. z := P1v
3. For i = 2; : : : ; s Do

4. z := z + Pi(v � z)
5. EndDo

In summary, the Multiplicative Schwarz procedure is equivalent to solving the “pre-

conditioned system”

(I �Qs)x = g (13.35)

where the operation z = (I �Qs)v can be computed from Algorithm 13.5 and g = M�1b
can be computed from Algorithm 13.4. Now the above procedures can be used within an

accelerator such as GMRES. First, to obtain the right-hand side g of the preconditioned

system (13.35), Algorithm 13.4 must be applied to the original right-hand side b. Then

GMRES can be applied to (13.35) in which the preconditioned operations I � Qs are

performed by Algorithm 13.5.

Another important aspect of the Multiplicative Schwarz procedure is that multicolor-

ing can be exploited in the same way as it is done traditionally for block SOR. Finally, note

that symmetry is lost in the preconditioned system but it can be recovered by following the

sweep 1, 2, : : : ; s by a sweep in the other direction, namely, s�1; s�2; : : : ; 1. This yields

a form of the block SSOR algorithm.

13.3.3 ADDITIVE SCHWARZ PROCEDURE

The additive Schwarz procedure is similar to a block-Jacobi iteration and consists of up-

dating all the new (block) components from the same residual. Thus, it differs from the

multiplicative procedure only because the components in each subdomain are not updated

until a whole cycle of updates through all domains are completed. The basic Additive

Schwarz iteration would therefore be as follows:

1. For i = 1; : : : ; s Do

2. Compute �i = RT
i A

�1
i Ri(b�Ax)

3. EndDo

4. xnew = x+
Ps

i=1 �i

The new approximation (obtained after a cycle of the s substeps in the above algorithm

402 CHAPTER 13 DOMAIN DECOMPOSITION METHODS

are applied) is

xnew = x+

sX
i=1

RT
i A

�1
i Ri(b�Ax):

Each instance of the loop redefines different components of the new approximation and

there is no data dependency between the subproblems involved in the loop.

The preconditioning matrix is rather simple to obtain for the additive Schwarz proce-

dure. Using the matrix notation defined in the previous section, notice that the new iterate

satisfies the relation

xnew = x+

sX
i=1

Ti(b�Ax) =

I �

sX
i=1

Pi

!
x+

sX
i=1

Tib:

Thus, using the same analogy as in the previous section, this iteration corresponds to a

fixed-point iteration xnew = Gx + f with

G = I �
sX

i=1

Pi; f =
sX

i=1

Tib:

With the relationG = I�M�1A, betweenG and the preconditioning matrixM , the result

is that

M�1A =

sX
i=1

Pi;

and

M�1 =

sX
i=1

PiA
�1 =

sX
i=1

Ti:

Now the procedure for applying the preconditioned operator M �1 becomes clear.

ALGORITHM 13.6: Additive Schwarz Preconditioner

1. Input: v; Output: z =M�1v.

2. For i = 1; : : : ; s Do:

3. Compute zi := Tiv
4. EndDo

5. Compute z := z1 + z2 : : :+ zs.

Note that the do loop can be performed in parallel. Step 5 sums up the vectors zi in each

domain to obtain a global vector z. In the nonoverlapping case, this step is parallel and

consists of just forming these different components since the addition is trivial. In the

presence of overlap, the situation is similar except that the overlapping components are

added up from the different results obtained in each subdomain.

The procedure for computing M�1Av is identical to the one above except that Ti in

line 3 is replaced by Pi.

13.3 SCHWARZ ALTERNATING PROCEDURES 403

13.3.4 CONVERGENCE

Throughout this section, it is assumed that A is Symmetric Positive Definite. The projectors

Pi defined by (13.23) play an important role in the convergence theory of both additive and

multiplicative Schwarz. A crucial observation here is that these projectors are orthogonal

with respect to the A-inner product. Indeed, it is sufficient to show that Pi is self-adjoint

with respect to the A-inner product,

(Pix; y)A = (ART
i A

�1
i RiAx; y) = (Ax;RT

i A
�1
i RiAy) = (x; Piy)A:

Consider the operator,

AJ =

sX
i=1

Pi: (13.36)

Since each Pj is self-adjoint with respect to the A-inner product, i.e., A-self-adjoint, their

sum AJ is also A-self-adjoint. Therefore, it will have real eigenvalues. An immediate con-

sequence of the fact that the Pi’s are projectors is stated in the following theorem.

THEOREM 13.2 The largest eigenvalue of AJ is such that

�max(AJ) � s;

where s is the number of subdomains.

Proof. For any matrix norm, �max(AJ) � kAJk. In particular, if the A-norm is used,

we have

�max(AJ) �

sX
i=1

kPikA:

Each of the A-norms of Pi is equal to one since Pi is an A-orthogonal projector. This

proves the desired result.

This result can be improved substantially by observing that the projectors can be grouped

in sets that have disjoint ranges. Graph coloring techniques seen in Chapter 3 can be used

to obtain such colorings of the subdomains. Assume that c sets of indices �i; i = 1; : : : ; c
are such that all the subdomains
j for j 2 �i have no intersection with one another.

Then,

P�i
=
X
j 2 �i

Pj (13.37)

is again an orthogonal projector.

This shows that the result of the previous theorem can be improved trivially into the

following.

THEOREM 13.3 Suppose that the subdomains can be colored in such a way that two

subdomains with the same color have no common nodes. Then, the largest eigenvalue of

AJ is such that

�max(AJ) � c;

404 CHAPTER 13 DOMAIN DECOMPOSITION METHODS

where c is the number of colors.

In order to estimate the lowest eigenvalue of the preconditioned matrix, an assumption

must be made regarding the decomposition of an arbitrary vector x into components of
 i.

Assumption 1. There exists a constant K0 such that the inequality

sX
i=1

(Aui; ui) � K0(Au; u);

is satisfied by the representation of u 2
 as the sum

u =

sX
i=1

ui; ui 2
i:

The following theorem has been proved by several authors in slightly different forms and

contexts.

THEOREM 13.4 If Assumption 1 holds, then

�min(AJ) �
1

K0
:

Proof. Unless otherwise stated, all summations in this proof are from 1 to s. Start with

an arbitrary u decomposed as u =
P

ui and write

(u; u)A =
X

(ui; u)A =
X

(Piui; u)A =
X

(ui; Piu)A:

The last equality is due to the fact that Pi is an A-orthogonal projector onto
i and it is

therefore self-adjoint. Now, using Cauchy-Schwarz inequality, we get

(u; u)A =
X

(ui; Piu)A �
�X

(ui; ui)A

�1=2 �X
(Piu; Piu)A

�1=2
:

By Assumption 1, this leads to

kuk2A � K
1=2
0 kukA

�X
(Piu; Piu)A

�1=2
;

which, after squaring, yields

kuk2A � K0

X
(Piu; Piu)A:

Finally, observe that since each Pi is an A-orthogonal projector, we haveX
(Piu; Piu)A =

X
(Piu; u)A =

�X
Piu; u

�
A
:

Therefore, for any u, the inequality

(AJu; u)A �
1

K0
(u; u)A

holds, which yields the desired upper bound by the min-max theorem.

13.3 SCHWARZ ALTERNATING PROCEDURES 405

Note that the proof uses the following form of the Cauchy-Schwarz inequality:

pX
i=1

(xi; yi) �

pX

i=1

(xi; xi)

!1=2 pX
i=1

(yi; yi)

!1=2

:

See Exercise 1 for a proof of this variation.

We now turn to the analysis of the Multiplicative Schwarz procedure. We start by

recalling that the error after each outer iteration (sweep) is given by

d = Qsd0:

We wish to find an upper bound for kQskA. First note that (13.31) in Lemma 13.1 results

in

Qi = Qi�1 � PiQi�1;

from which we get, using the A-orthogonality of Pi,

kQivk
2
A = kQi�1vk

2
A � kPiQi�1vk

2
A:

The above equality is valid for i = 1, provided Q0 � I . Summing these equalities from

i = 1 to s gives the result,

kQsvk
2
A = kvk2A �

sX
i=1

kPiQi�1vk
2
A: (13.38)

This indicates that the A-norm of the error will not increase at each substep of the sweep.

Now a second assumption must be made to prove the next lemma.

Assumption 2. For any subset S of f1; 2; : : : ; sg2 and ui; vj 2
, the following in-

equality holds:

X
(i;j) 2 S

(Pivi; Pjvj)A � K1

sX

i=1

kPiuik
2
A

!1=2
0
@ sX

j=1

kPjvjk
2
A

1
A

1=2

: (13.39)

LEMMA 13.2 If Assumptions 1 and 2 are satisfied, then the following is true,

sX
i=1

kPivk
2
A � (1 +K1)

2
sX

i=1

kPiQi�1vk
2
A: (13.40)

Proof. Begin with the relation which follows from the fact that Pi is an A-orthogonal

projector,

(Piv; Piv)A = (Piv; PiQi�1v)A + (Piv; (I �Qi�1)v)A;

which yields, with the help of (13.34),

sX
i=1

kPivk
2
A =

sX
i=1

(Piv; PiQi�1v)A +
sX

i=1

i�1X
j=1

(Piv; PjQj�1v)A: (13.41)

406 CHAPTER 13 DOMAIN DECOMPOSITION METHODS

For the first term of the right-hand side, use the Cauchy-Schwarz inequality to obtain

sX
i=1

(Piv; PiQi�1v)A �

sX
i=1

kPivk
2
A

!1=2 sX
i=1

kPiQi�1vk
2
A

!1=2

:

For the second term of the right-hand side of (13.41), use the assumption (13.39) to get

sX
i=1

i�1X
j=1

(Piv; PjQj�1v)A � K1

sX
i=1

kPivk
2
A)

!1=2
0
@ sX
j=1

kPjQj�1vk
2
A)

1
A
1=2

:

Adding these two inequalities, squaring the result, and using (13.41) leads to the inequality

(13.40).

From (13.38), it can be deduced that if Assumption 2 holds, then,

kQsvk
2
A � kvk

2
A �

1

(1 +K1)2

sX
i=1

kPivk
2
A: (13.42)

Assumption 1 can now be exploited to derive a lower bound on
Ps

i=1 kPivk
2
A. This will

yield the following theorem.

THEOREM 13.5 Assume that Assumptions 1 and 2 hold. Then,

kQskA �

�
1�

1

K0(1 +K1)2

�1=2
: (13.43)

Proof. Using the notation of Section 13.3.3, the relation kPivk
2
A = (Piv; v)A yields

sX
i=1

kPivk
2
A =

sX
i=1

Piv; v

!
A

= (AJv; v)A:

According to Theorem 13.4, �min(AJ) �
1
K0

, which implies (AJv; v)A � (v; v)A=K0.

Thus,
sX
i=1

kPivk
2
A �

(v; v)A
K0

;

which upon substitution into (13.42) gives the inequality

kQsvk
2
A

kvk2A
� 1�

1

K0(1 +K1)2
:

The result follows by taking the maximum over all vectors v.

This result provides information on the speed of convergence of the multiplicative

Schwarz procedure by making two key assumptions. These assumptions are not verifiable

from linear algebra arguments alone. In other words, given a linear system, it is unlikely

that one can establish that these assumptions are satisfied. However, they are satisfied for

equations originating from finite element discretization of elliptic Partial Differential Equa-

tions. For details, refer to Drya and Widlund [72, 73, 74] and Xu [230].

13.4 SCHUR COMPLEMENT APPROACHES 407

SCHUR COMPLEMENT APPROACHES

13.4

Schur complement methods are based on solving the reduced system (13.4) by some pre-

conditioned Krylov subspace method. Procedures of this type involve three steps.

1. Get the right-hand side g0 = g � FB�1f .

2. Solve the reduced system Sy = g0 via an iterative method.

3. Back-substitute, i.e., compute x via (13.3).

The different methods relate to the way in which step 2 is performed. First observe

that the matrix S need not be formed explicitly in order to solve the reduced system by

an iterative method. For example, if a Krylov subspace method without preconditioning

is used, then the only operations that are required with the matrix S are matrix-by-vector

operations w = Sv. Such operations can be performed as follows.

1. Compute v0 = Ev,

2. Solve Bz = v0

3. Compute w = Cv � Fz.

The above procedure involves only matrix-by-vector multiplications and one lin-

ear system solution with B. Recall that a linear system involving B translates into s-

independent linear systems. Also note that the linear systems with B must be solved ex-

actly, either by a direct solution technique or by an iterative technique with a high level of

accuracy.

While matrix-by-vector multiplications with S cause little difficulty, it is much harder

to precondition the matrix S, since this full matrix is often not available explicitly. There

have been a number of methods, derived mostly using arguments from Partial Differential

Equations to precondition the Schur complement. Here, we consider only those precondi-

tioners that are derived from a linear algebra viewpoint.

13.4.1 INDUCED PRECONDITIONERS

One of the easiest ways to derive an approximation to S is to exploit Proposition 13.1

and the intimate relation between the Schur complement and Gaussian elimination. This

proposition tells us that a preconditioning operator M to S can be defined from the (ap-

proximate) solution obtained with A. To precondition a given vector v, i.e., to compute

w =M�1v, where M is the desired preconditioner to S, first solve the system

A

�
x
y

�
=

�
0
v

�
; (13.44)

then take w = y. Use any approximate solution technique to solve the above system. Let

MA be any preconditioner for A. Using the notation defined earlier, let Ry represent the

restriction operator on the interface variables, as defined in Proposition 13.1. Then the

408 CHAPTER 13 DOMAIN DECOMPOSITION METHODS

preconditioning operation for S which is induced from MA is defined by

M�1
S v = RyM

�1
A

�
0
v

�
= RyM

�1
A RTy v:

Observe that when MA is an exact preconditioner, i.e., when MA = A, then according to

Proposition 13.1, MS is also an exact preconditioner, i.e., MS = S. This induced precon-

ditioner can be expressed as

MS =
�
RyM

�1
A RTy

��1
: (13.45)

It may be argued that this uses a preconditioner related to the original problem to be solved

in the first place. However, even though the preconditioning on S may be defined from a

preconditioning of A, the linear system is being solved for the interface variables. That is

typically much smaller than the original linear system. For example, GMRES can be used

with a much larger dimension of the Krylov subspace since the Arnoldi vectors to keep in

memory are much smaller. Also note that from a Partial Differential Equations viewpoint,

systems of the form (13.44) correspond to the Laplace equation, the solutions of which

are “Harmonic” functions. There are fast techniques which provide the solution of such

equations inexpensively.

