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PRECONDITIONING TECHNIQUE TO LINEAR
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Abstract. For solving linear complementarity problems LCP more
attention has recently been paid on a class of iterative methods called
the matrix-splitting. But up to now, no paper has discussed the effect
of preconditioning technique for matrix-splitting methods in LCP. So,
this paper is planning to fill in this gap and we use a class of precondi-
tioners with generalized Accelerated Overrelaxation (GAOR) methods
and analyze the convergence of these methods for LCP. Furthermore,
Comparison between our methods and other non-preconditioned meth-
ods for the studied problem shows a remarkable agreement and reveals
that our models are superior in point of view of convergence rate and
computing efficiency. Besides, by choosing the appropriate parameters
of these methods, we derive same results as the other iterative methods
such as AOR, JOR, SOR etc. Finally the method is tested by some
numerical experiments.
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1. Introduction

For a given real vector q ∈ Rn and a given matrix M ∈ Rn×n the linear
complementarity problem abbreviated as LCP (M, q), consists in finding vectors
z ∈ Rn such that,

W = Mz + q, zT = 0, z ≥ 0,W ≥ 0. (1)

Where, zT denotes the transpose of the vector z. Many problems in various scien-
tific computing and engineering areas can lead to the solution of an LCP of the
form (1). For more details (see [1–5] and the references therein).

In several decades, many methods for solving the LCP (M, q) have been intro-
duced. Most of these methods originate from those for the system of the linear
equations where may be classified into two principal kinds, direct (see [3–6]) and
iterative methods (see [2, 3, 7–12]). Iterative methods often fall into splitting and
multisplitting methods. For example Cottle et al. [5] studied the convergence of
the splitting and two–stage methods when matrix M is symmetric or nonsym-
metric. Bai and Evans in [13–15] studied the multisplitting techniques for solv-
ing (1.1)which are useful in parallel computing. Based on the models in [13], Yuan
and Song [16] proposed a class of modified AOR (MAOR) methods to solve (1.1),
when M is a 2 − cyclic matrix. Furthermore, under certain conditions, Li and
Dai in [17] studied Generalized Accelerated Overrelaxation (GAOR) methods, for
LCP based on [13]. GAOR algorithm was first proposed for solving systems of
linear equations by James [18] in 1973 and has been extensively studied by some
authors (see [19, 20]). All these methods are in a class of iterative methods called
the matrix-splitting. There are many solution methods available for solving linear
systems and also, some of these methods apply Jacobi and Gauss − Seidel iter-
ations as preconditioners. But up to now, no paper has discussed the effective of
preconditioning technique for above matrix-splitting methods in LCP (M, q).

This paper is devoted to the preconditioning technique for LCP (M, q). The
development of efficient and authentic preconditioning strategy is the key for the
successful application of scientific computation to the solution of many large scale
Problems. The convergence rate of iterative methods depends on spectral prop-
erties of the coefficient matrix, so in preconditioning schemes the attempt is, to
transform the original system into another one, that has the same solution but
more desirable properties for iterative solution. In this paper, GAOR methods
are adopted and the effect of preconditioning is investigated. Here we extend
(I + S) − type preconditioners for linear equations to LCP and show that the
preconditioned GAOR methods are superior to the basic GAOR methods.

2. Prerequisite

We begin with some basic notation and preliminary results which we refer
to later. First of all, the matrix A = (aij) is nonnegative (positive) if for any
i, j; ai,j ≥ 0 (ai,j > 0). In this case we write A ≥ 0(A > 0). Similarly, for
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n-dimensional vectors x, by identifying them with n × 1 matrices, we can also
define x ≥ 0(x > 0).

Definition 2.1 [21, 22]. A real n× n matrix A = (aij) is called;

(i) Z-matrix if for any i �= j; ai,j ≤ 0,
(ii) M–matrix, if A is nonsingular, and A−1 ≥ 0,
(iii) H–matrix if and only if < A >= (mi,j) ∈ Rn×n is an M–matrix, where;

mi,i = |ai,i|; mi,j = −|ai,j |, i �= j.