In the case where MA is an ILU factorization of A, MS can be expressed in an ex-

plicit form in terms of the entries of the factors of MA. This defines a preconditioner to

S that is induced canonically from an incomplete LU factorization of A. Assume that the

preconditionerMA is in a factored form MA = LAUA, where

LA =

�
LB 0

FU�1B LS

�
UA =

�
UB L�1B E
0 US

�
:

Then, the inverse of MA will have the following structure:

M�1
A = U�1A L�1A

=

�
? ?
0 U�1S

��
? 0
? L�1S

�

=

�
? ?
? U�1S L�1S

�
where a star denotes a matrix whose actual expression is unimportant. Recall that by defi-

nition,

Ry = (0 I) ;

where this partitioning conforms to the above ones. This means that

RyM
�1
A RTy = U�1S L�1S

and, therefore, according to (13.45), MS = LSUS . This result is stated in the following

proposition.

PROPOSITION 13.3 Let MA = LAUA be an ILU preconditioner for A. Then the

preconditionerMS for S induced by MA, as defined by (13.45), is given by

MS = LSUS ; with LS = RyLAR
T
y ; US = RyUAR

T
y :

13.4 SCHUR COMPLEMENT APPROACHES 409

In words, the proposition states that the L and U factors for MS are the (2; 2) blocks

of the L and U factors of the ILU factorization of A. An important consequence of the

above idea is that the parallel Gaussian elimination can be exploited for deriving an ILU

preconditioner for S by using a general purpose ILU factorization. In fact, the L and U
factors of MA have the following structure:

A = LAUA �R with;

LA =

0
BBBB@

L1

L2
. . .

Ls
F1U

�1
1 F2U

�1
2 � � � FsU

�1
s L

1
CCCCA

UA =

0
BBBB@
U1 L�11 E1

U2 L�12 E2

. . .
...

Us L�1s Es
U

1
CCCCA :

Each Li; Ui pair is an incomplete LU factorization of the local Bi matrix. These ILU

factorizations can be computed independently. Similarly, the matrices L�1i Ei and FiU
�1
i

can also be computed independently once the LU factors are obtained. Then each of the

matrices

~Si = Ci � FiU
�1
i L�1i Ei;

which are the approximate local Schur complements, is obtained. Note that since an incom-

plete LU factorization is being performed, some drop strategy is applied to the elements in
~Si. Let Ti be the matrix obtained after this is done,

Ti = ~Si �Ri:

Then a final stage would be to compute the ILU factorization of the matrix (13.14) where

each Si is replaced by Ti.

13.4.2 PROBING

To derive preconditioners for the Schur complement, another general purpose technique

exploits ideas used in approximating sparse Jacobians when solving nonlinear equations.

In general, S is a dense matrix. However, it can be observed, and there are physical justi-

fications for model problems, that its entries decay away from the main diagonal. Assume

that S is nearly tridiagonal, i.e., neglect all diagonals apart from the main diagonal and the

two codiagonals, and write the corresponding tridiagonal approximation to S as

T =

0
BBBB@
a1 b2
c2 a2 b3

. . .
. . .

. . .

cm�1 am�1 bm
cm am

1
CCCCA :

410 CHAPTER 13 DOMAIN DECOMPOSITION METHODS

Then, it is easy to recover T by applying it to three well-chosen vectors. Consider the three

vectors

w1 = (1; 0; 0; 1; 0; 0; 1; 0; 0; : : : ;)T ;

w2 = (0; 1; 0; 0; 1; 0; 0; 1; 0; : : : ;)T ;

w3 = (0; 0; 1; 0; 0; 1; 0; 0; 1; : : : ;)T :

Then we have

Tw1 = (a1; c2; b4; a4; c5; : : : ; b3i+1; a3i+1; c3i+2; : : :)
T ;

Tw2 = (b2; a2; c3; b5; a5; c6; : : : ; b3i+2; a3i+2; c3i+3; : : :)
T ;

Tw3 = (b3; a3; c4; b6; a6; c7; : : : ; b3i; a3i; c3i+1; : : :)
T :

This shows that all the coefficients of the matrix T are indeed all represented in the above

three vectors. The first vector contains the nonzero elements of the columns 1, 4, 7, : : :,
3i + 1, : : :, in succession written as a long vector. Similarly, Tw2 contains the columns

2; 5; 8; : : :, and Tw3 contains the columns 3; 6; 9; : : :. We can easily compute Swi; i = 1; 3
and obtain a resulting approximation T which can be used as a preconditioner to S. The

idea can be extended to compute any banded approximation to S. For details and analysis

see [49].

13.4.3 PRECONDITIONING VERTEX-BASED SCHUR

COMPLEMENTS

We now discuss some issues related to the preconditioning of a linear system with the

matrix coefficient of (13.14) associated with a vertex-based partitioning. As was mentioned

before, this structure is helpful in the direct solution context because it allows the Schur

complement to be formed by local pieces. Since incomplete LU factorizations will utilize

the same structure, this can be exploited as well.

Note that multicolor SOR or SSOR can also be exploited and that graph coloring

can be used to color the interface values yi in such a way that no two adjacent interface

variables will have the same color. In fact, this can be achieved by coloring the domains.

In the course of a multicolor block-SOR iteration, a linear system must be solved with the

diagonal blocks Si. For this purpose, it is helpful to interpret the Schur complement. Call

P the canonical injection matrix from the local interface points to the local nodes. If ni

points are local and if mi is the number of the local interface points, then P is an ni �mi

matrix whose columns are the last mi columns of the ni � ni identity matrix. Then it is

easy to see that

Si = (P TA�1loc;iP)
�1: (13.46)

If Aloc;i = LU is the LU factorization of Aloc;i then it can be verified that

S�1i = P TU�1L�1P = P TU�1PP TL�1P; (13.47)

which indicates that in order to operate withP TL�1P , the last mi�mi principal submatrix

of L must be used. The same is true for P TU�1P which requires only a back-solve with

the last mi�mi principal submatrix of U . Therefore, only the LU factorization of Aloc;i is

13.5 FULL MATRIX METHODS 411

needed to solve a system with the matrix Si. Interestingly, approximate solution methods

associated with incomplete factorizations of Aloc;i can be exploited.

FULL MATRIX METHODS

13.5

We call any technique that iterates on the original system (13.2) a full matrix method. In the

same way that preconditioners were derived from the LU factorization of A for the Schur

complement, preconditioners for A can be derived from approximating interface values.

Before starting with preconditioning techniques, we establish a few simple relations

between iterations involving A and S.

PROPOSITION 13.4 Let

LA =

�
I O

FB�1 I

�
; UA =

�
B E
O I

�
(13.48)

and assume that a Krylov subspace method is applied to the original system (13.1) with left

preconditioningLA and right preconditioningUA, and with an initial guess of the form�
x0
y0

�
=

�
B�1(f �Ey0)

y0

�
: (13.49)

Then this preconditioned Krylov iteration will produce iterates of the form�
xm
ym

�
=

�
B�1(f �Eym)

ym

�
(13.50)

in which the sequence ym is the result of the same Krylov subspace method applied without

preconditioning to the reduced linear system Sy = g 0 with g0 = g � FB�1f starting with

the vector y0.

Proof. The proof is a consequence of the factorization�
B E
F C

�
=

�
I O

FB�1 I

��
I O
O S

��
B E
O I

�
: (13.51)

Applying an iterative method (e.g., GMRES) on the original system, preconditioned from

the left by LA and from the right by UA, is equivalent to applying this iterative method to

L�1
A AU�1

A =

�
I O
O S

�
� A0: (13.52)

The initial residual for the preconditioned system is

L�1
A

�
f

g

�
� (L�1

A AU�1
A)UA

�
x0
y0

�

=

�
I O

�FB�1 I

���
f

g

�
�

�
f

FB�1(f �Ey0) + Cy0

��

412 CHAPTER 13 DOMAIN DECOMPOSITION METHODS

=

�
0

g0 � Sy0

�
�

�
0
r0

�
:

As a result, the Krylov vectors obtained from the preconditioned linear system associated

with the matrix A0 have the form�
0

r0

�
;

�
0

Sr0

�
� � � ;

�
0

Sm�1r0

�
(13.53)

and the associated approximate solution will be of the form�
xm
ym

�
=

�
x0
y0

�
+

�
B�1 �B�1E
O I

��
0Pm�1

i=0 �iS
ir0

�

=

�
B�1(f �Ey0)�B�1E(ym � y0)

ym

�

=

�
B�1(f �Eym)

ym

�
:

Finally, the scalars �i that express the approximate solution in the Krylov basis are ob-

tained implicitly via inner products of vectors among the vector sequence (13.53). These

inner products are identical to those of the sequence r0; Sr0; � � � ; S
m�1r0. Therefore, these

coefficients will achieve the same result as the same Krylov method applied to the reduced

system Sy = g0, if the initial guess gives the residual guess r0.

A version of this proposition should allow S to be preconditioned. The following result

is an immediate extension that achieves this goal.

PROPOSITION 13.5 Let S = LSUS � R be an approximate factorization of S and

define

LA =

�
I O

FB�1 LS

�
; UA =

�
B E
O US

�
: (13.54)

Assume that a Krylov subspace method is applied to the original system (13.1) with left

preconditioningLA and right preconditioningUA, and with an initial guess of the form�
x0
y0

�
=

�
B�1(f �Ey0)

y0

�
: (13.55)

Then this preconditioned Krylov iteration will produce iterates of the form�
xm
ym

�
=

�
B�1(f �Eym)

ym

�
: (13.56)

Moreover, the sequence ym is the result of the same Krylov subspace method applied to the

reduced linear system Sy = g�FB�1f , left preconditioned withLS , right preconditioned

with US , and starting with the vector y0.

Proof. The proof starts with the equality�
B E
F C

�
=

�
I O

FB�1 LS

��
I O
O L�1

S SU�1
S

��
B E
O US

�
: (13.57)

The rest of the proof is similar to that of the previous result and is omitted.

13.6 GRAPH PARTITIONING 413

Also there are two other versions in which S is allowed to be preconditioned from

the left or from the right. Thus, if MS is a certain preconditioner for S, use the following

factorizations �
B E
F C

�
=

�
I O

FB�1 MS

��
I O
O M�1

S S

��
B E
O I

�
(13.58)

=

�
I O

FB�1 I

��
I O
O SM�1

S

��
B E
O MS

�
; (13.59)

to derive the appropriate left or right preconditioners. Observe that when the preconditioner

MS to S is exact, i.e., when M = S, then the block preconditioner LA, UA to A induced

from MS is also exact.

Although the previous results indicate that a Preconditioned Schur Complement iter-

ation is mathematically equivalent to a certain preconditioned full matrix method, there

are some practical benefits in iterating with the nonreduced system. The main benefit in-

volves the requirement in the Schur Complement techniques to compute Sx exactly at

each Krylov subspace iteration. Indeed, the matrix S represents the coefficient matrix of

the linear system, and inaccuracies in the matrix-by-vector operation may result in loss

of convergence. In the full matrix techniques, the operation Sx is never needed explic-

itly. In addition, this opens up the possibility of preconditioning the original matrix with

approximate solves with the matrix B in the preconditioning operation LA and UA.

GRAPH PARTITIONING

13.6

The very first task that a programmer faces when solving a problem on a parallel computer,

be it a dense or a sparse linear system, is to decide how to map the data into the processors.

For shared memory and SIMD computers, directives are often provided to help the user

input a desired mapping, among a small set of choices. Distributed memory computers

are more general since they allow mapping the data in an arbitrary fashion. However, this

added flexibility puts the burden on the user to find good mappings. In particular, when

implementing Domain Decomposition ideas on a parallel computer, efficient techniques

must be available for partitioning an arbitrary graph. This section gives an overview of the

issues and covers a few techniques.

13.6.1 BASIC DEFINITIONS

Consider a general sparse linear system whose adjacency graph is G = (V;E). There are

two issues related to the distribution of mapping a general sparse linear system on a num-

ber of processors. First, a good partitioning must be found for the original problem. This

translates into partitioning the graph G into subgraphs and can be viewed independently

from the underlying architecture or topology. The second issue, which is architecture de-

pendent, is to find a good mapping of the subdomains or subgraphs to the processors, after

414 CHAPTER 13 DOMAIN DECOMPOSITION METHODS

the partitioning has been found. Clearly, the partitioning algorithm can take advantage of a

measure of quality of a given partitioning by determining different weight functions for the

vertices, for vertex-based partitionings. Also, a good mapping could be found to minimize

communication costs, given some knowledge on the architecture.

Graph partitioning algorithms address only the first issue. Their goal is to subdivide the

graph into smaller subgraphs in order to achieve a good load balancing of the work among

the processors and ensure that the ratio of communication over computation is small for

the given task. We begin with a general definition.

1 2 3 4

5 6 7 8

9 10 11 12

P1
P2

P3
P4

Figure 13.8 Mapping of a simple 4�3mesh to 4 processors.

DEFINITION 13.1 We call a map of V , any set V1; V2; : : : ; Vs, of subsets of the vertex

set V , whose union is equal to V :

Vi � V;
[

i=1;s

Vi = V:

When all the Vi subsets are disjoint, the map is called a proper partition; otherwise we refer

to it as an overlapping partition.

The most general way to describe a node-to-processor mapping is by setting up a

list for each processor, containing all the nodes that are mapped to that processor. Three

distinct classes of algorithms have been developed for partitioning graphs. An overview of

each of these three approaches is given next.

13.6.2 GEOMETRIC APPROACH

The geometric approach works on the physical mesh and requires the coordinates of the

mesh points to find adequate partitionings. In the simplest case, for a 2-dimensional rec-

tangular grid, stripes in the horizontal and vertical direction can be defined to get square

subregions which have roughly the same number of points. Other techniques utilize no-

tions of moment of inertia to divide the region recursively into two roughly equal-sized

subregions.

Next is a very brief description of a technique based on work by Miller, Teng, Thur-

ston, and Vavasis [150]. This technique finds good separators for a mesh using projections

13.6 GRAPH PARTITIONING 415

into a higher space. Given a mesh in R
d

, the method starts by projecting the mesh points

into a unit sphere centered at the origin in R
d+1

. Stereographic projection is used: A line

is drawn from a given point p in the plane to the North Pole (0; : : : ; 0; 1) and the stereo-

graphic projection of p is the point where this line intersects the sphere. In the next step, a

centerpoint of the projected points is found. A centerpoint c of a discrete set S is defined

as a point where every hyperplane passing through c will divide S approximately evenly.

Once the centerpoint is found, the points of the sphere are rotated so that the centerpoint is

aligned with the North Pole, i.e., so that coordinates of c are transformed into (0; : : : ; 0; r).
The points are further transformed by dilating them so that the centerpoint becomes the ori-

gin. Through all these transformations, the point c remains a centerpoint. Therefore, if any

hyperplane is taken that passes through the centerpoint which is now the origin, it should

cut the sphere into two roughly equal-sized subsets. Any hyperplane passing through the

origin will intersect the sphere along a large circle C. Transforming this circle back into

the original space will give a desired separator. Notice that there is an infinity of circles to

choose from. One of the main ingredients in the above algorithm is a heuristic for finding

centerpoints in R
d

space (actually, R
d+1

in the algorithm). The heuristic that is used re-

peatedly replaces randomly chosen sets of d+2 points by their centerpoint, which are easy

to find in this case.

There are a number of interesting results that analyze the quality of geometric graph

partitionings based on separators. With some minimal assumptions on the meshes, it is

possible to show that there exist “good” separators. In addition, the algorithm discussed

above constructs such separators. We start with two definitions.

DEFINITION 13.2 A k-ply neighborhood system in R
d

is a set of n closed disks Di,

i = 1; : : : ; n in R
d

such that no point in R
d

is (strictly) interior to more than k disks.

DEFINITION 13.3 Let � � 1 and let D1; : : : ; Dn be a k-ply neighborhood system

in R
d

. The (�; k)-overlap graph for the neighborhood system is the graph with vertex set

V = f1; 2; : : : ; ng and edge set, the subset of V � V defined by

f(i; j) : (Di \ (�:Dj) 6= �) and (Dj \ (�:Di) 6= �)g:

A mesh in R
d

is associated with an overlap graph by assigning the coordinate of the center

ci of disk i to each node i of the graph. Overlap graphs model computational meshes in

d dimensions. Indeed, every mesh with bounded aspect ratio elements (ratio of largest to

smallest edge length of each element) is contained in an overlap graph. In addition, any

planar graph is an overlap graph. The main result regarding separators of overlap graphs is

the following theorem [150].

THEOREM 13.6 Let G be an n-vertex (�; k) overlap graph in d dimensions. Then the

vertices of G can be partitioned into three sets A;B, and C such that:

1. No edge joins A and B.

2. A and B each have at most n(d+ 1)=(d+ 2) vertices.

3. C has only O(� k1=dn(d�1)=d) vertices.

Thus, for d = 2, the theorem states that it is possible to partition the graph into two

416 CHAPTER 13 DOMAIN DECOMPOSITION METHODS

subgraphs A and B, with a separator C, such that the number of nodes for each of A and

B does not exceed 3
4n vertices in the worst case and such that the separator has a number

of nodes of the order O(� k1=2n1=2).

13.6.3 SPECTRAL TECHNIQUES

Spectral bisection refers to a technique which exploits some known properties of the eigen-

vectors of the Laplacean of a graph. Given an adjacency graph G = (V;E), we associate

to it a Laplacian matrix L which is a sparse matrix having the same adjacency graph G and

defined as follows:

lij =

8<
:

�1 if(vi; vj) 2 E and i 6= j
deg(i) if i = j
0 otherwise:

There are some interesting fundamental properties of such matrices. Assuming the graph

is undirected, the matrix is symmetric. It can easily be seen that it is also negative semi

definite (see Exercise 9). Zero is an eigenvalue and it is the smallest one. An eigenvector

associated with this eigenvalue is any constant vector, and this eigenvector bears little in-

terest. However, the second smallest eigenvector, called the Fiedler vector, has the useful

property that the signs of its components divide the domain into roughly two equal subdo-

mains. To be more accurate, the Recursive Spectral Bisection (RSB) algorithm consists of

sorting the components of the eigenvector and assigning the first half of the sorted vertices

to the first subdomain and the second half to the second subdomain. The two subdomains

are then partitioned in two recursively, until a desirable number of domains is reached.

ALGORITHM 13.7: RSB (Recursive Spectral Bisection)

1. Compute the Fiedler vector f of the graph G.

2. Sort the components of f , e.g., increasingly.

3. Assign first bn=2c nodes to V1, and the rest to V2 .

4. Apply RSB recursively to V1, V2, until the desired number of partitions

5. is reached.

The main theoretical property that is exploited here is that the differences between

the components of the Fiedler vector represent some sort of distance between the corre-

sponding nodes. Thus, if these components are sorted they would be grouping effectively

the associated node by preserving nearness. In addition, another interesting fact is that the

algorithm will also tend to minimize the number nc of cut-edges, i.e., the number of edges

(vi; vj) such that vi 2 V1 and vj 2 V2. Let p be a partition vector whose components are

+1 or �1 in equal number, so that eT p = 0 where e = (1; 1; : : : ; 1)T . Assume that V1 and

V2 are of equal size and that the components of p are set to +1 for those in V1 and �1 for

those in V2. Then notice that

(Lp; p) = 4nc; (p; e) = 0:

Ideally, the objective function (Lp; p) should be minimized subject to the constraint that

13.6 GRAPH PARTITIONING 417

(p; e) = 0. Note that here p is a vector of signs. If, instead, the objective function

(Lx; x)=(x; x) were minimized with respect to the constraint (x; e) = 0 for x real, the so-

lution would be the Fiedler vector, since e is the eigenvector associated with the eigenvalue

zero. The Fiedler vector is an eigenvector associated with the second smallest eigenvalue

of L. This eigenvector can be computed by the Lanczos algorithm or any other method ef-

ficient for large sparse matrices. Recursive Specrtal Bisection gives excellent partitionings.

On the other hand, it is rather expensive because of the requirement to compute eigenvec-

tors.

13.6.4 GRAPH THEORY TECHNIQUES

There exist a number of other techniques which, like spectral techniques, are also based

on the adjacency graph only. The simplest idea is one that is borrowed from the technique

of nested dissection in the context of direct sparse solution methods. Refer to Chapter 3

where level set orderings are described. An initial node is given which constitutes the level

zero. Then, the method recursively traverses the k-th level (k � 1), which consists of the

neighbors of all the elements that constitute level k � 1. A simple idea for partitioning the

graph in two traverses enough levels to visit about half of all the nodes. The visited nodes

will be assigned to one subdomain and the others will constitute the second subdomain.

The process can then be repeated recursively on each of the subdomains. A key ingredient

for this technique to be successful is to determine a good initial node from which to start

the traversal. Often, a heuristic is used for this purpose. Recall that d(x; y) is the distance

between vertices x and y in the graph, i.e., the length of the shortest path between x and y.

If the diameter of a graph is defined as

�(G) = maxfd(x; y) j x 2 V; y 2 V g

then, ideally, one of two nodes in a pair (x; y) that achieves the diameter can be used as

a starting node. These peripheral nodes, are expensive to determine. Instead, a pseudo-

peripheral node, as defined through the following procedure, is often employed.

ALGORITHM 13.8: Pseudo-Peripheral Node

1. Select an initial node x. Set � = 0.

2. Do a level set traversal from x
3. Select a node y in the last level set, with minimum degree

4. If d(x; y) > � then

5. Set x := y and � := d(x; y)
6. GoTo 2

7. Else Stop: x is a pseudo-peripheral node.

8. EndIf

The distance d(x; y) in line 5 is the number of levels in the level set traversal needed in Step

2. The algorithm traverses the graph from a node of the last level in the previous traversal,

until the number of levels stabilizes. It is easy to see that the algorithm does indeed stop

after a finite number of steps, typically small.

418 CHAPTER 13 DOMAIN DECOMPOSITION METHODS

The above algorithm plays a key role in sparse matrix computations. It is very helpful

in the context of graph partitioning as well. A first heuristic approach based on level set

traversals is the recursive dissection procedure mentioned above and described next.

ALGORITHM 13.9: Recursive Graph Bisection

1. Set G� := G, S := fGg, ndom := 1
2. While ndom < s Do:

3. Select in S the subgraph G� with largest size.

4. Find a pseudo-peripheral node p in G� and

5. Do a level set traversal from p. Let lev := number of levels.

6. Let G1 the subgraph of G� consisting of the first lev=2
7. levels, and G2 the subgraph containing the rest of G�.

8. Remove G� from S and add G1 and G2 to it

9. ndom := ndom + 1
10. EndWhile

The cost of this algorithm is rather small. Each traversal of a graph G = (V;E) costs

around jEj, where jEj is the number of edges (assuming that jV j = O(jEj)). Since there

are s traversals of graphs whose size decreases by 2 at each step, it is clear that the cost is

O(jEj), the order of edges in the original graph.

As can be expected, the results of such an algorithm are not always good. Typically,

two qualities that are measured are the sizes of the domains as well as the number of cut-

edges. Ideally, the domains should be equal. In addition, since the values at the interface

points should be exchanged with those of neighboring processors, their total number, as

determined by the number of cut-edges, should be as small as possible. The first measure

can be easily controlled in a recursive Graph Bisection Algorithm — for example, by using

variants in which the number of nodes is forced to be exactly half that of the original sub-

domain. The second measure is more difficult to control. Thus, the top part of Figure 13.9

shows the result of the RGB algorithm on a sample finite-element mesh. This is a vertex-

based partitioning. The dashed lines are the cut-edges that link two different domains.

An approach that is competitive with the one described above is that of double striping.

This method uses two parameters p1, p2 such that p1p2 = s. The original graph is first

partitioned into p1 large partitions, using one-way partitioning, then each of these partitions

is subdivided into p2 partitions similarly. One-way partitioning into p subgraphs consists

of performing a level set traversal from a pseudo-peripheral node and assigning each set of

roughly n=p consecutive nodes in the traversal to a different subgraph. The result of this

approach with p1 = p2 = 4 is shown in Figure 13.9 on the same graph as before. As can

be observed, the subregions obtained by both methods have elongated and twisted shapes.

This has the effect of giving a larger number of cut-edges.

13.6 GRAPH PARTITIONING 419

Figure 13.9 The RGB algorithm (top) and the double-

striping algorithm (bottom) for partitioning a graph into 16

subgraphs.

420 CHAPTER 13 DOMAIN DECOMPOSITION METHODS

There are a number of heuristic ways to remedy this. One strategy is based on the

fact that a level set traversal from k nodes can be defined instead of only one node. These

k nodes are called the centers or sites. Each subdomain will expand from one of these k
centers and the expansion will stop when it is no longer possible to acquire another point

that is not already assigned. The boundaries of each domain that are formed this way will

tend to be more “circular.” To smooth the boundaries of an initial partition, find some center

point of each domain and perform a level set expansion from the set of points. The process

can be repeated a few times.

ALGORITHM 13.10: Multinode Level-Set Expansion Algorithm

1. Find a partition S = fG1; G2; : : : ; Gsg.

2. For iter = 1; : : : ; nouter Do:

3. For k = 1; : : : ; s Do:

4. Find a center ck of Gk. Set label(ck) = k.

5. EndDo

6. Do a level set traversal from fc1; c2; : : : ; csg. Label each child

7. in the traversal with the same label as its parent.

8. For k = 1; : : : ; s set Gk:= subgraph of all nodes having label k
9. EndDo

Figure 13.10 Multinode expansion starting with the parti-

tion obtained in Figure 13.9.

EXERCISES AND NOTES 421

For this method, a total number of cut-edges equal to 548 and a rather small standard

deviation of 0.5 are obtained for the example seen earlier.

Still to be decided is how to select the center nodes mentioned in line 4 of the al-

gorithm. Once more, the pseudo-peripheral algorithm will be helpful. Find a pseudo-

peripheral node, then do a traversal from it until about one-half of the nodes have been

traversed. Then, traverse the latest level set (typically a line or a very narrow graph), and

take the middle point as the center.

A typical number of outer steps, nouter, to be used in line 2, is less than five. This

heuristic works well in spite of its simplicity. For example, if this is applied to the graph

obtained from the RGB algorithm, with nouter = 3, the partition shown in Figure 13.10

is obtained. With this technique, the resulting total number of cut-edges is equal to 441

and the standard deviation is 7.04. As is somewhat expected, the number of cut-edges has

decreased dramatically, while the standard deviation of the various sizes has increased.

EXERCISES

1 In the proof of Theorem 13.4, the following form of the Cauchy-Schwarz inequality was used:

pX
i=1

(xi; yi) �

pX
i=1

(xi; xi)

!1=2 pX
i=1

(yi; yi)

!1=2

:

(a) Prove that this result is a consequence of the standard Cauchy-Schwarz inequality. (b) Extend

the result to the A-inner product. (c) Assume that the xi’s and yi’s are the columns of two n� p
matrix X and Y . Rewrite the result in terms of these matrices.

2 Using Lemma 13.1, write explicitly the vector M�1b for the Multiplicative Schwarz procedure,

in terms of the matrix A and the Ri’s, when s = 2; and then when s = 3.

3 (a) Show that in the multiplicative Schwarz procedure, the residual vectors ri = b�Axi obtained

at each step satisfy the recurrence,

ri = ri�1 �ART
i A

�1
i Riri�1

for i = 1; : : : ; s. (b) Consider the operator Qi � ART
i A

�1
i Ri. Show that Qi is a projector. (c)

Is Qi an orthogonal projector with respect to the A-inner product? With respect to which inner

product is it orthogonal?