Definition 2.2 [16, 17]. For x ∈ Rn, vector x+ is defined such that (x+)j =
max{0, xj},Then, for any x, y ∈ Rn, the following facts hold:

(i) (x+ y)+ ≤ x+ + y+.
(ii) x+ − y+ ≤ (x− y)+.
(iii) |x| = x+ − (−x)+.
(iv) x ≤ y implies x+ ≤ y+.

Definition 2.3 [21, 22]. Let A be a real matrix. The splitting A = M − N is
called;

(i) convergent if ρ(M−1N) < 1,
(ii) regular if M−1 ≥ 0 andN ≥ 0,
(iii) weak regular if M−1N ≥ 0 N ≥ 0.

Clearly, a regular splitting is weak regular.

Lemma 2.4 [21, 23]. Let A be a Z-matrix. Then A is M–matrix if and only
if there is a positive vector x such that Ax > 0. Lemma 2.2 [21, 23]. Let A =
M −N be an M–splitting of A. Then ρ(M−1N) < 1 if and only if A is M–matrix.
Lemma 2.3 [22]. Let A,B are Z-matrices and A is an M–matrix, if A ≤ B then
B is also an M–matrix. Lemma 2.4 [22]. If A ≥ 0, then;

(i) A has a nonnegative real eigenvalue equal to its spectral radius,
(ii) For ρ(A) > 0, there corresponds an eigenvector x ≥ 0,
(iii) ρ(A) does not decrease when any entry of A is increased.

Lemma 2.5 [23]. Let T ≥ 0. If there exist x ≥ 0 and a scalar α such that;

(i) Tx ≥ αx, then ρ(T ) ≥ α. Moreover, if Tx < αx, then ρ(T ) < α.
(i) Tx ≤ αx, then ρ(T ) ≤ α. Moreover, if Tx > αx, then ρ(T ) > α.

Lemma 2.6 [8, 16]. LCP (M, q) can be equivalently transformed to a fixed-point
system of equations;

z = (z − αE(Mz + q))+, (2)

where α is some positive constant and E is a diagonal matrix with positive diagonal
elements.
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Lemma 2.7 [13]. Let M ∈ Rn×n be an H–matrix with positive diagonal elements.
Then the LCP (M, q) has a unique solution Z∗ ∈ Rn.

Let the matrix M be as;
M = D + L+ U, (3)

Where, D diagonal, L and U are strictly lower and upper triangular matrices of M ,
respectively. Then by choice of αE = D−1 and Lemma 2.6 we have,

z = (z −D−1(Mz + q))+. (4)

So, in order to solve LCP (M, q), GAOR iterative methods defined in [17] is;

zk+1 = (zk −D−1[αΩLZk+1 + (ΩM − αΩL)zk +Ωq)+, (5)

Where, α is a real parameter and Ω = (w1, . . . , wn) is a real diagonal relaxation
matrix.

The operator f : Rn → Rn, is defined such that f(z) = ξ, where ξ is the fixed
point of the system;

ξ = (z −D−1[αΩLξ + (ΩM − αΩL)z +Ωq)+, (6)

In next lemma, we have the convergence theorem, proposed in [17] for the GAOR
methods.

Lemma 2.8 [11]. Let M ∈ Rn×n be an H–matrix with positive diagonal elements.
Moreover, let

G = I − αΩD−1|L|, F = |I −D−1(ΩM − αL)|, (7)

then, for any initial vector z0 ∈ Rn, the iterative sequence zk generated by the
GAOR method converges to the unique solution z∗ of the LCP (M, q) and;

ρ(G−1F ) ≤ Max{|1 − wi| + wiρ(|J |)} < 1,

if
0 < wi < 2/(1 + ρ(|J |)), 0 ≤ α ≤ 1,

where ρ(|J |) is the spectral radius Jacobi iteration matrix (J = D−1(L+ U)).