4 The analysis of the Additive Schwarz procedure assumes that A�1i is “exact,” i.e., that linear

systems Aix = b are solved exactly, each time A�1i is applied. Assume that A�1i is replaced by

some approximation ��1i . (a) Is Pi still a projector? (b) Show that if �i is Symmetric Positive

Definite, then so is Pi. (c) Now make the assumption that �max(Pi) � !�. What becomes of

the result of Theorem 13.2?

5 In Element-By-Element (EBE) methods, the extreme cases of the Additive or the Multiplicative

Schwarz procedures are considered in which the subdomain partition corresponds to taking
i to

be an element. The advantage here is that the matrices do not have to be assembled. Instead, they

are kept in unassembled form (see Chapter 2). Assume that Poisson’s equation is being solved.

422 CHAPTER 13 DOMAIN DECOMPOSITION METHODS

(a) What are the matrices Ai? (b) Are they SPD? (c) Write down the EBE preconditioning

corresponding to the multiplicative Schwarz procedure, its multicolor version, and the additive

Schwarz procedure.

6 Theorem 13.1 was stated only for the multiplicative version of the Schwarz procedure. There is

a similar result for the additive Schwarz procedure. State this result and prove it.

7 Show that the matrix defined by (13.37) is indeed a projector. Is it possible to formulate Schwarz

procedures in terms of projection processes as seen in Chapter 5?

8 It was stated at the end of the proof of Theorem 13.4 that if

(AJu; u)A �
1

C
(u; u)A

for any nonzero u, then �min(AJ) � 1
C

. (a) Prove this result without invoking the min-max

theory. (b) Prove a version of the min-max theorem with the A-inner product, i.e., prove that the

min-max theorem is valid for any inner product for which A is self-adjoint.

9 Consider the Laplacean of a graph as defined in Section 13.6. Show that

(Lx; x) =
X

(i;j) 2 E

(xi � xj)
2:

10 Consider a rectangular finite difference mesh, with mesh size �x = h in the x-direction and

�y = h closest to the y-direction.

a. To each mesh point p = (xi; yj), associate the closed disk Dij of radius h centered at pi.
What is the smallest k such that the family fDijg is a k-ply system?

b. Answer the same question for the case where the radius is reduced to h=2. What is the overlap

graph (and associated mesh) for any � such that

1

2
< � <

p
2

2
?

What about when � = 2?

11 Determine the cost of a level set expansion algorithm starting from p distinct centers.

12 Write a FORTRAN subroutine (or C function) which implements the Recursive Graph Partition-

ing algorithm.

13 Write recursive versions of the Recursive Graph Partitioning algorithm and Recursive Spectral

Bisection algorithm. [Hint: Recall that a recursive program unit is a subprogram or function,

say foo, which calls itself, so foo is allowed to make a subroutine call to foo within its body.

Recursivity is not allowed in FORTRAN but is possible in C or C++.] (a) Give a pseudo-code

for the RGB algorithm which processes the subgraphs in any order. (b) Give a pseudo-code for

the RGB algorithm case when the larger subgraph is to be processed before the smaller one in

any dissection. Is this second version equivalent to Algorithm 13.9?

NOTES AND REFERENCES. To start with, the original paper by Schwarz is the reference [193], but

an earlier note appeared in 1870. In recent years, research on Domain Decomposition techniques has

been very active and productive. This rebirth of an old technique has been in large part motivated

by parallel processing. However, the first practical use of Domain Decomposition ideas has been in

applications to very large structures; see [166, 29], and elasticity problems; see, e.g., [169, 205, 198,

51, 28] for references.

EXERCISES AND NOTES 423

Two recent monographs that describe the use of Domain Decomposition approaches in struc-

tural mechanics are [143] and [87]. Recent survey papers include those by Keyes and Gropp [135]

and another by Chan and Matthew [50]. The recent volume [136] discusses the various uses of

“domain-based” parallelism in computational sciences and engineering.

The bulk of recent work on Domain Decomposition methods has been geared toward a Partial

Differential Equations viewpoint. Often, there appears to be a dichotomy between this viewpoint

and that of “applied Domain Decomposition,” in that the good methods from a theoretical point of

view are hard to implement in practice. The Schwarz multiplicative procedure, with multicoloring,

represents a compromise between good intrinsic properties and ease of implementation. For example,

Venkatakrishnan concludes in [215] that although the use of global coarse meshes may accelerate

convergence of local, domain-based, ILU preconditioners, it does not necessarily reduce the overall

time to solve a practical aerodynamics problem.

Much is known about the convergence of the Schwarz procedure; refer to the work by Widlund

and co-authors [30, 72, 73, 74, 46]. The convergence results of Section 13.3.4 have been adapted

from Xu [230] as well as Hackbusch [116]. The result on the equivalence between Schwarz and

Schur complement iterations stated in Theorem 13.1 seems to have been originally proved by Chan

and Goovaerts [48]. The results on the equivalence between the full matrix techniques and the Schur

matrix techniques seen in Section 13.5 have been adapted from results by S. E. Eisenstat, reported

in [135]. These connections are rather interesting and useful in practice since they provide some

flexibility on ways to implement a method. A number of preconditioners have also been derived

using these connections in the PDE framework [32, 31, 33, 34, 35].

Research on graph partitioning is currently very active. So far, variations of the Recursive Spec-

tral Bisection algorithm [165] seem to give the best results in terms of overall quality of the sub-

graphs. However, the algorithm is rather expensive, and less costly multilevel variations have been

developed [119]. Alternatives of the same class as those presented in Section 13.6.4 may be quite

attractive for a number of reasons, including cost, ease of implementation, and flexibility; see [107].

There is a parallel between the techniques based on level set expansions and the ideas behind Voronoi

diagrams known in computational geometry. The description of the geometric partitioning techniques

in Section 13.6.2 is based on the recent papers [105] and [150]. Earlier approaches have been devel-

oped in [55, 56, 57].

REFERENCES

1. J. Aba�y and E. Spedicato. ABS Projection Methods. Halstead Press, 1989.

2. L. M. Adams. Iterative algorithms for large sparse linear systems on parallel
computers. Ph.D. thesis, Applied Mathematics, University of Virginia,
Charlottsville, VA, 1982. Also NASA Contractor Report 166027.

3. L. M. Adams and H. Jordan. Is SOR color-blind? SIAM Journal on Scienti�c and
Statistical Computing, 6:490{506, 1985.

4. L. M. Adams and J. Ortega. A multi-color SOR Method for Parallel Computers.
In Proceedings of the 1982 International Conference on Pararallel Processing, pages
53{56, 1982.

5. J. I. Aliaga, D. L. Boley, R. W. Freund, and V. Hern�andez. A Lanczos-type
algorithm for multiple starting vectors. Technical Report Numerical Analysis
Manuscript No 95-11, AT&T Bell Laboratories, Murray Hill, NJ, 1995.

6. F. L. Alvarado. Manipulation and visualization of sparse matrices. ORSA Journal
on Computing, 2:186{206, 1990.

7. E. C. Anderson. Parallel implementation of preconditioned conjugate gradient
methods for solving sparse systems of linear equations. Technical Report 805,
CSRD, University of Illinois, Urbana, IL, 1988. MS Thesis.

8. E. C. Anderson and Y. Saad. Solving sparse triangular systems on parallel
computers. International Journal of High Speed Computing, 1:73{96, 1989.

9. W. E. Arnoldi. The principle of minimized iteration in the solution of the matrix
eigenvalue problem. Quart. Appl. Math., 9:17{29, 1951.

10. C. C. Ashcraft and R. G. Grimes. On vectorizing incomplete factorization and
SSOR preconditioners. SIAM Journal on Scienti�c and Statistical Computing,
9:122{151, 1988.

11. O. Axelsson. A generalized SSOR method. BIT, 12:443{467, 1972.

12. O. Axelsson. Conjugate gradient type-methods for unsymmetric and inconsistent
systems of linear equations. Technical Report 74-10, CERN, Geneva, 1974.

13. O. Axelsson. Conjugate gradient type-methods for unsymmetric and inconsistent
systems of linear equations. Linear Algebra and its Applications, 29:1{16, 1980.

14. O. Axelsson. A generalized conjugate gradient, least squares method. Numerische
Mathematik, 51:209{227, 1987.

424

REFERENCES 425

15. O. Axelsson. Iterative Solution Methods. Cambridge University Press, New York,
1994.

16. O. Axelsson and V. A. Barker. Finite Element Solution of Boundary Value
Problems. Academic Press, Orlando, FL, 1984.

17. O. Axelsson, S. Brinkkemper, and V. P. Ill'n. On some versions of incomplete
block-matrix factorization iterative methods. Linear Algebra and its Applications,
58:3{15, 1984.

18. O. Axelsson and P. S. Vassilevski. A block generalized conjugate gradient solver
with inner iterations and variable step preconditioning. SIAM Journal on Matrix
Analysis and Applications, 12, 1991.

19. S. Balay, W. D. Gropp, L. Curfman McInnes, and B. F. Smith. PETSc 2.0 users
manual. Technical Report ANL-95/11 - Revision 2.0.24, Argonne National
Laboratory, 1999.

20. R. E. Bank and T. F. Chan. An analysis of the composite step biconjugate
gradient method. Numerische Mathematik, 66:259{319, 1993.

21. T. Barth and T. Manteu�el. Variable metric conjugate gradient methods. In
Advances in Numerical Methods for Large Sparse Sets of Linear Equations, Number
10, Matrix Analysis and Parallel Computing, PCG 94, pages 165{188. Keio
University, Yokohama, Japan, 1994.

22. D. Baxter, J. Saltz, M. H. Schultz, S. C. Eisenstat, and K. Crowley. An
experimental study of methods for parallel preconditioned Krylov methods. In
Proceedings of the 1988 Hypercube Multiprocessors Conference, pages 1698{1711.
Pasadena, CA, Jan. 1988.

23. M. Benantar and J. E. Flaherty. A six color procedure for the parallel solution of
Elliptic systems using the �nite quadtree structure. In J. Dongarra, P. Messina,
D. C. Sorenson, and R. G. Voigt, editors, Proceedings of the Fourth SIAM
Conference on Parallel Processing for Scienti�c Computing, pages 230{236, 1990.

24. H. Berryman, J. Saltz, W. Gropp, and R. Mirchandaney. Krylov methods
preconditioned with incompletely factored matrices on the CM-2. Journal of
Parallel and Distributed Computing, 8:186{190, 1990.

25. D. P. Bertsekas and J. Tsitsiklis. Parallel and Distributed Computation. Prentice
Hall, Englewood Cli�s, NJ, 1989.

26. G. Birkho�, R. Varga, S R., and D. Young. Alternating direction implicit methods.
In Advances in Computers, pages 189{273. Academic Press, New York, 1962.

27. A. Bj�orck and T. Elfving. Accelerated projection methods for computing
pseudo-inverse solutions of systems of linear equations. BIT, 19:145{163, 1979.

28. P. E. Bj�rstad and Anders Hvidsten. Iterative methods for substructured elasticity
problems in structural analysis. In Roland Glowinski, Gene H. Golub, G�erard A.
Meurant, and Jacques P�eriaux, editors, Domain Decomposition Methods for Partial
Di�erential Equations. SIAM, Philadelphia, PA, 1988.

29. P. E. Bj�rstad and O. B. Widlund. Solving elliptic problems on regions partitioned
into substructures. In Garrett Birkho� and Arthur Schoenstadt, editors, Elliptic
Problem Solvers II, pages 245{256. Academic Press, New York, NY, 1984.

426 REFERENCES

30. P. E. Bj�rstad and O. B. Widlund. Iterative methods for the solution of elliptic
problems on regions partitioned into substructures. SIAM Journal on Numerical
Analysis, 23(6):1093{1120, 1986.

31. J. H. Bramble, J. E. Pasciak, and A. H. Schatz. The construction of
preconditioners for elliptic problems by substructuring, I. Mathematics of
Computations, 47(175):103{134, 1986.

32. J. H. Bramble, J. E. Pasciak, and A. H. Schatz. An iterative method for elliptic
problems on regions partitioned into substructures. Mathematics of Computations,
46(173):361{369, 1986.

33. J. H. Bramble, J. E. Pasciak, and A. H. Schatz. The construction of
preconditioners for elliptic problems by substructuring, II. Mathematics of
Computations, 49:1{16, 1987.

34. J. H. Bramble, J. E. Pasciak, and A. H. Schatz. The construction of
preconditioners for elliptic problems by substructuring, III. Mathematics of
Computations, 51:415{430, 1988.

35. J. H. Bramble, J. E. Pasciak, and A. H. Schatz. The construction of
preconditioners for elliptic problems by substructuring, IV. Mathematics of
Computations, 53:1{24, 1989.

36. R. Bramley and A. Sameh. Row projection methods for large nonsymmetric linear
systems. SIAM Journal on Scienti�c and Statistical Computing, 13:168{193, 1992.

37. R. Bramley and A. Sameh. A robust parallel solver for block tridiagonal systems.
In Proceedings of the International Conference on Supercomputing, pages 39{54.
ACM, July 1988.

38. C. Brezinski. Pad�e Type Approximation and General Orthogonal Polynomials.
Birkh�auser-Verlag, Basel-Boston-Stuttgart, 1980.

39. C. Brezinski and M. Redivo Zaglia. Extrapolation Methods: Theory and Practice.
North-Holland, Amsterdam, 1991.

40. C. Brezinski and M. Redivo-Zaglia. Hybrid procedures for solving systems of linear
equations. Numerische Mathematik, 67:1{19, 1994.

41. C. Brezinski, M. Redivo-Zaglia, and H. Sadok. Avoiding breakdown and
near-breakdown in Lanczos-type algorithms. Numerical Algorithms, 1:261{284,
1991.

42. C. Brezinski, M. Redivo-Zaglia, and H. Sadok. A breakdown-free Lanczos-type
algorithm for solving linear systems. Numerische Mathematik, 63:29{38, 1992.

43. P. N. Brown. A theoretical comparison of the Arnoldi and GMRES algorithms.
SIAM Journal on Scienti�c and Statistical Computing, 12:58{78, 1991.

44. P. N. Brown and A. C. Hindmarsh. Matrix-free methods for sti� systems of ODEs.
SIAM Journal on Numerical Analysis, 23:610{638, 1986.

45. N. I. Buleev. A numerical method for the solution of two-dimensional and
three-dimensional equations of di�usion. Math. Sb, 51:227{238, 1960. (in Russian).

46. X. C. Cai and O. Widlund. Multiplicative Schwarz algorithms for some
nonsymmetric and inde�nite problems. SIAM Journal on Numerical Analysis,
30(4), August 1993.

REFERENCES 427

47. T. F. Chan, E. Gallopoulos, V. Simoncini, T. Szeto, and C.H. Tong. A
quasi-minimal residual variant of the Bi-CGSTAB algorithm for nonsymmetric
systems. SIAM Journal on Scienti�c Computing, 15(2):338{347, 1994.

48. T. F. Chan and D. Goovaerts. On the relationship between overlapping and
nonoverlapping domain decomposition methods. SIAM Journal on Matrix Analysis
and Applications, 13:663{670, 1992.

49. T. F. Chan and T. P. Mathew. The interface probing technique in domain
decomposition. SIAM Journal on Matrix Analysis and Applications, 13(1):212{238,
1992.

50. T. F. Chan and T. P. Mathew. Domain decomposition algorithms. Acta
Numerica, pages 61{143, 1994.

51. H. C. Chen and A. Sameh. A matrix decomposition method for orthotropic
elasticity problems. SIAM Journal on Matrix Analysis and Applications,
10(1):39{64, 1989.

52. C. C. Cheney. Introduction to Approximation Theory. McGraw Hill, NY, 1966.

53. E. Chow and Y. Saad. ILUS: an incomplete LU factorization for matrices in sparse
skyline format. International Journal for Numerical Methods in Fluids, 25:739{748,
1997.

54. E. Chow and Y. Saad. Approximate inverse preconditioners via sparse-sparse
iterations. SIAM Journal on Scienti�c Computing, 19:995{1023, 1998.

55. N. Chrisochoides, Geo�rey Fox, and Joe Thompson. MENUS-PGG mapping
environment for numerical unstructured and structured parallel grid generation. In
Proceedings of the Seventh International Conference on Domain Decomposition
Methods in Scienti�c and Engineering Computing, 1993.

56. N. Chrisochoides, C. E. Houstis, E. N. Houstis, P. N. Papachiou, S. K. Kortesis,
and J. Rice. DOMAIN DECOMPOSER: a software tool for mapping PDE
computations to parallel architectures. In R. Glowinski et. al., editor, Domain
Decomposition Methods for Partial Di�erential Equations, pages 341{357. SIAM
publications, 1991.

57. N. Chrisochoides, E. Houstis, and J. Rice. Mapping algorithms and software
environment for data parallel PDE iterative solvers. Journal of Parallel and
Distributed Computing, 21:75{95, 1994.

58. G. Cimmino. Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari.
Ric. Sci. Progr. tecn. econom. naz., 9:326{333, 1938.

59. A. Clayton. Further results on polynomials having least maximum modulus over
an ellipse in the complex plane. Technical Report AEEW-7348, UKAEA,
Harewell-UK, 1963.

60. P. Concus and G. H. Golub. A generalized conjugate gradient method for
nonsymmetric systems of linear equations. In R. Glowinski and J. L. Lions, editors,
Computing Methods in Applied Sciences and Engineering, pages 56{65. Springer
Verlag, New York, 1976.

61. P. Concus, G. H. Golub, and G. Meurant. Block preconditioning for the conjugate
gradient method. SIAM Journal on Scienti�c and Statistical Computing,
6:220{252, 1985.

428 REFERENCES

62. J. D. F. Cosgrove, J. C. Diaz, and A. Griewank. Approximate inverse
preconditioning for sparse linear systems. Interernaitonal Journal of
Computational Mathematics, 44:91{110, 1992.

63. J. Cullum and Anne Greenbaum. Residual relationships within three pairs of
iterative algorithms for solving Ax=b. Technical Report IBM Research Report RC
18672, IBM T. J. Watson Research Center, Yorktown Heights, New York, January
1993. To appear, SIAM Journal of Matrix Analysis and Applications, 1996.

64. B. N. Datta. Numerical Linear Algebra and Applications. Brooks/Cole Publishing,
Paci�c Grove, CA, 1995.

65. P. J. Davis. Interpolation and Approximation. Blaisdell, Waltham, MA, 1963.

66. T. A. Davis. A parallel algorithm for sparse unsymmetric LU factorizations. Ph.D.
thesis, University of Illinois at Urbana Champaign, Urbana, IL., 1989.

67. E. F. D'Azevedo, F. A. Forsyth, and W. P. Tang. Ordering methods for
preconditioned conjugate gradient methods applied to unstructured grid problems.
SIAM Journal on Matrix Analysis and Applications, 13:944{961, 1992.

68. E. F. D'Azevedo, F. A. Forsyth, and W. P. Tang. Towards a cost e�ective ILU
preconditioner with high level �ll. BIT, 31:442{463, 1992.

69. M. A. DeLong and J. M. Ortega. SOR as a preconditioner. Applied Numerical
Mathematics, 18:431{440, 1995.

70. P. Deu�hard, R. W. Freund, and A. Walter. Fast secant methods for the iterative
solution of large nonsymmetric linear systems. IMPACT of Computing in Science
and Engineering, 2:244{276, 1990.

71. J. J. Dongarra, I. S. Du�, D. Sorensen, and H. A. van der Vorst. Solving Linear
Systems on Vector and Shared Memory Computers. SIAM, Philadelphia, PA, 1991.

72. M. Dryja and O. B. Widlund. Some domain decomposition algorithms for elliptic
problems. In Linda Hayes and David Kincaid, editors, Iterative Methods for Large
Linear Systems, pages 273{291. Academic Press, New York, NY, 1989.

73. M. Dryja and O. B. Widlund. Towards a uni�ed theory of domain decomposition
algorithms for elliptic problems. In Tony Chan, Roland Glowinski, Jacques
P�eriaux, and O. Widlund, editors, Third International Symposium on Domain
Decomposition Methods for Partial Di�erential Equations, held in Houston, TX,
March 20-22, 1989. SIAM, Philadelphia, PA, 1990.

74. M. Dryja and O. B. Widlund. Additive Schwarz methods for elliptic �nite element
problems in three dimensions. In T. F. Chan, David E. Keyes, G�erard A. Meurant,
Je�rey S. Scroggs, and Robert G. Voigt, editors, Fifth International Symposium on
Domain Decomposition Methods for Partial Di�erential Equations. SIAM,
Philadelphia, PA, 1992.

75. P. F. Dubois, A. Greenbaum, and G. H. Rodrigue. Approximating the inverse of a
matrix for use on iterative algorithms on vectors processors. Computing,
22:257{268, 1979.

76. I. S. Du�. A survey of sparse matrix research. In Proceedings of the IEEE, 65,
pages 500{535. Prentice Hall, New York, 1977.

77. I. S. Du�, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices.
Clarendon Press, Oxford, 1986.

REFERENCES 429

78. I. S. Du�, R. G. Grimes, and J. G. Lewis. Sparse matrix test problems. ACM
Transactions on Mathematical Software, 15:1{14, 1989.

79. T. Eirola and O. Nevanlinna. Accelerating with rank-one updates. Linear Algebra
and its Applications, 121:511{520, 1989.

80. S. Eisenstat. E�cient implementation of a class of conjugate gradient methods.
SIAM Journal on Scienti�c and Statistical Computing, 2:1{4, 1988.

81. H. C. Elman. A stability analysis of incomplete LU factorizations. Mathematics of
Computations, 47:191{217, 1986.

82. H. C. Elman and E. Agron. Ordering techniques for the preconditioned conjugate
gradient method on parallel computers. Computer Physics Communications,
53:253{269, 1989.

83. H. C. Elman and G. H. Golub. Iterative methods for cyclically reduced
non-self-adjoint linear systems. Mathematics of Computations, 54:671{700, 1990.

84. M. Engleman. FIDAP manuals. Technical Report Vol. 1, 2, and 3, Fluid Dynamics
International, Evanston, IL, 1986.

85. V. Faber and T. Manteu�el. Necessary and su�cient conditions for the existence of
a conjugate gradient method. SIAM Journal on Numerical Analysis, 21:352{361,
1984.

86. Ky Fan. Note on M -matrices. Quarterly Journal of Mathematics, Oxford series
(2), 11:43{49, 1960.

87. C. Farhat and J. X. Roux. Implicit parallel processing in structural mechanics.
Computational Mechanics Advances, 2(1):1{124, 1994.

88. R. M. Ferencz. Element-by-element preconditioning techniques for large scale
vectorized �nite element analysis in nonlinear solid and structural mechanics.
Ph.D. thesis, Department of Applied Mathematics, Stanford, CA, 1989.

89. B. Fischer and R. W. Freund. On the constrained Chebyshev approximation
problem on ellipses. Journal of Approximation Theory, 62:297{315, 1990.

90. B. Fischer and R. W. Freund. Chebyshev polynomials are not always optimal.
Journal of Approximation Theory, 65:261{272, 1991.

91. B. Fischer and L. Reichel. A stable Richardson iteration method for complex linear
systems. Numerische Mathematik, 54:225{241, 1988.

92. R. Fletcher. Conjugate gradient methods for inde�nite systems. In G. A. Watson,
editor, Proceedings of the Dundee Biennal Conference on Numerical Analysis 1974,
pages 73{89. Springer Verlag, New York, 1975.

93. R. W. Freund. Conjugate gradient-type methods for linear systems with complex
symmetric coe�cient matrices. SIAM Journal on Scienti�c and Statistical
Computing, 13:425{448, 1992.

94. R. W. Freund. Quasi-kernel polynomials and convergence results for quasi-minimal
residual iterations. In Dietriech Braess and Larry L. Schumaker, editors, Numerical
Methods of Approximation Theory, Vol 9, International series of numerical
mathematics, pages 1{19. Birkha�user Verlag, Basel, 1992.

430 REFERENCES

95. R. W. Freund. A Transpose-Free Quasi-Minimal Residual algorithm for
non-Hermitian linear systems. SIAM Journal on Scienti�c Computing,
14(2):470{482, 1993.

96. R. W. Freund, M. H. Gutknecht, and N. M. Nachtigal. An implementation of of
the Look-Ahead Lanczos algorithm. SIAM Journal on Scienti�c and Statistical
Computing, 14(2):470{482, 1993.

97. R. W. Freund and N. M. Nachtigal. QMR: a quasi-minimal residual method for
non-Hermitian linear systems. Numerische Mathematik, 60:315{339, 1991.

98. K. Gallivan, A. Sameh, and Z. Zlatev. A parallel hybrid sparse linear system
solver. Computing Systems in Engineering, 1(2-4):183{195, June 1990.

99. K. A. Gallivan, M. T. Heath, E. Ng, J. M. Ortega, R. J. Plemmons, C. H. Romine,
A. H. Sameh, and R. G. Voigt. Parallel Algorithms for Matrix Computations.
SIAM, Philadelphia, 1990.

100. F. R. Gantmacher. The Theory of Matrices. Chelsea, New York, 1959.

101. N. Gastinel. Analyse Num�erique Lin�eaire. Hermann, Paris, 1966.

102. W. Gautschi. On generating orthogonal polynomials. SIAM Journal on Scienti�c
and Statistical Computing, 3:289{317, 1982.

103. A. George. Computer implementation of the �nite element method. Technical
Report STAN-CS-208, Stanford University, Department of Computer Science, 1971.

104. J. A. George and J. W. Liu. Computer Solution of Large Sparse Positive De�nite
Systems. Prentice-Hall, Englewood Cli�s, NJ, 1981.

105. J. R. Gilbert, G. L. Miller, and S.-H. Teng. Geometric mesh partitioning:
Implementation and experiments. In IPPS 94, Submitted to SIAM SISC, 1995.

106. S. K. Godunov and G. P. Propkopov. A method of minimal iteration for evaluating
the eigenvalues of an elliptic operator. Zh. Vichsl. Mat. Mat. Fiz., 10:1180{1190,
1970.

107. T. Goehring and Y. Saad. Heuristic algorithms for automatic graph partitioning.
Technical Report umsi-94-29, University of Minnesota Supercomputer Institute,
Minneapolis, MN, February 1994.

108. G. H. Golub and 3rd edn C. Van Loan. Matrix Computations. The John Hopkins
University Press, Baltimore, 1996.

109. G. H. Golub and M. L. Overton. The convergence of inexact Chebyshev and
Richardson iterative methods for solving linear systems. Numerische Mathematik,
53:571{593, 1988.

110. G. H. Golub and R. S. Varga. Chebyshev semi iterative methods successive
overrelaxation iterative methods and second order Richardson iterative methods.
Numerische Mathematik, 3:147{168, 1961.

111. A. Greenbaum, C. Li, and H. Z. Chao. Parallelizing preconditioned conjugate
gradient algorithms. Computer Physics Communications, 53:295{309, 1989.

112. M. Grote and H. D. Simon. Parallel preconditioning and approximate inverses on
the connection machine. In R. F. Sincovec, D. E. Keyes, L. R. Petzold, and D. A.
Reed, editors, Parallel Processing for Scienti�c Computing { vol. 2, pages 519{523.
SIAM, 1992.

REFERENCES 431

113. M. H. Gutknecht. A completed theory of the unsymmetric Lanczos process and
related algorithms. Part I. SIAM Journal on Matrix Analysis and Applications,
13:594{639, 1992.

114. M. H. Gutknecht. A completed theory of the unsymmetric Lanczos process and
related algorithms. Part II. SIAM Journal on Matrix Analysis and Applications,
15:15{58, 1994.

115. W. Hackbusch. Multi-Grid Methods and Applications. Springer Verlag, New York,
1985.

116. W. Hackbusch. Iterative Solution of Large Linear Systems of Equations. Springer
Verlag, New York, 1994.

117. P. R. Halmos. Finite-Dimensional Vector Spaces. Springer Verlag, New York, 1958.

118. S. Hammond and R. Schreiber. E�cient iccg on a shared memory multiprocessor.
Technical Report 89. 24, RIACS, NASA Ames research center, Mo�ett Field CA.,
1989.