3. Preconditioning technique in GAOR methods

for LCP (M, q)

In this section, GAOR methods for LCP and the effect of preconditioning for
these methods are investigated. In these iterative methods, for increasing the con-
vergence rate, an acceleration parameter has been used. However, it is impossible
to estimate an optimal parameter in actual problems. Moreover, it does not pro-
vide an essential methodology. In other words, this strategy has a high cost. From
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trade off cost, efficiency and also numerical techniques point of view, Precondition-
ing is effective to change the convergence rate. A preconditioner is defined as an
auxiliary approximate solver, which will be combined with an iterative method.
According to critical importance of spectral radius, in preconditioning; we find
a more desired spectral radius. In the literature, various authors have suggested
different model of (I +S)− type preconditioner for linear systems A = I −L−U ;
where I is the identity matrix and L, U are strictly lower and strictly upper tri-
angular matrices of A, respectively. (see [24–31] and the references therein). These
preconditioners have reasonable effectiveness and low construction cost. For exam-
ple In 1987 Milaszewicz [24] presented the preconditioner of (I + S)− type, where
the elements of the first column below the diagonal of A eliminate. Gunawardena,
Jain and Snyder in [25] considered the alternative preconditioner, which eliminates
the elements of the first upper diagonal. In [26], Usui et al. proposed to adopt,
as the preconditioned matrix, where P = I + L is strictly lower triangular of ma-
trix A. They obtained excellent convergence rate compared with that by other
iterative methods. In [27], we presented some preconditioners for solving linear
systems Ax = b. In these preconditioners, we let, (I + S) be one model of above
preconditioners. Then, our preconditioners are given by the following;

P1 = (I + S){(I − S) + (L+ U)(I + S)}. (8)

P2 = (I + S){3I −A(I + S)(3I −A(I + S))}. (9)

In the present section, same preconditioners as above for solving linear complemen-
tarity problem are used. Consider M in (3) is nonsingular. Then preconditioning
in M is;

M̄ = D + L+ U + SD + SL+ SU = D̄ + L̄+ Ū , (10)

where, D̄, L̄, Ū are diagonal, strictly lower and strictly upper triangular parts
of M̄ and;

q̄ = (I + S)q.

Therefore, Milaszewicz’s preconditioner is as follow;

(I + S1),

where,

s1 =
1
m11

⎛
⎜⎜⎜⎜⎝

0 0 . . . 0
−m21 0 . . . 0
−m31 0 . . . 0

...
... . . .

...
−mn1 0 . . . 0

⎞
⎟⎟⎟⎟⎠. (11)

Gunawardena et al.’s preconditioner is as follow;

(I + S2),
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where,

s2 =

⎛
⎜⎜⎜⎜⎜⎝

0 −m12
m22

0 0
0 0 −m23

m33
0

...
. . . . . .

...
0 0 . . .

−mn−1,n

mn,n

0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠
. (12)

Usui et al.’s preconditioner is as follow;

(I + S3),

where,

s3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . . . . 0
−m21
m11

0 0
. . . 0

...
. . . . . . . . .

...
−mn−1,1

m11
. . .

−mn−1,n−2
mn−2,n−2

0 0
−mn,1

m11
. . .

−mn,n−2
mn−2,n−2

−mn,n−1
mn−1,n−1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (13)

And our preconditioners for LCP are;

P1 = (I +K1) = (I + Si){(I − Si) + (l + u)(I + Si)}. (14)

P2 = (I +K2) = (I + Si){3I −M(I + Si)(3I −M(I + Si))}. (15)

where, l = −D−1L and u = −D−1U are strictly lower and strictly upper triangular
matrices of M = D + L + U = D(I − l − u). Furthermore, for i=0,1,2 and 3,we
have,

M̄ = (I +K1)M,

q̄ = (I +Ki)q,

K0 = (I + Si), i = 1, 2, 3.

Thus the preconditioned GAOR methods for LCP are:

zk+1 = (zk − D̄−1[αΩL̄Zk+1 + (ΩM̄ − αΩL̄)zk +Ωq̄)+, (16)

Lemma 3.1. Let M be an H−matrix, then the preconditioned M̄ = (I +Ki)M
also is H−matrix.
Proof. Let M be an H−matrix, then < M > is M−matrix and by Lemma 2.1;

∃x > 0, s.t;< M > x > 0.

Since < M̄ >= (I + |Ki|) < M >), then

< M̄ > x = (I + |Ki|) < M > x > 0.