119. B. Hendrickson and R. Leland. An improved spectral graph partitioning algorithm
for mapping parallel computations. Technical Report SAND92-1460, UC-405,
Sandia National Laboratories, Albuquerque, NM, 1992.

120. M. R. Hestenes and E. L. Stiefel. Methods of conjugate gradients for solving linear
systems. Journal of Research of the National Bureau of Standards, Section B,
49:409{436, 1952.

121. C. Hirsch. Numerical Computation of Internal and External Flows. John Wiley
and Sons, New York, 1988.

122. A. S. Householder. Theory of Matrices in Numerical Analysis. Blaisdell Pub. Co.,
Johnson, CO, 1964.

123. T. J. R. Hughes, R. M. Ferencz, and J. O. Hallquist. Large-scale vectorized
implicit calculations in solid mechanics on a Cray X-MP/48 utilizing EBE
preconditioned conjugate gradients. Computer Methods in Applied Mechanics and
Engineering, 61:215{248, 1987.

124. K. Hwang. Advanced Computer Architecture with Parallel Programming. Mc Graw
Hill, New York, 1993.

125. K. Jbilou. Projection minimization methods for nonsymmetric linear systems. To
appear, Linear Algebra and its Applications.

126. K. Jbilou and H. Sadok. Analysis of some vector extrapolation methods for solving
systems of linear equations. Numerische Mathematik, pages 73{89, 1995.

127. K. C. Jea and D. M. Young. Generalized conjugate gradient acceleration of
nonsymmetrizable iterative methods. Linear Algebra and its Applications,
34:159{194, 1980.

128. C. Johnson. Numerical Solutions of Partial Di�erential Equations by the Finite
Element Method. Cambridge University Press, Cambridge, UK, 1987.

129. O. G. Johnson, C. A. Micchelli, and G. Paul. Polynomial preconditionings for
conjugate gradient calculations. SIAM Journal on Numerical Analysis, 20:362{376,
1983.

432 REFERENCES

130. S. Kaczmarz. Angen�aherte au�osung von systemen linearer gleichungen. Bulletin
international de l'Acad�emie polonaise des Sciences et Lettres, pages 355{357, 1937.

131. C. Kamath and A. Sameh. A projection method for solving nonsymmetric linear
systems on multiprocessors. Parallel Computing, 9:291{312, 1988.

132. R. M. Karp. Reducibility among combinatorial problems. In Complexity of
Computer Computations, pages 85{104. Plenum Press, New York, 1972.

133. T. I. Karush, N. K. Madsen, and G. H. Rodrigue. Matrix multiplication by
diagonals on vector/parallel processors. Technical Report UCUD, Lawrence
Livermore National Lab., Livermore, CA, 1975.

134. D. S. Kershaw. The incomplete Choleski conjugate gradient method for the
iterative solution of systems of linear equations. Journal of Computational Physics,
26:43{65, 1978.

135. D. E. Keyes and W. D. Gropp. A comparison of domain decomposition techniques
for elliptic partial di�erential equations and their parallel implementation. SIAM
Journal on Scienti�c and Statistical Computing, 8(2):s166{s202, 1987.

136. D. E. Keyes, Y. Saad, and D. G. Truhlar. Domain-Based Parallelism and Problem
Decomposition Methods in Computational Science and Engineering. SIAM,
Philadelphia, PA, 1995. (Conference proceedings).

137. L. Yu. Kolotilina and A. Yu. Yeremin. On a family of two-level preconditionings of
the incomplete block factorization type. Soviet Journal of Numerical Analysis and
Mathematical Modeling, 1:293{320, 1986.

138. M. A. Krasnoselskii et al. Approximate Solutions of Operator Equations.
Wolters-Nordho�, Groningen, 1972.

139. V. Kumar, A. Grama, A. Gupta, and G. Kapyris. Parallel Computing. Benjamin
Cummings, Redwood City, CA, 1994.

140. C. Lanczos. An iteration method for the solution of the eigenvalue problem of
linear di�erential and integral operators. Journal of Research of the National
Bureau of Standards, 45:255{282, 1950.

141. C. Lanczos. Chebyshev polynomials in the solution of large-scale linear systems.
In Proceedings of the ACM, pages 124{133, 1952.

142. C. Lanczos. Solution of systems of linear equations by minimized iterations.
Journal of Research of the National Bureau of Standards, 49:33{53, 1952.

143. P. LeTallec. Domain decomposition methods in computational mechanics.
Computational Mechanics Advances, 1(2):121{220, 1994.

144. R. Leuze. Independent set orderings for parallel matrix factorizations by Gaussian
elimination. Parallel Computing, 10:177{191, 1989.

145. J. G. Lewis, B. W. Peyton, and A. Pothen. A fast algorithm for reordering sparse
matrices for parallel factorizations. SIAM Journal on Scienti�c and Statistical
Computing, 6:1146{1173, 1989.

146. J. G. Lewis and H. D. Simon. The impact of hardware scatter-gather on sparse
Gaussian elimination. SIAM Journal on Scienti�c and Statistical Computing,
9:304{311, 1988.

REFERENCES 433

147. S. Ma. Parallel block preconditioned Krylov subspace methods for Partial
Di�erential Equations. Ph.D. thesis, Department of Computer Science,
Minneapolis, MN, 1993.

148. T. A. Manteu�el. An incomplete factorization technique for positive de�nite linear
systems. Mathematics of Computations, 34:473{497, 1980.

149. J. A. Meijerink and H. A. van der Vorst. An iterative solution method for linear
systems of which the coe�cient matrix is a symmetric M-matrix. Mathematics of
Computations, 31(137):148{162, 1977.

150. G. L. Miller, S. H. Teng, W. Thurston, and S. A. Vavasis. Automatic mesh
partitioning. In A. George, J. Gilbert, and J. Liu, editors, Sparse Matrix
Computations: Graph Theory Issues and Algorithms, 1993. IMA Volumes in
Mathematics and Its Applications.

151. N. Munksgaard. Solving sparse symmetric sets of linear equations by
preconditioned conjugate gradient method. ACM Transactions on Mathematical
Software, 6:206{219, 1980.

152. N. M. Nachtigal. A look-ahead variant of the Lanczos Algorithm and its application
to the Quasi-Minimal Residual method for non-Hermitian linear systems. Ph.D.
thesis, Applied Mathematics, Cambridge, 1991.

153. J. Ortega. E�cient implementation of certain iterative methods. SIAM Journal on
Scienti�c and Statistical Computing, 9:882{891, 1988.

154. J. Ortega. Orderings for conjugate gradient preconditionings. SIAM Journal on
Scienti�c and Statistical Computing, 12:565{582, 1991.

155. J. M. Ortega. Introduction to Parallel and Vector Solution of Linear Systems.
Plenum Press, New York, 1988.

156. J. M. Ortega and R. G. Voigt. Solution of partial di�erential equations on vector
and parallel computers. SIAM Review, 27:149{240, 1985.

157. O. Osterby and Z. Zlatev. Direct Methods for Sparse Matrices. Springer Verlag,
New York, 1983.

158. C. C. Paige. Computational variants of the Lanczos method for the eigenproblem.
Journal of the Institute of Mathematics and its Applications, 10:373{381, 1972.

159. C. C. Paige and M. A. Saunders. Solution of sparse inde�nite systems of linear
equations. SIAM Journal on Numerical Analysis, 12:617{624, 1975.

160. B. N. Parlett. The Symmetric Eigenvalue Problem. Prentice Hall, Englewood
Cli�s, 1980.

161. B. N. Parlett, D. R. Taylor, and Z. S. Liu. A look-ahead Lanczos algorithm for
nonsymmetric matrices. Mathematics of Computation, 44:105{124, 1985.

162. D. Peaceman and H. Rachford. The numerical solution of elliptic and parabolic
di�erential equations. Journal of SIAM, 3:28{41, 1955.

163. S. Pissanetzky. Sparse Matrix Technology. Academic Press, New York, 1984.

164. E. L Poole and J. M. Ortega. Multicolor ICCG methods for vector computers.
SIAM Journal on Numerical Analysis, 24:1394{1418, 1987.

434 REFERENCES

165. A. Pothen, H. D. Simon, and K. P. Liou. Partitioning sparse matrices with
eigenvectors of graphs. SIAM Journal on Matrix Analysis and Applications,
11:430{452, 1990.

166. J. S. Przemieniecki. Matrix structural analysis of substructures. Am. Inst. Aero.
Astro. J., 1:138{147, 1963.

167. J. K. Reid. On the method of conjugate gradients for the solution of large sparse
systems of linear equations. In J. K. Reid, editor, Large Sparse Sets of Linear
Equations, pages 231{254. Academic Press, 1971.

168. T. J. Rivlin. The Chebyshev Polynomials: from Approximation Theory to Algebra
and Number Theory. J. Wiley and Sons, New York, 1990.

169. F. X. Roux. Acceleration of the outer conjugate gradient by reorthogonalization for
a domain decomposition method for structural analysis problems. In Tony Chan
and Roland Glowinski, editors, Proceedings of the Third International Symposium
on Domain Decomposition Methods, Houston March 20-22 1989. SIAM,
Philadelphia, PA, 1990.

170. A. Ruhe. Implementation aspects of band Lanczos algorithms for computation of
eigenvalues of large sparse symmetric matrices. Mathematics of Computations,
33:680{687, 1979.

171. H. Rutishauser. Theory of gradient methods. In Re�ned Iterative Methods for
Computation of the Solution and the Eigenvalues of Self-Adjoint Boundary Value
Problems, pages 24{49. Institute of Applied Mathematics, Zurich, Birkh�auser
Verlag, Basel-Stuttgart, 1959.

172. Y. Saad. Krylov subspace methods for solving large unsymmetric linear systems.
Mathematics of Computation, 37:105{126, 1981.

173. Y. Saad. The Lanczos biorthogonalization algorithm and other oblique projection
methods for solving large unsymmetric systems. SIAM Journal on Numerical
Analysis, 19:470{484, 1982.

174. Y. Saad. Iterative solution of inde�nite symmetric systems by methods using
orthogonal polynomials over two disjoint intervals. SIAM Journal on Numerical
Analysis, 20:784{811, 1983.

175. Y. Saad. Practical use of polynomial preconditionings for the conjugate gradient
method. SIAM Journal on Scienti�c and Statistical Computing, 6:865{881, 1985.

176. Y. Saad. Least squares polynomials in the complex plane and their use for solving
sparse nonsymmetric linear systems. SIAM Journal on Numerical Analysis,
24:155{169, 1987.

177. Y. Saad. On the Lanczos method for solving symmetric linear systems with several
right-hand sides. Mathematics of Computations, 48:651{662, 1987.

178. Y. Saad. Krylov subspace methods on supercomputers. SIAM Journal on
Scienti�c and Statistical Computing, 10:1200{1232, 1989.

179. Y. Saad. SPARSKIT: A basic tool kit for sparse matrix computations. Technical
Report 90-20, Research Institute for Advanced Computer Science, NASA Ames
Research Center, Mo�et Field, CA, 1990.

180. Y. Saad. Numerical Methods for Large Eigenvalue Problems. Halstead Press, New
York, 1992.

REFERENCES 435

181. Y. Saad. A exible inner-outer preconditioned GMRES algorithm. SIAM Journal
on Scienti�c and Statistical Computing, 14:461{469, 1993.

182. Y. Saad. Highly parallel preconditioners for general sparse matrices. In G. Golub,
M. Luskin, and A. Greenbaum, editors, Recent Advances in Iterative Methods, IMA
Volumes in Mathematics and Its Applications, volume 60, pages 165{199. Springer
Verlag, New York, 1994.

183. Y. Saad. ILUT: a dual threshold incomplete ILU factorization. Numerical Linear
Algebra with Applications, 1:387{402, 1994.

184. Y. Saad. Analysis of augmented Krylov subspace techniques. SIAM Journal on
Matrix Analysis and Applications, 18:435{449, 1997.

185. Y. Saad and M. H. Schultz. GMRES: a generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM Journal on Scienti�c and Statistical
Computing, 7:856{869, 1986.

186. Y. Saad and M. H. Schultz. Parallel implementations of preconditioned conjugate
gradient methods. In W. E. Fitzgibbon, editor, Mathematical and Computational
Methods in Seismic Exploration and Reservoir Modeling. SIAM, Philadelphia, PA,
1986.

187. Y. Saad and K. Wu. DQGMRES: a direct quasi-minimal residual algorithm based
on incomplete orthogonalization. Numerical Linear Algebra with Applications,
3:329{343, 1996.

188. H. Sadok. M�ethodes de projection pour les syst�emes lin�eaires et non lin�eaires.
Ph.D. thesis, University of Lille 1, Lille, France, 1981.

189. J. Saltz, R. Mirchandaney, and K. Crowley. Run-time paralellization and
scheduling of loops. IEEE Transactions on Computers, 40:603{612, 1991.

190. J. H. Saltz. Automated problem scheduling and reduction of synchronization delay
e�ects. Technical Report 87-22, ICASE, Hampton, VA, 1987.

191. W. Schonauer. The e�cient solution of large linear systems, resulting from the fdm
for 3-d PDE's, on vector computers. In Proceedings of the 1-st International
colloquium on vector and parallel computing in Scienti�c applications - Paris
March 1983, 1983.

192. W. Sch�onauer. Scienti�c Computing on Vector Computers. North-Holland, New
York, 1987.

193. H. A. Schwarz. Gesammelte Mathematische Abhandlungen, volume 2, pages
133{143. Springer Verlag, Berlin, Germany / Heidelberg, Germany / London,
UK / etc., 1890. First published in Vierteljahrsschrift der Naturforschenden
Gesellschaft in Z�urich, volume 15, 1870, pp. 272{286.

194. F. Shakib. Finite element analysis of the compressible Euler and Navier Stokes
Equations. Ph.D. thesis, Department of Aeronautics, Stanford, CA, 1989.

195. A. Sidi. Extrapolation vs. projection methods for linear systems of equations.
Journal of Computational and Applied Mathematics, 22:71{88, 1988.

196. V. Simoncini and E. Gallopoulos. An iterative method for nonsymmetric systems
with multiple right-hand sides. SIAM Journal on Scienti�c Computing,
16(4):917{933, July 1995.

436 REFERENCES

197. V. Simoncini and E. Gallopoulos. Convergence properties of block GMRES and
matrix polynomials. Linear Algebra and its Applications, To appear.

198. B. F. Smith. An optimal domain decomposition preconditioner for the �nite
element solution of linear elasticity problems. SIAM Journal on Scienti�c and
Statistical Computing, 13:364{378, 1992.

199. D. A. Smith, W. F. Ford, and A. Sidi. Extrapolation methods for vector sequences.
SIAM review, 29:199{233, 1987.

200. D. C. Smolarski and P. E. Saylor. An optimum iterative method for solving any
linear system with a square matrix. BIT, 28:163{178, 1988.

201. P. Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear systems.
SIAM Journal on Scienti�c and Statistical Computing, 10(1):36{52, 1989.

202. G. W. Stewart. Introduction to Matrix Computations. Academic Press, New York,
1973.

203. W. J. Stewart. Introduction to the Numerical Solution of Markov Chains.
Princeton University Press, Princeton, NJ, 1994.

204. E. L. Stiefel. Kernel polynomials in linear algebra and their applications. U. S.
National Bureau of Standards, Applied Mathematics Series, 49:1{24, 1958.

205. Patrick Le Tallec, Yann-Herv�e De Roeck, and Marina Vidrascu.
Domain-decomposition methods for large linearly elliptic three dimensional
problems. Journal of Computational and Applied Mathematics, 34, 1991. Elsevier
Science Publishers, Amsterdam.

206. D. Taylor. Analysis of the look-ahead Lanczos algorithm. Ph.D. thesis, Department
of Computer Science, Berkeley, CA, 1983.

207. L. N. Trefethen. Approximation theory and numerical linear algebra. Technical
Report Numerical Analysis Report 88-7, Massachussetts Institute of Technology,
Cambridge, MA, 1988.

208. H. A. van der Vorst. The performance of FORTRAN implementations for
preconditioned conjugate gradient methods on vector computers. Parallel
Computing, 3:49{58, 1986.

209. H. A. van der Vorst. Large tridiagonal and block tridiagonal linear systems on
vector and parallel computers. Parallel Computing, 5:303{311, 1987.

210. H. A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of
Bi-CG for the solution of non-symmetric linear systems. SIAM Journal on
Scienti�c and Statistical Computing, 12:631{644, 1992.

211. H. A. van der Vorst and C. Vuik. GMRESR: a family of nested GMRES methods.
Numerical Linear Algebra with Applications, 1:369{386, 1994.

212. R. S. Varga. Factorizations and normalized iterative methods. In Boundary
Problems in Di�erential Equations, pages 121{142. University of Wisconsin Press,
Madison, WI, 1960.

213. R. S. Varga. Matrix Iterative Analysis. Prentice Hall, Englewood Cli�s, NJ, 1962.

214. V. Venkatakrishnan. Preconditioned Conjugate Gradient methods for the
compressible Navier Stokes equations. AIAA Journal, 29:1092{1100, 1991.

REFERENCES 437

215. V. Venkatakrishnan. Parallel implicit methods for aerodynamic applications on
unstructured grids. In D. E. Keyes, Y. Saad, and D. G. Truhlar, editors,
Domain-Based Parallelism and Problem Decomposition Methods in Computational
Science and Engineering, pages 57{74. SIAM, Philadelphia, PA, 1995.

216. V. Venkatakrishnan and D. J. Mavriplis. Implicit solvers for unstructured meshes.
Journal of Computational Physics, 105:83{91, 1993.

217. V. Venkatakrishnan, H. D. Simon, and T. J. Barth. A MIMD Implementation of a
Parallel Euler Solver for Unstructured Grids. The Journal of Supercomputing,
6:117{137, 1992.

218. P. K. W. Vinsome. ORTHOMIN, an iterative method for solving sparse sets of
simultaneous linear equations. In Proceedings of the Fourth Symposium on Resevoir
Simulation, pages 149{159. Society of Petroleum Engineers of AIME, 1976.

219. V. V. Voevodin. The problem of a non-selfadjoint generalization of the conjugate
gradient method has been closed. USSR Computational Mathematics and
Mathematical Physics, 23:143{144, 1983.

220. E. L. Wachspress. Iterative Solution of Elliptic Systems and Applications to the
Neutron Equations of Reactor Physics. Prentice Hall, Englewood Cli�s, NJ, 1966.

221. H. F. Walker. Implementation of the GMRES method using Householder
transformations. SIAM Journal on Scienti�c Computing, 9:152{163, 1988.

222. X. Wang, K. Gallivan, and R. Bramley. CIMGS: An incomplete orthogonal
factorization preconditioner. Technical Report 394, Indiana University at
Bloomington, Bloomington, IN, 1993.

223. J. W. Watts III. A conjugate gradient truncated direct method for the iterative
solution of the reservoir simulation pressure equation. Society of Petroleum
Engineers Journal, 21:345{353, 1981.

224. R. Weiss. A theoretical overview of Krylov subspace methods. In W. Sch�onauer
and R. Weiss, editors, Special Issue on Iterative Methods for Linear Systems, pages
33{56. Applied Numerical Methods, 1995.

225. O. Widlund. A Lanczos method for a class of non-symmetric systems of linear
equations. SIAM Journal on Numerical Analysis, 15:801{812, 1978.

226. L. B. Wigton. Application of MACSYMA and sparse matrix technology to
multi-element airfoil calculations. In Proceedings of the AIAA-87 conference,
Honolulu, Hawai, June 9-11, 1987, pages 444{457. AIAA, New York, 1987. Paper
number AIAA-87-1142-CP.

227. J. H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, Oxford,
1965.

228. O. Wing and J. W. Huang. A computation model of parallel solution of linear
equations. IEEE Transactions on Computers, C-29:632{638, 1980.

229. C. H. Wu. A multicolor SOR method for the �nite-element method. Journal of
Computational and Applied Mathematics, 30:283{294, 1990.

230. J. Xu. Iterative methods by space decomposition and subspace correction. SIAM
Review, 34:581{613, December 1992.

438 REFERENCES

231. Q. Ye. A breakdown-free variation of the Lanczos algorithm. Mathematics of
Computations, 62:179{207, 1994.

232. D. M. Young. Iterative Solution of Large Linear Systems. Academic Press, New
York, 1971.

233. D. P. Young, R. G. Melvin, F. T. Johnson, J. E. Bussoletti, L. B. Wigton, and S. S.
Samant. Application of sparse matrix solvers as e�ective preconditioners. SIAM
Journal on Scienti�c and Statistical Computing, 10:1186{1199, 1989.

234. L. Zhou and H. F. Walker. Residual smoothing techniques for iterative methods.
SIAM Journal on Scienti�c Computing, 15:297{312, 1994.

235. Z. Zlatev. Use of iterative re�nement in the solution of sparse linear systems.
SIAM Journal on Numerical Analysis, 19:381{399, 1982.