Therefore M̄ is M−matrix and the proof is completed. �
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Theorem 3.2. Let M with positive diagonal elements be an H−matrix and M̄ =
(I + Ki)M is preconditioned form of M with preconditioners (11)–(15). Then if
the conditions of Lemma 2.8 are satisfied we have;

ρ(Ḡ−1F̄ ) ≤ ρ(G−1F ) < 1.

Proof. By Lemma 3.1 M̄ is an H−matrix. Hence < M̄ = Ḡ − F̄ is M−matrix,
and by Lemma 2.2 ρ(G−1F ) < 1. Since (< M̄ >) < Ḡ, by Lemma 2.3 Ḡ is
M−matrix. As same demonstration G is also M−matrix. Thus

Ḡ−1 ≥ 0, Ḡ−1F̄ ≥ 0.

G−1 ≥ 0, G−1F ≥ 0.

Then by Lemma 2.4, there exist a positive vector x such that (G−1F )x =
ρ(G−1F )x. Therefore,

(G− F )x =< M > x = G(I −G−1F )x =
1 − ρ(G−1F )
ρ(G1F )

Fx ≥ 0.

Furthermore, for (I +Ki);say (I +K0) and (Si = S2) we have;

< M̄ > = (I + |S2|) < M >

= (I + |S2|)(D − |L| − |U |)
= D − |L| − |U | + |S|D − |S| |L| − |S| |U | = (D̄ − ∣∣L̄∣∣ − ∣∣Ū ∣∣),

where,
|S| |L| = D1 + L1 + U1,

D̄ = D −D1 ≤ D,∣∣L̄∣∣ = ||L| + L1| ≥ |L| ,∣∣Ū ∣∣ = ||U | + U1 + |S| |U | − |S|D| .
Thus, Ḡ ≤ G and in view of the fact that both Ḡ and G are M −matrices we
have;

Ḡ−1(I + S2) ≥ Ḡ−1 ≥ G−1.

Therefore,
0 ≤ [Ḡ−1(I + S2) −G−1](G− F )x =

(I − Ḡ−1F̄ x− (I −G−1G)x) =

G−1Fx− Ḡ−1F̄ x = ρ(G−1F )x− Ḡ−1F̄ x.

And by Lemma 2.5 we have;

ρ(Ḡ−1F̄ ) ≤ ρ(G−1F ).

Therefore by Lemma 2.8 the proof is completed. �
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Now, following [13, 16, 17], we show that in LCP , the convergence rate of
preconditioned GAOR methods are faster than of the GAOR methods.

Theorem 3.3. Let M with positive diagonal elements be an H−matrix and M̄ =
(I + Ki)M is preconditioned form of M with preconditioners (11)–(15). Then,
convergence rate of preconditioned GAOR methods are faster than of the GAOR
methods.

Proof. Let iterative sequence {zi}, i = 0, 1, generated by (16). From the assump-
tion that M is an H−matrix, it follows by Lemma 3.1, M̄ is an H−matrix
and therefore by Lemma 2.7, the vector sequence {zi} is uniquely defined and
the LCP (M, q) has a unique solution Z∗. Similar to (6), we define the operator
v : Rn → Rn, such that v(z) = ξ̄, where ξ̄ is the fixed point of the following
system;

ξ̄ = (z − D̄−1[αΩL̄ξ̄ + (ΩM̄ − αΩL̄)z +Ωq̄)+. (17)

Let;
ψ̄ = v(x) = (x− D̄−1[αΩL̄ψ̄ + (ΩM̄ − αΩL̄)x+Ωq̄)+. (18)

By subtracting (17)and (18), we get;

ξ̄ − ψ̄ = ((z − x) − D̄−1[αΩL̄(ξ̄ − ψ̄) + (ΩM̄ − αΩL̄)(z − x))+.

ψ̄ − ξ̄ = ((x − z) − D̄−1[αΩL̄(ψ̄ − ξ̄) + (ΩM̄ − αΩL̄)(x− z))+.

Therefore, by above relations we have;
∣∣ξ̄ − ψ̄

∣∣ = (ξ̄ − ψ̄)+ + (ψ̄ − ξ̄)+ ≤ Ḡ−1F̄ (z − x).

Thus from the definition of the preconditioned GAOR methods and above relation
we can write;

∣∣zk+1 − z∗
∣∣ =

∣∣v(zk) − v(z∗)
∣∣ ≤ Ḡ−1F̄

∣∣zk − z∗
∣∣ .

Hence, the iterative sequence {zk}, k = 0, 1, converges to z∗ if ρ(Ḡ−1F̄ ) < 1.
Furthermore, since by Theorem 3.2, ρ(Ḡ−1F̄ ) ≤ ρ(G−1F ) then, we conclude that
for solving LCP , the preconditioned GAOR iterative methods are better than of
the GAOR methods form point of view of the convergence speed and the proof is
completed. �

Corollary 3.4. By choosing special parameters in GAOR methods, it can be ob-
tained the similar results for other well known iterative methods. For example,

1) GSOR (generalized SOR) methods [17] for α = 1.
2) AOR (accelerated Overrelaxation) methods [32] for α = r/w, Ω = wI.
3) MSOR (modified SOR) methods [16] for α = 1, Ω = (w1I, w2I).
4) EAOR (extrapolated AOR) methods [33] for α = r2/w2, Ω = (w2/r)I.
5) SOR methods [21, 23] for α = 1, Ω = wI.



ITERATIVE METHODS WITH PRECONDITIONING TECHNIQUE TO LCP 67

6) JOR (Jacobi Overrelaxation) methods [34] for α = 0, Ω = wI.
7) Gauss− Seidel method [21, 23] for α = 1, Ω = I.
8) Jacobi method for [21, 23] for α = 0, Ω = I.

These preconditioning techniques and their results are also applicable for par-
allel computing such as multisplitting [13–15], SIMD and MIMD sys-
tems [10, 12].

4. Numerical Examples

Here we give some examples, to illustrate the results obtained in previous sec-
tion. In these experiments, the initial approximation of z0 is z0 = (1, 1, . . . , 1)T

and as a stopping criterion we choose;

‖min(Mzl + q, zk)‖∞ ≤ 10−6.

‖min(M̄zl + q̄, zk)‖∞ ≤ 10−6.

Furthermore, we report the CPU time and number of iterations for the correspond-
ing GAOR and preconditioned GAOR methods by CPU and Iter, respectively.
All the numerical experiments presented in this section were computed with MAT-
LAB 7 on a PC with a 1.86GHz 32-bit processor and 1GB memory.

Example 4.1. Consider LCP (M, q) as;

M = I ⊗B +R ⊗ I ∈ RN×N .

q = (−1, 1, . . . , (−1)n2
)T ∈ RN .

where I ∈ RN ×N and ⊗ denotes the Kronecker product. Furthermore, B and R
are n× n tridiagonal matrices given by;

B = tridiagonal
[
−2 + h

8
, 1,−2 − h

8

]

R = tridiagonal
[
−1 + h

4
, 0,−1 − h

4

]

h = 1/n, N = n2.

Evidently, M is an H−matrix with positive diagonal elements so, LCP (M, q) has
a unique solution. Then, we solved the n2×n2 H−matrix yielded by the iterative
methods, and Preconditioned forms. In this experiment, we choose Gunawardena
et al.’s model and our models (P1, P2) as preconditioners. In Table 1, we report
the CPU time and number of iterations for the corresponding GAOR and precon-
ditioned GAOR methods. Moreover, the N parameters wi, are taken from the N
equal–partitioned points of the interval [0.91.1] and alpha is one. Here, the precon-
ditioned GAOR methods with Gunawardena et al.’s preconditioner is denoted by
PREC(Guna), while PREC(P1), PREC(P2) corresponds to our preconditioners
(Pi); i = 1, 2.
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Table 1. Show the result of example 4.1 for GAOR.

Method GAOR PREC(Guna) PREC(P1) PREC(P2)
n Iter CPU Iter CPU Iter CPU Iter CPU
7 53 0.070 34 0.020 21 0.010 14 0.000
14 147 0.700 92 0.470 56 0.310 36 0.210
25 315 19.520 199 16.314 120 11.060 78 7.200

Table 2. Show the result of example 4.1 for AOR.