INDEX

A

additive projection procedure, 136

ADI, 116

Peaceman-Rachford algorithm, 117

adjacency graph, 71

of PDE matrices, 71

adjoint of a matrix, 7

algebraic multiplicity, 15

Alternating Direction Implicit, see ADI

angle between a vector and a subspace, 130

anisotropic medium, 47

approximate inverse preconditioners, 297

column-oriented, 300

global iteration, 298

for improving a preconditioner, 308

approximate inverse techniques, 375

Arnoldi’s method, 146–157

basic algorithm, 146

breakdown of, 148

with Householder orthogonalization,

149

for linear systems, 151

lucky breakdown, 148

with Modified Gram-Schmidt, 148

practical implementation, 148

Arrow-Hurwicz’s Algorithm, 241

assembled matrix, 60

assembly process, 59

B

banded matrices, 5

bandwidth

of a bus, 327

of a matrix, 5

basis of a subspace, 10

BCG, 209–213

algorithm, 210

transpose-free variants, 213–226

BICGSTAB, 216

Biconjugate Gradient, see BCG

bidiagonal matrices, 5

bilinear form, 56

biorthogonal bases, 35

biorthogonal vectors, 35, 205

biorthogonalization, 204

bipartite graph, 82, 112

block Arnoldi

algorithm, 196

Ruhe’s variant, 197

block diagonal matrices, 5

block FOM, 199

block Gaussian elimination, 385–388

algorithm, 388

block GMRES, 199–200

multiple right-hand sides, 199

block Gram-Schmidt, 197

block Jacobi, 102

as a preconditioner, 353

block Krylov subspace methods, 144, 196–

200

block preconditioners, 309

block relaxation, 98

block tridiagonal matrices, 5, 309

preconditioning, 309

boundary conditions, 45, 46

Dirichlet, 46

mixed, 46

Neumann, 46

C

cache memory, 327

canonical form, 15

Jordan, 16

Schur, 17

Cauchy-Schwartz inequality, 6, 8

Cayley-Hamilton theorem, 144

cell-centered scheme, 64

cell-vertex scheme, 64

centered difference approximation, 48

centered difference formula, 48

439

440 INDEX

centerpoint, 415

CG algorithm, see Conjugate Gradient algo-

rithm

CG for normal equations, 236, 237

CGNE, 237

algorithm, 238

optimality, 238

CGNR, 236

algorithm, 236

optimality, 236

CGS, 214–216

algorithm, 216

characteristic polynomial, 3

Chebyshev

acceleration, 358

Chebyshev polynomials, 186–192, 194, 356–

364

complex, 188, 203

and ellipses, 188

optimality, 189–191

for preconditioning, 356

real, 187

Cimmino’s method, 233

circuit switching, 328

coarse-grain, 353

coefficient matrix, 95

coloring vertices, 81

column reordering, 74

Compressed Sparse Column storage, see

CSC

Compressed Sparse Row storage, see CSR

Concus, Golub, and Widlund algorithm, 260

condition number, 40

for normal equation systems, 230

condition numbers and CG, 180

Conjugate Gradient algorithm, 174–181

algorithm, 178

alternative formulations, 178

convergence, 191, 192

derivation, 174, 177

eigenvalue estimates, 180

for the normal equations, 236

preconditioned, 244

Conjugate Gradient Squared, see CGS

Conjugate Residual algorithm, 181

consistent matrix norms, 8

consistent orderings, 112–116

control volume, 63

convection-diffusion equation, 47

convergence

factor, 105

general, 105

specific, 105

of GMRES, 193

of the Minimal Residual method, 135

rate, 105

of relaxation methods, 104

of Schwarz procedures, 402

COO storage scheme, 84

coordinate storage format, see COO

Courant characterization, 26

Craig’s method, 238

CRAY T3D, 329

CSC storage format, 85

matvecs in, 335

CSR storage format, 85, 272

matvecs in, 335

cut-edges, 416

Cuthill-McKee ordering, 77

D

data coherence, 327

data-parallel, 326

defective eigenvalue, 15

derogatory, 15

determinant, 3

DIA storage format, 85, 338

matvecs in, 338

diagonal

compensation, 285

dominance, 108, 109

form of matrices, 16

matrices, 5

diagonal storage format, see DIA

diagonalizable matrix, 16

diagonally dominant matrix, 109

diagonally structured matrices, 85

diameter of a graph, 417

diameter of a triangle, 58

DIOM, 154–157, 175

algorithm, 156

direct IOM, see DIOM

direct sum of subspaces, 10, 33

directed graph, 71

Dirichlet boundary conditions, 45, 46

distributed

computing, 325

ILU, 372

memory, 328

sparse matrices, 341, 373

divergence of a vector, 46

divergence operator, 46

INDEX 441

domain decomposition

convergence, 402

and direct solution, 387

full matrix methods, 411

induced preconditioners, 407

Schur complement approaches, 406

Schwarz alternating procedure, 394

domain sweep, 396

double orthogonalization, 148

double-striping, 418

DQGMRES, 168–172, 258

algorithm, 169

E

EBE preconditioner, 376

EBE regularization, 377

edge in a graph, 71

eigenspace, 10

eigenvalues, 3

definition, 3

from CG iteration, 180

index, 16, 17

of an orthogonal projector, 37

eigenvector, 3

left, 4

right, 4

Eisenstat’s implementation, 248, 263

Eisenstat’s trick, see Eisenstat’s implementa-

tion

Element-By-Element preconditioner, see

EBE preconditioner

ELL storage format, 86

matvecs in, 339

Ell storage format, 339

elliptic operators, 44

Ellpack-Itpack storage format, see ELL stor-

age format

energy norm, 32, 236, 238

error projection methods, 129

Euclidean inner product, 6

Euclidean norm, 7

F

Faber-Manteuffel theorem, 184

factored approximate inverse, 306

fast solvers, 47, 383

FGMRES, 255–258

algorithm, 256

fictitious domain methods, 387

Fiedler vector, 416

field of values, 23

fill-in elements, 275

fine-grain algorithms, 353

finite difference scheme, 47

for 1-D problems, 50

for 2-D problems, 54

for the Laplacean, 49

upwind schemes, 51

finite element method, 44, 55

finite volume method, 63

flexible GMRES, see FGMRES

flexible iteration, 255

flux vector, 63

FOM, 151

algorithm, 152

with restarting, 153

Frobenius norm, 8

frontal methods, 60, 376

full matrix methods, 411–413

Full Orthogonalization Method, see FOM

G

Galerkin conditions, 124

Gastinel’s method, 139

gather operation, 336

Gauss-Seidel iteration, 95

backward, 97

for normal equations, 231

in parallel, 378

symmetric, 97

Gaussian elimination, 60, 176, 269–273, 278,

282, 283, 285–287, 368, 369, 383

block, 385

frontal methods, 376

IKJ variant, 271

in IOM and DIOM, 156

in Lanczos process, 176

parallel, 409

parallelism in, 71

reordering in, 75

in skyline format, 295

sparse, 70

GCR, 182–184

Generalized Conjugate Residual, see GCR

geometric multiplicity, 15

Gershgorin discs, 110

Gershgorin’s theorem, 109

global iteration, 298–300, 305

global reduction operations, 332

GMRES, 157–172, 184, 193–196

algorithm, 158

block algorithm, 199

442 INDEX

breakdown, 163, 164

convergence, 193

flexible variant, 250, 255–258

Householder version, 158

lucky breakdown, 164

parallel implementation, 331

with polynomial preconditioning, 363

practical implementation, 160

relation with FOM, 164, 166

with restarting, 167

stagnation, 167

truncated, 168

grade of a vector, 144

Gram-Schmidt algorithm, 11–12, 314

block, 197

cancellations in, 148

modified, 11

standard, 11

graph, 71

bipartite, 82

coloring, 81, 403

directed, 71

edges, 71

Laplacean of a, 416

partitioning, 382, 413

geometric, 414

graph theory techniques, 417

spectral techniques, 416

type, 384

undirected, 71

vertices, 71

H

Hankel matrix, 208

harmonic functions, 46

Harwell-Boeing collection, 89, 90

Hausdorff’s convex hull theorem, 23

heap-sort, in ILUT, 291

Hermitian inner product, 6

Hermitian matrices, 4, 24

Hermitian Positive Definite, 31

Hessenberg matrices, 5

Hölder norms, 7

Householder algorithm, 12

Householder orthogonalization

in Arnoldi’s method, 149

Householder reflectors, 12

HPD, see Hermitian Positive Definite

hypercube, 329

I

idempotent, 10, 33

if and only if, 3

iff, see if and only if

ILQ

factorization, 315

preconditioning, 314

ILU, 268–297

distributed, 372

factorization, 268

instability in, 293, 297

general algorithm, 270

IKJ version, 272

ILUS, 294–297

algorithm, 296

modified, 285–286

preconditioner, 268

for Schur complement, 409

static pattern, 273

with threshold, see ILUT and ILUTP

with multi-elimination, see ILUM

zero pattern, 270

ILU(0), 265, 268, 274–276

algorithm, 275

distributed factorization, 374

for distributed sparse matrices, 373

for red-black ordering, 366

ILU(1), 278

ILUM, 370

ILUT, 286–293

algorithm, 287

analysis, 288

implementation, 290

with pivoting, see ILUTP

ILUTP, 293

for normal equations, 312

incomplete

orthogonalization

algorithm, 154

incomplete factorization, 265, 268

Gram-Schmidt, 315

ILQ, 314, 315

QR, 315

incomplete Gram-Schmidt, 316

Incomplete LQ, see ILQ

Incomplete LU, see ILU

Incomplete Orthogonalization Method, see

IOM

indefinite inner product, 207

independent set orderings, 79

independent sets, 79, 368

maximal, 80

INDEX 443

index of an eigenvalue, 16, 17

indirect addressing, 69

induced norm, 8

induced preconditioners, 407

inhomogeneous medium, 47

inner products, 5

indefinite, 207

invariant subspace, 10, 130

inverse LU factors, 306

IOM, 154

algorithm, 154

direct version, 154

irreducibility, 83

irreducible, 27

isometry, 7

iteration matrix, 102, 104

J

j-diagonal, 340

Jacobi iteration, 95

for the normal equations, 233

JAD storage format, 340

definition, 340

in level scheduling, 348

matvecs in, 341

jagged diagonal format, see JAD storage for-

mat

jagged diagonals, 340

Jordan block, 17

Jordan box, 17

Jordan canonical form, 16

Jordan submatrix, 17

Joukowski mapping, 188

K

kernel, 9, 10

Krylov subspace, 144

dimension of a, 144

invariant, 145

methods, 143

Krylov subspace methods, 204

L

Lanczos algorithm, 172, 173

algorithm, 173, 205

biorthogonalization, 204

breakdown, 206

incurable, 207

lucky, 207

serious, 207

for linear systems, 208

look-ahead version, 207

loss of orthogonality, 173

modified Gram-Schmidt version, 173

nonsymmetric, 204

and orthogonal polynomials, 173

partial reorthogonalization, 173

practical implementations, 207

selective reorthogonalization, 173

symmetric case, 172

Laplacean, see Laplacean operator

Laplacean operator, 46, 55

of a graph, 416

least-squares polynomials, 359

least-squares problem, 229

left eigenvector, 4

left versus right preconditioning, 255

level of fill-in, 278

level scheduling, 345–348

for 5-point matrices, 345

for general matrices, 346

level set orderings, 76, 417

line relaxation, 99

linear mappings, 2

linear span, 9

linear system, 38, 95

existence of a solution, 38

right-hand side of a, 38

singular, 38

unknown of a, 38

linked lists, 88

local Schur complement, 393

Look-ahead Lanczos algorithm, 207

lower triangular matrices, 5

LQ factorization, 314

algorithm, 315

lucky breakdowns, 148

M

mask, 320

matrix, 1

addition, 2

adjoint of a, 7

banded, 5

bidiagonal, 5

canonical forms, 15

characteristic polynomial, 3

diagonal, 5

diagonal dominant, 108

diagonal form, 16

diagonalizable, 16

Hermitian, 4, 21, 24

444 INDEX

Hessenberg, 5

irreducible, 83

Jordan canonical form, 16

multiplication, 2

nonnegative, 4, 26

nonsingular, 3

norm of a, 8

normal, 4, 21

orthogonal, 5

outer product, 5

positive definite, 30–32

powers of a, 19

reduction, 15

Schur form, 17

self-adjoint, 7, 403

singular, 3

skew-Hermitian, 4

skew-symmetric, 4

spectral radius, 4

spectrum, 3

square, 3

symmetric, 4

Symmetric Positive Definite, 31, 112

trace, 4

transpose, 2

transpose conjugate, 2

triangular, 5

tridiagonal, 5

unitary, 4

matrix-by-vector product, 334

dense matrices, 334

for distributed matrices, 344

in DIA format, 338

in Ellpack format, 339

in triad form, 339

mesh generation, 61

mesh size, 58

message passing, 328

MILU, 285–286

minimal degree ordering, 88

Minimal Residual iteration, 133

algorithm, 134

convergence, 135

min-max theorem, 24

mixed boundary conditions, 45, 46

M -matrix, 26, 269, 310

modified Gram-Schmidt, 148

Modified ILU, see MILU

Modified Sparse Row storage, see MSR

molecule, 48

moment matrix, 208

in Lanczos procedure, 208

MR iteration, see Minimal Residual iteration

MSR storage format, 85

multi-elimination, 368, 369

multicolor orderings, 81

multicoloring, 364–368

for general sparse matrices, 367

multifrontal methods, 381

multinode expansion algorithm, 420

multiple eigenvalue, 15

multiple vector pipelines, 325

multiplicative projection process, 138

multiplicative Schwarz preconditioning, 399

multiprocessing, 325

N

natural ordering, 54

near singularity, 40

nested-dissection ordering, 88

Neumann boundary conditions, 45, 46

Neumann polynomials, 355

nonnegative matrix, 4, 26

nonsingular matrix, 3

norm

Euclidean, 7

Hölder, 7

induced, 8

of matrices, 8

p-norm, 8

of vectors, 5

normal derivative, 56

normal equations, 229

normal matrix, 4, 21

null space, 9, 10

of a projector, 33

O

Object Oriented Programming, 334

oblique projection methods, 204

oblique projector, 35

operator

elliptic, 44

Laplacean, 46

optimality of projection methods, 126

order relation for matrices, 26

ORTHODIR, 182–184

orthogonal

complement, 10

matrix, 5

projector, 10, 35

vectors, 10

INDEX 445

orthogonality, 10

between vectors, 10

of a vector to a subspace, 10

ORTHOMIN, 182–184

orthonormal, 10

outer product matrices, 5

overdetermined systems, 229

overlapping domains, 385

over-relaxation, 97

P

p-norm, 8

packet switching, 328

parallel architectures, 326

parallel sparse techniques, 72

parallelism, 324

forms of, 324

partial differential equations, 44

partial Schur decomposition, 18

partition, 100

partition vector, 416

partitioning, 384

PDE, see partial differential equations

PE, see Processing Element

Peaceman-Rachford algorithm, 117

peripheral node, 417

permutation matrices, 5, 73

permutations, 72

Perron-Frobenius theorem, 27

perturbation analysis, 39

Petrov-Galerkin conditions, 122–124

physical mesh versus graph, 72

pipelining, 324

polynomial approximation, 144

polynomial preconditioning, 352, 354–364

positive definite matrix, 6, 25, 30–32

positive matrix, 26

positive real matrix, see positive definite ma-

trix

positive semidefinite, 25

preconditioned

CG, 244

efficient implementations, 248

left, 246

for the normal equations, 259

parallel implementation, 330

split, 247

symmetry in, 245

fixed-point iteration, 103

GMRES, 250

comparison, 253

flexible variant, 255, 256

left preconditioning, 250

right preconditioning, 252

split preconditioning, 253

preconditioner, 103

preconditioning, 102, 244

EBE, 376

incomplete LU, 268

induced, 407

Jacobi, 265

normalequationsfor normal equations,

311

polynomial, 354–364

with Chebyshev polynomials, 356

with least-squares polynomials, 359

with Neumann polynomials, 355

and relaxation scheme, 103

SOR, 265

SSOR, 265

probing, 409

Processing Element (PE), 325

profile, 79

projection

operator, see projector

orthogonal to, 33

parallel to, 33

projection methods, 122

additive, 136

approximate problem, 123

definitions, 122

error bounds, 129

general, 123

matrix representation, 124

multiplicative, 138

oblique, 122, 204

one-dimensional, 131

optimality, 126

orthogonal, 122, 124

prototype, 124

residual, 127

theory, 126

projector, 10, 32–38, 101

existence, 34

matrix representation, 35

oblique, 35

orthogonal, 35

eigenvalues, 37

properties, 37

prolongation operator, 101, 398

property A, 112

pseudo-peripheral node, 417

446 INDEX

Q

QMR, 209–213

algorithm, 212

approximation, 212

QR decomposition, 11

Quasi-GMRES, 168

algorithm, 168

Quasi-Minimal Residual, see QMR

quasi-Schur form, 18

quick-split, in ILUT, 291

quotient graph, 72

R

range, 2, 9, 10

of a projector, 33

rank, 10

full, 10

Rayleigh quotient, 23, 24

real Schur form, 18

recursive graph bisection, 418

red-black ordering, 364

reduced system, 318, 387

reducible, 27

reduction of matrices, 15

reduction operations, 332

reflectors, 12

regular splitting, 107

regularization, 241

relaxation methods

block, 98

convergence, 104

reordering, 74

reordering rows, columns, 72

reorthogonalization, 11

residual norm steepest descent, 135

residual projection methods, 127

restarted FOM, 153

restriction operator, 101, 397

reverse communication, 333

right versus left preconditioning, 255

right-hand side, 38, 95

multiple, 199

row projection methods, 231, 378

parallel, 378

row reordering, 74

row sum, 285

S

saddle-point problems, 238

SAXPY, 131, 301, 332

parallel, 332

sparse, 301

scatter and gather operations, 336–337

Schur complement, 387

approaches, 406

and direct solution, 387

for finite-element partitionings, 392

local, 391

methods, 407

properties, 388

for vertex partitionings, 389

Schur form, 17

example, 18

nonuniqueness, 19

partial, 18

quasi, 18

real, 18

Schwarz alternating procedure, 385, 394

additive, 401

algorithm, 395

multiplicative, 394

search subspace, 122

section of an operator, 145

self preconditioning, 301

convergence behavior, 303

self-adjoint, 7, 403

semisimple, 15

separators, 414

set decomposition, 100

shared memory computers, 326

similarity transformation, 15

simple eigenvalue, 15

singular matrix, 3

singular values, 9

sites (in graph partitioning), 420

skew-Hermitian

matrices, 4, 21, 186

part, 31

skew-symmetric matrices, 4

skyline solvers, 79

SOR, 97

convergence, 112

iteration, 95

multicolor sweep, 368

for SPD matrices, 112

span of q vectors, 9

sparse, 59

sparse Gaussian elimination, 70, 88

sparse matrices

adjacency graph, 70, 71

basic operations, 86

direct methods, 88

INDEX 447

graph representation, 70

matrix-by-vector operation, 87

permutation and reordering, 72

storage, 83–86

sparse matrix-by-vector product, 87

sparse skyline storage format, see SSK

sparse triangular system solution, 87

sparse-sparse mode computations, 300

sparse-sparse mode computations, 300

sparsity, 68

SPARSKIT, 89–91

SPD, see Symmetric Positive Definite

spectral bisection, 416

spectral radius, 4

spectrum of a matrix, 3

splitting, 97

square matrices, 3

SSK storage format, 295

SSOR, 97

steepest descent, 131

stencil, 48

stereographic projection, 415

Stieljes algorithm, 174

stiffness matrix, 59, 61

Stokes problem, 240

storage format

COO, 84

CSC, 85

CSR, 85, 272

ELL, 86

MSR, 85

SSK, 295

storage of sparse matrices, 83–86

structured sparse matrix, 69

subdomain, 373

subspace, 9

direct sum, 10

of approximants, 122

of constraints, 122

orthogonal, 10

sum, 10

Successive Over-Relaxation, see SOR

symbolic factorization, 88

symmetric Gauss Seidel, 97

symmetric matrices, 4

Symmetric Positive Definite, 31, 112

Symmetric SOR, see SSOR

symmetric squaring, 315

symmetry in preconditioned CG, 245

T

test problems, 88

TFQMR, 219

algorithm, 224

topological sorting, 346

trace, 4

Transpose-Free QMR, see TFQMR

triad operation, 339

triangular systems, 344

distributed, 375

level scheduling, 346

sparse, 344

tridiagonal matrices, 5

U

unassembled matrix, 60

under-determined, 230

undirected graph, 71

unitary matrices, 4

unstructured sparse matrix, 69

upper triangular matrices, 5

upwind schemes, 51

Uzawa’s algorithm, 239

V

variable preconditioner, 255

vector

computers, 325

operations, 331

orthogonality, 10

processors, 325

of unknowns, 95

updates, 131, 332

parallel, 332

vertex (in a graph), 71

W

wavefronts, 346

weak formulation, 56

weakly diagonally dominant matrix, 109

Winget regularization, 377

Z

Zarantonello’s lemma, 189