Method AOR PREC(Guna) PREC(P1) PREC(P2)
n Iter CPU Iter CPU Iter CPU Iter CPU
9 94 0.130 63 0.060 35 0.030 24 0.020
18 248 3.800 119 0.761 66 0.411 44 0.280
25 375 27.689 256 23.999 142 13.339 95 8.933

Table 3. Show the result of example 4.1 for SOR.

Method SOR PREC(Guna) PREC(P1) PREC(P2)
n Iter CPU Iter CPU Iter CPU Iter CPU
10 111 0.270 72 0.140 42 0.060 28 0.030
20 288 5.538 188 3.696 109 2.203 72 1.402
30 460 72.554 370 58.594 178 34.740 117 22.693

In Table 2, we report the CPU time and number of iterations by different n
for the corresponding AOR and preconditioned AOR methods with w = 1 and
r = 0.8.

In Table 3, we report the CPU time and number of iterations by different n for
the corresponding SOR and preconditioned SOR methods with w = 0.9.

Example 4.2 Application to the obstacle problems.
The test problem comes from the finite difference discretization of the one side

obstacle problem [35],

< −Δu− b, v − u >≥ 0, ∀v ∈ K,

where, K = {v ∈ H0(Ω) : v ≥ 0}, b = 4sin(4xy), Ω = (0, 1) × (0, 1). By dis-
cretization, we obtain the problem as LCP (M, q),where, h = 1/n, n = m2 and
q = (4h2sin(4ij/m2))i,j , i, j = 1, . . . ,m,

M =

⎛
⎜⎜⎜⎜⎜⎝

A −I
−I A −I

. . . . . . . . .
. . . . . . −I

−I A

⎞
⎟⎟⎟⎟⎟⎠

∈ Rn×n.
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Table 4. Show the result of example 4.2.

Method GAOR PREC(Usui) PREC(P1) PREC(P2)

n Iter CPU Iter CPU Iter CPU Iter CPU

100 102 0.004054 82 0.003262 43 0.001657 28 0.001055

225 198 0.064214 172 0.063753 87 0.037722 57 0.014490

400 345 0.289446 307 0.248204 157 0.119898 105 0.099793

625 472 0.839852 436 0.726877 225 0.389484 153 0.258722

900 608 1.960319 600 1.628224 313 0.881270 212 0.513456

1225 744 3.688457 740 3.625643 403 1.979734 278 1.425091

1600 907 8.138793 859 7.415670 484 4.126375 337 2.689793

2025 1063 25.073047 972 22.962480 579 8.990856 409 5.712374

2500 1249 27.860959 1069 21.915278 697 14.568068 510 8.092789

I is the identity matrix of m -dimension, and

A =

⎛
⎜⎜⎜⎜⎜⎝

4 −1
−1 4 −1

. . . . . . . . .
. . . . . . −1

−1 4

⎞
⎟⎟⎟⎟⎟⎠

∈ Rm×m.

In this experiment, we choose Usui et al.’s model and our models (P1, P2) as
preconditioners. In Table 4, we report the CPU time and number of iterations
for the corresponding GAOR and preconditioned GAOR methods. Furthermore,
the N parameters wi, are taken from the N equal–partitioned points of the interval
[1, 1.02] and alpha is one. Here, the preconditioned GAOR methods with Usui
et al.’s preconditioner is denoted by PREC(Usui), while PREC(P1), PREC(P2)
corresponds to our preconditioners (Pi); i = 1, 2.

From the tables, we can see that the preconditioned iterative methods are su-
perior to the basic iterative methods and our preconditioners are better than
other preconditioners. The tables have also shown that the preconditioned itera-
tive methods associated with (P2) are the best.

5. Conclusions

In this paper we have proposed the preconditioned GAOR methods for linear
complementarity problem and analyzed the convergence for these methods under
certain conditions. We have also studied how the iterative methods for LCP are
affected, if the system is preconditioned by our model. Besides, convergence areas
and comparison results can be extended to the other well known iterative methods
such as MAOR, AOR, SOR, etc. numerical results show the influence of our
theorems.
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